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ABSTRACT | Reliable and accurate position information is of

great importance for many mass-market and emerging appli-

cations. Network localization and navigation (NLN) is a promis-

ing paradigm to provide such information ubiquitously, where

a network of nodes is used to aid in localizing its members. This

paper explores various network operation strategies, which

play an essential role in NLN as they determine the network

lifetime and localization accuracy. Efficient network operation

requires several functionalities, including node prioritization,

node activation, and node deployment. The roles of these func-

tionalities are described and different techniques for imple-

menting respective functionalities via algorithmic modules are

introduced. Some important concepts such as cooperative

operation, robustness guarantee, and distributed design in

the development of the network operation strategies are also

introduced. Finally, numerical results are provided to demon-
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strate the localization performance improvement attributed to

the optimized network operation strategies.
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I. I N T R O D U C T I O N

Location awareness using wireless signals is critical for

many mobile applications [1]–[6], including autonomous

driving [7]–[9], assisted living [10]–[12], Internet-

of-Things [13]–[16], crowdsensing [17]–[20], medical

services [21]–[23], as well as search-and-rescue operations

[24]–[26]. In outdoor scenarios, global navigation satellite

systems (GNSSs) can provide meter-level localization

accuracy around the earth through a constellation of

satellites [27]–[31]. However, the effectiveness of GNSS

is limited in challenging propagation environments, such

as inside buildings and in urban canyons, due to signal

degradation or blockage by obstacles [32]. To complement

GNSS in these challenging propagation environments,

wireless localization networks have been developed in

the past decades for providing high-accuracy location

awareness [33]–[39].

In a typical wireless localization network, there are

two types of nodes, referred to as anchors and agents

[40]–[42]. Anchors have perfectly known positions,

whereas agents have unknown positions. For example,

anchor nodes may consist of WiFi access points or cel-

lular base stations, and agent nodes may consist of

user smartphones or sensors. The goal of the local-

ization network is to determine the position of agents

using inter-node and intra-node measurements [43]–[49].

Inter-node measurements refer to measurements between

nodes, e.g., ranging with ultrasound or radio-frequency
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Fig. 1. Illustration of node prioritization, node activation,

and node deployment actions. Black arrows denote the inter-node

measurements, and the thickness of an arrow represents the amount

of resources allocated to that measurement according to the node

prioritization module; the blue hollow circle denotes the inactive

agent, which does not transmit wireless signals as dictated by

the node activation module; green arrows denote the movement of

nodes, determined by the node deployment module from the original

position (faded circle) to the required position (bright circle).

signals [50]–[57]. Intra-node measurements refer to those

measured with respect to a single node. Typical examples

include data from an inertial measurement unit (IMU)

that obtains the agents’ angular velocity and acceleration

[58]–[61]. Among the studies on localization and navi-

gation, those using cooperative techniques have attracted

increasing research interest [62]–[67]. Cooperative tech-

niques exploit inter-node measurements among agents

and can significantly improve the localization perfor-

mance [68]–[71], obviating the use of high-density anchor

deployments. Recently, a general paradigm called network

localization and navigation (NLN), which incorporates spa-

tiotemporal cooperation, has been established for position

inference [72]–[75].

The performance of NLN depends on various factors,

such as the transmitting energy, signal bandwidth, net-

work geometry, and the propagation conditions [72]–[76].

These factors are generally functions of the network opera-

tion strategy, which determines the allocation of transmit-

ting resources, the activation of transmitting nodes, and

the deployment of agents and anchors. Network opera-

tion plays a critical role in NLN since it not only affects

the network lifetime, but also determines the localization

accuracy [77]–[81]. For example, range measurements

between two nodes with poor channel conditions consume

significant amounts of energy, thereby reducing nodes’

lifetime (e.g., the battery life of sensors) while providing

little localization accuracy improvement. Another exam-

ple of the network operation strategy is that placing all

anchors together in a small region will likely lead to low

localization accuracies of the agents because the ranging

information from different anchors is along almost the

same direction.

Network operation strategies for efficient localiza-

tion and navigation can be categorized into several

functionalities, including node prioritization, node activa-

tion, and node deployment. Fig. 1 illustrates the actuation

of these functionalities in a typical NLN system. The roles

of these functionalities can be described in the context of

algorithmic modules as follows.

� Node prioritization module—This module imple-

ments node prioritization strategies for allocating

transmitting resources (such as power, bandwidth,

and time) to achieve the best trade-off between

resource consumption and localization accuracy

[82]–[86]. For a particular agent, the output of this

module is the amount of transmitting resources for

the measurements made between the agent and its

neighboring nodes [87]–[90].

� Node activation module—This module implements

node activation strategies for determining the nodes

that are allowed to make inter-node measurements so

that the localization accuracy of the entire network is

maximized [91]–[95]. For a particular network, the

output of this module is the particular set of nodes

to be used for making inter-node measurements with

their neighbors [96]–[100]. For a selected node, it

may make measurements with one or more of its

neighbors.

� Node deployment module—This module implements

node deployment strategies for determining the posi-

tions of new nodes in the network so that the local-

ization accuracy of certain existing nodes can be

maximally improved [101]–[106]. For a particular

network, the output of this module is the destination

positions of the new nodes [107]–[116].

Network operation strategies are implemented in some

recently developed localization systems [117]. As a mat-

ter of comparison, there are extensive studies on data

network operation strategies, which aim to maximize a

communication performance metric, such as the capac-

ity and throughput, by for example resource allocation

[118]–[121], scheduling [122]–[126], and node deploy-

ment [127]–[129]. Yet these techniques are inefficient

or even infeasible for network operation in localization,

because of the significant difference in the performance

metrics between localization and data networks. Rather

than optimizing the capacity or throughput, the major goal

of the network operation in localization networks is to

improve the accuracy. Hence, new techniques are required

to account for the structure of the localization metric.

One critical concept used in the study of NLN is the

Fisher information matrix (FIM) [72]–[74]. It character-

izes the amount of information that the measurements

carry about the agents’ positions. Prevailing studies on

network operation for localization generally adopt certain

functions of the FIM (or its equivalent form, such as

the inverse of the covariance matrix) as the performance

metrics to be used [130]–[135]. The most commonly used

metric is the Cramér–Rao lower bound (CRLB), which is

a function of the inverted FIM [136]–[138]. Other metrics

used include the determinant of the FIM [139] and the

smallest eigenvalue of the FIM [140]–[142]. As the FIM

plays such an important role, it is prudent to determine
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the structure of the FIM and exploit amenable proper-

ties of its structure for the design of network operation

techniques.

Various methodologies are described in the literature

to design the network operation strategies for NLN. The

typical methods are as follows.

� Node prioritization strategies typically formulate

and solve optimization problems to obtain trade-

offs between localization accuracy and resource con-

straints [82]–[84], [142]–[145]. For example, in

[142] and [143], the node prioritization problem

was obtained by conic programs in non-cooperative

networks. In a recent study [145], a computational

geometry method was used to solve node prioritiza-

tion problems. This method enables the derivation of

an important sparsity property for node prioritization.

� Node activation strategies typically minimize or sta-

bilize the long-term position error in a greedy man-

ner [92]–[96]. For example, in [96], opportunistic

strategies were developed to minimize the trace of

error covariance matrices; moreover, the error evolu-

tion of these opportunistic strategies was determined

for different network settings (e.g., agent trajecto-

ries, anchor deployments, measurement models, and

multiple-access protocols) in comparison with ran-

dom strategies.

� Node deployment strategies typically optimize the

position error over the geometry of the nodes in

a localization network [105]–[116]. For example,

in [108], iterative approaches are proposed to place

anchors for minimizing the CRLB of agents’ position

errors; in [116], second-order cone program (SOCP)-

based strategies are developed to place new agents for

minimizing the squared position error bound (SPEB)

of an existing agent and the performance gap between

the proposed and optimal strategies is determined.

This paper provides a tutorial on network operation

strategies for efficient NLN. The emphasis will be on the

optimization of the localization performance through node

prioritization, node activation, and node deployment. The

main body of the paper consists of the following five parts.

� We present a general framework for the network

operation including the system model and the per-

formance metric. We also introduce several important

notions of the network operation, such as coopera-

tion, robustness, and distributed design.

� We present node prioritization strategies for non-

cooperative and cooperative networks. Conic

programming-based approaches and computational

geometry-based approaches are used to determine

node prioritization strategies.

� We present node activation strategies for coopera-

tive networks. Opportunistic activation and proba-

bilistic activation strategies are presented and the

error evolution corresponding to these two strategies

is shown.

� We present node deployment strategies for both non-

cooperative and cooperative networks. An iterative

approach and a conic programming-based approach

are used to determine node deployment strategies.

� We show how the network operation strategies can

significantly improve the localization performance

through numerical examples.
The subsequent sections are organized as follows.

Section II presents the preliminaries of the network opera-

tion in NLN. Sections III and IV present node prioritization

strategies for non-cooperative and cooperative networks,

respectively. Section V presents the design and analysis

of node activation strategies. Section VI presents node

deployment strategies for non-cooperative and cooperative

networks. Section VII presents numerical results to demon-

strate the benefits of optimization in network operation.

The last section draws conclusions.

Notation: Random variables are displayed in sans serif,

upright fonts, and their realizations in serif, italic fonts.

Vectors and matrices are denoted by bold lowercase and

uppercase letters, respectively. For example, a random

variable and its realization are denoted by x and x; a

random vector and its realization are denoted by x and x; a

random matrix and its realization are denoted by X and X,

respectively. Sets and random sets are denoted by upright

sans serif and calligraphic font, respectively. For example,

a random set and its realization are denoted by X and

X , respectively. The m-by-n matrix of zeros (resp. ones)

is denoted by 0m×n (resp. 1m×n); when n = 1, the m-

dimensional vector of zeros (resp. ones) is simply denoted

by 0m (resp. 1m). The m-by-m identity matrix is denoted

by Im : the subscript is removed when the dimension of the

matrix is clear from the context. Hc{A} denotes the convex

hull of A. diag{x1, x2, . . . , xn} denotes an n × n diago-

nal matrix with diagonal elements x1, x2, . . . , xn . A � 0

denotes that the matrix A is positive semi-definite. tr{·} is

the trace of a square matrix; [ x ]n denotes the nth element

of the vector x . [ A ]n,m is the element at the nth row

and mth column of the matrix A; x ∼ N (µ,Σ) denotes

that the random vector x follows the Gaussian distribution

with mean µ and covariance matrix Σ. Ac denotes the

complement of a set A. Define the unit vectors u(φ) :=

[ cos φ sin φ ]T. The notation xk1:k2 is used for concatenat-

ing the set of vectors {xk1 , xk1+1, . . . , xk2} and similarly

x
(t1:t2)
k1:k2

for
�
x

(t1)
k1:k2

, x
(t1+1)
k1:k2

, . . . , x
(t2)
k1:k2

�
, for k1 ≤ k2, t1 ≤ t2.

We denote by ⊗ the Kronecker product and by EN
i,j an

N × N matrix with all zeros except for a 1 on the ith

row and j th column. The function �S(x) is an indicator

function defined to be 1 if x ∈ S , and 0 otherwise. Finally,

the notation for important quantities and optimization

problems that is used throughout the paper is summarized

in Tables 1 and 2, respectively.

II. P R E L I M I N A R I E S

This section presents the system model in an NLN scenario,

explains basic concepts, and introduces the performance

metric of the network operation.
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TABLE 1 Notation for Important Quantities

A. System Models

Consider a wireless localization network with Nb

anchors and Na agents. The sets of agents and anchors

are denoted by Na = {1, 2, . . . , Na} and Nb = {Na + 1,

Na + 2, . . . , Na + Nb}, respectively. The position of node k

is denoted by pk , k ∈ Nb∪Na. The angle and distance from

node k to node j are denoted by φkj and dkj , respectively.

We first consider inter-node measurements, which can

be obtained from received waveforms. The equivalent

narrowband waveform received at node j from node k is

modeled as

rkj (t) =

�
Ekj

dγ
kj

αkj sj (t − τkj ) + zkj (t) (1)

where Ekj is the transmitting energy, γ is the ampli-

tude loss exponent, {sj (t)}j∈Nb∪Na
is a set of transmit-

ting waveforms, αkj and τkj are the amplitude gain and

propagation delay, respectively, and zkj (t) represents the

observation noise, modeled as additive white complex

Gaussian processes.1 The relationship between τkj and the

node relative position is given by

τkj =
1

c
‖pk − pj ‖

where c is the propagation speed of the signal.

In the dynamic scenarios, we consider intra-node

measurements of agents themselves in addition to the

inter-node measurements. Both the measurements and

1Note that although we use a single-path channel model for the inter-
node measurements and time-of-arrival as the signal metric, the results of
this paper can be easily extended to other models, e.g., multipath channel
models and ranging models with additive noise, and other signal metrics,
e.g., time-difference-of-arrival [83], [143]. Moreover, we focus on line-
of-sight scenarios, whereas the strategies proposed in this paper can also
be applied to non-line-of-sight scenarios with slight modification.

inference processes are made at discrete instants tn where

n = 1, 2, . . . ,N . The intra-node measurement z
(n)
k of

agent k at time tn typically consists of acceleration and

angular velocity, which can be obtained from the IMU.

For ease of exposition in this paper, the model for intra-

node measurements is considered to be the displacement

corrupted by additive Gaussian noise, i.e.,

z
(n)
k = p

(n)
k − p

(n−1)
k + w

(n)
k (2)

where p
(n)
k denotes the position of agent k at time tn and

w
(n)
k is modeled as N (0, σ2

mI), in which σm is a known

positive real number.

B. Network Operation

To further understand the role of the network operation

strategies, we present the architecture of a localization and

navigation system in Fig. 2, highlighting the various func-

tionalities considered in this paper. The system consists of

three different layers: the measurement layer, the local-

ization layer, and the operation layer. The measurement

layer performs raw inter- and intra-node measurements,

extracts information regarding the agents’ positions and

channel qualities, and outputs this information to the

localization layer and the operation layer. The localization

layer aggregates the information from the measurement

layer, estimates the positions of the agents, and outputs

these position estimates to the operation layer. Based on

the input from the measurement layer and the localiza-

tion layer, the operation layer produces the decisions for

node prioritization, node activation, and node deployment.

