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ABSTRACT | Reliable and accurate position information is of
great importance for many mass-market and emerging appli-
cations. Network localization and navigation (NLN) is a promis-
ing paradigm to provide such information ubiquitously, where
a network of nodes is used to aid in localizing its members. This
paper explores various network operation strategies, which
play an essential role in NLN as they determine the network
lifetime and localization accuracy. Efficient network operation
requires several functionalities, including node prioritization,
node activation, and node deployment. The roles of these func-
tionalities are described and different techniques for imple-
menting respective functionalities via algorithmic modules are
introduced. Some important concepts such as cooperative
operation, robustness guarantee, and distributed design in
the development of the network operation strategies are also
introduced. Finally, numerical results are provided to demon-
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strate the localization performance improvement attributed to
the optimized network operation strategies.
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I. INTRODUCTION

Location awareness using wireless signals is critical for
many mobile applications [1]-[6], including autonomous
driving [7]-[9], assisted living [10]-[12], Internet-
of-Things [13]-[16], crowdsensing [17]-[20], medical
services [21]-[23], as well as search-and-rescue operations
[24]-[26]. In outdoor scenarios, global navigation satellite
systems (GNSSs) can provide meter-level localization
accuracy around the earth through a constellation of
satellites [27]-[31]. However, the effectiveness of GNSS
is limited in challenging propagation environments, such
as inside buildings and in urban canyons, due to signal
degradation or blockage by obstacles [32]. To complement
GNSS in these challenging propagation environments,
wireless localization networks have been developed in
the past decades for providing high-accuracy location
awareness [33]-[39].

In a typical wireless localization network, there are
two types of nodes, referred to as anchors and agents
[40]-[42]. Anchors have perfectly known positions,
whereas agents have unknown positions. For example,
anchor nodes may consist of WiFi access points or cel-
lular base stations, and agent nodes may consist of
user smartphones or sensors. The goal of the local-
ization network is to determine the position of agents
using inter-node and intra-node measurements [43]-[49].
Inter-node measurements refer to measurements between
nodes, e.g., ranging with ultrasound or radio-frequency
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Fig. 1. lllustration of node prioritization, node activation,

and node deployment actions. Black arrows denote the inter-node
measurements, and the thickness of an arrow represents the amount
of resources allocated to that measurement according to the node
prioritization module; the blue hollow circle denotes the inactive
agent, which does not transmit wireless signals as dictated by

the node activation module; green arrows denote the movement of
nodes, determined by the node deployment module from the original
position (faded circle) to the required position (bright circle).

signals [50]-[57]. Intra-node measurements refer to those
measured with respect to a single node. Typical examples
include data from an inertial measurement unit (IMU)
that obtains the agents’ angular velocity and acceleration
[58]-[61]. Among the studies on localization and navi-
gation, those using cooperative techniques have attracted
increasing research interest [62]-[67]. Cooperative tech-
niques exploit inter-node measurements among agents
and can significantly improve the localization perfor-
mance [68]-[71], obviating the use of high-density anchor
deployments. Recently, a general paradigm called network
localization and navigation (NLN), which incorporates spa-
tiotemporal cooperation, has been established for position
inference [72]-[75].

The performance of NLN depends on various factors,
such as the transmitting energy, signal bandwidth, net-
work geometry, and the propagation conditions [72]-[76].
These factors are generally functions of the network opera-
tion strategy, which determines the allocation of transmit-
ting resources, the activation of transmitting nodes, and
the deployment of agents and anchors. Network opera-
tion plays a critical role in NLN since it not only affects
the network lifetime, but also determines the localization
accuracy [77]-[81]. For example, range measurements
between two nodes with poor channel conditions consume
significant amounts of energy, thereby reducing nodes’
lifetime (e.g., the battery life of sensors) while providing
little localization accuracy improvement. Another exam-
ple of the network operation strategy is that placing all
anchors together in a small region will likely lead to low
localization accuracies of the agents because the ranging
information from different anchors is along almost the
same direction.

Network operation strategies for efficient localiza-
tion and navigation can be categorized into several
functionalities, including node prioritization, node activa-
tion, and node deployment. Fig. 1 illustrates the actuation

Network Operation Strategies for Efficient Localization and Navigation

of these functionalities in a typical NLN system. The roles
of these functionalities can be described in the context of
algorithmic modules as follows.

. Node prioritization module—This module imple-
ments node prioritization strategies for allocating
transmitting resources (such as power, bandwidth,
and time) to achieve the best trade-off between
resource consumption and localization accuracy
[82]-[86]. For a particular agent, the output of this
module is the amount of transmitting resources for
the measurements made between the agent and its
neighboring nodes [87]-[90].

. Node activation module—This module implements
node activation strategies for determining the nodes
that are allowed to make inter-node measurements so
that the localization accuracy of the entire network is
maximized [91]-[95]. For a particular network, the
output of this module is the particular set of nodes
to be used for making inter-node measurements with
their neighbors [96]-[100]. For a selected node, it
may make measurements with one or more of its
neighbors.

. Node deployment module—This module implements
node deployment strategies for determining the posi-
tions of new nodes in the network so that the local-
ization accuracy of certain existing nodes can be
maximally improved [101]-[106]. For a particular
network, the output of this module is the destination
positions of the new nodes [107]-[116].

Network operation strategies are implemented in some
recently developed localization systems [117]. As a mat-
ter of comparison, there are extensive studies on data
network operation strategies, which aim to maximize a
communication performance metric, such as the capac-
ity and throughput, by for example resource allocation
[118]-[121], scheduling [122]-[126], and node deploy-
ment [127]-[129]. Yet these techniques are inefficient
or even infeasible for network operation in localization,
because of the significant difference in the performance
metrics between localization and data networks. Rather
than optimizing the capacity or throughput, the major goal
of the network operation in localization networks is to
improve the accuracy. Hence, new techniques are required
to account for the structure of the localization metric.

One critical concept used in the study of NLN is the
Fisher information matrix (FIM) [72]-[74]. It character-
izes the amount of information that the measurements
carry about the agents’ positions. Prevailing studies on
network operation for localization generally adopt certain
functions of the FIM (or its equivalent form, such as
the inverse of the covariance matrix) as the performance
metrics to be used [130]-[135]. The most commonly used
metric is the Cramér—-Rao lower bound (CRLB), which is
a function of the inverted FIM [136]-[138]. Other metrics
used include the determinant of the FIM [139] and the
smallest eigenvalue of the FIM [140]-[142]. As the FIM
plays such an important role, it is prudent to determine
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the structure of the FIM and exploit amenable proper-
ties of its structure for the design of network operation
techniques.

Various methodologies are described in the literature
to design the network operation strategies for NLN. The
typical methods are as follows.

. Node prioritization strategies typically formulate
and solve optimization problems to obtain trade-
offs between localization accuracy and resource con-
straints [82]-[84], [142]-[145]. For example, in
[142] and [143], the node prioritization problem
was obtained by conic programs in non-cooperative
networks. In a recent study [145], a computational
geometry method was used to solve node prioritiza-
tion problems. This method enables the derivation of
an important sparsity property for node prioritization.

. Node activation strategies typically minimize or sta-
bilize the long-term position error in a greedy man-
ner [92]-[96]. For example, in [96], opportunistic
strategies were developed to minimize the trace of
error covariance matrices; moreover, the error evolu-
tion of these opportunistic strategies was determined
for different network settings (e.g., agent trajecto-
ries, anchor deployments, measurement models, and
multiple-access protocols) in comparison with ran-
dom strategies.

. Node deployment strategies typically optimize the
position error over the geometry of the nodes in
a localization network [105]-[116]. For example,
in [108], iterative approaches are proposed to place
anchors for minimizing the CRLB of agents’ position
errors; in [116], second-order cone program (SOCP)-
based strategies are developed to place new agents for
minimizing the squared position error bound (SPEB)
of an existing agent and the performance gap between
the proposed and optimal strategies is determined.

This paper provides a tutorial on network operation
strategies for efficient NLN. The emphasis will be on the
optimization of the localization performance through node
prioritization, node activation, and node deployment. The
main body of the paper consists of the following five parts.

. We present a general framework for the network
operation including the system model and the per-
formance metric. We also introduce several important
notions of the network operation, such as coopera-
tion, robustness, and distributed design.

. We present node prioritization strategies for non-
cooperative and cooperative networks. Conic
programming-based approaches and computational
geometry-based approaches are used to determine
node prioritization strategies.

. We present node activation strategies for coopera-
tive networks. Opportunistic activation and proba-
bilistic activation strategies are presented and the
error evolution corresponding to these two strategies
is shown.
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. We present node deployment strategies for both non-
cooperative and cooperative networks. An iterative
approach and a conic programming-based approach
are used to determine node deployment strategies.

. We show how the network operation strategies can
significantly improve the localization performance
through numerical examples.

The subsequent sections are organized as follows.
Section II presents the preliminaries of the network opera-
tion in NLN. Sections III and IV present node prioritization
strategies for non-cooperative and cooperative networks,
respectively. Section V presents the design and analysis
of node activation strategies. Section VI presents node
deployment strategies for non-cooperative and cooperative
networks. Section VII presents numerical results to demon-
strate the benefits of optimization in network operation.
The last section draws conclusions.

Notation: Random variables are displayed in sans serif,
upright fonts, and their realizations in serif, italic fonts.
Vectors and matrices are denoted by bold lowercase and
uppercase letters, respectively. For example, a random
variable and its realization are denoted by x and z; a
random vector and its realization are denoted by x and «x; a
random matrix and its realization are denoted by X and X,
respectively. Sets and random sets are denoted by upright
sans serif and calligraphic font, respectively. For example,
a random set and its realization are denoted by X and
X, respectively. The m-by-n matrix of zeros (resp. ones)
is denoted by 0,,x» (resp. 1m,x.); when n = 1, the m-
dimensional vector of zeros (resp. ones) is simply denoted
by 0., (resp. 1,,). The m-by-m identity matrix is denoted
by I,,,: the subscript is removed when the dimension of the
matrix is clear from the context. H.{A} denotes the convex
hull of A. diag{1,22,...,2,} denotes an n x n diago-
nal matrix with diagonal elements zi,x2,...,Z,. A = 0
denotes that the matrix A is positive semi-definite. tr{-} is
the trace of a square matrix; [ « ], denotes the nth element
of the vector . [A],,» is the element at the nth row
and mth column of the matrix A; x ~ N(u,X) denotes
that the random vector x follows the Gaussian distribution
with mean p and covariance matrix 3. A° denotes the
complement of a set .A. Define the unit vectors u(¢) :=
[cos @ sind)]T. The notation xy, ., is used for concatenat-
ing the set of vectors {,, Tk, +1,..., Tk, } and similarly
wlsflk?) fOl’ {wlffll;,wlgfl;l), ey wlsleig }, fOI' ]Cl S kz, t S ta.
We denote by ® the Kronecker product and by E.; an
N x N matrix with all zeros except for a 1 on the ith
row and jth column. The function 1s(z) is an indicator
function defined to be 1 if z € S, and 0 otherwise. Finally,
the notation for important quantities and optimization
problems that is used throughout the paper is summarized
in Tables 1 and 2, respectively.

II. PRELIMINARIES

This section presents the system model in an NLN scenario,
explains basic concepts, and introduces the performance
metric of the network operation.
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TABLE 1 Notation for Important Quantities

Notation  Definition Notation  Definition

Na Index set of agents with cardinality N, Ny Index set of anchors with cardinality Ny,

Pk Position of node k& Prj Angle of the vector from node k to node j

dyj Distance between nodes k and node j 1k (t) Waveform received at agent k from node j

s;5(t) Transmitting waveform of node j tn The nth time instant

z;ﬁn) Vector of intra-node measurements of agent k at time n wgen) Gaussian noise for intra-node measurement of agent & at ¢,
Om Standard deviation of the Gaussian noise win) P A vector that consists of all the parameters of interest
p Unbiased estimator of p Je(p) EFIM for p

JA(py)  Position information between agent k and the anchors Chy;j Ranging information between agent k and agent j
Akj RII between node k and node j Jr () RDM with the angle ¢

P(p) nSPEB Pr Unbiased estimator of py,

Jeo(Pr) EFIM for py, P(pr) iSPEB for agent k

") Error increase matrix at t,, S Information from spatial cooperation at ¢,

p@&) Positions of N, agents at time ¢ f)(N ) Unbiased estimator of p(V)

Jo(pN)) EFIM for p(™) P(pN))  nSPEB at time ty for N, agents

a7 Amount of resources for the measurement from node k to node j | &g; Quality of the measurement from node k to node j

x Vector consisting of all agents” NPVs xy NPV for node k

P(pr;xr) iSPEB as a function of xj P(p;x) nSPEB as a function of &

A. System Models

Consider a wireless localization network with N,
anchors and N, agents. The sets of agents and anchors
are denoted by N, = {1,2,...,N,} and NV}, = {N. + 1,
N, +2,...,N, + N,}, respectively. The position of node &
is denoted by py, k € M, UN.. The angle and distance from
node k to node j are denoted by ¢;; and dy;, respectively.

