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Abstract— Non-orthogonal multiple access (NOMA) with suc-
cessive interference cancellation (SIC) is a promising technique
for next generation wireless communications. Using NOMA, more
than one user can access the same frequency-time resource
simultaneously and multi-user signals can be separated success-
fully using SIC. In this paper, resource allocation algorithms
for subchannel assignment and power allocation for a downlink
NOMA network are investigated. Different from the existing
works, here, energy efficient dynamic power allocation in NOMA
networks is investigated. This problem is explored using the
Lyapunov optimization method by considering the constraints
on minimum user quality of service and the maximum transmit
power limit. Based on the framework of Lyapunov optimization,
the problem of energy efficient optimization can be broken
down into three subproblems, two of which are linear and the
rest can be solved by introducing a Lagrangian function. The
mathematical analysis and simulation results confirm that the
proposed scheme can achieve a significant utility performance
gain and the energy efficiency and delay tradeoff is derived
as [O(1/V),O0(V)] with V as a control parameter under
maintaining the queue stability.
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I. INTRODUCTION

N THE past decade, orthogonal frequency division mul-

tiple access (OFDMA) has been widely studied and has
been adopted in 4th generation (4G) mobile communication
systems [1], [2]. However, orthogonal channel access in
OFDMA is becoming a limiting factor of spectral efficiency
since each subchannel can only be used by at most one
user in each time slot. With the explosive growth of smart
mobile devices and the increasing demands for higher spectral
efficiency, non-orthogonal multiple access (NOMA) has been
proposed to mitigate the consequent heavy loading at the
base station (BS) [3]-[5]. NOMA is a promising technique to
realize the massive connectivity in Sth generation (5G) mobile
networks because NOMA can achieve significant improvement
in spectral efficiency with a lower receiver complexity by
allowing multiple users to share the same subchannel in the
power domain [6]-[8].

The use of NOMA will result in inter-user interference since
multiple users will share the same resources [9]. Successive
interference cancellation (SIC) can be applied at the end-user
receivers to mitigate this interference [10]. NOMA can achieve
a capacity region that significantly outperforms orthogonal
multiple access schemes by power domain multiplexing at
the transmitter and SIC at the receivers [11]. The outage
performance of NOMA was evaluated in [12], while in [13],
the authors investigated the system sum-rate of multiuser
NOMA single-carrier systems in addition to proposing a
suboptimal power allocation scheme and presenting a precoder
design. Moreover, the authors addressed fairness consider-
ations and posed a max-min fairness problem for NOMA.
In [15], an optimal power allocation strategy for the energy-
efficiency maximization of NOMA in single-carrier systems
was investigated. Fang er al. [16] investigated subchannel
assignment and power allocation using the difference of con-
vex programming method. A suboptimal algorithm was pro-
posed to solve an uplink scheduling problem with fixed trans-
mission power for uplink NOMA in [17] and a greedy-based
algorithm was proposed to improve the throughput in uplink
NOMA in [18]. In [19], a new spectrum and energy efficient
millimeter-wave transmission scheme which integrates the
concept of NOMA with beamspace multiple-input multiple-
output (MIMO) was proposed to break the fundamental limit.
In [20], a hierarchical power control solution to improve the
spectral and energy efficiency in NOMA-enabled vehicular
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small cell networks was proposed by performing the joint
optimization of cell association and power control. In [21],
a novel resource allocation design was investigated for NOMA
enhanced heterogeneous networks. However, the problem of
energy efficient subchannel assignment and power allocation
in multiple small cells with NOMA under the constraints of
minimum QoS requirements and cross interference has not
been well studied.

In contrast to the typically full buffer assumptions and
snapshot-based models, delay is a key metric to measure the
QoS. The congestion performance for delay-tolerant services
and the stochastic and time-varying features of traffic arrivals
should be considered in realistic wireless networks. By uti-
lizing Lyapunov optimization, which is a useful method for
handling queue-aware radio resource allocation problems, [22]
and [23] considered the impacts of stochastic traffic arrivals
and time-varying channel conditions on the system perfor-
mance to stabilize the queues of networks when optimizing
performance metrics. Li et al. [22] applied the framework of
Lyapunov optimization to balance the average throughput and
average delay in energy efficient OFDMA heterogeneous cloud
networks. Yu et al. [23] adopted the Lyapunov optimization
framework in a two-tier OFDMA heterogeneous network
under the hybrid access mode to solve the dynamic optimiza-
tion problem of resource allocation. In [24], an energy efficient
resource allocation algorithm was proposed to provide fairness
among different small cell base stations (SCBSs) based on
the Nash bargaining solution. However, most of the existing
works have considered resource allocation using Lyapunov
optimization only in OFDMA systems. And to the best of
the authors’ knowledge, energy efficient resource allocation
for time-varying NOMA networks has not been well studied
in the previous works.