The decisions for node prioritization and node activation

will serve as the input to the measurement layer to con-

trol the set of active agents and determine the alloca-

tion of transmitting resources, and the decision for node
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Fig. 2. Architecture of the considered network-based localization and navigation system.

deployment will be used to guide certain agents to

appointed regions.

There are several important concepts relating to the

network operation strategies in NLN, which are described

as follows.

� Centralized versus distributed—With centralized net-

work operation, there is a central controller that

collects information from all the nodes in the net-

work and produces the operation decisions for all the

agents. With distributed network operation, there is

no central controller; instead, each agent produces

its own operation decision based on the informa-

tion collected locally. Generally speaking, centralized

strategies give better performance, but are usually not

scalable with the size of the network.

� Cooperative versus non-cooperative—With non-

cooperative NLN, agents do not make measurements

amongst each other, whereas with cooperative NLN,

agents assist each other in estimating their positions.

Cooperation among agents can offer increased

localization accuracy and circumvent the need for

high-transmitting power anchors and high-density

anchor deployments. However, the design of network

operation strategies in a cooperative setting is

generally more complicated.

� Robust versus non-robust—The design of network

operation strategies often requires the knowledge of

certain parameters, such as inter-node angles and

distances, but perfect knowledge of these parame-

ters is usually unavailable. Non-robust approaches

use the estimated values of these parameters as

input to the operation layer without accounting for

their uncertainty, whereas robust approaches aim to

design strategies that guarantee the localization per-

formance subject to parameter uncertainty. Generally,

non-robust approaches improve average performance

if the uncertainty is small, while robust approaches

result in better worst-case performance.

� Two-dimensional (2-D) versus three-dimensional

(3-D)—The performance metrics that arise in these

two scenarios have different structures. Generally

speaking, the network operation strategies in

3-D networks are more challenging than their 2-D

counterparts due in part to the more complicated

expression of the metric.2 In this paper, we will focus

on 2-D localization, whereas most results are also

applicable to 3-D localization.

C. Performance Metrics

The localization accuracy can be quantified in terms of

the mean squared error (MSE) of a position estimator.

Let p denote the vector that consists of all the parameters

of interest. We first consider static scenarios where there is

no temporal cooperation, in which case

p =
�
p

T
1 p

T
2 . . . p

T
Na

�T
.

Let p̂ denote an unbiased estimator of p based on the

inter-node measurement {rkj (t)}k∈Na,j∈Na∪Nb\{k} in (1).

From the information inequality [73], the MSE matrix of

p satisfies

E
�
(p̂ − p)(p̂ − p)T�

� J
−1
e (p) (3)

where Je(p) is the equivalent Fisher information matrix

(EFIM) for p, structured as (4), shown at the top of the

next page. In Je(p), J A
e (pk ) and Ckj can be expressed as

follows3:

J
A
e (pk ) =

�
j∈Nb

λkj Jr(φkj ) (5)

and

Ckj = Cjk = (λkj + λjk ) Jr(φkj ) k , j ∈ Na

where the matrix Jr(φ) is referred to as the rang direction

matrix (RDM) and λkj is referred to as the ranging infor-

mation intensity (RII) between node k and j [72], given

2Specifically, the evaluation of the performance metric involves the
inversion of a 3 × 3 matrix. Due to the complicated expression after
this inversion, it is challenging to obtain some of the amenable prop-
erties, e.g., the second-order cone structure in (20), in 3-D localization
networks.

3We consider synchronous networks in this section, whereas the
discussion of asynchronous networks is in Section III-A.
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Je(p) =

�
�����������

J A
e

(p1) +
�

j∈Na\{1}

C1,j −C1,2 . . . −C1,Na

−C2,1 J A
e

(p2) +
�

j∈Na\{2}

C2,j −C2,Na

.

.

.
. . .

−CNa,1 −CNa,2 J A
e

(pNa
) +

�
j∈Na\{Na}

CNa,j

�
�����������

(4)

by

Jr(φkj ) =

�
cos2 φkj cos φkj sin φkj

cos φkj sin φkj sin2 φkj

�

λkj =
8π2β2

0Ekj

c2
(1 − χkj )

α2
kj

N0
k ∈ Na, j ∈ Na ∪Nb

(6)

in which β0 is the effective bandwidth of the transmitted

signal, and χkj ∈ [0, 1] is the path-overlap coefficient

characterizing the effect of multipath propagation. Note

that the EFIM (4) consists of blocks that represent local-

ization information from the anchors and agent coop-

eration. In particular, J A
e (pk ) describes the information

about agent k obtained from the measurements between

the anchors and agent k ; and Ck,j describes the range

information (RI) obtained from the measurement between

agent k and agent j . The RII characterizes the quality of

the measurement between two nodes, which is affected

by a number of different factors such as the power and

bandwidth of the transmitting signal as well as multipath

effects [72].

As a result of (3), the MSE of the position estimator for

all agents p̂ is lower bounded by

E
�
‖p̂ − p‖2

�
≥ tr

�
J

−1
e (p)

�
=: P(p).

Let p̂k denote an unbiased estimator of pk based on the

measurements {rkj (t)}k∈Na,j∈Na∪Nb\{k}. As a result of (3),

we have

E
�
(p̂k − pk )(p̂k − pk)

T�
�
	
J

−1
e (p)



pk

where
	
J−1

e (p)


pk

denotes a 2×2 matrix corresponding to

the k th diagonal block of J−1
e (p). We can then introduce

the EFIM for pk as

Je(pk ) :=
�	

J
−1
e (p)



pk

�−1

. (7)

The MSE of the estimator p̂k is then lower bounded by

E
�
‖p̂k − pk‖2 � ≥ tr

�
J

−1
e (pk)

�
=: P(pk ).

Note that in a non-cooperative setting, Ckj = 0 for

all k , j ∈ Na, and the EFIM Je(p) degenerates to a

block-diagonal matrix. Consequently, Je(pk ) degenerates

to J A
e (pk ). In this paper, we will adopt P(p) and P(pk )

as the performance metrics, referred to as the network

squared position error bound (nSPEB) and the individual

squared position error bound (iSPEB), respectively.

In dynamic scenarios, we have to consider the agent

positions at different time instances to develop the network

operation strategies. In these scenarios, the parameter of

interest can be written as p = p
(1:N)
1:Na

. The EFIM for

the entire network over time t1 to tN can be derived

as4 [74]

Je(p) =

N�
n=1

E
N
n,n ⊗ (S (n) + T

(n) + T
(n+1))

−
N�

n=1

(EN
n,n+1 + E

N
n+1,n) ⊗ T

(n)
(8)

where

S
(n)=

�
k∈Na

�
j∈Na∪Nb\{k}

E
Na

k,k ⊗ S
(n)
kj

−
�
k∈Na

�
j∈Na\{k}

E
Na

k,j ⊗ S
(n)
kj (9)

in which S
(n)
kj = λ

(n)
kj Jr(φ

(n)
kj ) with λ

(n)
kj and φ

(n)
kj charac-

terizing the RII and the angle between node k and j at

time tn, respectively, and T (n) =



k∈Na

E
Na

k,k ⊗ T
(n)
k with

T
(n)
k = σ−2

m I2.

Let p̂(N) := p̂
(N)
1:Na

denote an unbiased estimator of

p(N) := p
(N)
1:Na

. From the information inequality, the MSE

of p(N) satisfies

E

�
(p̂(N) − p

(N))(p̂(N) − p
(N))T

�
�
	
J

−1
e (p)


−1

p(N) . (10)

Then the corresponding nSPEB at instant tN can be writ-

ten as

P(p(N)) := tr
�
J

−1
e (p(N))

�
(11)

where Je(p
(N)) :=

	
J−1

e (p)

−1

p(N) . We can then introduce

the EFIM for pk at time tN as

Je(p
(N)
k ) =

�	
J

−1
e (p(N))



pk

�−1

.

The MSE of the estimator p̂
(N)
k is then lower bounded by

E
���p̂(N)

k − p
(N)
k

��2� ≥ tr
�
J

−1
e (p

(N)
k )

�
=: P(p

(N)
k ) (12)

where P(p
(N)
k ) denotes the iSPEB at instant tN .

4For notational convenience, we let T (1) = T (N+1) = 0.
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TABLE 2 Notation for Important Optimization Problems

The nSPEB and iSPEB characterize the lower bounds

for the mean squared position errors. These bounds are

asymptotically achievable by the maximum likelihood esti-

mators in high signal-to-noise ratio regimes (over approx-

imately 15 dB [41]). Since high accuracy localization and

navigation networks typically operate in such regimes, the

nSPEB and iSPEB can be used as the performance metric

for the design of network operation strategies for a broad

range of applications.

III. N O D E P R I O R I T I Z AT I O N F O R

N O N-C O O P E R AT I V E L O C A L I Z AT I O N

This section presents the node prioritization strategies for

non-cooperative static networks.

A. Problem Formulation

We first formulate the node prioritization problem,

aiming to achieve the optimal tradeoff between localiza-

tion accuracy and resource consumption. We rewrite λkj

in (6) as

λkj = xkj ξkj (13)

where xkj denotes the amount of resources consumed by

node k for the inter-node measurement between node k

and j and ξkj denotes the quality of that measurement.

Note that (13) is general enough to accommodate various

node prioritization problems based on the type of resources

manifested in xkj and ξkj . One example is node prioritiza-

tion based on transmitting power, where xkj = Ekj and

ξkj =
8π2β2

0

c2
(1 − χkj )

α2
kj

N0
.

We first consider the non-robust formulation, where

parameters ξkj and φkj are estimated values used as the

input to the node prioritization module. Let xk denote

the node prioritization vector (NPV) for node k . In non-

cooperative networks, agents make measurements only

with anchors, and therefore, xk ∈ R
Nb . We can write xk as

xk =
	
xk(Na+1) xk(Na+2) . . . xk(Na+Nb)


T
.

Let x denote the vector that consists of all the agents’ NPVs

x =
�
x

T
1 x

T
2 . . . x

T
Na

�T
.

To emphasize its dependence on NPVs, we rewrite the

nSPEB and iSPEB as P(p; x) and P(pk ; xk ). Note that

P(p; x) =



k∈Na

P(pk ; xk ) and in the non-cooperative

setting

P(pk ; xk ) = tr

�� �
j∈Nb

xkj ξkj Jr(φkj )

�−1�
.

The centralized node prioritization problem can be

written as

Pc : minimize
x

P(p; x)

subject to x � 0 (14)

cl(x) ≤ 0, l = 1, 2, . . . , Lc (15)

and the distributed node prioritization problem for agent

k can be written as

Pk : minimize
xk

P(pk ; xk )

subject to xk � 0 (16)

ck,l(xk ) ≤ 0, l = 1, 2, . . . , Lk (17)

where (14) and (16) denote the nonnegativity constraints

on the amounts of resources; and {cl(·)} in (15) and

{ck,l(·)} in (17) denote Lc and Lk linear constraints on

the NPVs for Pc and Pk , respectively. Examples of these

linear constraints include the total resource constraints of

the network and of the individual agent k , i.e., cl(x) =

1
T x − Ctot and ck,l(xk ) = 1

T xk − Ck,tot, where Ctot and

Ck,tot are some positive constants.

Remark 1: In non-cooperative networks, P(pk ; xk) =

tr
��

J A
e (pk )

�−1�
. Since evaluating J A

e (pk ) involves only

local parameters, i.e., {φkj}j∈Nb
and {ξkj}j∈Nb

, the for-

mulation of Pk does not require the parameters of the

entire network and the solution of Pk naturally gives rise

to distributed implementation. This does not hold for the

node prioritization problems in cooperative networks, as

will be shown in Section IV.

Remark 2: The methods developed in this paper are also

applicable to other formulations of the node prioritization

problem (e.g., minimizing the total resource consumption

subject to a given localization performance requirement).
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In particular, one can consider a broadcast setting, in which

only anchors are required to transmit signals, and each of

the agents can use the received waveform for ranging. In

this setting, the NPV xb ∈ R
Nb and its k th element xk

refers to the amount of resources for the wireless signals

broadcast by anchor k . The RII can then be written as

λkj = xkξkj�Nb
(k)�Na

(j). (18)

Here, it is more reasonable to select nSPEB P(p; xb) as the

performance metric and the optimization problem is then

minimize
x

P(p; xb)

subject to xb � 0

cl(xb) ≤ 0, l = 1, 2, . . . , Lc.

This problem has a similar structure to Pc and Pk , but

it optimizes the resources broadcast by anchors, whereas

Pc and Pk optimize the resources used in point-to-point

measurements. The techniques that will be introduced

in Section III-B can be easily used for this optimization

problem in the broadcast setting because it has a structure

similar to Pc and Pk .

The considered problems Pc and Pk can address the

synchronous case as well as the asynchronous case with

only a slight modification. In particular, consider that

anchors and agents are not synchronized. A feasible local-

ization method in this case uses round-trip ranging: node

k initiates by transmitting a wireless signal to node j ,

and node j responds by transmitting a wireless signal

back to node k ; the range dkj is inferred at node k from

the round trip time. Let λjk and xjk denote the RII and

the resource of the response signal sent from node j

to node k , respectively. The matrix J A
e (pk ) can then be

expressed as

J
A
e (pk ) =

�
j∈Nb

4λkj λjk

λkj + λjk

Jr(φkj )

=
�
j∈Nb

4xkj xjk

xkj + xjk

ξkjJr(φkj )

where the second equality is because of the channel reci-

procity, i.e., ξkj = ξjk . In practice, there are two common

scenarios.