We first consider inter-node measurements, which can
be obtained from received waveforms. The equivalent
narrowband waveform received at node j from node % is
modeled as

By

~ o8 (t = i) + 245 (2) M
ki

r (8) =
where FEj; is the transmitting energy, v is the ampli-
tude loss exponent, {s;(¢)}jen,un, is a set of transmit-
ting waveforms, «y; and 7;; are the amplitude gain and
propagation delay, respectively, and z;;(t) represents the
observation noise, modeled as additive white complex
Gaussian processes.! The relationship between 7;; and the
node relative position is given by

: l l
Thi = — . — Dj
kj P Dk — Dj

where c is the propagation speed of the signal.

In the dynamic scenarios, we consider intra-node
measurements of agents themselves in addition to the
inter-node measurements. Both the measurements and

Note that although we use a single-path channel model for the inter-
node measurements and time-of-arrival as the signal metric, the results of
this paper can be easily extended to other models, e.g., multipath channel
models and ranging models with additive noise, and other signal metrics,
e.g., time-difference-of-arrival [83], [143]. Moreover, we focus on line-
of-sight scenarios, whereas the strategies proposed in this paper can also
be applied to non-line-of-sight scenarios with slight modification.

inference processes are made at discrete instants ¢, where
1,2,..., N. The intra-node measurement z,(C") of
agent k at time ¢, typically consists of acceleration and
angular velocity, which can be obtained from the IMU.
For ease of exposition in this paper, the model for intra-
node measurements is considered to be the displacement
corrupted by additive Gaussian noise, i.e.,

n =

Z](Cn) _ plgn) _ plinfl) + w}sn) (2)
where p,i") denotes the position of agent k£ at time ¢, and
w,(c") is modeled as N(0,021), in which o, is a known
positive real number.

B. Network Operation

To further understand the role of the network operation
strategies, we present the architecture of a localization and
navigation system in Fig. 2, highlighting the various func-
tionalities considered in this paper. The system consists of
three different layers: the measurement layer, the local-
ization layer, and the operation layer. The measurement
layer performs raw inter- and intra-node measurements,
extracts information regarding the agents’ positions and
channel qualities, and outputs this information to the
localization layer and the operation layer. The localization
layer aggregates the information from the measurement
layer, estimates the positions of the agents, and outputs
these position estimates to the operation layer. Based on
the input from the measurement layer and the localiza-
tion layer, the operation layer produces the decisions for
node prioritization, node activation, and node deployment.
The decisions for node prioritization and node activation
will serve as the input to the measurement layer to con-
trol the set of active agents and determine the alloca-
tion of transmitting resources, and the decision for node
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Fig. 2. Architecture of the considered network-based localization and navigation system.

deployment will be used to guide certain agents to
appointed regions.

There are several important concepts relating to the
network operation strategies in NLN, which are described
as follows.

. Centralized versus distributed—With centralized net-
work operation, there is a central controller that
collects information from all the nodes in the net-
work and produces the operation decisions for all the
agents. With distributed network operation, there is
no central controller; instead, each agent produces
its own operation decision based on the informa-
tion collected locally. Generally speaking, centralized
strategies give better performance, but are usually not
scalable with the size of the network.

. Cooperative versus non-cooperative—With non-
cooperative NLN, agents do not make measurements
amongst each other, whereas with cooperative NLN,
agents assist each other in estimating their positions.
Cooperation among agents can offer increased
localization accuracy and circumvent the need for
high-transmitting power anchors and high-density
anchor deployments. However, the design of network
operation strategies in a cooperative setting is
generally more complicated.

. Robust versus non-robust—The design of network
operation strategies often requires the knowledge of
certain parameters, such as inter-node angles and
distances, but perfect knowledge of these parame-
ters is usually unavailable. Non-robust approaches
use the estimated values of these parameters as
input to the operation layer without accounting for
their uncertainty, whereas robust approaches aim to
design strategies that guarantee the localization per-
formance subject to parameter uncertainty. Generally,
non-robust approaches improve average performance
if the uncertainty is small, while robust approaches
result in better worst-case performance.

. Two-dimensional (2-D) versus three-dimensional
(3-D)—The performance metrics that arise in these
two scenarios have different structures. Generally
speaking, the network operation strategies in

1228 PROCEEDINGS OF THE IEEE | Vol. 106, No. 7, July 2018

3-D networks are more challenging than their 2-D
counterparts due in part to the more complicated
expression of the metric.? In this paper, we will focus
on 2-D localization, whereas most results are also
applicable to 3-D localization.

C. Performance Metrics

The localization accuracy can be quantified in terms of
the mean squared error (MSE) of a position estimator.
Let p denote the vector that consists of all the parameters
of interest. We first consider static scenarios where there is
no temporal cooperation, in which case

1T
pNa:I .

Let p denote an unbiased estimator of p based on the
inter-node measurement {ry; (¢)}ren, jenvuniy (k) i0 (1).

From the information inequality [73], the MSE matrix of
p satisfies

T T
P:[Pl D2

E{(p-p)(p—p)"} = J ' (p) 3)

where J.(p) is the equivalent Fisher information matrix
(EFIM) for p, structured as (4), shown at the top of the
next page. In J.(p), J*(pi) and Cy; can be expressed as
follows?:

TAp) = 3 Ay J(61) 5)

JEN,
and

Cij = Cjo = (Mg + Njg) Jo(dwy) k5 €N

where the matrix J,(¢) is referred to as the rang direction
matrix (RDM) and )\, is referred to as the ranging infor-
mation intensity (RII) between node k and j [72], given

2Specifically, the evaluation of the performance metric involves the
inversion of a 3 X 3 matrix. Due to the complicated expression after
this inversion, it is challenging to obtain some of the amenable prop-
erties, e.g., the second-order cone structure in (20), in 3-D localization
networks.

3We consider synchronous networks in this section, whereas the
discussion of asynchronous networks is in Section III-A.
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[JA(p1) + Z Ci —Ci,2 —C1i N,
JENa\{1}
—C2 JMp2)+ >, Oy -Ca N,
J.(p) = JeEN\{2} )
—Cn, 1 —Cn, 2 JApN)+ Y. Cna
L JENA\{Na} J
by In dynamic scenarios, we have to consider the agent
positions at different time instances to develop the network
cos? Dkj COS P Sin Py, . - .
Jo(dw) = oha = J operation strategies. In these scenarios, the parameter of
C08 G Sin P sin” s interest can be written as p = p{';"). The EFIM for
8122, ai; ] the entire network over time ¢ to ty can be derived
Akj:TJ(l_ij)F; keN, jeN.UN, as* [74]

(6)

in which 3y is the effective bandwidth of the transmitted
signal, and X, € [0,1] is the path-overlap coefficient
characterizing the effect of multipath propagation. Note
that the EFIM (4) consists of blocks that represent local-
ization information from the anchors and agent coop-
eration. In particular, J*(p;) describes the information
about agent k obtained from the measurements between
the anchors and agent k; and Cj,; describes the range
information (RI) obtained from the measurement between
agent k and agent j. The RII characterizes the quality of
the measurement between two nodes, which is affected
by a number of different factors such as the power and
bandwidth of the transmitting signal as well as multipath
effects [72].

As a result of (3), the MSE of the position estimator for
all agents p is lower bounded by

E{lIp—pl*} > o{J 7" (p)} = P(p).

Let p, denote an unbiased estimator of p; based on the
measurements {r; () }ren,jeNaUN;\ {k} - AS a result of (3),
we have

E{(B, — pe)(Br — )"} = [J7(p)]

where [ J'(p) ]m denotes a 2 x 2 matrix corresponding to
the kth diagonal block of J, !(p). We can then introduce
the EFIM for p; as

L= {177 )], } ™

The MSE of the estimator p,, is then lower bounded by

E{ b, — prl” } > tr{J. " (pe)} =: P(pr).

Note that in a non-cooperative setting, Cj; = 0 for
all k,j € N, and the EFIM J.(p) degenerates to a
block-diagonal matrix. Consequently, J.( pi) degenerates
to J*(pi). In this paper, we will adopt P(p) and P( py.)
as the performance metrics, referred to as the network
squared position error bound (nSPEB) and the individual
squared position error bound (iSPEB), respectively.

Pg

N
J.(p) = ZE& ® (8™ T 4 D)y
n=1

N
> (B + BNy ) @ TW ®)

n=1
where

s= 3
EENa jENLUNL\{k}

-3 3 ENesy )

EENa jENa\{k}

N, n
B @8

in which S,E;L) = )\,(C;.L)Jr( ,(;)) with )\,(;) and gb,(;) charac-
terizing the RII and the angle between node k and j at
time ¢,, respectively, and T = Eli\’z ® T™ with

kENa
T{" = 0. .
Let pV) = ﬁma denote an unbiased estimator of
p) = pl(qu. From the information inequality, the MSE

of p™) satisfies

E{(p™ = p™)(6™ = p™)} = [17N(p)] b (10)

Then the corresponding nSPEB at instant ¢y can be writ-
ten as

p(p(N>)::tr{J§1(1’(N))} (11)

where J.(p™) = [J.7'(p) ];&V). We can then introduce
the EFIM for py, at time ¢y as

—1

L(p™) = {[27(»™)],, |

The MSE of the estimator ﬁ,(CN) is then lower bounded by

M7} = {I 7N (eI = P(pY) (12)

E{

b =
where P( p,EN)) denotes the iSPEB at instant ¢ .

4For notational convenience, we let T(1) = T(N+1) — @,
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TABLE 2 Notation for Important Optimization Problems

Notation Definition

P Centralized node prioritization problems for non-cooperative localization

Py, Distributed node prioritization problems for agent k for non-cooperative localization

PRk Robust node prioritization problem for agent k

?ﬁfk and Zﬁ{k Relaxation problems of &R

Flo— Centralized node prioritization problems for cooperative localization

Pk Distributed node prioritization problems for agent k for cooperative localization

,@éf}f and WCA%; Node prioritization problem for agent £ in the infrastructure and cooperative phase, respectively
P28 Problem for optimizing the access probability

2 and 2¢ Node deployment problems for agents for non-cooperative and cooperative localization, respectively
9sp and Zc_gp Node deployment problems for an agent in a single position for non-cooperative and cooperative localization, respectively

The nSPEB and iSPEB characterize the lower bounds
for the mean squared position errors. These bounds are
asymptotically achievable by the maximum likelihood esti-
mators in high signal-to-noise ratio regimes (over approx-
imately 15 dB [41]). Since high accuracy localization and
navigation networks typically operate in such regimes, the
nSPEB and iSPEB can be used as the performance metric
for the design of network operation strategies for a broad
range of applications.

IIIl. NODE PRIORITIZATION FOR
NON-COOPERATIVE LOCALIZATION

This section presents the node prioritization strategies for
non-cooperative static networks.

A. Problem Formulation

We first formulate the node prioritization problem,
aiming to achieve the optimal tradeoff between localiza-
tion accuracy and resource consumption. We rewrite Ay,
in (6) as

Akj = Tij&r (13)

where zj; denotes the amount of resources consumed by
node k for the inter-node measurement between node k
and j and &; denotes the quality of that measurement.
Note that (13) is general enough to accommodate various
node prioritization problems based on the type of resources
manifested in z; and &;;. One example is node prioritiza-
tion based on transmitting power, where z;; = Fy; and

2 92
81 By
2

2

§rj = (1 —xx) Ny

We first consider the non-robust formulation, where
parameters &;; and ¢; are estimated values used as the
input to the node prioritization module. Let x; denote
the node prioritization vector (NPV) for node k. In non-
cooperative networks, agents make measurements only
with anchors, and therefore, z;, € R™. We can write x;, as

T
Tk = [mk(Na+1) mk(Na+2) mk(Na+Nb):|

Let « denote the vector that consists of all the agents’ NPVs

_ T T T T
=Ly L2 ... TN, .
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To emphasize its dependence on NPVs, we rewrite the
nSPEB and iSPEB as P(p;x) and P(ps;z:). Note that

P(p;z) = >, P(pr;xr) and in the non-cooperative
kEN,
setting
-1
P(pr;xr) = tr{ ( Z T Jr(¢kj)> }
JEN,

The centralized node prioritization problem can be
written as

Z. . minimize P(p;x)

z =0 (14)

(15)

subject to
., Le

and the distributed node prioritization problem for agent
k can be written as

&), . minimize P(py;xi)
T
subjectto x; = 0 (16)
ckvl(wk) §07 | = 1,27...,Lk (17)

where (14) and (16) denote the nonnegativity constraints
on the amounts of resources; and {¢/(-)} in (15) and
{ck,1(-)} in (17) denote L. and L; linear constraints on
the NPVs for &2, and &7, respectively. Examples of these
linear constraints include the total resource constraints of
the network and of the individual agent k, i.e., ¢(x) =
1Tz — C and cx (1) = 17 2 — Ch o, where C,,, and
Cp,wor are some positive constants.