In this paper, we investigate the subchannel and power
allocation respectively in a multiple downlink NOMA network
by considering energy efficiency, QoS requirements, power
limits, and queue stability. Reference [25] is a conference
version of this paper. Different from the conference version,
this paper extends [25] to multiple base station scenarios with
the detailed proof for the theorem and resource optimization
algorithm. We also consider the complexity analysis for the
proposed algorithms and more simulation results are provided
to verify the proposed methods in this paper compared to the
conference version. The main contributions of this paper are
summarized as follows:

o Development of a novel energy efficient NOMA network
optimization framework: This framework jointly consid-
ers energy efficiency maximization, QoS requirements,
queue stability and power limits in the optimization
of NOMA. Moreover, the queue stability, utility and
average queue length performance are studied through
both analytical and simulation results.

o Design of a subchannel assignment algorithm based on
matching theory: We model the subchannel-user matching
problem as a two-sided matching process and propose a
subchannel assignment algorithm based on matching.

o Design of a power allocation algorithm with multiple
constraints: We formulate a power allocation problem for
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Fig. 1. The architecture of the NOMA network.

NOMA as a mixed integer programming problem. A min-
imum QoS requirement is employed to provide reliable
transmission for users. The energy efficiency optimization
problem is decomposed into three subproblems with time-
averaged variables and instantaneous variables. We solve
the three subproblems and propose a power allocation
algorithm using Lyapunov optimization, where the con-
vergence of the proposed algorithm is also demonstrated
via simulations.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Basic Notation

As shown in Fig. 1, we consider a time-varying downlink
multiple cell NOMA network in which N SCBSs exist and
each SCBS transmits the signals to each set of mobile users
denoted by U = {1,2,...,U}. The available bandwidth
is divided by the BS into a set of subchannels which is
denoted by N = {1,2,...,N}. The NOMA system is
assumed to operate in a slotted time mode with unit time slots
t€{0,1,2....}, where the time slot ¢ refers to the time
interval [¢, 1+ 1). We assume that the BSs have full knowledge
of the channel state information and denote by g u.n(t)
the channel gain between the kth SCBS and user u on
subchannel n at time slot . We set a ., (t) = 1 when the
subchannel n of SCBS £ is allocated to user w at time slot ¢;
otherwise, ag . n(t) = 0. [z]* denotes the larger of z and
zero, 1" denotes the transpose of x, and E {-} denotes the
expectation.

B. System Model

In NOMA, one user can receive signals from the BS through
multiple subchannels and one subchannel can be allocated
to multiple users at the same time slot ¢. Since the user j
on subchannel n causes interference to the other users on
the same subchannel, each user j adopts SIC after receiving
the superposed signals to demodulate the target message.
As shown in [26], without constraints on the specific power
split, one user’s data can be successfully decoded by another
user whose channel gain is better via superposition coding with
SIC. Since user u with higher channel gain can only decode
the signals of user ¢ with worse channel gain, the interference
signals caused by user j whose channel gain is better than
user v cannot be decoded and will be treated as noise. Thus,
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after SIC, the interference for user u caused by other users of
same SCBS k on the same subchannel n is given by

(D

where S, is the set of users of SCBS k on subchannel
n. Modeling this residual interference as additional AWGN,
we can use the Shannon’s capacity formula to write the
capacity of user u € U = {1,2,...,U} of SCBS k on the
nth subchannel at time slot ¢ as

Rk,u,n(t)

B u,n t w,mn t
= _ak,u,n(t)logQ 1 —+ 3 pkv ) ( )gk, s ~( )
N Ot T Ieun () + Lioun ()

Vke K,ueUneN, (2)

where B and 0,2 are the bandwidth of the system and the

noise variance respectively. I k,un(t) is the total of the co-tier
interference caused by other SCBSs to SCBS k and cross-
tier interference caused by the macro BS to SCBS k which is
given by