� Highly asymmetric networks—In certain networks

(e.g., cellular networks), the transmitting resources

(e.g., transmitting power) from anchors (e.g., base

stations) are significantly larger than those from

agents (e.g., mobile users) and cannot be controlled

by the agents. In this scenario, the node prioritization

problem is to optimize over {xkj}j∈Nb
for each agent

k with the assumption that xjk ≫ xkj , j ∈ Nb. The

matrix J A
e (pk ) can be approximated as

J
A
e (pk ) ≈

�
j∈Nb

4xkj ξkjJr(φkj )

and has the same structure as (5) with λkj given

in (13).

� Proportional amount of response resources—In cer-

tain scenarios, the amounts of resources for the

response signals are proportional to those for the

initiating signals, i.e., xjk = ηxkj , where η ∈ R
+

does not depend on k or j .5 With this resource allo-

cation method, the node prioritization problem is to

optimize over {xkj }j∈Nb
for each agent k with the

assumption that xjk = ηxkj , j ∈ Nb. The matrix

J A
e (pk ) becomes

J
A
e (pk ) =

�
j∈Nb

4η

1 + η
xkj ξkjJr(φkj )

and has the same structure as (5) with λkj given

in (13).

For readers who are interested in the node prioritization

strategies in asynchronous networks, see [88]–[90] for a

more detailed discussion.

B. Conic Programming-Based Approaches

We next provide solutions to the node prioritization

problems Pc and Pk with conic programming-based

approaches. Note that if there is only one agent in the

network, Pc degenerates to Pk . Therefore, Pk can be

seen as a special case of Pc, and we will focus our attention

on Pc in the following.

Proposition 1 (Convexity): The nSPEB P(p; x) in non-

cooperative networks is convex in x � 0.

There are many ways to prove Proposition 1, where the

details can be found in [142]–[144]. One way is to take the

second derivative of P(p; x) with respect to x and show

that the Hessian matrix is positive semidefinite [144].

Proposition 1 shows that the objective function of Pc

is convex in x. Thus, together with the fact that P has

convex constraints, Proposition 1 implies that Pc is a

convex program [146]–[148]. Consequently, the optimal

solution can be obtained numerically by standard convex

optimization algorithms [146].

Conic optimization is a special type of convex optimiza-

tion, and it includes the most well-known classes of con-

vex optimization problems such as semidefinite programs

(SDPs) and SOCPs. We next show that Pc can be converted

to an SDP, which is a more favorable formulation than the

general convex formulation. Recall that the nSPEB can be

written as

P(p; x) = tr
��

Je(p)
�−1�

=
�

k∈Nb

tr
��

J
A
e (pk )

�−1�
.

Let us consider an auxiliary matrix Mk with the following

constraint:

Mk �
�
J

A
e (pk )

�−1
.

Due to the fact that J A
e (pk ) � 0, the constraint above can

be equivalently transformed to the semidefiniteness of a

matrix that involves Mk and xk , as shown in the following

5This allocation for the response signals is shown to be optimal in
the scenario with certain resource constraints [142], and it has been
implemented in practice [117].
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proposition. A detailed proof of Proposition 2 can be found

in [142].

Proposition 2 (SDP): The problem Pc is equivalent to

the SDP

minimize
x,{Mk}k∈N

b

�
k∈Na

tr{Mk}

subject to

��Mk I

I



j∈Nb

xkj ξkj Jr(φkj )

�� � 0, ∀k ∈ Na

(14) − (15).

Furthermore, the problem Pc can also be converted

to an SOCP problem, which is an even more favorable

formulation than the SDP formulation. To see how we

can achieve this, we first transform Pc to the following

problem:

minimize
x,{̺k}k∈N

b

�
k∈Nb

̺k

subject to P(pk ; xk) ≤ ̺k , ∀k ∈ Na

(14) − (15).

To transform the constraint P(pk ; xk) ≤ ̺k to a desired

form, we next explicitly rewrite the iSPEB as follows:

P(pk ; xk ) =
4 · 1TRk xk

xT
k RT

k (11
T − ck cT

k − sk sT
k )Rk xk

(19)

where

Rk = diag
�
ξk(Na+1), ξk(Na+2), . . . , ξk(Na+Nb)

�
and

ck =
	

cos 2φk(Na+1) cos 2φk(Na+2) . . . cos 2φk(Na+Nb)


T
sk =

	
sin 2φk(Na+1) sin 2φk(Na+2) . . . sin 2φk(Na+Nb)


T
.

The constraint P(pk ; xk) ≤ ̺k can then be transformed

into ���	 c
T
k yk s

T
k yk 2tk


T��� ≤ 1
T
yk − 2tk (20)

where yk = Rk xk and tk = 1/̺k . The constraint tk =

1/̺k can be replaced with the following constraint without

changing the optimal solution:���	 tk ̺k

√
2

T��� ≤ tk + ̺k .

We then have the following proposition. A detailed proof

of Proposition 3 can be found in [143].

Proposition 3 (SOCP): The problem Pc is equivalent to

the SOCP

minimize
x,{tk ,̺k}k∈Na

�
k∈Na

̺k

subject to ‖AkRkxk + bk‖ ≤ 1
T
Rkxk − 2tk , ∀k ∈ Na���	 tk ̺k

√
2

T��� ≤ tk + ̺k , ∀k ∈ Na

(14) − (15)

where Ak = [ ck sk 0 ]T and bk = [ 0 0 2tk ]T.

Remark 3: Regarding the computational complex-

ity, the worst-case running time of both the SDP- and

SOCP-based approaches is O(Nb

3.5) for the single-agent

case [149].

C. Computational Geometry-Based Approaches

While conic programming-based approaches can pro-

vide solutions with amenable complexity, those solutions

are ǫ-approximate numerical ones and limited insight into

the problem can be gained from the numerical solutions.

We next present another type of approach, which not only

provides exact solutions to the problem, but also reveals

the essence of node prioritization problems.

In this section, we consider that the NPVs are sub-

ject to nonnegative constraints, i.e., (14) and (16), and

the total resource constraints, i.e., (15) with Lc = 1

and c1(x) = 1
T x − 1, and (17) with Lk = 1 and

ck,1 = 1
T xk − 1. This is a common scenario in the

design and implementation of a localization and naviga-

tion system. For example, the amount of available time for

ranging with different anchors is subject to a total time

constraint.

We next formulate a geometric framework, under which

we can obtain solutions of Pk , and then adopt these

solutions to solve Pc.

1) Geometric Framework: Inspired by the structure

in (19), we introduce an affine transformation that maps

an NPV to a point in 3-D space

zk = Ckxk (21)

where Ck = [ ck sk 1 ]TRk . With this transformation, the

iSPEB can be written as

Q(zk) :=
4[zk ]3

[zk ]23 − [zk ]21 − [zk ]22
= P(pk ; xk ).

This leads to the following geometric interpretation of the

iSPEB. Given an NPV xk , the point zk = Ckxk lies on a

hyperboloid, given by

(z3 − 2η−1)2 − z2
1 − z2

2 − 4η−2 = 0 (22)

where z1, z2, and z3 are variables and η = P(pk ; xk).

Denote the feasible NPV set of Pk and its image set

under the transformation (21), respectively, by

Xk = {xk ∈ R
Nb : 1T

xk = 1,0 � xk}

and

Zk = {zk ∈ R
Nb : zk = Ckxk , xk ∈ Xk}.

Note that each element xk ∈ Xk can be written as a

convex combination of elements in E := {e1, e2, . . . , eNb
},

where ek is a unit vector with the k th element being 1

and all other elements being 0’s. Hence, the image set

Zk is a convex polyhedron, given by Hc{Cke : e ∈ E}.

This implies that for xk ∈ Xk with the corresponding

iSPEB P(pk ; xk ), Ckxk is in the intersection of Zk and the
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Fig. 3. Illustration of solving PG,k : the polyhedron corresponds to

the image of the feasible set; a hyperboloid consists of the points

that correspond to a particular value of the iSPEB. The optimal

solution corresponds to a point on the surface of the polyhedron.

hyperboloid in (22). Such a geometric interpretation can

be used to transform Pk to a geometric problem. Consider

the following problem:

PG,k : minimize
η

η

subject to Zk ∩ H(η) �= ∅

η > 0

where

H(η) =
�
z =

	
z1 z2 z3


T
: z1, z2 and z3 satisfy (22)

�
.

The following proposition connects the optimal solution

of Pk and that of PG,k.

Proposition 4 [145]: For xk ∈ Xk , if Ck x∗
k ∈ H(η∗),

where η∗ is the optimal solution for PG,k, then x∗
k is an

optimal solution for Pk .

Let η∗ denote the optimal solution of PG,k. Proposition

4 provides a way to solve Pk using η∗: we can find a point

z∗
k ∈ Zk ∩ H(η∗) and determine a vector in Xk that is an

inverse image of z∗
k under the transformation (21).6 Such

a vector is then an optimal solution for Pk .

2) Solving PG,k and Pk : The process of solving PG,k

is illustrated in Fig. 3. Xk is a fixed polyhedron, whereas

H(η) is a family of hyperboloids parameterized by η. As

η increases, the hyperboloid H(η) gradually approaches

Xk . If H(η) and Xk are disjoint, then η is too small to be

feasible; if H(η) and Xk intersect, then η is too large to be

optimal. Hence, the optimal solution η∗ corresponds to the

scenario where Xk is tangent to H(η∗). This implies that

the Zk ∩ H(η∗) contains only one point, and this point

lies on the surface of Zk . For brevity, we consider only the

scenario where z∗
k is an interior point of some triangle on

the surface of Xk . Other scenarios are discussed in [145].

The answers to the following two questions are sufficient

for solving PG,k:

� How can z∗
k be determined if it is know to lie on a

triangle T ?

� On which triangle does z∗
k lie?

6How to find the inverse image of z∗
k

in Xk will be given in the
explanation of Theorem 1.

Fig. 4. Illustration of the sparsity: resources can be optimally

allocated to only three anchors. Most anchors will not be used due

to less favorable channel qualities or poorer network

geometry.

For the first question, note that the normal vectors of

T and H(η∗) are aligned at z∗
k as T is tangent to H(η∗)

at z∗
k . This gives us an equation involving z∗

k and solving

this equation gives the position of z∗
k . For the second

question, we can adopt a seemingly brute-force method:

search over every triangle on the surface of Zk and select

the triangle with the minimum η. Details can be found

in [145]. The computational complexity of this geometric

method largely depends on the complexity associated with

generating a convex hull of Nb given points in 3-D space

[150], [151] and is O(Nb log Nb), which is more efficient

than the conic programming-based approaches.

The observation that the unique point in Zk ∩
H(η∗) lies on the surface of H(η∗) not only provides

a way to solve PG,k, but also leads to the following

theorem.

Theorem 1 (Sparsity) There exists an optimal NPV x∗
k

for Pk such that ‖x∗
k‖0 ≤ 3.

This theorem has an intuitive explanation: the unique

element of Zk ∩ H(η∗) lies on the surface of H(η∗) and

is therefore inside a triangle. Consequently, this element

can be written as a convex combination of the triangle’s

three vertices. In this convex combination, replacing the

three vertices with their inverse images in Xk gives the

desired x∗
k .

Theorem 1 shows that the total transmitting resources

can be allocated to only three anchors without loss of

optimality in 2-D networks. This implies that most anchors

are not used due to less-favorable channel qualities or

poorer network geometry. For example in Fig. 4, anchor 1

is not used since it is farthest from the agent and there-

fore the corresponding ranging quality is poorest. Hence,

the same amount of resources allocated to other anchors

contribute more in reducing the iSPEB. Furthermore, allo-

cating resources to anchor 2 is not as efficient as allocating

resources to anchor 4 as they both provide information

along a similar direction but anchor 4 is closer to the

agent.
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Fig. 5. Illustration of the robust formulation: (a) Irregular uncertainty area; (b) Circular uncertainty area.

3) Solving Pc: We next show how to use the solution

of Pk to solve Pc. First rewrite Pc as

minimize
{xk}k∈Na

,{µk}k∈Na

�
k∈Na

P(pk ; xk )

subject to 1
T
xk ≤ μk , k ∈ Na�

k∈Na

μk ≤ 1

xk � 0, μk ≥ 0, k ∈ Na.

Note that xk contributes only one summand in the objec-

tive function, i.e., P(pk ; xk ), and its constraint does not

involve xj , j �= k if μk is determined. Therefore, this

optimization problem can be transformed to the following

problem:

minimize
{µk}k∈Na

�
k∈Na

fk (μk )

subject to
�
k∈Na

μk ≤ 1

μk ≥ 0, k ∈ Na

where

fk (μk ) = min
xk :1T xk ≤ µk ,xk � 0

P(pk ; xk).

Let x∗
k denote the optimal solution of Pk with con-

straints xk � 0 and 1
Txk ≤ 1 and η∗

k = P(pk ; x
∗
k ).

Note that J A
e (pk ) is linear in xk and P(pk ; xk) =

tr
�	

J A
e (pk )


−1
�

, and therefore fk (μk ) is inversely propor-

tional to μk , which gives fk (μk ) = η∗
k /μk . Hence

�
k∈Na

fk (μk) =
�
k∈Na

η∗
k /μk ≥

��
k∈Na

�
η∗
k

�2

(23)

where the equality in (23) is achieved when

μk =

�
η∗
k


k∈Na

�
η∗
k

:= μ∗
k . (24)

The solution of Pc can be obtained in two steps: first,

obtain x∗
k and η∗

k by solving Pk ; second, obtain the

optimal μ∗
k based on (24). The optimal solution of Pc is

then x̃k = μ∗
kx∗

k , k ∈ Na.

D. Robust Node Prioritization

The solutions in Sections III-C and III-B require the

knowledge of network parameters such as ξkj and φkj .

Perfect knowledge of these parameters is usually not

available. Since these estimated values are subject to

uncertainty, directly using them in the algorithms may

yield unreliable solutions. Hence, we will next develop

robust methods to cope with the parameter uncertainty.

For brevity, we only discuss the distributed setting in this

section and the proposed approaches can be adapted to the

centralized setting.