Remark 1: In non-cooperative networks, P( py; i) =
tr{ (JA(py))"'}. Since evaluating JA(pj;,) involves only
local parameters, i.e., {¢x;}jen;, and {&x;}jens, the for-
mulation of &2 does not require the parameters of the
entire network and the solution of 47, naturally gives rise
to distributed implementation. This does not hold for the
node prioritization problems in cooperative networks, as
will be shown in Section IV.

Remark 2: The methods developed in this paper are also
applicable to other formulations of the node prioritization
problem (e.g., minimizing the total resource consumption
subject to a given localization performance requirement).
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In particular, one can consider a broadcast setting, in which
only anchors are required to transmit signals, and each of
the agents can use the received waveform for ranging. In
this setting, the NPV x, € R™ and its kth element x;
refers to the amount of resources for the wireless signals

broadcast by anchor k. The RII can then be written as
Ak = €, (F) 1w, (4)- (18)

Here, it is more reasonable to select nSPEB #( p; x,) as the
performance metric and the optimization problem is then

minimize P(p;x.)
subjectto x, = 0
a(xy) <0, 1=1,2,..., L.

This problem has a similar structure to 42, and £, but
it optimizes the resources broadcast by anchors, whereas
Z. and &, optimize the resources used in point-to-point
measurements. The techniques that will be introduced
in Section III-B can be easily used for this optimization
problem in the broadcast setting because it has a structure
similar to &, and &;.

The considered problems &2, and &) can address the
synchronous case as well as the asynchronous case with
only a slight modification. In particular, consider that
anchors and agents are not synchronized. A feasible local-
ization method in this case uses round-trip ranging: node
k initiates by transmitting a wireless signal to node 7,
and node j responds by transmitting a wireless signal
back to node k; the range d;; is inferred at node k from
the round trip time. Let \j; and z; denote the RII and
the resource of the response signal sent from node j
to node k, respectively. The matrix J*(p;) can then be
expressed as

A _ 4)\k] gk
Jo(pr) = E RrESY J(ér5)
_ § : 4:ij$]k ]
= T + Ty fkj r(¢kj)

JENY

where the second equality is because of the channel reci-
procity, i.e., £k = k. In practice, there are two common
scenarios.

Highly asymmetric networks—In certain networks
(e.g., cellular networks), the transmitting resources
(e.g., transmitting power) from anchors (e.g., base
stations) are significantly larger than those from
agents (e.g., mobile users) and cannot be controlled
by the agents. In this scenario, the node prioritization
problem is to optimize over {xz; };en; for each agent
k with the assumption that z > =z, j € N,. The
matrix J( py) can be approximated as

Z 4ka ng ¢kJ)

JENY,

and has the same structure as (5) with )\, given
in (13).

Network Operation Strategies for Efficient Localization and Navigation

. Proportional amount of response resources—In cer-
tain scenarios, the amounts of resources for the
response signals are proportional to those for the
initiating signals, i.e., x3 = nxy;, where n € R
does not depend on k or j.> With this resource allo-
cation method, the node prioritization problem is to
optimize over {xj;};en; for each agent k with the
assumption that z; = nzi;, j € MN,. The matrix
J2(pr) becomes

I pr) =

> 1ii7nfckj§ijr(¢kj)
JENY
and has the same structure as (5) with )y given
in (13).
For readers who are interested in the node prioritization
strategies in asynchronous networks, see [88]-[90] for a

more detailed discussion.

B. Conic Programming-Based Approaches

We next provide solutions to the node prioritization
problems 4. and &, with conic programming-based
approaches. Note that if there is only one agent in the
network, &. degenerates to ;. Therefore, & can be
seen as a special case of 2., and we will focus our attention
on £, in the following.

Proposition 1 (Convexity): The nSPEB P( p;x) in non-
cooperative networks is convex in « 3= 0.

There are many ways to prove Proposition 1, where the
details can be found in [142]-[144]. One way is to take the
second derivative of $( p;x) with respect to  and show
that the Hessian matrix is positive semidefinite [144].

Proposition 1 shows that the objective function of Z.
is convex in x. Thus, together with the fact that &£ has
convex constraints, Proposition 1 implies that £, is a
convex program [146]-[148]. Consequently, the optimal
solution can be obtained numerically by standard convex
optimization algorithms [146].

Conic optimization is a special type of convex optimiza-
tion, and it includes the most well-known classes of con-
vex optimization problems such as semidefinite programs
(SDPs) and SOCPs. We next show that &2, can be converted
to an SDP, which is a more favorable formulation than the
general convex formulation. Recall that the nSPEB can be
written as

z) =tr{(J(p)) '} = > w{(J(p) '}

k’E/\/‘b

Let us consider an auxiliary matrix M}, with the following
constraint:

A -1

M. = (Je ( pk)) .

Due to the fact that J*( p;) 3= 0, the constraint above can
be equivalently transformed to the semidefiniteness of a
matrix that involves M}, and x, as shown in the following

S5This allocation for the response signals is shown to be optimal in
the scenario with certain resource constraints [142], and it has been
implemented in practice [117].
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proposition. A detailed proof of Proposition 2 can be found
in [142].

Proposition 2 (SDP): The problem 2. is equivalent to
the SDP

minimize tr{ M,
wv{Mk}k’ENb k‘;\fa { }
) M, I
subject to I S awby J(ow) | 70 VEEN,
JENY,
(14) — (15).

Furthermore, the problem £2. can also be converted
to an SOCP problem, which is an even more favorable
formulation than the SDP formulation. To see how we
can achieve this, we first transform &, to the following
problem:

minimize E Ok

z.{ok} hen, KEN,
subject to  P(pr; i) < ok, Vk EN,
(14) — (15).

To transform the constraint P( py;x;) < ok to a desired

form, we next explicitly rewrite the iSPEB as follows:
4 - lTRk L

a:}; R{ (11T — ¢4 c{ — Sg s{) Ry,

P(pr;xr) = (19)

where

Ry = diag{&i(n,+1) Eu(Nat2)s - - > ER(Nat Ny |

and

cr = [ co820k(Nu+1) COS2Pk(N,+2) - - - COS2Pk(N,+ Ny |

. . . T
Sk = [ Sin 20k (N, +1) SN 2¢k(N,+2) --- 8in 2¢k(Na+Nb)] .
The constraint P(py;xr) < ok can then be transformed
into

T
|leby, stye 2] <1"y—20 QO

where y, = Ry, and ¢, = 1/p;. The constraint ¢, =
1/ 0 can be replaced with the following constraint without
changing the optimal solution:

H[tk Ok \/E]THStk-FQk.

We then have the following proposition. A detailed proof
of Proposition 3 can be found in [143].

Proposition 3 (SOCP): The problem £, is equivalent to
the SOCP

minimize Ok
@, {ty, 0k heN, bEN.
a

subject to ||AkRka:k + bk” < lTRkCUk — 2ty, Vk € M
H [tr ok \/§]TH <tw+ ok, Yk €N,
(14) — (15)

where A, = [c, s, 0]Tand by =[0 0 2t;]".
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Remark 3: Regarding the computational complex-
ity, the worst-case running time of both the SDP- and
SOCP-based approaches is O(N:®) for the single-agent
case [149].

C. Computational Geometry-Based Approaches

While conic programming-based approaches can pro-
vide solutions with amenable complexity, those solutions
are e-approximate numerical ones and limited insight into
the problem can be gained from the numerical solutions.
We next present another type of approach, which not only
provides exact solutions to the problem, but also reveals
the essence of node prioritization problems.

In this section, we consider that the NPVs are sub-
ject to nonnegative constraints, i.e., (14) and (16), and
the total resource constraints, i.e., (15) with L. = 1
and c¢;(z) = 1"z — 1, and (17) with L, = 1 and
ck1 = 1Tz, — 1. This is a common scenario in the
design and implementation of a localization and naviga-
tion system. For example, the amount of available time for
ranging with different anchors is subject to a total time
constraint.

We next formulate a geometric framework, under which
we can obtain solutions of 22, and then adopt these
solutions to solve Z..

1) Geometric Framework: Inspired by the structure
in (19), we introduce an affine transformation that maps
an NPV to a point in 3-D space

ZE = Ckcvk (21)

where C, = [¢, si 1]TRj. With this transformation, the

iSPEB can be written as

4[Zk-]3
[2x]3 — [24]F — [24]3

Q(zr) = = P(pr; Tk)-

This leads to the following geometric interpretation of the
iSPEB. Given an NPV =z, the point z;, = Cxy lies on a
hyperboloid, given by

(zs—2n ") =20 — 23 —4n 2 =0 (22)

where z1, 22, and z3 are variables and n = P( px; xx).
Denote the feasible NPV set of 42, and its image set
under the transformation (21), respectively, by

X = {:Bk S RNb : 1T:17k =10< a:k}

and
Zp = {Zk S RNb czp = Crxp,x) € Xk}

Note that each element x; € X) can be written as a
convex combination of elements in £ := {e1,e2,...,en, },
where e, is a unit vector with the kth element being 1
and all other elements being 0’s. Hence, the image set
Zi, is a convex polyhedron, given by H.{Cie:e € £}.
This implies that for =, € X} with the corresponding
iSPEB P( py; k), Crxy is in the intersection of Z;, and the
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increasing A

Polyhedron X

Fig. 3.
the image of the feasible set; a hyperboloid consists of the points
that correspond to a particular value of the iSPEB. The optimal

lllustration of solving 27 ;,: the polyhedron corresponds to

solution corresponds to a point on the surface of the polyhedron.

hyperboloid in (22). Such a geometric interpretation can
be used to transform £, to a geometric problem. Consider
the following problem:
PG, © Minimize 7
n

Z N Hn) £ 2
n>0

subject to

where
H(n) = {z = [zl 22 zg]T : 21,22 and z3 satisfy (22)}.

The following proposition connects the optimal solution
of & and that of 2 .

Proposition 4 [145]: For x, € X, if Crxi € H(n"),
where 1™ is the optimal solution for & ;, then xj is an
optimal solution for .

Let n* denote the optimal solution of % ;. Proposition
4 provides a way to solve &, using n*: we can find a point
zy € Z; N H(n*) and determine a vector in X}, that is an
inverse image of zj under the transformation (21).° Such
a vector is then an optimal solution for .

2) Solving P¢,), and &i: The process of solving Fg i
is illustrated in Fig. 3. X} is a fixed polyhedron, whereas
H(n) is a family of hyperboloids parameterized by 7. As
n increases, the hyperboloid H(n) gradually approaches
Xi. If H(n) and X}, are disjoint, then 7 is too small to be
feasible; if H(n) and A}, intersect, then 7 is too large to be
optimal. Hence, the optimal solution n* corresponds to the
scenario where X, is tangent to H(n*). This implies that
the Z, N H(n*) contains only one point, and this point
lies on the surface of Zj. For brevity, we consider only the
scenario where z;, is an interior point of some triangle on
the surface of X). Other scenarios are discussed in [145].
The answers to the following two questions are sufficient
for solving Zg x:

. How can z; be determined if it is know to lie on a

triangle 7°?

. On which triangle does z}, lie?

%How to find the inverse image of z} in X} will be given in the
explanation of Theorem 1.

anchor 2

anchor 3

Y4

anchor 1
o anchor 4
Fig. 4. |lllustration of the sparsity: resources can be optimally

allocated to only three anchors. Most anchors will not be used due
to less favorable channel qualities or poorer network
geometry.

For the first question, note that the normal vectors of
T and H(n") are aligned at zj; as 7 is tangent to H(n™)
at zj. This gives us an equation involving z} and solving
this equation gives the position of zj. For the second
question, we can adopt a seemingly brute-force method:
search over every triangle on the surface of Z; and select
the triangle with the minimum 7. Details can be found
in [145]. The computational complexity of this geometric
method largely depends on the complexity associated with
generating a convex hull of N, given points in 3-D space
[150], [151] and is O(N, log Ny,), which is more efficient
than the conic programming-based approaches.

The observation that the unique point in Z; N
H(n*) lies on the surface of H(n™) not only provides
a way to solve %Gy, but also leads to the following
theorem.

Theorem 1 (Sparsity) There exists an optimal NPV zj,
for 2 such that ||z}||, < 3.

This theorem has an intuitive explanation: the unique
element of Z, N H(n") lies on the surface of H(n*) and
is therefore inside a triangle. Consequently, this element
can be written as a convex combination of the triangle’s
three vertices. In this convex combination, replacing the
three vertices with their inverse images in X gives the
desired x7}.

Theorem 1 shows that the total transmitting resources
can be allocated to only three anchors without loss of
optimality in 2-D networks. This implies that most anchors
are not used due to less-favorable channel qualities or
poorer network geometry. For example in Fig. 4, anchor 1
is not used since it is farthest from the agent and there-
fore the corresponding ranging quality is poorest. Hence,
the same amount of resources allocated to other anchors
contribute more in reducing the iSPEB. Furthermore, allo-
cating resources to anchor 2 is not as efficient as allocating
resources to anchor 4 as they both provide information
along a similar direction but anchor 4 is closer to the
agent.
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o

(a)

Fig. 5. Illustration of the robust formulation: (a) Irregular uncertainty area; (b) Circular uncertainty area.

