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Abstract— Non-orthogonal multiple access (NOMA) with suc-
cessive interference cancellation (SIC) is a promising technique
for next generation wireless communications. Using NOMA, more
than one user can access the same frequency-time resource
simultaneously and multi-user signals can be separated success-
fully using SIC. In this paper, resource allocation algorithms
for subchannel assignment and power allocation for a downlink
NOMA network are investigated. Different from the existing
works, here, energy efficient dynamic power allocation in NOMA
networks is investigated. This problem is explored using the
Lyapunov optimization method by considering the constraints
on minimum user quality of service and the maximum transmit
power limit. Based on the framework of Lyapunov optimization,
the problem of energy efficient optimization can be broken
down into three subproblems, two of which are linear and the
rest can be solved by introducing a Lagrangian function. The
mathematical analysis and simulation results confirm that the
proposed scheme can achieve a significant utility performance
gain and the energy efficiency and delay tradeoff is derived
as [O(1/V ), O(V )] with V as a control parameter under
maintaining the queue stability.
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I. INTRODUCTION

I
N THE past decade, orthogonal frequency division mul-

tiple access (OFDMA) has been widely studied and has

been adopted in 4th generation (4G) mobile communication

systems [1], [2]. However, orthogonal channel access in

OFDMA is becoming a limiting factor of spectral efficiency

since each subchannel can only be used by at most one

user in each time slot. With the explosive growth of smart

mobile devices and the increasing demands for higher spectral

efficiency, non-orthogonal multiple access (NOMA) has been

proposed to mitigate the consequent heavy loading at the

base station (BS) [3]–[5]. NOMA is a promising technique to

realize the massive connectivity in 5th generation (5G) mobile

networks because NOMA can achieve significant improvement

in spectral efficiency with a lower receiver complexity by

allowing multiple users to share the same subchannel in the

power domain [6]–[8].

The use of NOMA will result in inter-user interference since

multiple users will share the same resources [9]. Successive

interference cancellation (SIC) can be applied at the end-user

receivers to mitigate this interference [10]. NOMA can achieve

a capacity region that significantly outperforms orthogonal

multiple access schemes by power domain multiplexing at

the transmitter and SIC at the receivers [11]. The outage

performance of NOMA was evaluated in [12], while in [13],

the authors investigated the system sum-rate of multiuser

NOMA single-carrier systems in addition to proposing a

suboptimal power allocation scheme and presenting a precoder

design. Moreover, the authors addressed fairness consider-

ations and posed a max-min fairness problem for NOMA.

In [15], an optimal power allocation strategy for the energy-

efficiency maximization of NOMA in single-carrier systems

was investigated. Fang et al. [16] investigated subchannel

assignment and power allocation using the difference of con-

vex programming method. A suboptimal algorithm was pro-

posed to solve an uplink scheduling problem with fixed trans-

mission power for uplink NOMA in [17] and a greedy-based

algorithm was proposed to improve the throughput in uplink

NOMA in [18]. In [19], a new spectrum and energy efficient

millimeter-wave transmission scheme which integrates the

concept of NOMA with beamspace multiple-input multiple-

output (MIMO) was proposed to break the fundamental limit.

In [20], a hierarchical power control solution to improve the

spectral and energy efficiency in NOMA-enabled vehicular
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small cell networks was proposed by performing the joint

optimization of cell association and power control. In [21],

a novel resource allocation design was investigated for NOMA

enhanced heterogeneous networks. However, the problem of

energy efficient subchannel assignment and power allocation

in multiple small cells with NOMA under the constraints of

minimum QoS requirements and cross interference has not

been well studied.

In contrast to the typically full buffer assumptions and

snapshot-based models, delay is a key metric to measure the

QoS. The congestion performance for delay-tolerant services

and the stochastic and time-varying features of traffic arrivals

should be considered in realistic wireless networks. By uti-

lizing Lyapunov optimization, which is a useful method for

handling queue-aware radio resource allocation problems, [22]

and [23] considered the impacts of stochastic traffic arrivals

and time-varying channel conditions on the system perfor-

mance to stabilize the queues of networks when optimizing

performance metrics. Li et al. [22] applied the framework of

Lyapunov optimization to balance the average throughput and

average delay in energy efficient OFDMA heterogeneous cloud

networks. Yu et al. [23] adopted the Lyapunov optimization

framework in a two-tier OFDMA heterogeneous network

under the hybrid access mode to solve the dynamic optimiza-

tion problem of resource allocation. In [24], an energy efficient

resource allocation algorithm was proposed to provide fairness

among different small cell base stations (SCBSs) based on

the Nash bargaining solution. However, most of the existing

works have considered resource allocation using Lyapunov

optimization only in OFDMA systems. And to the best of

the authors’ knowledge, energy efficient resource allocation

for time-varying NOMA networks has not been well studied

in the previous works.

In this paper, we investigate the subchannel and power

allocation respectively in a multiple downlink NOMA network

by considering energy efficiency, QoS requirements, power

limits, and queue stability. Reference [25] is a conference

version of this paper. Different from the conference version,

this paper extends [25] to multiple base station scenarios with

the detailed proof for the theorem and resource optimization

algorithm. We also consider the complexity analysis for the

proposed algorithms and more simulation results are provided

to verify the proposed methods in this paper compared to the

conference version. The main contributions of this paper are

summarized as follows:

• Development of a novel energy efficient NOMA network

optimization framework: This framework jointly consid-

ers energy efficiency maximization, QoS requirements,

queue stability and power limits in the optimization

of NOMA. Moreover, the queue stability, utility and

average queue length performance are studied through

both analytical and simulation results.

• Design of a subchannel assignment algorithm based on

matching theory: We model the subchannel-user matching

problem as a two-sided matching process and propose a

subchannel assignment algorithm based on matching.