Consider the unknown position of agent k in an area Ak ,

and the goal of robust node prioritization is to minimize

the largest iSPEB for agent k over all of possible positions

in such an area. The worst-case iSPEB due to the parameter

uncertainty is

PR(Ak , xk ) := max
pk∈Ak

P(pk ; xk ).

The iSPEB PR(Ak , xk ) depends on the shape of Ak through

the uncertainty of ξkj and φkj , j ∈ Nb. Note that the area

Ak can be highly irregular and the maximization over pk

is intractable. To address this issue, we consider a finite

cover of Ak , denoted by
�
A(i)

k

�
i∈Ik

, where A(i)
k is a circle

with center p̂
(i)
k and radius ri, and Ik is the index set of

these covering circles (see Fig. 5). For the agent’s position

pk ∈ A(i)
k , one can see that the actual network parameters

belong to the linear sets

φkj ∈
�
φ̂

(i)
kj − δ

(i)
kj , φ̂

(i)
kj + δ

(i)
kj

�
:= Φ

(i)
kj

ξkj ∈
�
ξ(i)

kj
, ξ

(i)

kj

�
:= Ξ

(i)
kj

where δ
(i)
kj = arcsin(ri/

�� p̂
(i)
k − pj

��) and ξ(i)

kj
and ξ

(i)

kj

are known scalars representing the upper and lower

bounds of ξkj . Consequently, the worst-case iSPEB can be
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bounded by

PR(Ak , xk ) ≤ max
i∈Ik

P
(i)
R (Ak , xk)

where

P
(i)
R (Ak , xk) := max

φkj∈Φ
(i)
kj

,ξkj∈Ξ
(i)
kj

P(pk ; xk ). (25)

We can then formulate the robust node prioritization

problem as

PR,k : minimize
xk

max
i∈Ik

P
(i)
R (Ak , xk)

subject to (16) − (17)

which can be equivalently transformed into

minimize
xk,t

t

subject to P
(i)
R (Ak , xk ) ≤ t, ∀i ∈ Ik

(16) − (17). (26)

We need to convert P(i)
R (Ak , xk ) into an expression

amenable to efficient optimization. Note that in (25), the

maximization over ξkj is achieved at ξkj = ξ(i)

kj
since the

iSPEB P(pk ; xk ) is a monotonically decreasing function in

ξkj . However, maximization over φkj is nontrivial. We next

provide upper bounds on P
(i)
R (Ak , xk) that lead to conic

programming solutions.

Proposition 5 ([142]) The maximum iSPEB over the

actual angle φkj is upper bounded by

P
(i)
R (Ak , xk) ≤ tr

���
j∈Nb

xkj ξ
(i)

kj
Q

r
(φ̂

(i)
kj , δ

(i)
kj )

�−1�
(27)

provided that



j∈Nb

xkj ξ
(i)

kj
Q

r
(φ̂

(i)
kj , δ

(i)
kj ) � 0, where

Q
r
(φ̂

(i)
kj , δ

(i)
kj ) = Jr(φ̂

(i)
kj ) − sin δ

(i)
kj I .

Proposition 5 can be proved by noting that if φkj ∈ Φ
(i)
kj ,

Jr(φkj ) � Q
r
(φ̂

(i)
kj , δ

(i)
kj )

and thus

J
A
e (pk ) =

�
j∈Nb

xkj ξkjJr(ϕkj ) �
�
j∈Nb

xkj ξ
(i)

kj
Q

r
(φ̂

(i)
kj , δ

(i)
kj ).

This together with the monotonicity of tr{(·)−1} completes

the proof. Replacing P(i)
R (Ak , xk) in (26) with its upper

bound in (27) and adopting a similar transformation as in

Proposition 2, we can relax the robust node prioritization

problem PR,k into the following SDP:

minimize
x,{Mi}i∈Ik

t

subject to tr{Mi} ≤ t, i ∈ Ik��Mi I

I



j∈Nb

xkj ξ
(i)

kj
Q

r
(φ̂

(i)
kj , δ

(i)
kj )

�� � 0,

i ∈ Ik

(16) − (17).

The above SDP can cope with small uncertainty in

the parameters. However, the performance loss from the

relaxation is difficult to quantify since the optimal solution

of the robust formulation remains unknown. To address

this issue, we look for new bounds of the worst-case iSPEB.

We denote M = {0, 1, . . . , M − 1}, where M ∈ Z.

Proposition 6 ([143]) For any given NPV xk such that

P
(i)
R (Ak ; xk ) < ∞, if

M ≥ π

2

�
P

(i)
R (Ak , xk ) · 1TR

(i)
k xk

where R
(i)
k = diag

�
ξ(i)

k(Na+1)
, ξ(i)

k(Na+2)
, . . . , ξ(i)

k(Na+Nb)

�
,

then P
(i)
R (Ak , xk ) is bounded below and above,

respectively, by

P
(i)
M (Ak ; xk )= max

m∈M

4 · 1T R
(i)
k xk

(1T R
(i)
k xk )2 −

�
h

(i) T
k,m R

(i)
k xk

�2 (28)

P
(i)
M (Ak ; xk )= max

m∈M

4 · 1T R
(i)
k xk

(1T R
(i)
k xk )2 −

�
g

(i) T
k,m R

(i)
k xk

�2 (29)

where h
(i)
k,m, g

(i)
k,m ∈ R

Nb , in which their j th elements are

given by �
h

(i)
k,m

�
j
= max

|ǫ|≤2δ
(i)
kj

cos(2φ̂
(i)
kj − ϑm + ǫ)

�
g

(i)
k,m

�
j
=

1

cos(π/M)
·
�
h

(i)
k,m

�
j

with ϑm = (2m + 1)π/M for m ∈ M.

Unlike Proposition 5, Proposition 6 provides both lower

and upper bounds for P
(i)
R (Ak , xk). We can replace

P
(i)
R (Ak , xk ) in (26) by the lower and upper bounds (28)

and (29), leading to the relaxed problems P
M
R,k and P

M

R,k,

respectively. P
M

R,k is more desirable since it guarantees the

worst-case performance, whereas the lower bound is useful

to bound the performance loss of such relaxation. Note that

the relaxed constraint P
(i)
M (Ak ; xk) ≤ t can be transformed

into M second-order cone forms of xk . Consequently, P
M

R,k

can be transformed into an SOCP as follows:

minimize
xk ,y

− y

subject to
���A(i)

k,mR
(i)
k xk + bk

��� ≤ 1
T
R

(i)
k xk − 2y,

∀m ∈ M, ∀i ∈ Ik

(16) − (17)

where A
(i)
k,m =

	
g

(i)
k,m 0


T
and bk = [ 0 2y ]T.

The next proposition shows that the solution of the

relaxed problem P
M

R,k converges to that of the original

problem PR,k as M increases.

Proposition 7 [143] Let x∗
k and xM

k be the optimal

solutions of PR,k and P
M

R,k, respectively. Then

P
(i)
R (Ak ; x

M
k )

1 + CM

≤ P(i)
R (Ak ; x

∗
k ) ≤ P(i)

R (Ak ; x
M
k )
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where

CM = max
i∈Ik

sin2(π/M)[Bi(x
∗
k ) − 1]

1 − sin2(π/M)Bi(x∗
k)

in which

Bi(xk) =
1

4
P

(i)
R (Ak , xk) · 1T

R
(i)
k xk .

Moreover, CM converges to zero at the rate

of O(M−2).

Proposition 7 implies that the optimal solution of P
M

R,k

can approximate PR,k with a small value of M due

to the fast convergence rate O(M−2). Consequently, the

performance of the proposed SOCP algorithms can achieve

near-optimal performance with negligible increase in com-

putational complexity.

IV. N O D E P R I O R I T I Z AT I O N F O R

C O O P E R AT I V E L O C A L I Z AT I O N

This section presents the node prioritization strategies for

cooperative networks in static scenarios. In this section, we

consider only the non-robust formulation for brevity. The

techniques developed in Section III-D can be adopted to

address the robust formulation as shown in [84] and [85].

A. Problem Formulation

Similarly to Section III-A, we rewrite λkj as in (13).

In cooperative networks, agents make measurements only

with anchors and agents, and therefore, the NPV for node

k xk ∈ R
Na+Nb−1 can be written as

xk =
	
xk1 xk2 . . . xk(k−1) xk(k+1) . . . xk(Nb+Na)


T

and the NPV for all the agents x can be written as

x =
�
x

T
1 x

T
2 . . . x

T
Na

�T
.

For the centralized and distributed settings, the node

prioritization problem can then be written, respectively,

as

PC−c : minimize
x

P( p; x)

subject to (14) − (15)

and

PC,k : minimize
xk

P( pk; xk)

subject to (16) − (17)

where PC−c denotes the cooperative centralized node

prioritization problem and PC,k denotes the cooperative

distributed node prioritization problem for agent k. Unlike

the node prioritization in non-cooperative networks, the

performance metrics P( p; x) and P( pk; xk) incorporate

range information from agents in addition to that from

anchors. As we will see in the following sections, such addi-

tional information makes the node prioritization problem

more complicated.

B. Centralized Setting

We next provide solutions to the cooperative node prior-

itization problem PC−c in the centralized setting.

Proposition 8: The nSPEB P( p; x) in cooperative net-

works is convex in x � 0.

Proposition 8 can be proved in a similar way as Propo-

sition 1. As the result of convexity, the optimal solution

for PC−c can be obtained numerically by standard convex

optimization algorithms [146].

We next show that PC−c can be converted to an SDP.

Note that

Je( p; x) =
�

k∈Na

�
j∈Na∪Nb\{k}

xkjξkjVkj

where

Vkj =

�
ENa

k,k⊗Jr(φkj), j ∈ Nb�
ENa

k,k + ENa
j,j − ENa

k,j − ENa
j,k

�
⊗Jr(φkj), j ∈ Na.

Since Je( p; x) is linear in x, we can use the same tech-

nique as used in Section III-B to prove that PC−c is

equivalent to the SDP

minimize
x,M

�
k∈Na

tr{M}

subject to

��M I

I



k∈Na



j∈Na∪Nb\{k}

xkjξkjVkj

�� � 0

(14) − (15).

Unfortunately, the techniques of transforming node pri-

oritization problems further into SOCPs in non-cooperative

networks cannot be applied here because the off-diagonal

blocks −Cj,k in (4) make the expression of inverted EFIM

J−1
e (p; x) complicated [152], and thus it cannot be writ-

ten as the sum of fractional forms as in (19).

C. Distributed Setting

The optimal solutions of the problem PC,k ’s cannot

be obtained in a distributed manner because the iSPEB

P( pk; xk) = tr
�	

J−1
e ( p; x)



pk

�
depends on the angles

and qualities of all the inter-node measurements of the

entire network as well as the node prioritization decisions

(i.e., the NPV) of other agents. To address this issue, we

derive an upper bound for P( pk; xk) that is amenable for

distributed implementation.

Consider an auxiliary matrix JL
e ( p; x) representing

the measurements between agents and anchors as

well as measurements made from agent 1 to other

agents

J
L
e ( p; x)=

�
k∈Na

�
j∈Nb

xkjξkjVkj+
�

j∈Na\{1}

x1jξ1jV1j . (30)

Note that

Je( p; x) − J
L
e (p; x) =

�
k∈Na\{1}

�
j∈Na\{k}

xkjξkjVkj � 0
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where the inequality is due to the fact that each summand

is positive semidefinite. Based on JL
e ( p; x), a lower bound

for the EFIM of agent 1 is shown to be���
J

L
e ( p; x)

�−1
�

p1

�−1

= J
A
e ( p1) +

�
j∈Na\{1}

x1jξ1jJr(φ1j)

1 + x1jξ1j∆1j

:= J
L
e (p1; x1)

where

∆1j = tr{Jr(φ1j)
�
J

A
e ( pj)

�−1} (31)

represents the position uncertainty of agent j along

the direction between agent 1 and agent j [85].

Consequently

P( p1; x1) = tr

���
Je(p; x)

�−1
�

p1

�
≤ tr

���
J

L
e (p; x)

�−1
�

p1

�
= tr

��
J

L
e ( p1; x1)

�−1
�

. (32)

Similarly, we can obtain JL
e ( pk; xk) as the lower bound

for the EFIM of agent k in cooperative networks. Note that

if ∆kj is available to agent k, then JL
e ( pk; xk) depends

only on the local network parameters and on the node

prioritization decision of agent k, facilitating the design of

distributed node prioritization strategies.

Using the upper bound in (32) as the optimization

objective for agent 1 requires obtaining ∆1j . Obtaining

∆1j in turn requires the node prioritization decision of

agent j. To circumvent this difficulty, the original problem

can be transformed into a sequential two-phase optimiza-

tion problem. Specifically, each agent k produces its node

prioritization decision through the following two phases:

� infrastructure phase—produce the node prioritization

decision to allocate resources for the measurements

between agent k and the anchors;

� cooperation phase—produce the node prioritization

decision to allocate resources for the measure-

ments between agent k and its neighboring agents,

which have obtained their position knowledge in the

infrastructure phase.

Note that in the infrastructure phase, each agent k min-

imizes tr
��

JA
e ( pk)

�−1�
without requiring the node prior-

itization decisions of other agents; and in the cooperation

phase, each agent k minimizes tr
��

JL
e ( pk; xk)

�−1�
with

∆kj based on JA
e ( pj) (j ∈ Na\{k}) from the infrastructure

phase.

In the infrastructure phase, each agent k minimizes

tr
��

JA
e ( pk; xk)

�−1�
with respect to NPV xk with xkj = 0

for all j ∈ Na, i.e.,

P
Anc
C,k : minimize

xk

tr
��

J
A
e ( pk; xk)

�−1�
subject to xkj = 0, ∀j ∈ Na

(16) − (17).

Note that P
Anc
C,k is equivalent to Pk and can be solved via

the techniques in Section III.