(b)

3) Solving &.: We next show how to use the solution
of &, to solve .. First rewrite 2, as

minimize Z P(pr; )
{zrthena {bk ken, v
a

lka < M, k eNﬂ
Z e <1

k€ENa
a:k>r-07

subject to

/“6207 kGNa.

Note that x; contributes only one summand in the objec-
tive function, i.e., P( px; i), and its constraint does not
involve x;, j # k if p, is determined. Therefore, this
optimization problem can be transformed to the following

problem:
minimize S (uer
{Brtrens kg,/\:fa ( )
subject to Z ur <1
kEN,
pr >0, keN,
where
Tu(pw) = min P(pr; Tk).

zp:1T e, <pp,xp = 0

Let x; denote the optimal solution of &2, with con-
straints ; = 0 and 1Tz, < 1 and n} = P(p;x}).
Note that JA(p;) is linear in =, and P(py;xzi) =
tr{ [JA(pi)] -t }, and therefore f,(uy,) is inversely propor-
tional to py, which gives fi(ux) = 75 /i Hence

ST felu) = S i > (Z ﬁ) 23)

kEN kENa kEN,

where the equality in (23) is achieved when

1 T 1k
DRV

kEN,

24

The solution of &. can be obtained in two steps: first,
obtain xj and 7; by solving £?;; second, obtain the
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optimal uj based on (24). The optimal solution of 2. is
then &, = pjxy, k € N,.

D. Robust Node Prioritization

The solutions in Sections III-C and III-B require the
knowledge of network parameters such as &; and ¢y;.
Perfect knowledge of these parameters is usually not
available. Since these estimated values are subject to
uncertainty, directly using them in the algorithms may
yield unreliable solutions. Hence, we will next develop
robust methods to cope with the parameter uncertainty.
For brevity, we only discuss the distributed setting in this
section and the proposed approaches can be adapted to the
centralized setting.

Consider the unknown position of agent % in an area Ay,
and the goal of robust node prioritization is to minimize
the largest iSPEB for agent k over all of possible positions
in such an area. The worst-case iSPEB due to the parameter
uncertainty is

Pr(Ak, i) ;== max P(pr;xk).
pp €Ay
The iSPEB PR (Ay, ¢ ) depends on the shape of 4, through
the uncertainty of &; and ¢4, 7 € N,. Note that the area
Ay, can be highly irregular and the maximization over pj
is intractable. To address this issue, we consider a finite
cover of Ay, denoted by {A\" }iez,» Where AV s a circle
with center f),gi) and radius r;, and Z is the index set of
these covering circles (see Fig. 5). For the agent’s position
pr € AL, one can see that the actual network parameters
belong to the linear sets
s €[ -0, 89 + 00| =)

7

i) £ =(i

ki G[éi} iy ] = ‘:‘I(c;')
where 5\ = arcsin(ri/|| o\’ — p;|) and £? and 3%
P i/ || Pk pj Skj kj
are known scalars representing the upper and lower
bounds of &;. Consequently, the worst-case iSPEB can be
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bounded by

Pr(Ag, 1) < max Pl(f)(Ak,ﬂ?k)
i€}

where

max
syeald g esl?

P (Ax, 1) == P(pe;zr).  (25)

We can then formulate the robust node prioritization

problem as
PRk - 1(;) (Ax, 1)

(17)

minimize
T

subject to (16) —

max P,
i€T),

which can be equivalently transformed into
mlmmlze t
z,t

subject to Pl(f) (Ag, i) <t, VieZy

(16) — (17). (26)

We need to convert SDI({ ) (Ak, ) into an expression
amenable to efficient optimization. Note that in (25), the
maximization over &; is achieved at &; = §,(:) since the
iSPEB P( pi; i) is a monotonically decreasing function in
&i;. However, maximization over ¢y; is nontrivial. We next
provide upper bounds on SDI(; )(A;“ x;) that lead to conic
programming solutions.

Proposition 5 ([142]) The maximum iSPEB over the
actual angle ¢y; is upper bounded by

-1
Pl({i)(Am:vk) < tr{ ( Z Thy f(Z)Q (¢(2) 6(1))) } 27

JEN,
provided that Z Th f( )Q, (d),(cj) 5(2)) = 0, where
JEN,
Q.(67,61)) = J.(6)) —sino) T.

Proposition 5 can be proved by noting that if ¢;; € @,ij),
T () = Qu.(d5;),53;)
and thus

JeA(Pk) = Z Tk I (oy) =

JENy

> Q@) 6.

JENy

This together with the monotonicity of tr{(-) '} completes
the proof. Replacing Pl(f) (Ag, i) in (26) with its upper
bound in (27) and adopting a similar transformation as in
Proposition 2, we can relax the robust node prioritization
problem 9%, into the following SDP:

minimize ¢
z,{M;}iez,
subject to tr{M;} <, i €Iy
[Mi (z) OO -| =0
[I > w€,) Q. (D5 by )Jf7
JENY
1€ Ty
(16) — (17).
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The above SDP can cope with small uncertainty in
the parameters. However, the performance loss from the
relaxation is difficult to quantify since the optimal solution
of the robust formulation remains unknown. To address
this issue, we look for new bounds of the worst-case iSPEB.
We denote M = {0,1,...,M — 1}, where M € Z.

_Proposition 6 ([143]) For any given NPV x;, such that
P (Ay; 1) < oo, if

m (@) i
M Z 5\/SDR (A;“:ck) . ITE](C)ZU]C

i (%)
where R’ = dlag{fkw +1)’£k<Na+2>"' gk(Na‘FNb)

then Pg)(Ak,wk) is bounded below and above,
respectively, by

. 4- 1T R( 1)
() .
Pt (A )= nax 'R R(l) 7= (hiz)rﬂ(l) ) (28)
4.1"RW &
Pt (Ar; @) = “ 5 (29)

mEM (1T R( ) ) (gl(c)rzR(l) )
where hffw gl(j)m R™>, in which their jth elements are
given by

cos(2¢3](é)

[hgf)m}: max —Um +€)
j

le|<25(”

K3 1 K3
[g’(c)m]j - cos(m/M) [ ’(“)m]]
with 9., = (2m + 1)7/M for m € M.

Unlike Proposition 5, Proposition 6 provides both lower
and upper bounds for Pl({') (Ag, ). We can replace
SD( )(A;m xy) in (26) by the lower and upper bounds (28)
and (29), leadlng to the relaxed problems &2 ,@ . and ng P
respectively. ,@R,k is more desirable since it guarantees the
worst-case performance, whereas the lower bound is useful
to bound the performance loss of such relaxation. Note that
the relaxed constraint # M) (Ag; xi) <t can be transformed
into M second-order cone forms of x. Consequently, Q’R{k
can be transformed into an SOCP as follows:

minimize
T,y

subject to HA,(j)mﬂ,(f)mk + ka < 1TE,(f)a:k — 2y,

-y

YmeM, VieI;

(16) - (17)

where A =g\, 0]" and b, = [0 2y]".

The next proposition shows that the solution of the
relaxed problem ?ﬁfk converges to that of the original
problem 9% as M increases.

Proposition 7 [143] Let x; and %' be the optimal
solutions of 9 ;, and ?{{I > respectively. Then

P (Ar; )

(4) * =M
< P ) < P
1+Cy — 'R (Aisal) < P (A EL)
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where L i}

Cor = e S0 C/ADBi(wE) 1]

€T, 1 —sin’(w/M)B;(x})
in which
) _ 1,0 1T ()

Bl(cvk) = 4SDR (Ak7£l:k) 1 Ek k.
Moreover, Cj; converges to zero at the rate
of O(M™2).

Proposition 7 implies that the optimal solution of @{{’k
can approximate Pr; with a small value of M due
to the fast convergence rate O(M ~2). Consequently, the
performance of the proposed SOCP algorithms can achieve
near-optimal performance with negligible increase in com-
putational complexity.

IV. NODE PRIORITIZATION FOR
COOPERATIVE LOCALIZATION

This section presents the node prioritization strategies for
cooperative networks in static scenarios. In this section, we
consider only the non-robust formulation for brevity. The
techniques developed in Section III-D can be adopted to
address the robust formulation as shown in [84] and [85].

A. Problem Formulation

Similarly to Section III-A, we rewrite \,; as in (13).
In cooperative networks, agents make measurements only
with anchors and agents, and therefore, the NPV for node
k ), € RNaTNo~1 can be written as

T
T = [mm Tk2 « -+ Tg(k—1) Th(k+1) - -- l‘k(Nb+Na)]

and the NPV for all the agents « can be written as
T
]

For the centralized and distributed settings, the node
prioritization problem can then be written, respectively,
as

T T
= |Tp To

Pco_c: mini;;nize P(p;x)
subject to (14) — (15)
and
Pk minzicrlzlize P(py; Tr)

subject to (16) — (17)

where Zc_. denotes the cooperative centralized node
prioritization problem and £¢  denotes the cooperative
distributed node prioritization problem for agent k. Unlike
the node prioritization in non-cooperative networks, the
performance metrics P(p;x) and P(p,;xr) incorporate
range information from agents in addition to that from
anchors. As we will see in the following sections, such addi-
tional information makes the node prioritization problem
more complicated.
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B. Centralized Setting

We next provide solutions to the cooperative node prior-
itization problem Zc_. in the centralized setting.

Proposition 8: The nSPEB £(p;x) in cooperative net-
works is convex in x = 0.

Proposition 8 can be proved in a similar way as Propo-
sition 1. As the result of convexity, the optimal solution
for Zc_. can be obtained numerically by standard convex
optimization algorithms [146].

We next show that #c_. can be converted to an SDP
Note that

Je(piz) = ) >

kENa jENLUN\{k}

Trj € Viej

where
- {Eﬁzm(mi» jEN
ki = .
(EYs, + EY: — B} — EN)@Ji(drs), J € N
Since J.(p;x) is linear in x, we can use the same tech-

nique as used in Section III-B to prove that Pc_. is
equivalent to the SDP

minimize Z tr{M}
=M kENa
. [ M !
subject to [ I > mkjfijij 70
kENa jENUN\{k}
(14) — (15).

Unfortunately, the techniques of transforming node pri-
oritization problems further into SOCPs in non-cooperative
networks cannot be applied here because the off-diagonal
blocks —C ;. in (4) make the expression of inverted EFIM
J, '(p;x) complicated [152], and thus it cannot be writ-
ten as the sum of fractional forms as in (19).

C. Distributed Setting

The optimal solutions of the problem % ’s cannot
be obtained in a distributed manner because the iSPEB
P(py; Tr) = tr{[J;l(p;a:)]pk} depends on the angles
and qualities of all the inter-node measurements of the
entire network as well as the node prioritization decisions
(i.e., the NPV) of other agents. To address this issue, we
derive an upper bound for P(p,;x.) that is amenable for
distributed implementation.

Consider an auxiliary matrix JY(p;x) representing
the measurements between agents and anchors as
well as measurements made from agent 1 to other
agents

Jopia)=> > o€ Vit Yo @156,Vie G0)
kENa JEN, JENa\{1}

Note that

Jo(piz) — IS (py ) =

Z Z Tri€kjVij = 0

keNa\{1} jENa\{k}
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where the inequality is due to the fact that each summand
is positive semidefinite. Based on JX( p; x), a lower bound
for the EFIM of agent 1 is shown to be

{[(JeL(zo;fﬂ))fl]p1 }1

21515

Jx(¢15) L
= JeA E =, ;
(Py) +je/\/'a\{1} 14+ x1;€15A0, (Pyi 1)
where
Ayj = tr{Ji(615) (I (p,)) '} 31

represents the position uncertainty of agent ; along
the direction between agent 1 and agent j [85].
Consequently

P(py:a1) = tr{ [(Je(p;w))il]m}

< tr{[(Jf(p;x))fl]pl}
= tr{ (JeL(pl; xl))fl}.

Similarly, we can obtain JX(p,; x)) as the lower bound
for the EFIM of agent k in cooperative networks. Note that
if Ay; is available to agent k, then JZ(p,;zx) depends
only on the local network parameters and on the node
prioritization decision of agent k, facilitating the design of
distributed node prioritization strategies.

Using the upper bound in (32) as the optimization
objective for agent 1 requires obtaining A,;. Obtaining
A,; in turn requires the node prioritization decision of
agent j. To circumvent this difficulty, the original problem
can be transformed into a sequential two-phase optimiza-
tion problem. Specifically, each agent k£ produces its node
prioritization decision through the following two phases:

(32

. infrastructure phase—produce the node prioritization
decision to allocate resources for the measurements
between agent k and the anchors;

. cooperation phase—produce the node prioritization
decision to allocate resources for the measure-
ments between agent k£ and its neighboring agents,
which have obtained their position knowledge in the
infrastructure phase.