• Design of a power allocation algorithm with multiple

constraints: We formulate a power allocation problem for

Fig. 1. The architecture of the NOMA network.

NOMA as a mixed integer programming problem. A min-

imum QoS requirement is employed to provide reliable

transmission for users. The energy efficiency optimization

problem is decomposed into three subproblems with time-

averaged variables and instantaneous variables. We solve

the three subproblems and propose a power allocation

algorithm using Lyapunov optimization, where the con-

vergence of the proposed algorithm is also demonstrated

via simulations.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Basic Notation

As shown in Fig. 1, we consider a time-varying downlink

multiple cell NOMA network in which N SCBSs exist and

each SCBS transmits the signals to each set of mobile users

denoted by U = {1, 2, . . . , U}. The available bandwidth

is divided by the BS into a set of subchannels which is

denoted by N = {1, 2, . . . , N}. The NOMA system is

assumed to operate in a slotted time mode with unit time slots

t ∈ {0, 1, 2 . . . .}, where the time slot t refers to the time

interval [t, t+1). We assume that the BSs have full knowledge

of the channel state information and denote by gk,u,n(t)
the channel gain between the kth SCBS and user u on

subchannel n at time slot t. We set ak,u,n(t) = 1 when the

subchannel n of SCBS k is allocated to user u at time slot t;
otherwise, ak,u,n(t) = 0. [x]+ denotes the larger of x and

zero, xT denotes the transpose of x, and E {·} denotes the

expectation.

B. System Model

In NOMA, one user can receive signals from the BS through

multiple subchannels and one subchannel can be allocated

to multiple users at the same time slot t. Since the user j
on subchannel n causes interference to the other users on

the same subchannel, each user j adopts SIC after receiving

the superposed signals to demodulate the target message.

As shown in [26], without constraints on the specific power

split, one user’s data can be successfully decoded by another

user whose channel gain is better via superposition coding with

SIC. Since user u with higher channel gain can only decode

the signals of user i with worse channel gain, the interference

signals caused by user j whose channel gain is better than

user u cannot be decoded and will be treated as noise. Thus,
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after SIC, the interference for user u caused by other users of

same SCBS k on the same subchannel n is given by

Ik,u,n(t) =
∑

i∈{Sk,n|gk,i,n>gk,u,n}
ak,i,n(t)pk,i,n(t)gk,u,n(t)

(1)

where Sk,n is the set of users of SCBS k on subchannel

n. Modeling this residual interference as additional AWGN,

we can use the Shannon’s capacity formula to write the

capacity of user u ∈ U = {1, 2, . . . , U} of SCBS k on the

nth subchannel at time slot t as

Rk,u,n(t)

=
B

N
ak,u,n(t)log2

(
1 +

pk,u,n(t)gk,u,n(t)

σ2
k,n + Ik,u,n(t) + Ĩk,u,n(t)

)

∀k ∈ K, u ∈ U, n ∈ N, (2)

where B and σn
2 are the bandwidth of the system and the

noise variance respectively. Ĩk,u,n(t) is the total of the co-tier

interference caused by other SCBSs to SCBS k and cross-

tier interference caused by the macro BS to SCBS k which is

given by

Ĩk,u,n(t) =

K∑

l �=k

U∑

u=1

al,u,npl,u,ngl,k,u,n +

U∑

u=1

pM
u,ngM

k,u,n

∀k ∈ K , u ∈ U, n ∈ N, (3)

where gl,k,u,n is the channel gain on subchannel n of user u in

SCBS l to SCBS k. pM
u,n and gM

k,u,n are the power allocation

and channel gain on subchannel n of user u in the macro BS

to SCBS k respectively. The capacity of user u of SCBS k at

time slot t can be written as

Rk,u(t) =
N∑

n=1

Rk,u,n(t), ∀k ∈ K, u ∈ U . (4)

In order to specify the QoS of users, we let R̂k,u be the QoS

requirement in terms of the minimum capacity of user u which

is thus given as

C1 : Rk,u(t) ≥ R̂k,u, ∀k ∈ K, u ∈ U . (5)

When the queue stability of the SCBS is guaranteed, we can

focus only on the performance optimization with queue sta-

bility. This is because the SCBS can be assumed to be fixed

over a longer duration than the scheduling slot of subchannels.

In this NOMA network, the separate buffering queue Qk,u(t)
is maintained for each user U of SCBS k. The random traffic

arrivals for Qk,u(t) are denoted by Ak,u(t) whose peak arrival

is Amax
k,u at time slot t. Ak,u(t) is independent and identically

distributed (i.i.d.) over slots. The exogenous arrival rates may

be outside of the network capacity region in practice for the

reasons that the statistic of Ak,u(t) is usually unknown to

SCBSs and the achievable capacity region is usually difficult to

estimate. Then, a transport flow control mechanism is needed

to keep the traffic queues stabilized. Denote by rk,u(t) the

admitted data rate out of the potentially substantial traffic

arrivals for user u of SCBS k which obviously satisfies

0 ≤ rk,u(t) ≤ Ak,u(t). Therefore, we denote the traffic

buffering queues for user u as

Qk,u(t + 1)=[Qk,u(t)−Rk,u(t)]
+

+rk,u(t), ∀k∈K, u∈U .

(6)

The time averaged throughput in terms of the data arrivals for

users in SCBS k is defined as r̄k,u = lim
T→∞

1
T

T∑
t=0

rk,u(t).

Denote by pk,u(t) and ptot(t) the instantaneous power

of user u of SCBS k at time slot t and the total power

consumption of all the SCBSs at time slot t respectively, which

can be written as

pk,u(t) =
N∑

n=1

pk,u,n(t) + pC
k (7)

and

ptot(t) =
K∑

k=1

U∑

u=1

pk,u(t) (8)

where pC
k accounts for the circuit power of SCBS k. The

average and instantaneous power constraints of user u of SCBS

k are denoted by Pk,u and P̂k,u, which can be written as

p̄k,u = lim
t→∞

1

t

t∑

τ=0

pk,u(τ) ≤ Pk,u, ∀k ∈ K, u ∈ U (9)

pk,u(t) ≤ P̂k,u, ∀k ∈ K, u ∈ U . (10)

We define the function gR(·) as the revenue obtained by the

throughput which is a non-decreasing concave utility function.