M M
Ikun —§ § alunplunglkun+§ pungkun

1k u=1

Vk e K ,ueU, neN, (3)

where ¢; j . 1S the channel gain on subchannel n of user u in
SCBS [ to SCBS k. pu » and gk u.n are the power allocation
and channel gain on subchannel n of user v in the macro BS
to SCBS £ respectively. The capacity of user u of SCBS k at
time slot ¢ can be written as

Rku ZRkunt, Vk e, uel. 4)

In order to specify the QoS of users, we let Rku be the QoS
requirement in terms of the minimum capacity of user v which
is thus given as

C1:Rpu(t) > Ryw, YVhkeK, ucl. 5)

When the queue stability of the SCBS is guaranteed, we can
focus only on the performance optimization with queue sta-
bility. This is because the SCBS can be assumed to be fixed
over a longer duration than the scheduling slot of subchannels.
In this NOMA network, the separate buffering queue Qy, ., (%)
is maintained for each user U of SCBS k. The random traffic
arrivals for Qy ., (t) are denoted by Ay, ,,(t) whose peak arrival
is AmgLX at time slot ¢. Ay, (¢) is independent and identically
dlstrlbuted (i.i.d.) over slots. The exogenous arrival rates may
be outside of the network capacity region in practice for the
reasons that the statistic of Ay, (¢) is usually unknown to
SCBSs and the achievable capacity region is usually difficult to
estimate. Then, a transport flow control mechanism is needed
to keep the traffic queues stabilized. Denote by 7y, (¢) the
admitted data rate out of the potentially substantial traffic
arrivals for user u of SCBS k which obviously satisfies
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0 < rpu(t) < Ag,(t). Therefore, we denote the traffic
buffering queues for user u as

Qru(t +1)=[Qru(t) =R ()] +reu(t), Vkek, uel.

(6)
The time averaged throughput in terms of the data arrivals for
users in SCBS k is defined as 7, = hm = Z Thu (1)

Denote by pg . (t) and pioc(t) the 1nstantaneous power
of user u of SCBS k at time slot ¢ and the total power
consumption of all the SCBSs at time slot ¢ respectively, which
can be written as

Zpkun

Dk,u( +pf @)

and

Z Zpk " ®)

k=1u=1

Ptot

where p,? accounts for the circuit power of SCBS k. The
average and instantaneous power constraints of user u of SCBS
k are denoted by Py, and P} ,, which can be written as

Zpku

Vk;eIC, uel.

lim —

t—o0

pk’,u(t) S pk’,uv

We define the function gg(+) as the revenue obtained by the
throughput which is a non-decreasing concave utility function.
Let ngg denote the energy efficiency (EE) which is defined
as the ratio of the profit brought by the long-term utility of
average throughput to the corresponding long-term total power
consumption. It can be written as

Prou = )< Pow, VkEK, uelU (9)

(10)

K U
> > 9R (Thu)

L E— (11)
Ptot

T
where Prop = lim & > pyos(t).
T—oo * 4=

C. Optimization Problem Formulation

In this subsection, when considering all constraints, the util-
ity function is expressed as

K U
22 2. 9r (Tru)

k=1u=1
max Ngpg = —
P Ptot
5.t CLO2: iy = lim Zpku ) < Prus
Vk e K,u € U
C3:ppu(t) < Pow, V€K, uel

> Ty

,Uy

T
— 1
C4: Ry = lim = 3" Ryu(t)
t=0

VEeK, uel. (12)
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where P denotes the power allocation policy and the constraint
C'1 ensures the QoS of users; C2 is a bound on the limit of
the maximum average transmit power of user u of SCBS k;
C3 is the maximum instantaneous transmit power of user u
of SCBS k; and C4 ensures the stability of user v in SCBS
k. We define the optimal EE 77’5, as

K U

opt kZ::1 uz=:1 98 (Teu(P7)) kij:l uzz:l 97 (Tu(P))
e = Drot(P*) - Dot (P)

13)

where P* denotes the optimal power allocation policy that
yields 7575. We can classify the utility function in (12) as
a nonlinear fractional program. We introduce Theorem 1 as
follows.

Theorem 1: The optimal EE 7’5 can be reached if and
only if
K U
max "D g (7ku(P)) ~ 1 gpror (P)
k=1u=1
K U
=2 9r(ka(P) = nphior(P7) = 0
k=1u=1
K U
for> > gk (Tru(P)) = 0,pror(P) 2 0. (14)
k=1u=1

Proof: Please refer to Appendix A.