Using the solution of P
Anc
C,k in the infrastructure phase,

each agent j broadcasts JA
e ( pj) to its neighboring agents

and agent k computes ∆kj . The node prioritization prob-

lem for agent k in the cooperation phase is then formu-

lated using the upper bound (32) as relaxed performance

metrics

P
Agt
C,k : minimize

xk

tr
��

J
L
e ( pk; xk)

�−1�
subject to (16) − (17).

We next show that P
Agt
C,k can be converted to an SOCP.

We rewrite JL
e ( pk; xk) as

J
L
e ( pk; xk) = J

A
e ( pk) +

�
j∈Na\{k}

ξkjqkjJr(φkj)

where

qkj =
xkj

1 + xkjξkj∆kj

.

Since tr
��

JL
e (pk; xk)

�−1�
is an increasing function of qkj ,

P
Agt
C,k is equivalent to the following program:

minimize
xk,{qkj}j∈Na\{k}

tr

��
J

A
e (pk) +

�
j∈Na\{1}

ξkjqkjJr(φkj)

�−1�

subject to 0 ≤ qkj , ∀j ∈ Na\{k}
qkj ≤ xkj

1 + xkjξkj∆kj

, ∀j ∈ Na\{k} (33)

(16) − (17).

The objective function has a similar structure to (19).

Therefore, it can be shown that we can transform the

objective function to a linear objective function and an

SOCP constraint by following steps similar to those in

Section III-B [85]. Consequently, P
Agt
C,k can be transformed

into

minimize
xk,{qkj}j∈Na\{k}

− t

subject to 0 ≤ qkj , ∀j ∈ Na\{k}���	√2 1 − qkjξkj∆kj 1 + qkjξkj∆kj


T
���

≤ 2 + (xkj − qkj)ξkj∆kj , ∀j ∈ Na\{k}��� �Ak
�Rkqk + �bk

��� ≤ 1
T �Rkqk − 2t

(16) − (17)

where �Ak = [ �ck �sk 0 ]T and �bk = [ 0 0 2t ]T, in which

qk =
	
qk(Na+1) qk(Na+2) . . . qk(k−1) qk(k+1) . . .

qk(Na+Nb) 1 1

T

�Rk = diag
�
ξk(Na+1), ξk(Na+2), . . . , ξk(k−1), ξk(k+1), . . . ,

ξk(Na+Nb), ν
(1)
k , ν

(2)
k

�
�ck =

	
cos 2φk(Na+1) cos 2φk(Na+2) . . . cos 2φk(k−1)

cos 2φk(k+1) . . . cos 2φk(Na+Nb) cos 2θk − cos 2θk


T
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�sk =
	
sin 2φk(Na+1) sin 2φk(Na+2) . . . sin 2φk(k−1)

sin 2φk(k+1) . . . sin 2φk(Na+Nb) sin 2θk − sin 2θk


T
with ν

(1)
k , ν

(2)
k ≥ 0 being the eigenvalues of JA

e (pk) and

u(θk) and u(θk + π/2) being the corresponding eigenvec-

tors, i.e., JA
e ( pk) = ν

(1)
k Jr(θk) + ν

(2)
k Jr(θk + π/2).

The detailed distributed cooperative node prioritization

strategy is described in Algorithm 1. In Algorithm 1, each

agent requires only local network parameters and little

information from its neighbors, which makes the algorithm

amenable for distributed implementation.

Algorithm 1: Distributed Cooperative Node

Prioritization [84]

Input: φkj and ξkj , k ∈ Na, j ∈ Nb ∪Na\{k}
Output: xk, k ∈ Na

1: For k ∈ Na, agent k solves P
Anc
C,k in the infrastructure

phase;

2: For k ∈ Na, agent k broadcasts JA
e ( pk) to its neigh-

boring agents;

3: For k ∈ Na, agent k solves P
Agt
C,k in the cooperation

phase;

4: For k ∈ Na, agent k outputs xk;

V. N O D E A C T I VAT I O N

This section presents the node activation strategies for

cooperative dynamic networks. For the sake of collision

avoidance in implementation, only one node is activated

at each time slot to make inter-node measurements, and

the node then allocates its resource for performing mea-

surements with different neighbors based on the node

prioritization strategies discussed in Section IV. We will

also consider a simpler case for which the node merely

selects one neighbor for the inter-node measurement.

A. Activation Formulation

In the dynamic scenario, recall the EFIM Je(p(n)) given

in (10) for all the node positions at time tn. For ease of

discussion, we define the error matrix at time tn as Q(n) =�
Je(p(n))

�−1
, and {Q(n)}n≥1 denotes an evolution of the

error matrix over time.

With node activation, at each instant tn, one node

kn is selected to make inter-node measurements with its

neighbors and a fraction of resources is used for each

neighbor through for instance spectrum sharing. In this

case, the error evolution {Q(n)}n≥1 can be written as

Q
(n+1) = Q

(n) − Γ
(n)
kn

+ T
(n)

(34)

where Γ
(n)
kn

is the error reduction matrix corresponding

to the inter-node measurements between nodes kn and

its neighbors, and T (n) is the error increase matrix given

in (8) due to the uncertainty in the intra-node measure-

ments. Moreover, let N (n)
k be the set of neighbors of node k

at time tn, and then the error reduction matrix can be

derived as

Γ
(n)
k = Q

(n) −
�

(Q(n))−1 +
�

j∈N
(n)
k

λ
(n)
kj a

(n)
kj a

(n) T
kj

�−1

(35)

where λ
(n)
kj is the RII of the inter-node measurement

between node k and node j [72], and

a
(n)
kj =

��� ek ⊗ u(φ
(n)
kj ), k ∈ Na, j ∈ Nb

(ek − ej) ⊗ u(φ
(n)
kj ), k, j ∈ Na.

(36)

Remark 4: The evolution of the error matrix (34) implies

that a high accuracy in the inter-node measurements (i.e.,

large λ
(n)
kj ) or intra-node measurements (i.e., small σ2

m)

translates to large Γ
(n)
k or small T (n), both leading to high

localization accuracy (i.e., small Q(n+1)). Moreover, the

values of RII λ
(n)
kj ’s for j ∈ N (n)

k are subject to the total

resource constraint, and node prioritization can be applied

to optimize the resource allocation.

The error evolution in (34) depends on the activation

strategy via the selected node kn together with the node

prioritization (or simply neighbor selection) strategy as

well as the error increase due to the nodes’ mobility at

each instant. Comparing this with data networks, we can

view Q(n), Γ (n), and T (n) as the queue length, service,

and the packet arrival, respectively. In contrast to queueing

dynamics where the service rates are commonly indepen-

dent of the queue lengths and network geometry, the error

reduction matrices in NLN are nonlinear functions of the

queue length Q(n) and of the relative node positions, which

are characterized by φ
(n)
kj ’s and λ

(n)
kj ’s.

Node activation strategies for NLN are typically designed

to coordinate the inter-node measurements, with a goal

of minimizing a performance metric such as the nSPEB

tr{Q(n)} at each time tn, or the time-averaged nSPEB over

the first n instants, given by

qn :=
1

n

n�
n′=1

tr{Q(n′)}. (37)

We next adopt the former as the performance metric for

designing node activation strategies.

Opportunistic activation: The opportunistic activation

algorithm is one-step optimal and it can be described as

follows: it selects the best agent for inter-node measure-

ments with its neighbors, i.e.,

kn = arg max
k∈Na

tr
�
Γ

(n)
k

�
(38)

where for a given selection of agent k, the values of RII

λ
(n)
kj ’s for j ∈ N (n)

k are determined by the node prioritiza-

tion problem Pk in Section III-A.

We introduce a special case of the opportunistic node

activation strategy, in which only a single neighbor jn

of node kn is selected for an inter-node measurement.

In this case, the entire resources are dedicated for the
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link (kn, jn) and λ
(n)
kn,j = 0 for all j ∈ N (n)

kn
\{jn}.

Consequently, the error reduction matrix in (35) can be

simplified as

Γ
(n)
k

  
(k,j)

=
Q(n)a

(n)
kj a

(n)T
kj Q(n)

λ
(n)−1
kj + a

(n)T
kj Q(n)a

(n)
kj

where
  
(k,j)

denotes the selection of a single link (k, j) for

the inter-node measurement. In this case, the opportunistic

activation in (38) reduces to single-neighbor selection,

which selects the optimal pair for an inter-node measure-

ment in terms of the error reduction, i.e.,

(kn, jn) = arg max
(k,j)∈M(n)

tr
�
Γ

(n)
k |(k,j)

�
(39)

where M(n) denotes the set of all possible measurement

pairs at time tn.

The activation strategy with single-neighbor selection

will yield a suboptimal performance compared to that

with node prioritization, as the latter has more free-

dom for resource utilization. Nevertheless, single-neighbor

selection highlights the simplicity in implementation as

it eliminates the calculation of node prioritization in the

process.

Note that the opportunistic activation algorithm requires

perfect knowledge of network parameters such as angles

and qualities of all the inter-node measurements as well

as a centralized controller. First, such perfect knowledge is

not available in practice and the activation algorithm can

only use estimates of these parameters, leading to subopti-

mal performance. Second, the centralized controller would

need to collect all the information about network para-

meters incurring high communication overhead, which is

inefficient in medium- to large-scale networks. To reduce

the communication overhead, we introduce an alternative

algorithm called probabilistic activation.

Probabilistic activation: The probabilistic activation

algorithm selects an agent randomly according to a

certain (possibly optimized) access probability given by

{ p
(n)
1 , p

(n)
2 , . . . , p

(n)
Na

} with p
(n)
i ≥ 0 for all i ∈ Na

and the normalization constraint

Na

i=1 p
(n)
i = 1.7 The

selected node then performs inter-node measurements

using resources allocated according to the solution of node

prioritization problems or according to the single-neighbor

selection in (39). Thus, the communication overhead

among the agents is much lower than in opportunistic acti-

vation, and therefore such an activation algorithm is better

suited for distributed implementation. In Section V-B, we

will discuss how to design p
(n)
i .

B. Activation in Distributed Networks

We now further analyze the performance of the oppor-

tunistic and probabilistic activation in distributed settings.

In these settings, the exact error evolution {Q(n)} in (34)

7Note that (uniformly) random activation is a special case of prob-

abilistic activation with p
(n)
i = 1/Na for all i ∈ Na.

is not available to the agents, and each agent can only keep

a record of its own error evolution, as an approximation for

the error evolution of the entire network. Therefore, in the

distributed setting, the error evolution of agent k ∈ Na is

given by �Q(n+1)

k = �Q(n)

k − �Γ (n)

k + T
(n)
k (40)

with �Q(1)

k = [Q(1)]k denoting the submatrix of Q(1) corre-

sponding to agent k. In the above equation

�Γ (n)

k =

�!!!!!!!!!!!!�!!!!!!!!!!!!�

�Q(n)

k −
�

(�Q(n)

k )−1 +
�

j∈N
(n)
k

ζ
(n)
kj λ

(n)
kj Jr(φ

(n)
kj )

�−1

,

k is activated�Q(n)

k −
�
(�Q(n)

k )−1 + ζ
(n)
kj λ

(n)
kj Jr(φ

(n)
kj )

�−1
,

j ∈ N (n)
k is activated

0, otherwise

(41)

in which ζ
(n)
kj ∈ (0, 1] is a coefficient determined by�Q(n)

j and λ
(n)
kj ’s [73]. This coefficient characterizes the

effectiveness of RII due to the position uncertainty asso-

ciated with each agent, and as a special case ζ
(n)
kj = 1 if

node j is an anchor.

The opportunistic activation then selects the best agent

according to (38), where for each potential agent k the

calculation of �Γ (n)

k uses the estimated value of the para-

meters and the RII λ
(n)
kj ’s as determined by the node

prioritization strategy. On the other hand, the probabilistic

activation selects the node according to the designated

access probability.

For the neighbor selection case, i.e., where only pair

(k, j) is selected for measurements, the error reduction

matrix reduces to

�Γ (n)

k |(k,j) =

�!!!!!!!!!!!!!!�!!!!!!!!!!!!!!�

�Q(n)

k u(φ
(n)
kj )uT(φ

(n)
kj )�Q(n)

k

λ
(n)−1
kj + uT(φ

(n)
kj )�Q(n)

k u(φ
(n)
kj )

,

k is activated with j ∈ Nb�Q(n)

k u(φ
(n)
kj )uT(φ

(n)
kj )�Q(n)

k

λ
(n)−1
kj + uT(φ

(n)
kj )(�Q(n)

k + �Q(n)

j )u(φ
(n)
kj )

,

k is activated with j ∈ Na\{k}
0, k is not activated.

(42)

1) Performance Analysis: Based on the error evolution in

distributed networks, we next analyze the performance of

opportunistic and probabilistic activation. In particular, we

consider that the anchors’ positions follow a homogeneous

Poisson point process (PPP) with density μb [153]–[157],

and let pb = 1−exp(−πμbR2) be the probability that there

exists at least one anchor in the neighborhood of a given

agent, where R is the communication radius of an agent.

The performance metric to be analyzed is qn, i.e., the time-

averaged nSPEB over the first n instants.
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Proposition 9 ([96]) Under mild conditions, for both

opportunistic and probabilistic node activation strategies,

the time-averaged nSPEB is bounded from above as

qn ≤ Na

pb

"
ρn +

�
ρ2

n + 4 pb λ−1
min ρn

#
where λmin is the lower bound for the RII of the inter-node

measurements between two nodes in the communication

range, and

ρn = 2Naσ
2
m +

1

n
E
�

tr{Q(1)}
�
.

Moreover, as n → ∞, the upper bound can be simplified as

lim sup
n→∞

qn ≤ 2N2
a

pb

�
σ2

m + σm

$
σ2

m +
2

Na
pb λ−1

min

�
.