Let ηEE denote the energy efficiency (EE) which is defined

as the ratio of the profit brought by the long-term utility of

average throughput to the corresponding long-term total power

consumption. It can be written as

ηEE =

K∑
k=1

U∑
u=1

gR (r̄k,u)

p̄tot

, (11)

where p̄tot = lim
T→∞

1
T

T∑
t=0

ptot(t).

C. Optimization Problem Formulation

In this subsection, when considering all constraints, the util-

ity function is expressed as

max
P

ηEE =

K∑
k=1

U∑
u=1

gR (r̄k,u)

p̄tot

s.t. C1 C2 : p̄k,u = lim
t→∞

1

t

t∑

τ=0

pk,u(τ) ≤ Pk,u,

∀k ∈ K, u ∈ U

C3 : pk,u(t) ≤ P̂k,u, ∀k ∈ K, u ∈ U

C4 : R̃k,u = lim
T→∞

1

T

T∑

t=0

Rk,u(t) ≥ r̄k,u,

∀k ∈ K, u ∈ U . (12)
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where P denotes the power allocation policy and the constraint

C1 ensures the QoS of users; C2 is a bound on the limit of

the maximum average transmit power of user u of SCBS k;

C3 is the maximum instantaneous transmit power of user u
of SCBS k; and C4 ensures the stability of user u in SCBS

k. We define the optimal EE ηopt
EE as

ηopt
EE =

K∑
k=1

U∑
u=1

gR (r̄k,u(P∗))

p̄tot(P∗)
= max

P

K∑
k=1

U∑
u=1

gR (r̄k,u(P))

p̄tot(P)
(13)

where P∗ denotes the optimal power allocation policy that

yields ηopt
EE . We can classify the utility function in (12) as

a nonlinear fractional program. We introduce Theorem 1 as

follows.

Theorem 1: The optimal EE ηopt
EE can be reached if and

only if

max
P

K∑

k=1

U∑

u=1

gR (r̄k,u(P)) − ηopt
EE p̄tot(P)

=

K∑

k=1

U∑

u=1

gR (r̄k,u(P∗)) − ηopt
EE p̄tot(P

∗) = 0

for

K∑

k=1

U∑

u=1

gR (r̄k,u(P)) ≥ 0, p̄tot(P) ≥ 0. (14)

Proof: Please refer to Appendix A.

According to Theorem 1, an equivalent objective function

in subtractive form exists for the (non-convex) optimization

problem (12) which can be classified as a nonlinear fractional

program. Then, the formulation (12) can be rewritten in the

more tractable form

max
P

K∑

k=1

U∑

u=1

gR (r̄k,u(P)) − ηEE p̄tot(P)

s.t. C1, C2, C3, C4. (15)

III. ENERGY EFFICIENT OPTIMIZATION USING

LYAPUNOV OPTIMIZATION

In this section, subchannel assignment is investigated in the

NOMA network and the optimization problem in (15) is solved

based on Lyapunov optimization.

A. Subchannel Matching

We assume that all the users of BS can transmit on the

subchannel n arbitrarily at time slot t in a NOMA system.

Considering the complexity of decoding and the fairness of

users, each subchannel can only be allocated to at most Dn

users and each user can only occupy at most Du subchannels

at the same time. We assume that N ∗ Dn ≥ U ∗ Du. The

dynamic matching between the users and the subchannels of

SCBS k can be considered as a many-many matching process

between the set of U users and the set of N subchannels. User

u is matched with subchannel n at time slot t if ak,u,n(t) = 1.

Based on the channel state information, we assume user u
prefers channel n1 over n2 if and only if gk,u,n1

> gk,u,n2
.

Algorithm 1 Suboptimal Matching Algorithm for Subchannel

Allocation
1: Initialize the matched lists Sk,n and Sk,u to denote

the number of users matched with subchannel n (∀n ∈
{1, 2, . . . , N}) and the number of subchannels matched

with user u (∀n ∈ {1, 2, . . . , U}) in SCBS k, respectively;

2: Initialize the preference lists Pref_U(k, u) for all the users

of SCBS k according to channel state information;

3: Initialize the set of not fully matched users SU_F (k, u) to

denote users of SCBS k who have not been matched with

Du subchannels;

4: while SU_F (k, u) �= φ do

5: for u = 1 to U do

6: if Sk,u < Du then

7: User u of SCBS k sends a matching request

to its most preferred subchannel n̂ according to

Pref_U(k, u);
8: if Sk,�n < Dk,�n then

9: Set ak,u,�n = 1, Sk,u = Sk,u +1 and Sk,�n = Sk,�n +
1;

10: else if Sk,�n = Dk,�n then

11: Find the minimum channel gain of users gk,�u,�n on

channel n̂ in SCBS k and compare it with gk,u,�n;

12: if gk,�u,�n < gk,u,�n then

13: Set ak,u,�n = 1, ak,�u,�n = 0, Sk,u = Sk,u +1, and

Sk,�u = Sk,�u − 1;

14: else

15: Remove subchannel n̂ from Pref_U(k, u) and

find the next n̂ of user u in SCBS k according to

Pref_U(k, u).