Note that in the infrastructure phase, each agent k£ min-
imizes tr{ (J*(p,)) '} without requiring the node prior-
itization decisions of other agents; and in the cooperation
phase, each agent k minimizes tr{(JX(p,;zx) )71} with
Ay; based on J2(p;) (j € Na\{k}) from the infrastructure
phase.

In the infrastructure phase, each agent k minimizes
tr{( (py; k) )71} with respect to NPV z;, with zx; = 0
forall j € NV, i.e.,

]Anc . pk,ﬂfk))il}

subject to wy; =0, Vj € N,

minimize tr{ (

T

(16) — (17).
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Note that ]A“C is equivalent to £, and can be solved via
the techmques in Section III.

Using the solution of #2&%¢ in the infrastructure phase,
each agent ;j broadcasts JCA( p;) to its neighboring agents
and agent k computes Ay;. The node prioritization prob-
lem for agent k in the cooperation phase is then formu-
lated using the upper bound (32) as relaxed performance
metrics

PLE mmlmlze tr{ (JX(p; ) '}
subject to  (16) — (17).
Agt

We next show that &5’ can be converted to an SOCP

We rewrite JX(p,; xx) as

T (pian) =TS () + D i Te(ny)
JENa\{k}
where
qrj = Tk
T Tt wkg€rDeg
Since tr{ (JX(p,; zk) )71} is an increasing function of gy,

,@égkt is equivalent to the following program:

. tr Ekjqrjd,
Tk { kit jeNa\ (K} {( Z o

minimize
JENA\{1}

o)

subjectto 0 < gxj, Vi € Ma\{k}
Ty .
— 2 vie M\{k} (33
s < T Vi € Nk} (39)

(16) — (17).

The objective function has a similar structure to (19).
Therefore, it can be shown that we can transform the
objective function to a linear objective function and an
SOCP constraint by following steps similar to those in
Section III-B [85]. Consequently, ,@gf,f can be transformed
into

minimize —t
@k {akjtjeNa\ (K}
subjectto 0 < qj, VjeN\{k}
T
H [\/5 1= qj&rjDr; 1+ Qrjlri An;] H

<2+ (Trj — qry)ériDry, V5 € Na\{k}
Hgkﬁqu +Ek‘| <1"Ryq, — 2t

(16) — (17)

where A, = [&, 5, 0]Tand by =[0 0 2¢]7, in which

q, = [%(Naﬂ) Qk(No+2) - -+ 9k(k—1) 9k(k+1) - - -
Grcnatay 11]°
R, = diag{&r(Nut1)s ER(Nat2)s - - > Ebl—1)> ERCot1)s - - -5
ExiNat N UiV}
Cr, = [cos 20k(Nat+1) COS20K(Na+2) --- COS20k(k—1)
COS 20k (k41) - - COS 20k(N,+N,) COS20, — cos 29k]T
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gk = [sin 2¢k(Nd+1) sin 2¢k(Nd+2) ... sin 2¢k(k71)

SN 20k (k41 - - - SIN 204N, 4+ Ny,) SiN 20 — sin 29k]T

with 1/(1) 122) > 0 being the eigenvalues of J2(p,) and
u(0x) and w(0y + 7r/2) being the corresponding eigenvec-
tors, i.e., J&(py) = vy 7. (0k) + ka)J (Ox +7/2).

The detailed distributed cooperative node prioritization
strategy is described in Algorithm 1. In Algorithm 1, each
agent requires only local network parameters and little
information from its neighbors, which makes the algorithm
amenable for distributed implementation.

Algorithm 1: Distributed Cooperative Node
Prioritization [84]
Input: ¢5; and &, k € Na, j € Ny UNL\{k}
Output: z, k € N,
1: For k € N,, agent k solves 2¢7 in the infrastructure
phase;
2: For k € N, agent k broadcasts J2(p,) to its neigh-
boring agents;
3: For k € N,, agent k solves ,@é,gk,t in the cooperation
phase;
4: For k € N,, agent k outputs xy;

V. NODE ACTIVATION

This section presents the node activation strategies for
cooperative dynamic networks. For the sake of collision
avoidance in implementation, only one node is activated
at each time slot to make inter-node measurements, and
the node then allocates its resource for performing mea-
surements with different neighbors based on the node
prioritization strategies discussed in Section IV. We will
also consider a simpler case for which the node merely
selects one neighbor for the inter-node measurement.

A. Activation Formulation

In the dynamic scenario, recall the EFIM J.(p™) given
in (10) for all the node positions at time ¢,,. For ease of
discussion, we define the error matrix at time ¢, as Q™ =
(Je(p™)) ™", and {Q™},>1 denotes an evolution of the
error matrix over time.

With node activation, at each instant t,, one node
k» is selected to make inter-node measurements with its
neighbors and a fraction of resources is used for each
neighbor through for instance spectrum sharing. In this
case, the error evolution {Q™},,>, can be written as

(nt1) _ )
Q Q

-+ T™ (4

where F](C:) is the error reduction matrix corresponding
to the inter-node measurements between nodes k, and
its neighbors, and T(™ is the error increase matrix given
in (8) due to the uncertainty in the intra-node measure-
ments. Moreover, let V, ,5”) be the set of neighbors of node k
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at time t,, and then the error reduction matrix can be
derived as

-1
- _ <(Q<n> + 3 Aal <n>T>
jen™
(35)
where )\](c';) is the RII of the inter-node measurement

between node k and node j [72], and

er ® u(¢(")) keM, jeN
ay) = (36)
(ex —€;) @ u(d))), k,j€ N

Remark 4: The evolution of the error matrix (34) implies
that a high accuracy in the inter-node measurements (i.e.,
large )\](c’;)) or intra-node measurements (i.e., small o2)
translates to large I'\"™ or small T("), both leading to high
localization accuracy (i.e., small Q**"). Moreover, the
values of RII )\,(c’;.)’s for j € N{™ are subject to the total
resource constraint, and node prioritization can be applied
to optimize the resource allocation.

The error evolution in (34) depends on the activation
strategy via the selected node k, together with the node
prioritization (or simply neighbor selection) strategy as
well as the error increase due to the nodes’ mobility at
each instant. Comparing this with data networks, we can
view Q™ , '™, and T as the queue length, service,
and the packet arrival, respectively. In contrast to queueing
dynamics where the service rates are commonly indepen-
dent of the queue lengths and network geometry, the error
reduction matrices in NLN are nonlinear functions of the
queue length Q™ and of the relative node positions, which
are characterized by ¢§c’;)’s and )\,(c’;)’s.

Node activation strategies for NLN are typically designed
to coordinate the inter-node measurements, with a goal
of minimizing a performance metric such as the nSPEB
tr{Q™} at each time ¢, or the time-averaged nSPEB over
the first n instants, given by

== Z ("},

n/_

(37

We next adopt the former as the performance metric for
designing node activation strategies.

Opportunistic activation: The opportunistic activation
algorithm is one-step optimal and it can be described as
follows: it selects the best agent for inter-node measure-
ments with its neighbors, i.e.,

k, = arg max tr{l"(")} (38)

keNa
where for a given selection of agent k, the values of RII
)\,(;)’s for j € NV, IE") are determined by the node prioritiza-
tion problem £, in Section III-A.

We introduce a special case of the opportunistic node
activation strategy, in which only a single neighbor j,
of node k, is selected for an inter-node measurement.
In this case, the entire resources are dedicated for the
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linkk (kn,jn) and AV = 0 for all j € N\{jn}.
Consequently, the error reduction matrix in (35) can be
simplified as

n n)T n
QMalValT Q™

(n) | —
k k,j) n)—1 n)T n

(k,3) )\I(cj) +a§€j) Q(")aL )
where |( k) denotes the selection of a single link (k, j) for
the inter-node measurement. In this case, the opportunistic
activation in (38) reduces to single-neighbor selection,
which selects the optimal pair for an inter-node measure-

ment in terms of the error reduction, i.e.,

(kn, jn) = arg max tr{F;(cn)hk,j)}
(k,j)emm

(39

where M (™ denotes the set of all possible measurement
pairs at time ¢,,.

The activation strategy with single-neighbor selection
will yield a suboptimal performance compared to that
with node prioritization, as the latter has more free-
dom for resource utilization. Nevertheless, single-neighbor
selection highlights the simplicity in implementation as
it eliminates the calculation of node prioritization in the
process.

Note that the opportunistic activation algorithm requires
perfect knowledge of network parameters such as angles
and qualities of all the inter-node measurements as well
as a centralized controller. First, such perfect knowledge is
not available in practice and the activation algorithm can
only use estimates of these parameters, leading to subopti-
mal performance. Second, the centralized controller would
need to collect all the information about network para-
meters incurring high communication overhead, which is
inefficient in medium- to large-scale networks. To reduce
the communication overhead, we introduce an alternative
algorithm called probabilistic activation.

Probabilistic activation: The probabilistic activation
algorithm selects an agent randomly according to a
certain (possibly optimized) access probability given by
(08", p) with p{™ > 0 for all i € N,
and the normalization constraint 3= p{™) 1.7 The
selected node then performs inter-node measurements
using resources allocated according to the solution of node
prioritization problems or according to the single-neighbor
selection in (39). Thus, the communication overhead
among the agents is much lower than in opportunistic acti-
vation, and therefore such an activation algorithm is better
suited for distributed implementation. In Section V-B, we

will discuss how to design p(”).

B. Activation in Distributed Networks

We now further analyze the performance of the oppor-
tunistic and probabilistic activation in distributed settings.
In these settings, the exact error evolution {Q(”)} in (34)

"Note that (uniformly) random activation is a special case of prob-
abilistic activation with p{™ = 1/N, for all i € Nj.
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is not available to the agents, and each agent can only keep
a record of its own error evolution, as an approximation for
the error evolution of the entire network. Therefore, in the
distributed setting, the error evolution of agent k € N, is
given by

~ (n+1) ~ (n)

Q. =Q +1" (40)
with é;l) = [Q™W];, denoting the submatrix of Q") corre-

sponding to agent k. In the above equation

-1
~(n) (n) — n n n
Qk _(( 1+ Z C()A()Jr¢())) ,
JE/\/’,E")
k is activated

j:.(n) .
L ~(n) (n) m 7
Q" = (@) + NG T ()
j € N{™ is activated
0, otherwise

\

(41)

in which C(") € (0,1] is a coefficient determined by

Q;n) and )\1(;;-)’5 [73]. This coefficient characterizes the

effectiveness of RII due to the position uncertainty asso-
ciated with each agent, and as a special case (;; () — 1 if
node j is an anchor.

The opportunistic activation then selects the best agent
according to (38), where for each potential agent k the
calculation of f,(cn uses the estimated value of the para-
meters and the RII /\](C';)’s as determined by the node
prioritization strategy. On the other hand, the probabilistic
activation selects the node according to the designated
access probability.

For the neighbor selection case, i.e., where only pair
(k, j) is selected for measurements, the error reduction
matrix reduces to

(n) n n
Qw60 Q,"
AT T (0@ u(sl))
k is activated with j € Ny
() n n n n
Ly kg = QM u (o5 ))u' (45 Q"
AT ()@ + Q) yu(el)
k is activated with j € N,\{k}
L0, k is not activated.

(42)

1) Performance Analysis: Based on the error evolution in
distributed networks, we next analyze the performance of
opportunistic and probabilistic activation. In particular, we
consider that the anchors’ positions follow a homogeneous
Poisson point process (PPP) with density u, [153]-[1571,
and let p;, = 1 —exp(—mu, R?) be the probability that there
exists at least one anchor in the neighborhood of a given
agent, where R is the communication radius of an agent.
The performance metric to be analyzed is ¢, i.e., the time-
averaged nSPEB over the first n instants.
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Proposition 9 ([96]) Under mild conditions, for both
opportunistic and probabilistic node activation strategies,
the time-averaged nSPEB is bounded from above as

N, /
Gn < p_: (Pn +1/pE +4py )‘r;iln Pn )

where Amin is the lower bound for the RII of the inter-node
measurements between two nodes in the communication
range, and

pn = 2Naom + %E{tr{Q(l)}}.

Moreover, as n — oo, the upper bound can be simplified as

2N? 2
limsup g, < P 2 (01211+0m oh+ =D )‘miln) :
b

n— oo

Na

The proposition provides important insights into the
activation problem in view of the upper bound. First, the
upper bound increases with the intra-node measurement
error o, and decreases with the RII Awin. This agrees with
our intuition that good quality of intra-node and inter-node
measurements decreases the nSPEB. Second, the upper
bound decreases with increasing py,, or equivalently with
ub, that is, the nSPEB decreases with increasing anchor
density. This also agrees with our intuition that agents
are more likely to access to anchors, which have perfect
position knowledge. Third, the time-averaged nSPEB is
upper bounded as O(N7Z). In fact, when the maximum
number of neighbors for each agent is fixed, it can also be
shown that the lower bound for the time-averaged nSPEB
is also Q(N2) [96], which leads to the conclusion that g,
is on the order of ©(N2). Finally, we comment that the
claims from Proposition 9 hold for node activation with or
without the node prioritization process.