The proposition provides important insights into the

activation problem in view of the upper bound. First, the

upper bound increases with the intra-node measurement

error σm, and decreases with the RII λmin. This agrees with

our intuition that good quality of intra-node and inter-node

measurements decreases the nSPEB. Second, the upper

bound decreases with increasing pb, or equivalently with

μb, that is, the nSPEB decreases with increasing anchor

density. This also agrees with our intuition that agents

are more likely to access to anchors, which have perfect

position knowledge. Third, the time-averaged nSPEB is

upper bounded as O(N2
a ). In fact, when the maximum

number of neighbors for each agent is fixed, it can also be

shown that the lower bound for the time-averaged nSPEB

is also Ω(N2
a ) [96], which leads to the conclusion that qn

is on the order of Θ(N2
a ). Finally, we comment that the

claims from Proposition 9 hold for node activation with or

without the node prioritization process.

2) Probabilistic Activation Design: We next design the

access probability { p
(n)
1 , p

(n)
2 , . . . , p

(n)
Na

} for probabilistic

activation using the upper bound for the time-averaged

nSPEB qn. In the distributed setting, denote the time-

averaged iSPEB for agent k as

qn,k :=
1

n

n�
n′=1

tr
��Q(n′)

k

�
. (43)

Then, with the given access probabilities, the upper bound

for agent k’s time-averaged iSPEB can be obtained as

qn,k ≤ 1

pb p̃k

%
ρn,k +

�
ρ2

n,k + 4pbλ−1
minρn,kp̃k

&
=: gk({ p

(n)
i }i∈Na) (44)

where p̃k := p
(n)
k

'
j∈Na\{k}(1 − p

(n)
j ) and ρn,k := σ2

m +

tr{Q(1)
k }/n. As a consequence, the nSPEB can be upper

bounded as

qn ≤
�

k∈Na

qn,k =
�

k∈Na

gk({ p
(n)
i }i∈Na). (45)

The right-hand side of (45) is in a closed form and can

be used as the objective function for optimizing the access

probability as

P
S : minimize

{ p
(n)
i

}i∈Na

�
k∈Na

gk({ p
(n)
i }i∈Na)

subject to
�

i∈Na

p
(n)
i = 1

p
(n)
i ≥ 0, ∀ i ∈ Na. (46)

An optimal solution to the above optimization problem can

be found by generalized geometric programming, which

can be efficiently solved via interior point methods.

The probabilistic activation algorithm can be described

in Algorithm 2. Agents take turns to be the designated

agent, which optimizes the access probabilities at the

beginning of each instant. In particular, the designated

agent collects ρn,k from each of its neighboring agents;

after the designated agent obtains the solution of the

access probabilities, it broadcasts the probabilities to the

other agents. All the agents then access the channels

according to { p
(n)∗
i }i∈Na for the next N time slots. The

parameter N induces a trade-off between the performance

and complexity, where a larger N requires less communi-

cation and computation overheads at the expense of per-

formance loss due to outdated input of the problem P
S.

Algorithm 2: Distributed Probabilistic Node Activation

Input: φ
(n)
kj and λ

(n)
kj , k ∈ Na, j ∈ Nb ∪Na\{k}

Output: Optimal access probability { p
(n) ∗
i }i∈Na

1: Let agent k∗ be the designated agent (which rotates

among the Na agents);

2: At the beginning of time tn, each agent k calculates

ρn,k for k ∈ Na, and then agent k∗ collects ρn,k from

its neighbors;

3: Agent k∗ obtains an optimal solution { p
(n) ∗
i }i∈Na by

solving P
S;

4: Agent k∗ sends p
(n) ∗
i to agent i ∈ Na\{k∗};

5: Agent k accesses the channel with probability p
(n) ∗
k

for k ∈ Na in the following N time slots.

VI. N O D E D E P L O Y M E N T

This section presents the node deployment strategies for

both non-cooperative and cooperative networks.

A. Problem Formulation

We now formulate the node deployment problem, aim-

ing to place nodes for increasing the localization accuracy

associated with a certain set of nodes. We first consider

the non-cooperative case, where anchors are deployed

to minimize the average iSPEB for the agent within a

certain region or along a preplanned path. In particular,

let Ra denote the region or the preplanned path in which

the agent may lie, and the average iSPEB for the agent

positions in Ra is

P
a(Ra) :=

(
q∈Ra

P(q)f(q) dq
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where f(q) is the weight function of the agent’s position.

The optimization problem can be formulated as follows:

Q : minimize
{pk}k∈Nb

P
a(Ra)

subject to pk ∈ Rd, k ∈ Nb (47)

where Rd denotes the feasible region for deploying nodes.

In the cooperative case, a set of nodes needs to be

deployed to increase the localization accuracy associated

with a set of agents. The nodes to be deployed are des-

ignated as assisting nodes, whereas the agents that need

to increase localization accuracy are designated as target

agents. Following the definition of Pa(Ra), we introduce

P
a
k(Ra

k) as

P
a
k(Ra

k) :=

(
q∈Ra

k

P(q)fk(q) dq

where Ra
k denotes the region or path in which a target

agent k may lie, and fk(q) denotes the weight function

of target agent k’s position. The optimization problem can

then be formulated as follows:

QC : minimize
{pj}j∈S1

�
k∈S2

P
a
k(Ra

k)

subject to pj ∈ Rd, j ∈ S1 (48)

where S1 denotes the set of assisting nodes,

S2 = Na\S1 denotes the set of target agents, and C

denotes the cooperative deployment problems.

B. Non-cooperative Case

We first consider a special case of Q, where f(q) =

δ(q − p1). This corresponds to the case where the agent

is in a single position p1. In this case, the performance

metric Pa(Ra) = P( p1) and the node deployment problem

becomes

QSP : minimize
{pk}k∈Nb

P( p1)

subject to pk ∈ Rd, k ∈ Nb (49)

where SP denotes the deployment problem for the agent in

a single position.

The solution of this problem largely depends on Rd. For

simplicity, we consider that each anchor can be deployed

on the boundary of a convex region and the agent is

inside this region. The anchors’ positions can then be

parametrized by angles φ1j , j ∈ Nb (see Fig. 6). The

problem QSP then becomes

minimize
{φ1j}j∈Nb

P( p1)

subject to 0 ≤ φ1j < 2π, j ∈ Nb.

We further assume that λ1j in (6) is a constant function

of φ1j , i.e., λ1j does not change with φ1j . This assumption

will be relaxed later. For notational convenience, in this

section, we let νk = λ1(k+Na) and ψk = φ1(k+Na). Without

Fig. 6. Anchors are deployed on the boundary of a convex region.

The position of an anchor can be parametrized by the angle from

itself to the agent.

loss of generality, we assume that ν1 ≥ ν2 ≥ · · · ≥ νNb .

Similarly to (19), we can rewrite the performance metric

P( p1) defined in (5) as follows:

P(p1) =

4
Nb

k=1

νk�
Nb

k=1

νk

�2

− ‖ν0‖2

(50)

where

ν0 =

Nb�
k=1

νk[ cos 2ψk sin 2ψk ]T.

Note that, by assumption, νk is a constant and does not

depend on ψk. Therefore, changing the positions pk does

not change

Nb

k=1 νk. As a consequence, the expression in

(50) implies that minimizing P( p1) is equivalent to min-

imizing ‖ν0‖. Fig. 7 illustrates the way of generating ν0.

In particular, −ν0 and
�

νk[ cos 2ψk sin 2ψk ]T
�Nb

k=1
form

a closed polygon (not necessarily convex). We have the

following claims.

� If ν1 >

Nb

k=2 νk, we can deploy the anchors such that

ψ1 − ψk = π/2 + mπ, where k = 2, 3, . . . , Nb and

m ∈ Z. In this case, ‖ν0‖ = ν1 −
Nb
k=2 νk.

� If ν1 ≤
Nb
k=2 νk, we can deploy the anchors such that�

νk[ cos 2ψk sin 2ψk ]T
�Nb

k=1
forms a closed polygon.

In this case, ‖ν0‖ = 0. One way to generate such

a closed polygon is to use the Huffman Tree algo-

rithm [109].

The method above gives a simple way to determine

the optimal solution for QSP with constant RII. However,

constant RII may sometimes be an impractical assumption

since at certain angles, there may be obstacles such as walls

that block the line of sight (LOS) between the agent and

potential anchors. To account for such a scenario, we now

consider that νk is a piecewise constant function of the

angle ψk. In particular, consider discretizing the angles in

to I sets, denoted by Vi = [ ϑi, ϑi), i = 1, 2, . . . , I . Without

loss of generality, we assume ϑ1 = 0 and ϑI = 2π. The

RII νk takes a constant value μi for all ψk ∈ Vi.
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Fig. 7. Illustration of ν0: the summation of the vectors with length

νk and angle 2ψk.

We next describe a coordinate descent method in

Algorithm 3 that can produce node deployment decisions

numerically for scenarios in which νk depends on ψk. In

fact, the performance metric iSPEB is reduced in each

iteration by minimizing over one variable while fixing the

other ones. The efficiency of this algorithm largely depends

on the complexity of the minimization in line 3. Thus, we

focus on finding the optimal solution to the minimization

problem in line 3. The next proposition narrows down the

search for the optimal solution to a finite number of points.

Algorithm 3: Relocate [108]

Input: Vi = [ ϑi, ϑi ) and μi, i = 1, 2, . . . , I

Output: The optimal angle vector

ψ∗ = [ψ∗
1 ψ∗

2 . . . ψ∗
Nb

]T

1: Randomly initialize ψ = [ψ1 ψ2 . . . ψNb ]T, m = 1;

2: while ψ has not converged do

3: Find the angle ψ∗
m that minimizes the iSPEB P(p1)

over ψm while fixing ψk, k �= m;

4: ψm ← ψ∗
m;

5: m ←mod (m + 1, Nb);

6: end while

Proposition 10: The minimal ψ∗
m in line 3 of

Algorithm 3 is in the following set {ψ1
m, ψ2

m} ∪
{ϑi, ϑi, i = 1, 2, . . . , I}, where

ψ1
m =

1

2
arctan



k 	=m

νk sin 2ψk

k 	=m

νk cos 2ψk

ψ2
m =

1

2
arctan



k 	=m

νk sin 2ψk

k 	=m

νk cos 2ψk

+
π

2
.

Proof: The minimum of iSPEB is achieved either when

ψm is on the boundary, i.e., ψm ∈ {ϑi, ϑi, i = 1, 2, . . . , I},

or ψm is an interior point in some interval Vi. In the latter

case, the RII μm is constant when ψm is in a small neigh-

borhood of ψ∗
m. In this neighborhood, minimizing iSPEB

is equivalent to minimizing ‖ν0‖. The partial derivative of

‖ν0‖ with respect to ψm at ψ∗
m should be zero since ψm is

Fig. 8. Illustration of Q�−��: assisting agents are deployed to

increase the localization accuracy of the other agent.

an interior point. Hence

0 =
∂ ‖ν0‖
∂ψm

= 4νm

���
k 	=m

νk sin 2ψk

�
cos 2ψm

−
��

k 	=m

νk cos 2ψk

�
sin 2ψm

�
.

The equation above has two solutions ψ1
m and ψ2

m, which

are also candidates for ψ∗
m. �

We next consider another special case of Q, where

f(q) =

J�
j=1

δ(q − qj)

where {qj}J
j=1 are J positions in region Ra. This corre-

sponds to the case in which the agent can be in J different

positions. In this case, the performance metric

P
a(Ra) =

J�
j=1

P(qj) (51)

and the node deployment problem becomes

QMP : minimize
{pk}k∈Nb

J�
j=1

P(qj)

subject to pk ∈ Rd, k ∈ Nb (52)

where MP denotes the deployment problem for the agent

in multiple possible positions.

We continue to assume that anchors are deployed on the

boundary of a convex region and the position of anchor

k is parametrized by the angle from an interior point of

the convex region to anchor k, denoted by θk. In this way,

we can write pk = h(θk). Here we do not require the

RIIs between anchor k and {qj}J
j=1 to be a constant as

a function of θk.

For the case in which the agent can be in multiple

positions, Algorithm 3 can be modified to solve QMP and

the modified version is given in Algorithm 4. In line 3,

the goal is to minimize the average iSPEB Pa(Ra) in (51)

over θm. As Pa(Ra) in (51) is a summation of J terms,

the minimal θ∗
m does not admit a simple expression as
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ψ∗
m in Algorithm 3. To address this issue, we can consider

a uniform grid-based search method by selecting a finite

subset of angles within [ 0, 2π ) and minimizing θm over

this subset.

Algorithm 4: Relocate-MODIFY [108]

Input: VI = [ ϑi, ϑi ) and RII as a function of the angle

Output: The optimal angle vector

θ∗ = [θ∗
1 θ∗

2 . . . θ∗
Nb

]T

1: Randomly initialize θ = [θ1 θ2 . . . θNb ]T, m = 1;

2: while θ has not converged do

3: Find the angle θ∗
m that minimizes the average

iSPEB Pa(Ra) in (51) over θm while fixing θk,

k �= m;

4: θm ← θ∗
m;

5: m ←mod (m + 1, Nb);

6: end while

C. Cooperative Case

We next consider a special case of QC, where |S2| = 1

and f1(q) = δ(q − p1). This corresponds to the case

in which there exists only one target agent at position

p1 in the network. In this case, the performance metric

k∈S2

P
a
k(Ra

k) = P( p1) and the node deployment prob-

lem becomes

QC−SP : minimize
{pj}j∈S1

P( p1)

subject to pj ∈ Rd, j ∈ S1 (53)

where C−SP denotes the cooperative deployment problem

for the agent in a single position.

Similarly to QSP, the positions of other nodes can then

be parametrized by the relative distances and angles with

respect to agent 1, i.e., pj = p1 +d1j [ cos φ1j sin φ1j ]T. We

can rewrite QC−SP as follows:

QC−SP : minimize
{d1j ,φ1j}j∈S1

P(p1)

subject to p1 + d1j [ cos φ1j sin φ1j ]T ∈ Rd,

j ∈ S1. (54)

We now rewrite the performance metric iSPEB P(p1) =

tr
�
J−1

e (p1)
�

as a function of d1j and φ1j . Note that the

assisting agents need to first determine their positions

based on range measurements with neighboring anchors.