16: end if

17: end if

18: end if

19: end for

20: end while

Then, the preference lists of the users of SCBS k can be

written as

Pref_(K, U)

= [Pref_U(1), . . . , P ref_U(u), . . . P ref_U(U)]
T

(16)

where Pref_(K, U)(u) is the preference list of user u of

SCBS k which is in the descending order of channel gains

of subchannels. To reduce the complexity, we propose a

suboptimal matching algorithm for subchannel allocation as

Algorithm 1. For each user u of SCBS k, the matching

request is sent to its most preferred subchannel according to its

preference list. Then the preferred subchannel decides whether

to accept the user or not according to the users’s channel

gain. For each subchannel n, there are at most Dn accepted

users who have higher channel gains than the rejected users.

A rejected user on subchannel n will remove the subchannel

n from its preference list and its most preferred subchannel

is changed. The matching request is send again until all the

users of each SCBS have matched Du subchannels and the

matching is achieved.
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B. The Queues of Lyapunov Optimization

Because gR(r̄k,u) is related to the time averaged through-

put, we define auxiliary variables γk,u for the traffic arrival

of user u in SCBS k which satisfies γ̄k,u ≤ r̄k,u and

0 ≤ γk,u ≤ Amax
k,u . Therefore, the optimization problem in (15)

can be rewritten as

max
P

∑

k∈K

∑

u∈U

gR(γk,u) − ηEEptot

s.t. C1, C2, C3, C4

C5 : γ̄k,u ≤ r̄k,u, 0 ≤ γk,u ≤ Amax
k,u (17)

where γ̄k,u = lim
T→∞

1
T

T∑
t=0

γk,u(t) and gR(γk,u) − ηEEptot =

lim
T→∞

1
T

T∑
t=0

(gR(γk,u(t)) − ηEEptot). The equivalent of prob-

lems (15) and (17) is proved in Appendix B. To satisfy the

averaged throughput constraint in C5, we denote by Hk,u(t)
the virtual queue for user u in SCBS k at time slot t. We get

Hk,u(t + 1) = [Hk,u(t) − rk,u(t)]+

+ γk,u(t), ∀k ∈ K, u ∈ U . (18)

Similarly, in order to satisfy the constraint C2, virtual power

queues for the user u in SCBS k are defined. We denote

Zk,u(t) as the queue arrival with the transmit power pk,u(t),
and get

Zk,u(t + 1) = [Zk,u(t)−Pk,u]
+

+pk,u(t), ∀k ∈ K, u ∈ U .

(19)

C. The Formulation of Lyapunov Optimization

Denote by Φ(t) = [Q(t), H(t), Z(t)] the matrix of all the

queues. We define the Lyapunov function as a scalar metric

of queue congestion:

L (Φ (t)) =
1

2

{
K∑

k=1

U∑

u=1

(
Qk,u(t)2+Hk,u(t)2+Zk,u(t)2

)}
.

(20)

We introduce a Lyapunov drift in this subsection for pushing

the Lyapunov function to a lower congestion state and keep

both the actual and virtual queues stable:

∆(Φ(t)) = E {L(Φ(t + 1)) − L(Φ(t))} . (21)

According to Lyapunov optimization, by subtracting

V E

{∑
u∈U

gR(γk,u) − ηEEptot

}
from both sides of (21),

we get

∆ (Φ (t)) − V E

{
K∑

k=1

U∑

u=1

gR (γk,u) − ηEEptot

}

≤ C +

K∑

k=1

U∑

u=1

E {Hk,u(t)γk,u − V gR (γk,u)}

+ V E

(
ηEE

{
K∑

k=1

{
U∑

u=1

pk,u(t) + pC
k

}})

−
K∑

k=1

U∑

u=1

{Hk,u(t) − Qk,u(t)}E {rk,u(t)}

−
K∑

k=1

U∑

u=1

Qk,u(t)E {Rk,u(t)}

−
K∑

k=1

U∑

u=1

Zk,u(t)E {Pk,u(t) − pk,u(t)} (22)

where V is an arbitrarily positive control parameter which

represents the emphasis on utility maximization compared to

queue stability and C is a finite constant that satisfies

C ≥
1

2
E

{
K∑

k=1

U∑

u=1

(
rk,u(t)

2
+ Rk,u(t)

2
)}

+
1

2
E

{
K∑

k=1

U∑

u=1

[
(rk,u(t) − γk,u(t))2

+ (Pk,u(t) − pk,u(t))2
]}

. (23)

1) The Solution of Virtual Variables: The optimal choice of

γu to minimize (22) can be made by solving

maxV gR(γk,u) − Hk,u(t)γk,u

s.t. 0 ≤ γk,u ≤ Amax
k,u (24)

and the solution is

γk,u(t) = min

{
V

Hk,u(t)
, Amax

k,u

}
. (25)

2) The Solution of Actual Traffic Arrival: In order to min-

imize (22), the optimal actual traffic arrival can be achieved

by maximizing the expression as follows:

max {Hk,u(t) − Qk,u(t)}E {rk,u(t)}

s.t.0 ≤ rk,u(t) ≤ Ak,u(t). (26)

We get the optimal solution as

rk,u(t) =

{
Ak,u(t), if Hk,u(t) − Qk,u(t) ≻ 0

0, else.
(27)

3) Power Allocations: In order to minimize (22), we first

obtain the optimal solution of the virtual variables and the

actual traffic arrival, then we can minimize the remaining part
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min V E

(
ηEE

{
K∑

k=1

U∑

u=1

pk,u(t)

})
−

K∑

k=1

{
U∑

u=1

Qk,u(t)E {Rk,u(t)} +
U∑

u=1

Zk,u(t)pk,u(t)

}

= V E

(
ηEE

{
K∑

k=1

U∑

u=1

N∑

n=1

ωk,u,n(t)

})
+

K∑

k=1

U∑

u=1

Zk,u(t)

{
N∑

n=1

ωk,u,n(t)

}

−
K∑

k=1

U∑

u=1

Qk,u(t)E

⎧
⎨

⎩
B

N

N∑

n=1

ak,u,n(t)log2

⎛

⎝1 +
ωk,u,n(t)gk,u,n(t)

ak,u,n(t)
(
σ2

k,n + Ik,u,n(t) + Ĩk,u,n(t)
)