2) Probabilistic Activation Design: We next design the

access probability {p{™, p{™, ..., pg\?)} for probabilistic

activation using the upper bound for the time-averaged
nSPEB g¢,. In the distributed setting, denote the time-
averaged iSPEB for agent k as
1< ~(n")
nk = — t .
Qn k " Z r{Qk }

n/=1

(43)

Then, with the given access probabilities, the upper bound
for agent k’s time-averaged iSPEB can be obtained as

1 _ -
Qn,k Sm (Pn,k + \/pi’k + 4pb)\mi1npn,kpk )

=:9:({p{" }iens) (44)

where py = p,(c") I en ey (1 — p;")) and pn i = o2 +
tr{QS)} /n. As a consequence, the nSPEB can be upper
bounded as

dn < Z dn,k = Z gk({pgn)}ZENd)

KEN, kEN,

(45)

The right-hand side of (45) is in a closed form and can
be used as the objective function for optimizing the access
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probability as
2°: minimize ) g ({{" Yiens)
{Pl(vn)}z'ej\/a kEN,
subject to Z pM =1
i€Na

p™ >0, VieN,. (46)

An optimal solution to the above optimization problem can
be found by generalized geometric programming, which
can be efficiently solved via interior point methods.

The probabilistic activation algorithm can be described
in Algorithm 2. Agents take turns to be the designated
agent, which optimizes the access probabilities at the
beginning of each instant. In particular, the designated
agent collects p,, ; from each of its neighboring agents;
after the designated agent obtains the solution of the
access probabilities, it broadcasts the probabilities to the
other agents. All the agents then access the channels
according to { p{"*},cn, for the next N time slots. The
parameter N induces a trade-off between the performance
and complexity, where a larger N requires less communi-
cation and computation overheads at the expense of per-
formance loss due to outdated input of the problem 2°.

Algorithm 2: Distributed Probabilistic Node Activation

Input: qﬁ,(g) and )\,(;;.), ke N, je Ny UNN\{k}

Output: Optimal access probability {p§"> “Yien

1: Let agent k* be the designated agent (which rotates
among the N, agents);

2: At the beginning of time ¢,,, each agent k calculates
pn.k for k € N,, and then agent k* collects p,, x from
its neighbors;

3: Agent k* obtains an optimal solution { p,i") “Yien, by
solving 27°;

4: Agent k* sends p\™ * to agent i € Na\{k*};

5. Agent k accesses the channel with probability p/(cn) *
for k € NV, in the following N time slots.

VL. NODE DEPLOYMENT

This section presents the node deployment strategies for
both non-cooperative and cooperative networks.

A. Problem Formulation

We now formulate the node deployment problem, aim-
ing to place nodes for increasing the localization accuracy
associated with a certain set of nodes. We first consider
the non-cooperative case, where anchors are deployed
to minimize the average iSPEB for the agent within a
certain region or along a preplanned path. In particular,
let R* denote the region or the preplanned path in which
the agent may lie, and the average iSPEB for the agent
positions in R? is

P®)= [ Pt da
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where f(q) is the weight function of the agent’s position.
The optimization problem can be formulated as follows:

2 : minimize
{Pr}ren,

P*(R™)

subjectto p, € RY, ke, 47

where R< denotes the feasible region for deploying nodes.

In the cooperative case, a set of nodes needs to be
deployed to increase the localization accuracy associated
with a set of agents. The nodes to be deployed are des-
ignated as assisting nodes, whereas the agents that need
to increase localization accuracy are designated as target
agents. Following the definition of $*(R?), we introduce
PL(RY) as

PLRE) = / P(a)fr(q) dg

qERz
where R} denotes the region or path in which a target
agent k may lie, and fx(q) denotes the weight function
of target agent k’s position. The optimization problem can
then be formulated as follows:

2c : minimize Y PL(R})
{Pj}jEsl kESs
subjectto  p; € RY, j €S (48)
where S; denotes the set of assisting nodes,

8> = MN,\S: denotes the set of target agents, and C
denotes the cooperative deployment problems.

B. Non-cooperative Case

We first consider a special case of 2, where f(q) =
0(g — py). This corresponds to the case where the agent
is in a single position p,. In this case, the performance
metric P*(R*) = P(p,) and the node deployment problem
becomes
minimize
{Pr}ren,

Dsp : P(p1)

subjectto p, € RY, ke M (49)

where SP denotes the deployment problem for the agent in
a single position.

The solution of this problem largely depends on R®. For
simplicity, we consider that each anchor can be deployed
on the boundary of a convex region and the agent is
inside this region. The anchors’ positions can then be
parametrized by angles ¢1,, 7 € N, (see Fig. 6). The
problem Z2sp then becomes

minimize P(p
{d15} ien, ( 1)

subjectto 0 < ¢1; < 2m, j € Np.

We further assume that \q; in (6) is a constant function
of ¢1;, i.e., \1; does not change with ¢1;. This assumption
will be relaxed later. For notational convenience, in this
section, we let vy, = A\y(k4n,) and Yr = @144 n,). Without

area boundary

\ O anchor k&
.0
- k1
®- - - ____.
o
o

Fig. 6. Anchors are deployed on the boundary of a convex region.
The position of an anchor can be parametrized by the angle from
itself to the agent.

loss of generality, we assume that v; > v2 > -+ > vy, .
Similarly to (19), we can rewrite the performance metric
P(p,) defined in (5) as follows:

Ny
4 E Vi
Pp) = ——— (50)
b
(E Vk) — |lwoll®
k=1
where
Ny

vy = Z vi[ cos 24y, sin 29 ]T.

k=1

Note that, by assumption, v, is a constant and does not
depend on 1. Therefore, changing the positions p, does
not change Zﬁgl vi. As a consequence, the expression in
(50) implies that minimizing #(p,) is equivalent to min-
imizing ||vo||. Fig. 7 illustrates the way of generating vq.
In particular, —v¢ and {Z/k[cos 2k, sin 2y ]T form
a closed polygon (not necessarily convex). We have the

following claims.

Ifu > Zzlj:bz vk, we can deploy the anchors such that
Y1 — Y = ®/2 + mm, where k = 2,3,..., N, and
m € Z.In this case, ||vo = v1 — 0", Vk.

. Ifrr < 3000 1y, we can 1\<fieploy the anchors such that

vk [ cos 210y, sin 24y, ]T ’
In this case, ||vo| = 0. One way to generate such

a closed polygon is to use the Huffman Tree algo-
rithm [109].

The method above gives a simple way to determine
the optimal solution for 2sp with constant RII. However,
constant RII may sometimes be an impractical assumption
since at certain angles, there may be obstacles such as walls
that block the line of sight (LOS) between the agent and
potential anchors. To account for such a scenario, we now
consider that vy is a piecewise constant function of the
angle ;. In particular, consider discretizing the angles in
to I sets, denoted by V; = [#,,9.),4 = 1,2, ..., I. Without
loss of generality, we assume ¢, = 0 and ¥; = 2x. The
RII v, takes a constant value u; for all ¢, € V.

forms a closed polygon.
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Fig. 7. llustration of v: the summation of the vectors with length

v, and angle 2.

We next describe a coordinate descent method in
Algorithm 3 that can produce node deployment decisions
numerically for scenarios in which v, depends on . In
fact, the performance metric iSPEB is reduced in each
iteration by minimizing over one variable while fixing the
other ones. The efficiency of this algorithm largely depends
on the complexity of the minimization in line 3. Thus, we
focus on finding the optimal solution to the minimization
problem in line 3. The next proposition narrows down the
search for the optimal solution to a finite number of points.

Algorithm 3: Relocate [108]
Input: V; = [¥,,0; ) and p;, i = 1,2,...,1

Lis

Output: The optimal angle vector
=il YR
1: Randomly initialize ¥ = [th1 12 ... ¥n, |, m = 1;
2: while 1 has not converged do
3:  Find the angle ¢}, that minimizes the iSPEB #( p,)
over v, while fixing ¥, k # m;

4: Wm — P
5: m «—mod (m+ 1, Ny);
6: end while

Proposition 10: The minimal ¢}, in line 3 of
Algorithm 3 is in the following set {1, ¥2} U
{9,,05,i=1,2,...,1}, where

> v sin 24y
hr, = 1arctan m
moe9 > vy cos 24y,

k#m

> vpsin 24y

k#m

> vk cos 29 +
k#m

2 1 T
P, = 5 arctan 5"

Proof: The minimum of iSPEB is achieved either when
¥, is on the boundary, i.e., ¥ € {9,,9:,i = 1,2,...,I},
or 1., is an interior point in some interval V;. In the latter
case, the RII p,, is constant when 1),, is in a small neigh-
borhood of . In this neighborhood, minimizing iSPEB
is equivalent to minimizing ||v||. The partial derivative of
|lvo|| with respect to ., at 1y, should be zero since ,, is
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target agent
getag o1
P11 @—T -

Pj  assisting agent

Fig. 8. Illlustration of 2 _gp: assisting agents are deployed to
increase the localization accuracy of the other agent.

an interior point. Hence

_ Owoll _ .
0= W—m =4vm, Z Vg sin 29, | cos 2,

k#m
— (Z Vi COS 21/)k> sin 21/)m] .
k#m

The equation above has two solutions v}, and 12,, which
are also candidates for ¢},. O
We next consider another special case of 2, where

J
fl@)=> d(g—a;)
j=1
where {q; }J_, are J positions in region R*. This corre-

sponds to the case in which the agent can be in J different
positions. In this case, the performance metric

J
PR = Pla;) (51)
j=1
and the node deployment problem becomes
J
2wvp : minimize P(q;
MP {Prlren, Jz::l (qj)

subject to p, € R, k € N, (52)

where MP denotes the deployment problem for the agent
in multiple possible positions.

We continue to assume that anchors are deployed on the
boundary of a convex region and the position of anchor
k is parametrized by the angle from an interior point of
the convex region to anchor &, denoted by 6. In this way,
we can write p, = h(0). Here we do not require the
RIls between anchor &k and {qj}‘j]:l to be a constant as
a function of 6y,.

For the case in which the agent can be in multiple
positions, Algorithm 3 can be modified to solve 2yp and
the modified version is given in Algorithm 4. In line 3,
the goal is to minimize the average iSPEB $£*(R?*) in (51)
over 0. As P*(R?*) in (51) is a summation of J terms,
the minimal 6;, does not admit a simple expression as
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1y, in Algorithm 3. To address this issue, we can consider
a uniform grid-based search method by selecting a finite
subset of angles within [0,27) and minimizing 6,, over
this subset.

Algorithm 4: Relocate-MODIFY [108]

Input: V; = [9,,7; ) and RII as a function of the angle
Output: The optimal angle vector
0" = (0505 ... 03"
1: Randomly initialize = [0, 0> ... O,
2: while 6 has not converged do
3: Find the angle 0}, that minimizes the average
iSPEB #*(R?) in (51) over 0,, while fixing 6y,
k # m,;
4: Om «— Ors
5: m «—mod (m+ 1, Ny);
6: end while

1", m=1;

C. Cooperative Case

We next consider a special case of 2, where |Sa| = 1
and fi(q) = d6(q — p,). This corresponds to the case
in which there exists only one target agent at position
p, in the network. In this case, the performance metric
> kes, Pr(Ri) = P(p,) and the node deployment prob-
lem becomes
minimize
{p;}ties;

subject to p; € R4, je s

Dc_sp ¢ P(p,)

(53)

where C—SP denotes the cooperative deployment problem
for the agent in a single position.

Similarly to 2sp, the positions of other nodes can then
be parametrized by the relative distances and angles with
respect to agent 1, i.e., p; = p; +di;[cos d1; sin d1; 7. We
can rewrite 2¢_sp as follows:

minimize
{d1j,¢15}jes,

subject to p; + d1j[COS ¢1; sin P1; ]T S Rd7
(54)

Qc_sp - P(p,)

jGSl.

We now rewrite the performance metric iSPEB P(p,) =
tr{J: ' (p,)} as a function of di; and ¢1;. Note that the
assisting agents need to first determine their positions
based on range measurements with neighboring anchors.
Hence, the EFIM J.( p) has the same expression as JL(p)
in (30) of Section IV-C, i.e.,

Je(p)= D D Vi + ) AV
kENa JENY JEST
Consequently, the EFIM J.(p,) can be written as
Je(py) = JE(p) + Y Mdaj, 61) T (615)
JESL

where

Nduj, b1j) = Tr AL
J J

Recall that A4; is defined in (31), representing the position
uncertainty of agent j along the direction between agent 1
and agent j. The values of Ay; and \;; are assumed to be
known for the design of node deployment strategies in this
section.

Without loss of optimality, we can solve 2¢_sp in the
following two steps: first determine {d1,};cs, for a given
set {¢1;}jes,, and then determine {¢1;};jes,. For the
first step, note that #(p,) depends on di; only through
X(d1j,¢1;) and that P(p,) is a decreasing function of
X(d1j, ¢1;). Consequently, for a given {¢1;}jes,, the mini-
mization of P(p,) over {di;};es, becomes

dij(¢15) : = argmin  P(p,)
{dy;:p;€RI}
= argmax  A(dij, ¢1;).