Hence, the EFIM Je( p) has the same expression as JL
e ( p)

in (30) of Section IV-C, i.e.,

Je( p) =
�

k∈Na

�
j∈Nb

λkjVkj +
�
j∈S1

λ1jV 1j .

Consequently, the EFIM Je(p1) can be written as

Je( p1) = J
A
e (p1) +

�
j∈S1

�λ(d1j , φ1j)Jr(φ1j)

where �λ(d1j , φ1j) =
λ1j

1 + λ1j∆1j

.

Recall that ∆1j is defined in (31), representing the position

uncertainty of agent j along the direction between agent 1

and agent j. The values of ∆1j and λ1j are assumed to be

known for the design of node deployment strategies in this

section.

Without loss of optimality, we can solve QC−SP in the

following two steps: first determine {d1j}j∈S1 for a given

set {φ1j}j∈S1 , and then determine {φ1j}j∈S1 . For the

first step, note that P( p1) depends on d1j only through�λ(d1j , φ1j) and that P(p1) is a decreasing function of�λ(d1j , φ1j). Consequently, for a given {φ1j}j∈S1 , the mini-

mization of P( p1) over {d1j}j∈S1 becomes

d∗
1j(φ1j) : = arg min

{d1j :pj∈Rd}

P(p1)

= arg max
{d1j :pj∈Rd}

�λ(d1j , φ1j).

Since �λ(d1j , φ1j) does not rely on d1k or φ1k (k �= j), the

optimization above has a single scalar variable and can

be solved efficiently using one-dimensional optimization

algorithms.

Next we consider the second step, i.e., determining φ∗
1j

for j ∈ S1. Directly optimizing QC−SP over φ1j is difficult

since P(p1) is not a convex function of {φ1j}j∈S1 . To

address this issue, we introduce a discretization method

that can transform QC−SP to a problem with a similar

structure to Pk in Section III. In particular, we narrow the

feasible set of angles to M possible values. Let φ and φ

denote the lower and upper constraint of angles based on

the feasible set Rd. Consider

Sφ = {θ1, θ2, . . . , θM} (55)

where θm = φ + m(φ − φ)/M , in which M ∈ N
∗. We

assume that the assisting nodes can be deployed only to

positions where the corresponding angles belong to Sφ.

This corresponds to replacing the constraint (54) with

φ1j ∈ Sφ in QC−SP. In this way, the original problem

QC−SP is relaxed to

Q
D
C−SP : minimize

x∈RM
tr

���
�

J
A
e (p1) +

M�
m=1

xm
�λmJr(θm)

�−1
)*+

subject to 1
T
x ≤ |S1|

xm ∈ N, m = 1, 2, . . . , M (56)

where �λm = �λ(dm, θm), in which dm can be determined

using the result from the first step, i.e.,

dm = arg max�
d:p1+d[ cos θm sin θm ]T∈Rd

��λ(d, θm). (57)

The solution of Q
D
C−SP can be used for deploying assist-

ing agents: for m = 1, 2, . . . , M , xm assisting nodes

are placed in the position that corresponds to θm

and dm. In fact, we can observe that by discretizing

the angles, the deployment problem is converted into

a node prioritization problem with a discrete-level of

resources.
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Algorithm 5: Node Deployment in Cooperative

Networks

Input: Rd, |S1|, function �λ(·, ·), and JA
e ( p1)

Output: d1k and φ1k, k ∈ S1

1: Determine Sφ in (55);

2: For θm ∈ Sφ, m = 1, 2, . . . , M , determine dm accord-

ing to (57);

3: Find the optimal solution x∗ of Q
R
C−SP;

4: Find a solution x of Q
D
C−SP as x = xI + y∗ based on

x∗;

5: For m = 1, 2, . . . , M , deploy xm nodes to the

position that corresponds to θm and dm, i.e., p1+

dm[ cos θm sin θm ]T.

The program Q
D
C−SP is an integer optimization problem,

which is generally difficult to solve. Here we relax Q
D
C−SP

by replacing (56) with x � 0 and let Q
R
C−SP denote this

relaxed problem. As the performance metric of Q
R
C−SP has

a similar structure with Pk, we can solve Q
R
C−SP using

the methods introduced in Section III. Let x∗ denote the

solution of the relaxed problem Q
R
C−SP. There are several

ways to use x∗ for generating a solution of Q
D
C−SP and we

describe here a simple one. Rewrite x∗ = xI + xF, where

xI and xF denote the vectors consisting of integer parts

and fractional parts of x∗, respectively. Consider a vector

y∗ ∈ R
M as follows:

y∗
k =

�
1, [xF]k is one of the m∗ largest elements in xF

0, otherwise

where m∗ = |S1| − 1
TxI. In this way, we find a feasible

solution of Q
D
C−SP as xI + y∗. Algorithm 5 gives details on

how to solve QC−SP.

VII. P E R F O R M A N C E E VA L U AT I O N

This section illustrates the performance of network opera-

tion strategies for different settings. Recall that for a given

instantiation of channel parameters and node positions,

the performance metric in Section II-C is considered to

be a deterministic quantity. This implies that the values

of the performance metric vary with these conditions. To

understand the behavior of the network operation strate-

gies, we will analyze the localization performance using

the cumulative distribution function (CDF) of a position

error metric over many instantiations of channels and

node positions. To this end, a synchronous 2-D network

is considered. In Sections VII-A and VII-B, 36 anchors are

deployed on a regular 6 × 6 lattice with 100-m separation

between two neighboring anchors. Therefore, the convex

hull of these 36 anchors is a square region of 500 m by

500 m. Agents are randomly deployed in this region. An

orthogonal frequency-division multiplexing (OFDM) radio

technology at the physical layer is considered for the range

measurements. The carrier frequency is fc = 2 GHz, the

bandwidth is 10 MHz, and the subcarrier spacing is 15 kHz.

The transmitting signal has a duration of 66.67 μs [158].

Fig. 9. CDF of the root iSPEB for different node prioritization

strategies. A non-cooperative network with perfectly known

parameters is considered.

The noise power spectral density is −169 dBm/Hz, or

equivalently, the noise figure is equal to 5 dB.

The RIIs between anchors and agents are determined as

follows. For anchor k, the LOS/non-LOS (NLOS) state is

generated for agents considering the Urban Micro scenario

[159], with spatial consistency of LOS/NLOS states among

agents accounted for according to the approach in [160].

Let NLOS,k denote the set of agents that have LOS states

with anchor k. For channels between anchor k and agents

in NLOS,k, delays and amplitudes are generated using

QuaDRiGa [161] by setting anchor k as the transmitter

and the agents in NLOS,k as the receivers with the scenario

given by the Urban Micro B1 model. The RIIs between

anchor k and agent j ∈ NLOS,k are then calculated based

on [72], whereas the RIIs between anchor k and agent j ∈
Na\NLOS,k are set to 0 [72]. Thus, for a particular anchor,

the spatial consistency of channel fading among the agents

are accounted for. The RIIs among agents are determined

in the same way by first generating LOS/NLOS states as

well as the delay and amplitudes, and then performing the

calculation of the RII according to [73].

In the following sections, the CDF of the position error

is evaluated as the empirical probability (i.e., the fractions

of instantiations over many channel conditions and node

positions) that the position error metric is less than or

equal to the abscissa. We consider the position error metric

to be either the root iSPEB, the root normalized nSPEB or

the worst-case root iSPEB depending on the scenario of

interest.8

8Since the iSPEB is a lower bound on the MSE achieved by any
localization approach, the CDF of the root iSPEB is a universal upper
bound on the CDF of the root MSE. Moreover, in scenarios where the
iSPEB provides a tight bound on the MSE of a specific localization
approach, the CDF of the root iSPEB serves as a tight approximation
for the CDF of the root MSE.
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Fig. 10. Outage of the root iSPEB for different node prioritization

strategies. A non-cooperative network with perfectly known

parameters is considered.

A. Node Prioritization

We first evaluate the performance gain of the node

prioritization strategies in a non-cooperative network with

perfectly known parameters such as RIIs and angles. We

deploy Na = 1 agent uniformly. The position error is

evaluated in situations where the agent has LOS states to

at least two anchors.9

In this section, consider that the NPV is based on power.

The total available power is 1 mW. We compare three node

prioritization strategies:

� uniform—the available power is equally divided

among all anchors that have LOS states to the

agent;

� selective—three anchors are selected based on the

quality of the inter-node measurement and the avail-

able transmitting power is equally divided among

these three anchors;

� optimal—the available power is allocated according

to the optimal NPV in Section III-C.

The uniform strategy serves as a baseline for evaluating the

performance of the node prioritization strategies.

Fig. 9 shows the performance of the optimal, the selec-

tive, and the uniform node prioritization strategies, where

the benefit of optimized (selective and optimal) node pri-

oritization strategies is evident. For example, the median

position error (50th percentile) for the optimal strategy is

0.082 m, whereas it is 0.106 and 0.115 m for the selective

and uniform strategies, respectively. This corresponds to

position error increases of 29% and 40%, respectively,

for the selective and uniform strategies over the optimal

strategy. Another metric of interest is the 95th percentile

mark, which is used to evaluate the essentially maximum

error of a deployed system [31]. From Fig. 9 we note

that in 95% of cases the optimal strategy has a position

error less than or equal to 0.644 m, whereas the selective

9These situations occur in more than 92% of the total instantiations.

Fig. 11. CDF of the worst-case root iSPEB for different node

prioritization strategies with ǫ = 0.1. In the SOCP strategy, the

parameter M � ��. A non-cooperative network with uncertainty in

parameters is considered.

and uniform strategies have errors of 0.971 and 0.834 m,

respectively. Here, the selective and uniform strategies

have position error increases of 51% and 30%, respectively,

over the optimal strategy.

Note that the performance of the network operation

strategies can also be presented in terms of the position

error outage.10 Fig. 10 shows the performance of the

node prioritization strategies. For a target position error

of 0.5 m, it can be seen that the uniform, selective, and

optimal strategies result in outages of 9.0%, 10.2%, and

6.6%, respectively. This corresponds to outage increases of

55% and 36%, respectively, for the selective and uniform

strategies over the optimal strategy. Since the CDF and the

outage can be equivalently evaluated, we will present the

performance of the network operation strategies only in

terms of the CDF for brevity in the rest of this section.

We next evaluate the performance gain of the node

prioritization strategies in a non-cooperative network

with uncertainty in parameters. In this scenario, we

again consider Na = 1 agent, with the total available

power equal to 1 mW. The position error is evaluated in

situations where the agent has LOS states to at least two

anchors. The true position of the agent can be anywhere

in the circle centered at its nominal position with radius

of 10 m. Therefore, the maximum uncertainty in φkj is

arcsin(10/dkj). We require that the distance between the

agent and any anchor to be at least 11 m so that the

anchors are not in the agent’s uncertainty region. Let

ǫ = 0.1 denote the normalized uncertainty set size. The

true value of ξkj is uniformly selected between (1 − ǫ)ξ̂kj

and (1 + ǫ)ξ̂kj , where ξ̂kj denotes the nominal value of

the ranging quality. In addition to the uniform strategy

10The outage is a well-known concept in wireless communications
[162]–[164]. In the context of location-aware networks, the outage is
similarly defined as the empirical probability that the position error
metric is greater than the abscissa.
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Fig. 12. CDF of the root normalized nSPEB (i.e.,
�
P� p�x�/N�) for

different node prioritization strategies. A cooperative network with

perfectly known parameters is considered.

serving as the baseline, we introduce three other node

prioritization strategies for comparison:

� SDP—the available transmitting power is allo-

cated according to the solution of the SDP-based

formulation in Section III-D;

� SOCP—the available transmitting power is allocated

according to the solution of the SOCP-based formula-

tion in Section III-D with M = 20 in P
M

R,k;

� non-robust—the available transmitting power is allo-

cated according to the NPV obtained in Section III-C

based on nominal parameters. See also Section II-B

for a description of the non-robust method.

Fig. 11 shows the performance of the non-robust, SOCP,

SDP, and uniform node prioritization strategies with ǫ =

0.1. Recall that the worst-case iSPEB given in (25) is the

maximum iSPEB over the uncertainty in φkj and ξkj . Here,

the benefit of the robust and optimized (SOCP and SDP)

node prioritization strategies is evident from the figure.

For example, the median position errors for the SOCP, non-

robust, and SDP strategies are 0.114, 0.126, and 0.131

m, respectively, whereas it is 0.167 m for the uniform

strategy. This corresponds to position error increases of

46%, 33%, and 27%, respectively, for the uniform strat-

egy over the SOCP, non-robust, and SDP strategies. At

the 95th percentile, the SOCP, uniform, and SDP strate-

gies have position errors of 1.861, 1.931, and 3.028 m,

respectively, whereas it is 6.036 m for the non-robust

strategy. This corresponds to position error increases of

99%, 213%, and 224%, respectively, for the non-robust

strategy over the SDP, uniform, and SOCP strategies. Thus,

in contrast to the median performance, the non-robust

strategy performs the worst among all the strategies at the

95th percentile.

We next evaluate the performance gain of the node

prioritization strategies in a cooperative network with

perfectly known parameters. We randomly deploy Na = 3

agents. The first agent is uniformly deployed in the square

region of 500 m by 500 m, whereas the second and third

agents are uniformly deployed in a circle centered at the

first agent with radius of 50 m. The position error is

evaluated in situations where each agent has LOS states

to at least two anchors. For each agent, the total available

power for ranging to the anchors is 0.5 mW, whereas the

total available power for ranging to the agents is 0.5 mW.

We compare three node prioritization strategies:

� uniform—the available transmitting power is equally

divided among all nodes (including anchors and other

agents) that have LOS states to the agent;

� centralized—the available transmitting power is allo-

cated according to the solution of the SDP-based

formulation in Section IV-B;

� distributed—the available transmitting power is allo-

cated according to the solution of the SOCP-based

formulation in Section IV-C.