⎞

⎠

⎫
⎬

⎭ (30)

F (λ, β) = min L(λ, β) = V E

(
ηEE

{
K∑

k=1

U∑

u=1

N∑

n=1

ωk,u,n(t)

})
+

K∑

k=1

U∑

u=1

Zk,u(t)

{
N∑

n=1

ωk,u,n(t)

}

−
K∑

k=1

U∑

u=1

Qk,u(t)E

⎧
⎨

⎩

N∑

n=1

B

N
ak,u,n(t)log2

⎛

⎝1 +
ωk,u,n(t)gk,u,n(t)

ak,u,n(t)
(
σ2

k,n + Ik,u,n(t) + Ĩk,u,n(t)
)

⎞

⎠

⎫
⎬

⎭

+

K∑

k=1

U∑

u=1

λk,u(t)

{
N∑

n=1

ωk,u,n(t) − P̂k,u

}

+

K∑

k=1

U∑

u=1

βk,u(t)

⎧
⎨

⎩R̂k,u −
N∑

n=1

B

N
ak,u,n(t)log2

⎛

⎝1 +
ωk,u,n(t)gk,u,n(t)

ak,u,n(t)
(
σ2

k,n + Ik,u,n(t) + Ĩk,u,n(t)
)

⎞

⎠

⎫
⎬

⎭ (31)

of (22) and denote it as

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

V E

(
ηEE

{
K∑

k=1

{
U∑

u=1
pk,u(t) + pC

k

}})

+
K∑

k=1

U∑
u=1

Zk,u(t)pk,u(t)

−
K∑

k=1

U∑
u=1

Qk,u(t)E {Rk,u(t)}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

= V E

(
ηEE

{
K∑

k=1

{
U∑

u=1

N∑

n=1

ak,u,n(t)pk,u,n(t)

}
+ pC

k

})

+
K∑

k=1

U∑

u=1

Zk,u(t)

{
N∑

n=1

ak,u,n(t)pk,u,n(t)

}

−
K∑

k=1

U∑

u=1

Qk,u(t)E

{
N∑

n=1

Rk,u,n(t)

}
. (28)

Let ωk,u,n(t) = ak,u,n(t)pk,u,n(t), ∀k ∈ K, u ∈ U , n ∈ N ;

then we can get

Rk,u,n(t)

=
B

N
ak,u,n(t)log2

×

⎛

⎝1 +
ωk,u,n(t)gk,u,n(t)

ak,u,n(t)
(
σ2

k,n + Ik,u,n(t) + Ĩk,u,n(t)
)

⎞

⎠.

(29)

We can rewrite (28) as (30), shown at the top of this page.

Since (30) is convex, to satisfy the series of constraints,

the Lagrangian of the problem (30) can be expressed by (31),

shown at the top of this page, where λ and β are the Lagrange

multiplier vectors for the constraints in (17). Taking the first

order derivation of F (λ, β) with respect to ωk,u,n(t), we can

get the optimal power allocation as follows:

pk,u,n(t) =
ωk,u,n(t)

ak,u,n(t)

=
B
N

(Qk,u(t) + βk,u(t))

ln 2(V ηEE + Zk,u(t) + λk,u(t))

−
σ2

k,n + Ik,u,n(t) + Ĩk,u,n(t)

gk,u,n(t)
. (32)

Based on the subgradient method [28], the master dual

problem in (32) can be solved by

λl+1
k,u =

[
λl

k,u−εl
1

(
P̂k,u−

N∑

n=1

ωk,u,n(t)

)]+
, ∀k ∈ K, u∈U ;

βl+1
k,u =

[
βl

k,u − εl
2

( N∑

n=1

Rk,u,n−Rk,u

)]+
, ∀k ∈ K, u ∈ U.

(33)

After the time interval T , we get the average queue length Q,

total average capacity Rave, average power consumption P ave

and the average energy efficient EE ηave
EE as

Q̄ =
1

T

T∑

t=1

K∑

k=1

U∑

u=1

Qk,u(t) (34)

Rave =
1

T

T∑

t=1

Utot(t) (35)

P̄ =
1

T

T∑

t=1

K∑

k=1

U∑

u=1

pk,u(t) (36)
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ηave
EE =

1

T

T∑

t=1

ηEE . (37)

The above proposed approach based on Lyapunov optimization

for solving the EE optimization problem in (19) can be

summarized in Algorithm 2.

Algorithm 2 Lyapunov Optimization Based Resource Alloca-

tion Algorithm

Initialize the ak,u,n(t) using suboptimal Algorithm 1;

2: Initialize pk,u,n(t) using equal power allocation;

Initialize the value of Amax
k,u and Qk,u(t);

4: For each time slot, calculate the auxiliary variables γk,u(t)
for each time slot and admitted traffic rk,u(t) by solving

(25) and (27) respectively;

repeat

6: Obtain the optimal allocation of power in the current time

slot according to (32);

Update the Lagrange multipliers λ and β by solving (33);

8: Solve (12) using the Dinkelbach method in [1] to get the

optimal value of ηEE in an iteration way;

until Convergence or certain stopping criteria is met

10: Calculate the traffic queue Qk,u(t) and the virtual queues

of Hk,u(t) and Zk,u(t) of next time slot by solving (6),

(18), (19) respectively.