{d1;:p;€RI}

Since A(d1;, ¢1,) does not rely on diy, or ¢1x (k # 7), the
optimization above has a single scalar variable and can
be solved efficiently using one-dimensional optimization
algorithms.

Next we consider the second step, i.e., determining ¢7;
for j € S;. Directly optimizing 2c_sp over ¢4, is difficult
since P(p,) is not a convex function of {¢1;}jes,. To
address this issue, we introduce a discretization method
that can transform 2c_sp to a problem with a similar
structure to &7 in Section III. In particular, we narrow the
feasible set of angles to M possible values. Let ¢ and b
denote the lower and upper constraint of angles based on
the feasible set R. Consider

Sy ={61,02,...,00m}

where 6,, = ¢ + m(¢ — ¢)/M, in which M € N*. We
assume that the assisting nodes can be deployed only to
positions where the corresponding angles belong to S,.
This corresponds to replacing the constraint (54) with
¢1;, € Sy in 2c_gp. In this way, the original problem
Qc_gp is relaxed to

(55)

M -1
92 _¢p :minimize tr{ | JA + mAm e (O
C-SP gty ( (p1) Z T (0m)

m=1
subject to 1"z < |S|

xm €N, m=12....M (56)

where Xp = A(dm, 0m), in which d,, can be determined
using the result from the first step, i.e.,

dm = arg max X(d7 Om). (57)

{d:pl +d[cos 0, sin O, ]TERd}

The solution of 25_¢p can be used for deploying assist-
ing agents: for m = 1,2,..., M, z,, assisting nodes
are placed in the position that corresponds to 6,
and d,,. In fact, we can observe that by discretizing
the angles, the deployment problem is converted into
a node prioritization problem with a discrete-level of
resources.
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Algorithm 5: Node Deployment in Cooperative
Networks
Input: R, |S;|, function (-, -), and J2(p,)
Output: dq and ¢1x, k € S1
1: Determine Sy in (55);
2: For 0., € Sp, m =1,2,..., M, determine d,, accord-
ing to (57);
Find the optimal solution * of 2& ¢p;
4: Find a solution x of 25_4p as = x1 + y* based on
x”;
5: For m = 1,2,...,M, deploy z,, nodes to the
position that corresponds to 0, and d.,, i.e., p;+
dpm [ cos 0, sin by, ]T

The program 28_gp is an integer optimization problem,
which is generally difficult to solve. Here we relax 28_qp
by replacing (56) with = = 0 and let 28 _<p denote this
relaxed problem. As the performance metric of 2&_«p has
a similar structure with &, we can solve 28 ¢ using
the methods introduced in Section III. Let * denote the
solution of the relaxed problem 2&_gp. There are several
ways to use z* for generating a solution of 28_p and we
describe here a simple one. Rewrite * = x1 + xr, Where
x1 and zr denote the vectors consisting of integer parts
and fractional parts of x*, respectively. Consider a vector
y* € RM as follows:

* 17
y =
k 0,

where m* = |S1| — 17z;. In this way, we find a feasible
solution of 28_gp as x1 + y*. Algorithm 5 gives details on
how to solve 2¢_sp.

[xF], is one of the m* largest elements in xp
otherwise

VI. PERFORMANCE EVALUATION

This section illustrates the performance of network opera-
tion strategies for different settings. Recall that for a given
instantiation of channel parameters and node positions,
the performance metric in Section II-C is considered to
be a deterministic quantity. This implies that the values
of the performance metric vary with these conditions. To
understand the behavior of the network operation strate-
gies, we will analyze the localization performance using
the cumulative distribution function (CDF) of a position
error metric over many instantiations of channels and
node positions. To this end, a synchronous 2-D network
is considered. In Sections VII-A and VII-B, 36 anchors are
deployed on a regular 6 x 6 lattice with 100-m separation
between two neighboring anchors. Therefore, the convex
hull of these 36 anchors is a square region of 500 m by
500 m. Agents are randomly deployed in this region. An
orthogonal frequency-division multiplexing (OFDM) radio
technology at the physical layer is considered for the range
measurements. The carrier frequency is f. = 2 GHz, the
bandwidth is 10 MHz, and the subcarrier spacing is 15 kHz.
The transmitting signal has a duration of 66.67 us [158].
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Fig. 9. CDF of the root iSPEB for different node prioritization
strategies. A non-cooperative network with perfectly known
parameters is considered.

The noise power spectral density is —169 dBm/Hz, or
equivalently, the noise figure is equal to 5 dB.

The RIIs between anchors and agents are determined as
follows. For anchor k, the LOS/non-LOS (NLOS) state is
generated for agents considering the Urban Micro scenario
[159], with spatial consistency of LOS/NLOS states among
agents accounted for according to the approach in [160].
Let Mpos,x denote the set of agents that have LOS states
with anchor k. For channels between anchor k& and agents
in Nvros,k, delays and amplitudes are generated using
QuaDRiGa [161] by setting anchor k as the transmitter
and the agents in Ny,os,x as the receivers with the scenario
given by the Urban Micro Bl model. The RIls between
anchor k and agent j € Mpos,, are then calculated based
on [72], whereas the RIls between anchor k and agent j €
Na\Nros,, are set to 0 [72]. Thus, for a particular anchor,
the spatial consistency of channel fading among the agents
are accounted for. The RIIs among agents are determined
in the same way by first generating LOS/NLOS states as
well as the delay and amplitudes, and then performing the
calculation of the RII according to [73].

In the following sections, the CDF of the position error
is evaluated as the empirical probability (i.e., the fractions
of instantiations over many channel conditions and node
positions) that the position error metric is less than or
equal to the abscissa. We consider the position error metric
to be either the root iSPEB, the root normalized nSPEB or
the worst-case root iSPEB depending on the scenario of
interest.®

8Since the iSPEB is a lower bound on the MSE achieved by any
localization approach, the CDF of the root iSPEB is a universal upper
bound on the CDF of the root MSE. Moreover, in scenarios where the
iSPEB provides a tight bound on the MSE of a specific localization
approach, the CDF of the root iSPEB serves as a tight approximation
for the CDF of the root MSE.
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Fig. 10. Outage of the root iSPEB for different node prioritization
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parameters is considered.

A. Node Prioritization

We first evaluate the performance gain of the node
prioritization strategies in a non-cooperative network with
perfectly known parameters such as Rlls and angles. We
deploy N, = 1 agent uniformly. The position error is
evaluated in situations where the agent has LOS states to
at least two anchors.’

In this section, consider that the NPV is based on power.
The total available power is 1 mW. We compare three node
prioritization strategies:

. uniform—the available power is equally divided
among all anchors that have LOS states to the
agent;

. selective—three anchors are selected based on the
quality of the inter-node measurement and the avail-
able transmitting power is equally divided among
these three anchors;

. optimal—the available power is allocated according
to the optimal NPV in Section III-C.

The uniform strategy serves as a baseline for evaluating the
performance of the node prioritization strategies.

Fig. 9 shows the performance of the optimal, the selec-
tive, and the uniform node prioritization strategies, where
the benefit of optimized (selective and optimal) node pri-
oritization strategies is evident. For example, the median
position error (50th percentile) for the optimal strategy is
0.082 m, whereas it is 0.106 and 0.115 m for the selective
and uniform strategies, respectively. This corresponds to
position error increases of 29% and 40%, respectively,
for the selective and uniform strategies over the optimal
strategy. Another metric of interest is the 95th percentile
mark, which is used to evaluate the essentially maximum
error of a deployed system [31]. From Fig. 9 we note
that in 95% of cases the optimal strategy has a position
error less than or equal to 0.644 m, whereas the selective

9These situations occur in more than 92% of the total instantiations.
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Fig. 11. CDF of the worst-case root iSPEB for different node
prioritization strategies with ¢ = 0.1. In the SOCP strategy, the
parameter M = 20. A non-cooperative network with uncertainty in

parameters is considered.

and uniform strategies have errors of 0.971 and 0.834 m,
respectively. Here, the selective and uniform strategies
have position error increases of 51% and 30%, respectively,
over the optimal strategy.

Note that the performance of the network operation
strategies can also be presented in terms of the position
error outage.'” Fig. 10 shows the performance of the
node prioritization strategies. For a target position error
of 0.5 m, it can be seen that the uniform, selective, and
optimal strategies result in outages of 9.0%, 10.2%, and
6.6%, respectively. This corresponds to outage increases of
55% and 36%, respectively, for the selective and uniform
strategies over the optimal strategy. Since the CDF and the
outage can be equivalently evaluated, we will present the
performance of the network operation strategies only in
terms of the CDF for brevity in the rest of this section.

We next evaluate the performance gain of the node
prioritization strategies in a non-cooperative network
with uncertainty in parameters. In this scenario, we
again consider N, = 1 agent, with the total available
power equal to 1 mW. The position error is evaluated in
situations where the agent has LOS states to at least two
anchors. The true position of the agent can be anywhere
in the circle centered at its nominal position with radius
of 10 m. Therefore, the maximum uncertainty in ¢y, is
arcsin(10/dy;). We require that the distance between the
agent and any anchor to be at least 11 m so that the
anchors are not in the agent’s uncertainty region. Let
e = 0.1 denote the normalized uncertainty set size. The
true value of &, is uniformly selected between (1 — )&y,
and (1 + e)ékj, where ékj denotes the nominal value of
the ranging quality. In addition to the uniform strategy

10The outage is a well-known concept in wireless communications
[162]-[164]. In the context of location-aware networks, the outage is
similarly defined as the empirical probability that the position error
metric is greater than the abscissa.
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different node prioritization strategies. A cooperative network with
perfectly known parameters is considered.

serving as the baseline, we introduce three other node
prioritization strategies for comparison:

. SDP—the available transmitting power is allo-
cated according to the solution of the SDP-based
formulation in Section III-D;

. SOCP—the available transmitting power is allocated
according to the solution of the SOCP-based formula-
tion in Section III-D with M = 20 in P 4;

. non-robust—the available transmitting power is allo-
cated according to the NPV obtained in Section III-C
based on nominal parameters. See also Section II-B
for a description of the non-robust method.

Fig. 11 shows the performance of the non-robust, SOCB
SDB and uniform node prioritization strategies with ¢ =
0.1. Recall that the worst-case iSPEB given in (25) is the
maximum iSPEB over the uncertainty in ¢,; and ;. Here,
the benefit of the robust and optimized (SOCP and SDP)
node prioritization strategies is evident from the figure.
For example, the median position errors for the SOCB non-
robust, and SDP strategies are 0.114, 0.126, and 0.131
m, respectively, whereas it is 0.167 m for the uniform
strategy. This corresponds to position error increases of
46%, 33%, and 27%, respectively, for the uniform strat-
egy over the SOCE non-robust, and SDP strategies. At
the 95th percentile, the SOCB uniform, and SDP strate-
gies have position errors of 1.861, 1.931, and 3.028 m,
respectively, whereas it is 6.036 m for the non-robust
strategy. This corresponds to position error increases of
99%, 213%, and 224%, respectively, for the non-robust
strategy over the SDB uniform, and SOCP strategies. Thus,
in contrast to the median performance, the non-robust
strategy performs the worst among all the strategies at the
95th percentile.

We next evaluate the performance gain of the node
prioritization strategies in a cooperative network with
perfectly known parameters. We randomly deploy N, = 3
agents. The first agent is uniformly deployed in the square
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region of 500 m by 500 m, whereas the second and third
agents are uniformly deployed in a circle centered at the
first agent with radius of 50 m. The position error is
evaluated in situations where each agent has LOS states
to at least two anchors. For each agent, the total available
power for ranging to the anchors is 0.5 mW, whereas the
total available power for ranging to the agents is 0.5 mW.
We compare three node prioritization strategies:

. uniform—the available transmitting power is equally
divided among all nodes (including anchors and other
agents) that have LOS states to the agent;

. centralized—the available transmitting power is allo-
cated according to the solution of the SDP-based
formulation in Section IV-B;

. distributed—the available transmitting power is allo-
cated according to the solution of the SOCP-based
formulation in Section IV-C.

The uniform strategy serves as a baseline for evaluating the
performance of the node prioritization strategies.

Fig. 12 shows the performance of the centralized, dis-
tributed, and uniform node prioritization strategies, where
the benefit of optimized (centralized and distributed)
node prioritization strategies is evident. For example, the
median errors for the centralized and distributed strategies
are 0.078 and 0.088 m, respectively, whereas it is 0.111 m
for the uniform strategy. This corresponds to position error
increases of 42% and 26% for the uniform strategy over
the centralized and distributed ones. In 95% of cases, the
centralized and distributed strategies have position errors
less than or equal to 0.366 and 0.407 m, respectively,
whereas the uniform strategy has an error of 0.476 m.
The uniform strategy has position error increases of 30%
and 17% over the centralized and distributed ones. Note
that the centralized and distributed strategies demonstrate
similar performance, and thus the proposed distributed
strategy achieves a nearoptimal performance.!!