The uniform strategy serves as a baseline for evaluating the

performance of the node prioritization strategies.

Fig. 12 shows the performance of the centralized, dis-

tributed, and uniform node prioritization strategies, where

the benefit of optimized (centralized and distributed)

node prioritization strategies is evident. For example, the

median errors for the centralized and distributed strategies

are 0.078 and 0.088 m, respectively, whereas it is 0.111 m

for the uniform strategy. This corresponds to position error

increases of 42% and 26% for the uniform strategy over

the centralized and distributed ones. In 95% of cases, the

centralized and distributed strategies have position errors

less than or equal to 0.366 and 0.407 m, respectively,

whereas the uniform strategy has an error of 0.476 m.

The uniform strategy has position error increases of 30%

and 17% over the centralized and distributed ones. Note

that the centralized and distributed strategies demonstrate

similar performance, and thus the proposed distributed

strategy achieves a nearoptimal performance.11

B. Node Activation

We next evaluate the performance gain of the node acti-

vation strategies in cooperative localization and navigation

networks. We randomly deploy a group of Na = 4 agents

in an area of 50 m by 50 m, and the group of agents moves

together along a circular trajectory centered at [250 m,

250 m] with radius 150 m. The total available power is set

to be Na mW at each instant. Moreover, in this section, we

set the standard deviation of the intra-node measurement

noise σm = 0.05 m and assume that the noise is inde-

pendent over different time slots for simplicity.12 We first

compare two node activation strategies, where the total

11Recall that the centralized strategy provides the optimal perfor-
mance as it is based on the SDP formulation.

12Note that the noise in the intra-node measurement is correlated over
time if accelerometer measurements are considered. For this scenario,
one can augment the state vector to include both the velocity and
acceleration [74] and the optimal node activation strategy can then
be developed based on the augmented state model. For simplicity, we
consider a model where the noise is independent over time.
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Fig. 13. CDF of the root iSPEB for different node activation

strategies. The number of inter-node measurements used are

N� � � and �. A cooperative network is considered.

power is equally divided over NL inter-node measurements

at each instant.

� Opportunistic activation—For each of the NL mea-

surements, the agent that can maximally reduce the

network localization error is activated and the acti-

vated agent chooses the best neighbor for making an

inter-node measurement. This process is repeated in

a sequential manner until NL measurement pairs are

determined.

� Random activation—For each of the NL measure-

ments, an agent is activated randomly and the

activated agent chooses a random neighbor that has

an LOS state for making an inter-node measurement.

This process is repeated in a sequential manner until

NL measurement pairs are determined.

The random strategy serves as a baseline for evaluating the

performance of the node activation strategies.

Fig. 13 shows the performance of the opportunistic

and random node activation strategies for different num-

bers of inter-node measurements. Note that the oppor-

tunistic node activation strategy outperforms the random

activation strategy, since the opportunistic node activa-

tion strategy always selects the most critical agents to

make inter-node measurements. Here, the median position

errors are 0.063 and 0.114 m for the opportunistic and

random activation strategies with four inter-node measure-

ments, respectively. This corresponds to a position error

increase of 81% for the random strategy over the oppor-

tunistic strategy. Likewise, with four inter-node measure-

ments, it is 0.083 and 0.166 m for the opportunistic and

random activation strategies, respectively, at the 95th per-

centile, which gives a 100% increase in the position error.

Furthermore, both strategies using four inter-node mea-

surements outperform the corresponding strategies using

one inter-node measurement as expected. Comparing the

opportunistic activation strategies with the random acti-

vation strategies, the former ones have steeper rates of

Fig. 14. CDF of the root iSPEB for different combinations of node

activation and node prioritization strategies. A cooperative network

is considered.

increase in the CDF corresponding to achieving lower

position errors for both one and four inter-node measure-

ments. This is because the opportunistic activation aims at

maximally reducing the nSPEB by selecting an appropriate

agent, thus preventing individual agents from accumulat-

ing large localization errors. These results show that the

optimized (opportunistic) node activation can significantly

reduce the localization error compared to random node

activation.

Next we consider a joint design of the node activation

combined with the node prioritization strategies developed

described in Sections III and IV. Note that in this case,

the number of inter-node measurements depends on the

outcome of the node prioritization strategy. The total avail-

able power is again set to be Na mW, and four different

combinations of node activation and node prioritization

strategies are considered as follows.

� Opportunistic activation + optimal prioritization

—The agent that can maximally reduce the net-

work localization error based on the optimal node

prioritization is activated, and the activated agent

uses the transmitting power according to the optimal

NPV for making inter-node measurements with its

neighbors.

� Opportunistic activation + uniform prioritization

—The agent that can maximally reduce the network

localization error based on the uniform prioritization

is activated, and the activated agent uses equal trans-

mitting power for making inter-node measurements

with its neighbors that have LOS states.

� Random activation + optimal prioritization—An

agent is activated randomly, and the activated agent

uses the transmitting power according to the optimal

NPV for making inter-node measurements with its

neighbors.

� Random activation + uniform prioritization—An

agent is activated randomly, and the activated agent
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Fig. 15. CDF of the root iSPEB for different node deployment

strategies. The number of anchors are N� � 	 and 
. A non-coo-

perative network is considered.

uses equal transmitting power for making inter-

node measurements with its neighbors that have LOS

states.

Fig. 14 shows the performance of different combinations

of node activation and node prioritization strategies. First,

similarly to the previous scenario, one can observe that the

opportunistic activation strategy outperforms the random

activation strategy. Second, under the same node activa-

tion strategy, the performance with optimal node prioriti-

zation is better than that with uniform prioritization. This

is because for any given activated agent, the power is more

efficiently used according to the optimal NPV. Therefore,

joint node activation and node prioritization can achieve a

twofold performance gain. As an example, take the median

position error of 0.147 m obtained by random activation +

uniform prioritization as a baseline. The median position

error is 0.067 m from opportunistic activation + optimal

prioritization, while it is 0.076 and 0.124 m for optimized

prioritization only and activation only, respectively. This

corresponds to position error increases of 119%, 93%,

and 19% for the baseline over the optimized strategies.

Likewise, in 95% of cases, the position error is less than

or equal to 0.092, 0.112, 0.174, and 0.258 m, respectively,

for the four combinations of strategies.

C. Node Deployment

We now evaluate the performance gain of the node

deployment strategies in a non-cooperative network.

Recall that in non-cooperative networks, only anchors are

deployed to improve the localization accuracy of agents.

As in Section VI-B, we consider a scenario in which there

is only one agent, and the RII νk is a piecewise constant

function of the angle ψk. Recall that [ 0, 2π ) is divided

into I intervals denoted by Vi ’s. We assume that Vi =

[ 2π(i − 1)/I, 2πi/I), i = 1, 2, . . . , I with I = 5 and that

in each Vi, the RII is generated independently for the

anchor-to-agent distance equal to 300 m and the total

transmitting power for each agent is equal to 1 mW. Only

the LOS states are accounted for. We compare two node

deployment strategies:

� random: anchors are deployed randomly where the

angle ψk is generated from a uniform distribution in

[0, 2π);

� Relocate: anchors are deployed based on Algorithm 3.

The random strategy serves as a baseline for

evaluating the performance of the node deployment

strategies.

Fig. 15 shows the performance of the Relocate and

random node deployment strategies for different numbers

of anchors, where the benefit of the optimized (Relocate)

node deployment strategy is evident. As an example for

Nb = 6 anchors, the median position error for the Relocate

strategy is 0.119 m, whereas it is 0.236 m for the random

strategy. This corresponds to a position error increase of

98% for the random strategy over the Relocate strategy. For

Nb = 3, the median position error for the Relocate strategy

is 0.174 m, whereas it is 0.453 m for the random strategy.

This corresponds to a position error increase of 160% for

the random strategy over the Relocate strategy. Regarding

the 95th percentile, for Nb = 6, it is 0.208 and 0.544 m

for the Relocate and random strategies, respectively. The

random strategy has a position error increase of 162% over

the Relocate one. At the 95th percentile for Nb = 3, it is

0.312 and 1.770 m for the Relocate and random strategies,

respectively. This corresponds to a position error increase

of 467% for the random strategy over the Relocate strategy.

Note that the number of anchors plays a different role

in the random and Relocate strategies. For the random

strategy, the median of the position error has an increase

of 92% for the case with Nb = 3 over the one with Nb = 6,

whereas the increase is only 46% for the Relocate strategy.

For the random strategy, the 95th percentile of the position

error has an increase of 225% for the case with Nb = 3

over the one with Nb = 6, whereas the increase is only

50% for the Relocate strategy. The number of anchors

affects the performance of the random strategy signifi-

cantly because more anchors provide not only resource

gain (the accuracy improvement due to more measure-

ments) but also diversity gain (the accuracy improvement

due to higher chances of forming a desirable geometry with

high channel quality). In contrast, the Relocate strategy

already accounts for the geometry and channel quality so

that the diversity gain is not remarkable, which explains

the decreased accuracy improvement due to having more

anchors.

We next evaluate the performance gain of node deploy-

ment in a cooperative network. Three anchors are placed

at the trisection points of the circle centered at the origin

with radius 400 m and one of the anchors is placed

at [400 m, 0 m]. The feasible region Rd is a circle

centered at [200 m, 0] with radius 200 m. Six assisting

agents are deployed in this region. The target agent is

deployed randomly in the region ([–200 m, 200 m] ×
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Fig. 16. CDF of the target agent’s root iSPEB for different node

deployment strategies. In the optimized strategy, the parameter

M � ��� and �	. A cooperative network is considered.

[–200 m, 200 m])∩(Rd)c. The total transmitting power for

each agent is 1 mW. The shadowing and multipath effects

are not considered in this case and only the LOS states

are accounted for. We compare three node deployment

strategies:

� random—the assisting agents are deployed uniformly

in the feasible region Rd;

� greedy—the assisting nodes are deployed sequentially

at the positions in the feasible region Rd for minimiz-

ing the iSPEB;

� optimized—the nodes are deployed in the feasible

region based on Algorithm 5, with different values of

M as described in (55).

The random strategy serves as a baseline for evaluating the

performance of the node deployment strategies.

Fig. 16 shows the performance of the optimized (with

M = 128 and M = 16), greedy, and random node deploy-

ment strategies, where the benefit of the optimized and

greedy node deployment strategies is evident. For example,

the median position error for the optimized strategy (both

M = 16 and M = 128) is 0.105 m, whereas it is

0.125 and 0.207 m for the greedy and random strategies,

respectively. This corresponds to position error increases of

97% and 66%, respectively, for the random strategy over

the optimized and greedy ones. At the 95th percentile,

the optimized strategy has a position error of 0.145 m,

whereas the greedy and random strategies have errors of

0.153 and 0.310 m, respectively. Here, the random strategy

has position error increases of 114% and 103% over the

optimized and greedy ones, respectively.

Note that the optimized strategy (M = 16 and 128)

outperforms the greedy one (16% decrease of the median

position error and 5% decrease of the 95th percentile).

Moreover, the complexity of the greedy strategy increases

linearly with the number of assisting nodes, whereas the

optimized strategy depends only on M . In scenarios with

large numbers of assisting nodes, the optimized strategy

has an advantage over the greedy one in terms of compu-

tational complexity. Moreover, with the optimized strategy,

we observe that the curve corresponding to M = 16

almost overlaps with that corresponding to M = 128.

This result provides insight into the implementation of the

optimized strategy: using a small M results in a strategy

with much lower computational complexity yet negligible

performance loss compared to one using a larger M .

VIII. C O N C L U S I O N

Network operation strategies play a critical role in NLN

since they not only affect the network lifetime, but also

determine the localization accuracy. In this paper, we have

presented a comprehensive tutorial on network operation

strategies, in particular node prioritization, node activa-

tion, and node deployment. We have studied the structure

of the localization performance metric and exploited the

insights gained to derive different optimization methods.

We have discussed some important aspects resulting from

the analysis, including such concepts as cooperation tech-

niques, robustness guarantees, and distributed designs,

and we have characterized the performance gain obtained

from the network operation.

The benefit of adopting efficient network operation

strategies compared to the baseline strategies is evident

from the numerical examples. In particular, we have shown

the performance improvement for each of the following

operation strategies.

� Node prioritization—The penalty for not employing

optimization methodologies can be as large as 46%

in terms of the median position error metric. In

particular, the median position error increase of the

uniform strategy is 40% over the optimal strategy in

non-cooperative networks; it is 46% over the SOCP

strategy with uncertainty in parameters; and it is

26% and 42% over the distributed and centralized

strategies, respectively, in cooperative networks.

� Node activation—Random activation has been shown

to have a median position error increase of 81%

compared to the opportunistic strategy with four

inter-node measurements. The joint design of the

node activation combined with the node prioritization

strategies adds another layer of optimization and

gives further improvement in localization accuracy.

� Node deployment—In non-cooperative networks, the

random strategy has been shown to have a median

position error of up to 160% more than the optimized

Relocate strategy, while in cooperative networks, the

random strategy has a median position error increase

of more than 66% over the optimized and greedy

strategies. The optimized strategy has been shown to

have a better performance compared to the greedy

one with the benefit of being computationally more

efficient in scenarios with many assisting agents.

Note that practical imperfections in hardware implementa-

tions would degrade the localization accuracy with respect
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to that presented in this paper. However, the degradation

due to these imperfections would be similar for all the net-

work operation strategies presented, and thus the relative

accuracy improvement reported in this paper is expected to

still hold. While the performance characterization of vari-

ous NLN strategies has been exhaustively presented, there

are still open challenges to be addressed. For example,

the latency of position information is critical, especially in

highly dynamic environments. However, fewer analytical

methodologies have emerged to evaluate and optimize the

latency in localization and navigation networks. Moreover,

location secrecy and privacy are gradually becoming more

of a concern for location-based services, but techniques

that achieve both high accuracy and high secrecy in

NLN through network operation strategies are yet to be

developed. �
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