D. Complexity Analysis

The complexity of the proposed algorithms is analyzed in

this subsection. The worst-case complexity of proposed subop-

timal Algorithm 1 is O(KUN+1/2K⌊U/Dn⌋
2
) in which the

finding of preference lists is O(KUN). The optimal algorithm

of subchannel matching can only be obtained by searching

over all possible combinations of users whose computational

complexity can be approximated as O(K [U !]Du

Dn
N ). We see from

the above analysis that the proposed suboptimal subchannel

matching Algorithm 1 has a much lower polynomial com-

plexity than exhaustive search. In Algorithm 2, the calculation

of (32) for each user in each SCBS on each subchannel entails

KUN operations. Thus the complexity of Algorithm 2 is

O(TLKUN) where L is the number of iterations in each

time slot. As the complexity of Algorithm 2 increases with

the number of users and the convergence of EE is influenced

by the control parameter V , Algorithm 2 may be practical for

a middle-scale realtime network and the value of V should be

well chosen. Furthermore, cellular users are typically distrib-

uted in clusters. Therefore, the cellular users in a cell can be

divided into several clusters, and the proposed algorithm can

be used in each cluster. Subchannels are not shared between

different clusters. Since the number of users in each cluster

is small, the complexity of the proposed algorithms will be

further reduced.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance bounds of the

proposed Algorithm 2 based on Lyapunov optimization.

A. Stability of Queues

In this work, all the actual queues Qk,u(t) and virtual

queues of Hk,u(t) and Zk,u(t) are mean rate stable, as we will

now show. We assume the expectation of Ptot(t) and Utot(t)
are bounded as

Pmin ≤ E {Ptot(t)} ≤ Pmax (38)

Rmin ≤ E {Utot(t)} ≤ Rmax (39)

where Pmin, Pmax, Rmin and Rmax are finite constants. From

the boundedness assumptions, there is a positive constant C
satisfying

∆(Φ(t)) ≤ C. (40)

It can be written as

E {L(Φ(t + 1))} − E {L(Φ(t))} ≤ C. (41)

Considering telescoping sums over t ∈ {0, 1, . . . , T − 1} in

the above inequality, we can get

E {L(Φ(T ))} − E {L(Φ(0))} ≤ TC. (42)

Using (20), we can rewrite (42) as

E
{

Zk,u(T )
2
}
≤ 2TC + 2E {L(Φ(0))} . (43)

Given D(|Zk,u(T )|) = E(|Zk,u(T )|2)− [E(|Zk,u(T )|)]2 ≥ 0,

we get E(|Zk,u(T )|2) ≥ [E(|Zk,u(T )|)]2. Thus we have

E(|Zk,u(T )|) ≤
√

2TC + 2E {L(Φ(0))}. (44)

Dividing by T and taking the limit T → ∞, we have

lim
T→∞

E(|Zk,u(T )|)

T
= 0. (45)

Therefore, the queues of Zk,u(T ) are mean rate stable. Simi-

larly, we can also prove the queues Qk,u(T ) and Hk,u(T ) are

mean rate stable.

B. The Utility and Average Queue Length Performance

The EE performance and the average queue length perfor-

mance obtained by Algorithm 2 are given in Theorem 2.

Theorem 2: Utilizing the proposed optimization solution,

ηEE is bounded by

ηEE ≥ ηopt
EE −

B

V Pmin
. (46)

The performance of the average network queue length is

bounded by

Q̄ ≤
B + V (Rmax − ηopt

EEPmin)

ε
(47)

where ηopt
EE is the theoretical maximum achievable utility of

all achievable solutions.

Proof: Please refer to Appendix C.

Since ηEE ≤ ηopt
EE , which naturally holds from (13), EE is

bounded according to ηopt
EE− B

V Pmin

≤ ηEE ≤ ηopt
EE . Therefore,

ηEE can arbitrarily approach ηopt
EE by setting large enough V

to make B
V Pmin

arbitrarily small. The bound on the average

queue backlog Q̄ increases linearly in V according to (47).

Theorem 2 shows that there exists an [O(1/V ), O(V )] utility-

backlog tradeoff that leads to Little’s Theorem.
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Fig. 2. Average queue length versus simulation time.

Fig. 3. EE performance versus simulation time.

V. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results are given to evaluate the

performance of the proposed algorithms. In the considered

NOMA network, there are K SCBSs comprising U users

distributed randomly in a circular with radius of 30 m and the

SCBSS are distributed randomly in the circular of MBS whose

radius is 500 m. The noise power spectral density is −174
dBm/Hz. We consider a normalized bandwidth which is

B = 1 Hz. For the simulation, the maximum average transmit

power and the maximum instantaneous transmit power of user

u in SCBS k is set as 2.5/U Watts and 2.505/U Watts
respectively. We assume that the circuit power of user u is 1

Watt. The time interval T is set to 5000 slots which means

traffic arrival rates is 15 bps/Hz. We assume that each user

can access only one OFDMA subchannel.

In Fig. 2, the average queue length versus time t is evaluated

under different values of the control parameter V . The user

QoS requirement is set as R̂u = 2 bps/Hz and the maximum

number of matched subchannels of each user is Du = 2 while

the maximum number of matched users of each subchannel

is Dn = 2. It is seen that the value of the average queue

length increases with time t and gradually fluctuates around

a certain fixed value. And for the same value of t, a smaller

value of V leads to a smaller value of average queue length

which agrees with Theorem 2. This conclusion can also be

inferred from Fig. 9.

Fig. 4. EE performance versus simulation time for different algorithms.

Fig. 3 shows the EE performance versus time t with the

same constraints of Fig. 2 except the QoS constraint is R̂u = 1
bps/Hz instead. It can be observed that the EE performance

will gradually fluctuate around a certain fixed value with the

increase of t which illustrates the convergence of EE with

time t. And larger values of U lead to smaller converged values

of EE. This is because the needs of subchannels will increase

with an increase in the number of users, which leads to a

decrease in the bandwidth of each subchannel.