B. Node Activation

We next evaluate the performance gain of the node acti-
vation strategies in cooperative localization and navigation
networks. We randomly deploy a group of N, = 4 agents
in an area of 50 m by 50 m, and the group of agents moves
together along a circular trajectory centered at [250 m,
250 m] with radius 150 m. The total available power is set
to be N, mW at each instant. Moreover, in this section, we
set the standard deviation of the intra-node measurement
noise om = 0.05 m and assume that the noise is inde-
pendent over different time slots for simplicity.!> We first
compare two node activation strategies, where the total

TRecall that the centralized strategy provides the optimal perfor-
mance as it is based on the SDP formulation.

12Note that the noise in the intra-node measurement is correlated over
time if accelerometer measurements are considered. For this scenario,
one can augment the state vector to include both the velocity and
acceleration [74] and the optimal node activation strategy can then
be developed based on the augmented state model. For simplicity, we
consider a model where the noise is independent over time.
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Fig. 13. CDF of the root iSPEB for different node activation
strategies. The number of inter-node measurements used are
Ni, = 1 and 4. A cooperative network is considered.

power is equally divided over Vi, inter-node measurements
at each instant.

. Opportunistic activation—For each of the Ni, mea-
surements, the agent that can maximally reduce the
network localization error is activated and the acti-
vated agent chooses the best neighbor for making an
inter-node measurement. This process is repeated in
a sequential manner until Ny, measurement pairs are
determined.

Random activation—For each of the Ni measure-
ments, an agent is activated randomly and the
activated agent chooses a random neighbor that has
an LOS state for making an inter-node measurement.
This process is repeated in a sequential manner until
N1, measurement pairs are determined.

The random strategy serves as a baseline for evaluating the
performance of the node activation strategies.

Fig. 13 shows the performance of the opportunistic
and random node activation strategies for different num-
bers of inter-node measurements. Note that the oppor-
tunistic node activation strategy outperforms the random
activation strategy, since the opportunistic node activa-
tion strategy always selects the most critical agents to
make inter-node measurements. Here, the median position
errors are 0.063 and 0.114 m for the opportunistic and
random activation strategies with four inter-node measure-
ments, respectively. This corresponds to a position error
increase of 81% for the random strategy over the oppor-
tunistic strategy. Likewise, with four inter-node measure-
ments, it is 0.083 and 0.166 m for the opportunistic and
random activation strategies, respectively, at the 95th per-
centile, which gives a 100% increase in the position error.

Furthermore, both strategies using four inter-node mea-
surements outperform the corresponding strategies using
one inter-node measurement as expected. Comparing the
opportunistic activation strategies with the random acti-
vation strategies, the former ones have steeper rates of
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Fig. 14. CDF of the root iSPEB for different combinations of node
activation and node prioritization strategies. A cooperative network
is considered.

increase in the CDF corresponding to achieving lower
position errors for both one and four inter-node measure-
ments. This is because the opportunistic activation aims at
maximally reducing the nSPEB by selecting an appropriate
agent, thus preventing individual agents from accumulat-
ing large localization errors. These results show that the
optimized (opportunistic) node activation can significantly
reduce the localization error compared to random node
activation.

Next we consider a joint design of the node activation
combined with the node prioritization strategies developed
described in Sections III and IV. Note that in this case,
the number of inter-node measurements depends on the
outcome of the node prioritization strategy. The total avail-
able power is again set to be N, mW, and four different
combinations of node activation and node prioritization
strategies are considered as follows.

. Opportunistic activation + optimal prioritization

—The agent that can maximally reduce the net-

work localization error based on the optimal node

prioritization is activated, and the activated agent
uses the transmitting power according to the optimal

NPV for making inter-node measurements with its

neighbors.

Opportunistic activation + uniform prioritization

—The agent that can maximally reduce the network

localization error based on the uniform prioritization

is activated, and the activated agent uses equal trans-
mitting power for making inter-node measurements
with its neighbors that have LOS states.

. Random activation + optimal prioritization—An
agent is activated randomly, and the activated agent
uses the transmitting power according to the optimal
NPV for making inter-node measurements with its
neighbors.

. Random activation + uniform prioritization—An
agent is activated randomly, and the activated agent
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0.2

perative network is considered.

uses equal transmitting power for making inter-
node measurements with its neighbors that have LOS
states.

Fig. 14 shows the performance of different combinations
of node activation and node prioritization strategies. First,
similarly to the previous scenario, one can observe that the
opportunistic activation strategy outperforms the random
activation strategy. Second, under the same node activa-
tion strategy, the performance with optimal node prioriti-
zation is better than that with uniform prioritization. This
is because for any given activated agent, the power is more
efficiently used according to the optimal NPV. Therefore,
joint node activation and node prioritization can achieve a
twofold performance gain. As an example, take the median
position error of 0.147 m obtained by random activation +
uniform prioritization as a baseline. The median position
error is 0.067 m from opportunistic activation + optimal
prioritization, while it is 0.076 and 0.124 m for optimized
prioritization only and activation only, respectively. This
corresponds to position error increases of 119%, 93%,
and 19% for the baseline over the optimized strategies.
Likewise, in 95% of cases, the position error is less than
or equal to 0.092, 0.112, 0.174, and 0.258 m, respectively,
for the four combinations of strategies.

C. Node Deployment

We now evaluate the performance gain of the node
deployment strategies in a non-cooperative network.
Recall that in non-cooperative networks, only anchors are
deployed to improve the localization accuracy of agents.
As in Section VI-B, we consider a scenario in which there
is only one agent, and the RII v}, is a piecewise constant
function of the angle . Recall that [0,27) is divided
into I intervals denoted by V;’s. We assume that V; =
[2r(i — 1)/I,2mi/1), i = 1,2,...,I with I = 5 and that
in each V;, the RII is generated independently for the
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anchor-to-agent distance equal to 300 m and the total
transmitting power for each agent is equal to 1 mW. Only
the LOS states are accounted for. We compare two node
deployment strategies:

. random: anchors are deployed randomly where the

angle 1) is generated from a uniform distribution in
[0, 27);

. Relocate: anchors are deployed based on Algorithm 3.
The random strategy serves as a Dbaseline for
evaluating the performance of the node deployment
strategies.

Fig. 15 shows the performance of the Relocate and
random node deployment strategies for different numbers
of anchors, where the benefit of the optimized (Relocate)
node deployment strategy is evident. As an example for
Ny, = 6 anchors, the median position error for the Relocate
strategy is 0.119 m, whereas it is 0.236 m for the random
strategy. This corresponds to a position error increase of
98% for the random strategy over the Relocate strategy. For
Ny, = 3, the median position error for the Relocate strategy
is 0.174 m, whereas it is 0.453 m for the random strategy.
This corresponds to a position error increase of 160% for
the random strategy over the Relocate strategy. Regarding
the 95th percentile, for N, = 6, it is 0.208 and 0.544 m
for the Relocate and random strategies, respectively. The
random strategy has a position error increase of 162% over
the Relocate one. At the 95th percentile for N, = 3, it is
0.312 and 1.770 m for the Relocate and random strategies,
respectively. This corresponds to a position error increase
of 467% for the random strategy over the Relocate strategy.

Note that the number of anchors plays a different role
in the random and Relocate strategies. For the random
strategy, the median of the position error has an increase
of 92% for the case with N}, = 3 over the one with N, = 6,
whereas the increase is only 46% for the Relocate strategy.
For the random strategy, the 95th percentile of the position
error has an increase of 225% for the case with N, = 3
over the one with N, = 6, whereas the increase is only
50% for the Relocate strategy. The number of anchors
affects the performance of the random strategy signifi-
cantly because more anchors provide not only resource
gain (the accuracy improvement due to more measure-
ments) but also diversity gain (the accuracy improvement
due to higher chances of forming a desirable geometry with
high channel quality). In contrast, the Relocate strategy
already accounts for the geometry and channel quality so
that the diversity gain is not remarkable, which explains
the decreased accuracy improvement due to having more
anchors.

We next evaluate the performance gain of node deploy-
ment in a cooperative network. Three anchors are placed
at the trisection points of the circle centered at the origin
with radius 400 m and one of the anchors is placed
at [400 m, 0 m]. The feasible region R is a circle
centered at [200 m, 0] with radius 200 m. Six assisting
agents are deployed in this region. The target agent is
deployed randomly in the region ([-200 m, 200 m] x
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Fig. 16. CDF of the target agent’s root iSPEB for different node

deployment strategies. In the optimized strategy, the parameter
M =128 and 16. A cooperative network is considered.

[-200 m, 200 m])ﬂ(Rd)C. The total transmitting power for
each agent is 1 mW. The shadowing and multipath effects
are not considered in this case and only the LOS states
are accounted for. We compare three node deployment
strategies:

. random—the assisting agents are deployed uniformly
in the feasible region R¢;

. greedy—the assisting nodes are deployed sequentially
at the positions in the feasible region R for minimiz-
ing the iSPEB;

. optimized—the nodes are deployed in the feasible
region based on Algorithm 5, with different values of
M as described in (55).

The random strategy serves as a baseline for evaluating the
performance of the node deployment strategies.

Fig. 16 shows the performance of the optimized (with
M =128 and M = 16), greedy, and random node deploy-
ment strategies, where the benefit of the optimized and
greedy node deployment strategies is evident. For example,
the median position error for the optimized strategy (both
M = 16 and M = 128) is 0.105 m, whereas it is
0.125 and 0.207 m for the greedy and random strategies,
respectively. This corresponds to position error increases of
97% and 66%, respectively, for the random strategy over
the optimized and greedy ones. At the 95th percentile,
the optimized strategy has a position error of 0.145 m,
whereas the greedy and random strategies have errors of
0.153 and 0.310 m, respectively. Here, the random strategy
has position error increases of 114% and 103% over the
optimized and greedy ones, respectively.

Note that the optimized strategy (M = 16 and 128)
outperforms the greedy one (16% decrease of the median
position error and 5% decrease of the 95th percentile).
Moreover, the complexity of the greedy strategy increases
linearly with the number of assisting nodes, whereas the
optimized strategy depends only on M. In scenarios with
large numbers of assisting nodes, the optimized strategy

has an advantage over the greedy one in terms of compu-
tational complexity. Moreover, with the optimized strategy,
we observe that the curve corresponding to M = 16
almost overlaps with that corresponding to M = 128.
This result provides insight into the implementation of the
optimized strategy: using a small M results in a strategy
with much lower computational complexity yet negligible
performance loss compared to one using a larger M.

VIII. CONCLUSION

Network operation strategies play a critical role in NLN
since they not only affect the network lifetime, but also
determine the localization accuracy. In this paper, we have
presented a comprehensive tutorial on network operation
strategies, in particular node prioritization, node activa-
tion, and node deployment. We have studied the structure
of the localization performance metric and exploited the
insights gained to derive different optimization methods.
We have discussed some important aspects resulting from
the analysis, including such concepts as cooperation tech-
niques, robustness guarantees, and distributed designs,
and we have characterized the performance gain obtained
from the network operation.

The benefit of adopting efficient network operation
strategies compared to the baseline strategies is evident
from the numerical examples. In particular, we have shown
the performance improvement for each of the following
operation strategies.

. Node prioritization—The penalty for not employing
optimization methodologies can be as large as 46%
in terms of the median position error metric. In
particular, the median position error increase of the
uniform strategy is 40% over the optimal strategy in
non-cooperative networks; it is 46% over the SOCP
strategy with uncertainty in parameters; and it is
26% and 42% over the distributed and centralized
strategies, respectively, in cooperative networks.

. Node activation—Random activation has been shown
to have a median position error increase of 81%
compared to the opportunistic strategy with four
inter-node measurements. The joint design of the
node activation combined with the node prioritization
strategies adds another layer of optimization and
gives further improvement in localization accuracy.

. Node deployment—In non-cooperative networks, the
random strategy has been shown to have a median
position error of up to 160% more than the optimized
Relocate strategy, while in cooperative networks, the
random strategy has a median position error increase
of more than 66% over the optimized and greedy
strategies. The optimized strategy has been shown to
have a better performance compared to the greedy
one with the benefit of being computationally more
efficient in scenarios with many assisting agents.

Note that practical imperfections in hardware implementa-
tions would degrade the localization accuracy with respect
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to that presented in this paper. However, the degradation
due to these imperfections would be similar for all the net-
work operation strategies presented, and thus the relative
accuracy improvement reported in this paper is expected to
still hold. While the performance characterization of vari-

location secrecy and privacy are gradually becoming more
of a concern for location-based services, but techniques
that achieve both high accuracy and high secrecy in
NLN through network operation strategies are yet to be
developed. O

ous NLN strategies has been exhaustively presented, there
are still open challenges to be addressed. For example,

the latency of position information is critical, especially in
highly dynamic environments. However, fewer analytical
methodologies have emerged to evaluate and optimize the
latency in localization and navigation networks. Moreover,
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