According to Theorem 1, an equivalent objective function
in subtractive form exists for the (non-convex) optimization
problem (12) which can be classified as a nonlinear fractional
program. Then, the formulation (12) can be rewritten in the
more tractable form

K U

mgX kz_; Z:l 9RrR (fk,u (P)) — NEEDPtot (P)

s.t. C'1,C2,C3,C4. (15)

III. ENERGY EFFICIENT OPTIMIZATION USING
LYAPUNOV OPTIMIZATION

In this section, subchannel assignment is investigated in the
NOMA network and the optimization problem in (15) is solved
based on Lyapunov optimization.

A. Subchannel Matching

We assume that all the users of BS can transmit on the
subchannel n arbitrarily at time slot ¢ in a NOMA system.
Considering the complexity of decoding and the fairness of
users, each subchannel can only be allocated to at most D,
users and each user can only occupy at most D,, subchannels
at the same time. We assume that N x D,, > U % D,,. The
dynamic matching between the users and the subchannels of
SCBS k can be considered as a many-many matching process
between the set of U users and the set of [V subchannels. User
u is matched with subchannel n at time slot ¢ if ay o, » (t) = 1.
Based on the channel state information, we assume user u
prefers channel 1 over ng if and only if gr umn, > Gk uns,-
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Algorithm 1 Suboptimal Matching Algorithm for Subchannel

Allocation

1: Initialize the matched lists Sj, and Si, to denote
the number of users matched with subchannel n (Vn €
{1,2,...,N}) and the number of subchannels matched
with user u (Vn € {1,2,...,U}) in SCBS k, respectively;

2: Initialize the preference lists Pref_U (k, ) for all the users
of SCBS k according to channel state information;

3: Initialize the set of not fully matched users Sy _p(k,u) to
denote users of SCBS k£ who have not been matched with
D,, subchannels;

4: while SUip(k,u) 7é o do
5: foru=1toU do
6: if Sk, < D, then
7: User u of SCBS k sends a matching request
to its most preferred subchannel 7 according to
Pref_U(k,u);
8: if Sp» < Dy then
9: Set a5 =1, Sku = Spu+1and Sp 5 = Sk a+
1
10: else if S, 5 = Dy, 5 then
11: Find the minimum channel gain of users g 3,7 on
channel 77 in SCBS k and compare it with g, . 73
12: if gi.a7 < gk,u,n then
13: Set apun =1, agan =0, Sku = Sku+1, and
Sk =Ska— 1L
14: else
15: Remove subchannel n from Pref_U(k,u) and
find the next n of user u in SCBS k according to
Pref_U(k,u).
16: end if
17: end if
18: end if
19: end for

20: end while

Then, the preference lists of the users of SCBS k can be
written as

Pref (K,U)
= [Pref_U(1),...,Pref_U(u),... Pref_UU)|" (16)

where Pref_(K,U)(u) is the preference list of user u of
SCBS k which is in the descending order of channel gains
of subchannels. To reduce the complexity, we propose a
suboptimal matching algorithm for subchannel allocation as
Algorithm 1. For each user u of SCBS £k, the matching
request is sent to its most preferred subchannel according to its
preference list. Then the preferred subchannel decides whether
to accept the user or not according to the users’s channel
gain. For each subchannel n, there are at most D,, accepted
users who have higher channel gains than the rejected users.
A rejected user on subchannel n will remove the subchannel
n from its preference list and its most preferred subchannel
is changed. The matching request is send again until all the
users of each SCBS have matched D, subchannels and the
matching is achieved.
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B. The Queues of Lyapunov Optimization

Because gr(7,.,) is related to the time averaged through-
put, we define auxiliary variables ~; ., for the traffic arrival
of user u in SCBS k which satisfies ¥, < 7%, and
0 <Yu < AEZX. Therefore, the optimization problem in (15)
can be rewritten as

max D> gr(Yea) -

keK ueU

s.t. C1,C2,C3,C4
C5: fyk,u < 'Fk’,ua

TEEDPtot

0 < Yeu < AR A7)

T
where 7y, ,, = lim % > Vew(t) and gr(vew) —

T—oo © =0

Thm = E (9r(Vr,u(t))

lems (15) and (17) is proved in Appendix B. To satisfy the
averaged throughput constraint in C5, we denote by Hy, ,, (%)
the virtual queue for user v in SCBS k at time slot ¢. We get

NEEPtot =

— NEEPtot). The equivalent of prob-

Hio(t+1) = — T (t)]”

+ P)/k,u(t)a

[H,u (1)

VEe K, ueld. (18)

Similarly, in order to satisfy the constraint C'2, virtual power
queues for the user u in SCBS k£ are defined. We denote
Zy, u(t) as the queue arrival with the transmit power py, . (¢),
and get

Ziu(t+1) = VkeK, uell.