As shown in Fig. 4, the EE performance is shown versus the

time slot t. As t increases, the EE gradually fluctuates around

a certain fixed value. From Fig. 4, we observe that the perfor-

mance of V = 100 which is the proposed resource allocation

algorithms with the control parameter V = 100, including

subchannel assignment and power allocation, is much better

than the NOMA-EQ algorithm in [16]. This is because the

NOMA-EQ algorithm is limited to equal power allocation for

each subchannel in NOMA system. For different subchannel

allocation schemes, the EE performance using exhaustive

search, which is denoted by NOMA-Opt, is better than using

our suboptimal algorithm.

In Fig. 5, the average EE performance is shown versus the

parameter V with different values of Dn which is the number

of users matched with each subchannel and Dn = 1 represents

OFDMA. The user QoS requirement is set as R̂u = 2 bps/Hz
and the maximum number of matched subchannels of each

user is Du = 1. It is shown that, with an increase in the

parameter V , the value of average EE increases and converges

to a certain value both for NOMA at the same value of Du and

for OFDMA. It is seen that the average EE for NOMA is better

than the average EE for OFDMA. And for the same value of

V , a larger value of Dn leads to a larger value of average

EE. This is because our proposed algorithm provides more

freedom in the bandwidth allocation of assigned subchannels.

For the same set of users under the same value of Du, the

larger of the value of Dn is, the larger is the bandwidth of

each subchannel.

Fig. 6 shows the average EE performance versus the para-

meter V with different values of Du where the user QoS

requirement is set as R̂u = 2 bps/Hz and the maximum

number of matched users of each subchannel is Dn = 2. It is

seen that, for each value of Du, the average EE increases and
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Fig. 5. Average EE performance versus simulation time for different values
of Dn.

Fig. 6. Average EE performance versus the parameter V for different values
of Du.

Fig. 7. The total average transmit capacity versus the parameter V for
different values of Du.

converges to a certain value with increasing V . For the same

value of V , a larger value of Du leads to a larger value of

average EE due to the various selection of subchannels.

Fig. 7 illustrates the convergence of the total average capac-

ity with increasing V with different values of Du. Different

from the trend of average EE, for the same value of Du, the

total average transmit capacity decreases with increasing V .

For the same value of V , a larger value of Du results in a

larger value of total average transmit capacity. This is because

every user has more subchannel selections to guarantee the

QoS requirement.

Fig. 8. The average power consumption versus the parameter V for different
values of Du.

Fig. 9. The average queue length versus the parameter V for different values
of Du.

Fig. 8 shows the average power consumption versus the

parameter V for different values of Du. The set of constraints

is as Fig. 5 and Fig. 6. We see that the average power

consumption decreases steadily with increasing V . For the

same value of V , different from the trend of the total average

capacity, a larger value of Du results in a lower value of

average power consumption. The average power consumption

of Du = 3 is 3% smaller than that of Du = 1 when V = 120.

Fig. 9 depicts the average queue length versus the parame-

ter V with different values of Du. The user QoS requirement is

set as R̂u = 2 bps/Hz and the maximum number of matched

users of each subchannel is Dn = 2 in the NOMA scheme.

With different values for Du, the average queue length grows

steadily with increasing V . For the same value of V , a larger

value of Du leads to a lower value of average queue length.

In Fig. 10, the average EE versus V with different QoS

requirements is shown. We set the maximum number of

allocated subchannels of each user as Du = 2 and the

maximum number of matched users of each subchannel as

Dn = 2. As shown in Fig. 10, for the same value of V , a larger

value of the QoS requirement results in a smaller converged

value of average EE. A smaller value of QoS requirement

leads to a larger value of EE due to the fact that a smaller

value of QoS requirement enlarges the feasible region of the

optimizing variable.
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Fig. 10. Average EE performance versus the parameter V for different QoS
requirements.

Fig. 11. The average power consumption versus the parameter V for different
QoS requirements.

Fig. 11 shows the average power consumption versus V for

different QoS requirements. The maximum number of allo-

cated subchannels of each user is Du = 2 and the maximum

number of matched users of each subchannel is Dn = 2.

As the parameter V increases, average power consumption

continues to decrease. From Fig. 11, we can observe that for

the same value of V , a larger value of the QoS requirement

results in a larger value of average power consumption.

In Fig. 12, the total average transmit capacity is evaluated

versus V for different QoS requirements. The mean traffic

arrival rate is set at α = 15bps/Hz and the other constraints

are the same as in Fig. 11. It can be observed that, the trend of

this curve is similar to the average power consumption curves

in Fig. 11. For the same parameter V , a larger value of the

QoS requirement results in a larger value of the total average

transmit capacity.

VI. CONCLUSION

We have investigated dynamic resource allocation in down-

link NOMA networks. In particular, we have proposed a

suboptimal subchannel assignment algorithm based on the

two-side matching method. We have formulated the power

allocation as a mixed integer programming problem by con-

sidering a minimum QoS requirement, and maximum power

constraint. Based on the framework of Lyapunov optimization,

the problem of energy efficient optimization has been broken

Fig. 12. The total average transmit capacity versus the parameter V for
different QoS requirements.

down into three subproblems, two of which are linear and

the rest of which can be solved via Lagrangian optimization.

The mathematical analysis and simulation results have demon-

strated the effectiveness of the proposed algorithms.

APPENDIX A

The proof of Theorem 1 is similar to the method in [27].

For the sake of notational simplicity, we define Θ as the set of

of feasible solutions of the optimization problem in (12) and

ηEE =

K�
k=1

U�
u=1

gR(r̄k,u)

p̄tot
= G(P)

T (P) , respectively. Without loss

of generality, we define ηopt
EE and {P∗} ∈ Θ as the optimal

energy efficiency and the optimal power allocation policy of

the original objective function in (12), respectively. We can

get the optimal energy efficiency as

ηopt
EE =

G(P ∗)

T (P ∗)
≥

G(P )

T (P )
, ∀ {P} ∈ Θ,

⇒

{
G(P ) − ηopt

EET (P ) ≤ 0

G(P ∗) − ηopt
EET (P ∗) = 0.

(48)

Therefore, we can conclude that max
p

G(P)−ηopt
EET (P) = 0 is

achievable by power allocation policy {P∗} which completes

the forward implication.

Then, the converse implication of Theorem 1 is proved as

below. Suppose P∗
◦ is the optimal power allocation policy of

the equivalent objective function such that

G(P∗
◦ ) − ηopt

EET (P∗
◦ ) = 0. (49)

Then, for any feasible power allocation policy {P} ∈ Θ,

we can obtain the following inequality:

G(P) − ηopt
EET (P) ≤ G(P∗

◦ ) − ηopt
EET (P∗

◦ ) = 0. (50)

The above inequality implies

G(P)

T (P)
≤ ηopt

EE , ∀ {P} ∈ Θ (51)

and

G(P∗
◦ )

T (P∗
◦)

= ηopt
EE . (52)
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This implies that the optimal power allocation policy {P∗
◦} for

the equivalent objective function is also the optimal resource

allocation policy for the original objective function.

APPENDIX B

Let Y1 and Y2 be the optimal utilities of problems (15) and

(17), respectively. The optimal solutions that achieve Y1 and

Y2 are denoted by X1 and X2, respectively. Since the utility

functions of (15) and (17) are non-decreasing concave function

which can be expressed as U (·), by Jensen’s inequality,

we have

U
(
X2

)
≥ U(X2) = Y2 (53)

Due to the fact that the solution X2 satisfies the constraint

C5, we can write

U
(
X1

)
≥ U

(
X2

)
. (54)

Moreover, since X2 also satisfies the constraints of problem

(15), we have

Y1 ≥ U
(
X1

)
≥ Y2. (55)

Since X1 is an optimal solution to the problem (15), it also

satisfies the constraints C1 − C4. By choosing X2 = X1 at

each slot, we get

Y2 ≥ U(X2) = U
(
X1

)
= Y1. (56)

Therefore, Y1 = Y2 is proved and we can further conclude the

equivalence of the problems (15) and (17).

APPENDIX C

PROOF OF THEOREM 2

To prove the bounds on the EE and the average queue

length, Lemma 1 is introduced below.

Lemma 1: For arbitrary arrival rates, a randomized stationary

control policy Π exists and it chooses a feasible control

decision independent of current traffic queues and virtual

queues. We get the following steady state values:

E[rΠ
u (t)] = r∗u (57)

E[RΠ
u (t)] ≥ E[rΠ

u (t)] + ε = r∗u + ε (58)

E[P̂u − pΠ
u (t)] ≤ δ (59)

E[UΠ
tot(t)] ≥ E[pΠ

tot(t)](η
opt
EE − δ). (60)

Proof: The proof of Lemma 1 is similar to one found

in [29].

Substituting (57)–(60) into (22) and taking the limit δ → 0,

we can get

∆(Φ(t)) − V E

{
∑

u∈U

gR(γu) − ηEEptot

}

≤ B − V ηopt
EEE(pΠ

tot(t)) + V ηEEE(pΠ
tot(t)) − ε

∑

u∈U

Qu(t).

(61)

For Qu(t) ≥ 0, the inequality (61) can be further simplified to

∆(Φ(t)) − V E

{
∑

u∈U

gR(γu) − ηEEptot

}

≤ B − V ηopt
EEE(pΠ

tot(t)) + V ηEEE(pΠ
tot(t)). (62)

Using telescoping sums over t ∈ {0, 1 . . . , T − 1} and iterated

expectations, we have
{

E {L(Φ(T ))} − E {L(Φ(0))}
−V E {Utot − ηEE(t)ptot}

}

≤ T [B − V ηopt
EEE(pΠ

tot(t))} + V E(pΠ
tot(t))

T−1∑

t=0

E {ηEE}.

(63)

Dividing (63) by V T , we get

1

T

T−1∑

t=0

E {ηEE(t)ptot} −
1

T

T−1∑

t=0

E {Utot}

≤
B

V
− ηopt

EEE(pΠ
tot(t))

+ E(pΠ
tot(t))

1

T

T−1∑

t=0

E {ηEE} +
E {L(Φ(0))}

V T
. (64)

Taking the limit T → ∞, one has

lim
T→∞

[
1

T

T−1∑

t=0

E {ηEE(t)ptot} −
1

T

T−1∑

t=0

E {Utot}]

= Ūtot − Ūtot = 0. (65)

We obtain

B

V
− ηopt

EEE(pΠ
tot(t)) + ηEEE(pΠ

tot(t)) ≥ 0. (66)

Rearranging (66), we have

ηEE ≥ ηopt
EE −

B

V E(pΠ
tot(t))

≥ ηopt
EE −

B

V Pmin
. (67)

Similarly, taking iterated expectations and applying telescop-

ing sums over t ∈ {0, 1, . . . , T − 1} to (61), we get
{

E {L(Φ(T ))} − E {L(Φ(0))}
−V E {Utot − ηEE(t)ptot(t)}

}

≤ T [B − V ηopt
EEE(pΠ

tot(t))]

− ε

T−1∑

t=0

[
∑

k∈K

∑

u∈U

E {Qu(t)}]

+ V E(pΠ
tot(t))

T−1∑

t=0

E {ηEE}. (68)

Dividing (68) by εT and taking a limit as T → ∞, we obtain

Q̄ = lim
T→∞

1

T

T−1∑

t=0

[
∑

u∈U

E {Qu(t)}]

≤

⎧
⎪⎨

⎪⎩

B−V η
opt

EE
E(pΠ

tot(t))

ε

+V
ε

lim
T→∞

1
T

T−1∑
t=0

E {ηEE(t)ptot(t)}

⎫
⎪⎬

⎪⎭

≤
B + V (Rmax − ηopt

EEPmin)

ε
. (69)
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