19)

[Zk,u(t) _Pk,u]++pk,u (t)7

C. The Formulation of Lyapunov Optimization

Denote by ®(t) = [Q(t), H(t), Z(t)] the matrix of all the
queues. We define the Lyapunov function as a scalar metric
of queue congestion:

K U
L(@(t))—;{ZZ(Qku £)%+ Hyu(t)* + Ziu(t) )}

k=1u=1
(20)

We introduce a Lyapunov drift in this subsection for pushing
the Lyapunov function to a lower congestion state and keep
both the actual and virtual queues stable:

A((1) = E{L(®(t + 1)) -

L(®(1))} - 2D

According to Lyapunov optimization, by

VE { ;u QR(’Vk,u) -

subtracting

NEEDit ¢ from both sides of (21),

5675
we get
K U
A(®(t) -VE {Z > 9r (kw) — nEEptot}
=1 u=1
K U '
<O+ N E{HeuVhw — Var ()}
k=1u=1
+VE(UE {Z{Zpku +pk}}>
K U k=1 u=1
=N {Hew(t) = Quu(®)} B {riu(t)}
k[:{lu;l
= Quu®E{Rru(t)}
k;lu;l
“ > Ziuw®)E{Pru(t) — pru(t)} (22)
k=1u=1

where V is an arbitrarily positive control parameter which
represents the emphasis on utility maximization compared to
queue stability and C' is a finite constant that satisfies

1 K U
C=3E {Z (reut®) +Rkvu(t)2)}
1 k:l;{tle
#5833 [ra®) = ea®)
k=1u=1

(23)

1) The Solution of Virtual Variables: The optimal choice of
v, to minimize (22) can be made by solving

max VgR(’Yk’,u) - Hk,u(t)’}/k’,u
st 0 < ypu < ARG (24)
and the solution is
|4
(1) = min { ———, A" 5. 25
Yk 2 ( ) mln{Hk’u(t) k,u } ( )

2) The Solution of Actual Traffic Arrival: In order to min-
imize (22), the optimal actual traffic arrival can be achieved
by maximizing the expression as follows:

max {Hk,u(t) - Qk,u(t)} E {rk’,u (t)}
s.t.0 S Tk7u(t) § A]“u(t). (26)
We get the optimal solution as
Ap o (t), if Hio(t) — «(t) =0
T.k;’u(t) — k; ( ) f k?, ( ) Qk?, ( ) (27)
0, else.

3) Power Allocations: In order to minimize (22), we first
obtain the optimal solution of the virtual variables and the
actual traffic arrival, then we can minimize the remaining part
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U
E{Rku }+ZZku pku }

kun }

\ B - Wkt (8)Gh i (1)
_ Z Z Qrut)E N Z Ak,u,n(t)ogy | 1+ kun(Dgkun(t) (30)
k=1u=1 n=1 akun(t) (O—]% n +Ik u,n( ) +I (t))
K U N N
F(/\,ﬁ) :mlnL(/\vﬁ):VE <77EE{ZZZWkun }) +Zzzku {Zwk’,u,n(t)}
k=1u=1n=1 k=1u=1 n=1
K U N
— Z Z Qru(t)E Z Nak,u,n(t)logQ 1+ e (£) 9k 0in (1) -
k=1u=1 n=1 ak,u,n(t) (O—ﬁm, + Ik,u,n(t) + Ik,u,n(t))
K U N )
+ Z Z )\k’,u(t) {Z wk’,u,n(t) — Py u}
k=1u=1 n=1
K U N
~ B Wk,u n(t)gk u n(t)
A3 Bralt) { Riw — D ki (t)logy | 1+ e R 31)
k=1 u=1 n—1 N Aku,n(t) (Uﬁm/ + Iiun(t) + Ik,u,n(t))

o e (3 {6}
Z

min

pkun(t)}

(28)

Let Wk un(t) = akun(t pk’u,n(t),Vk' eK,ueU,neN,
then we can get

Rk‘,u,n (t)

B
= Nak,’u,n(t)logQ

Wk, u,n (t)gk,u,n (t)

x [ 1+ —
ak’,u,n(t) (UI%,n + Ik,u,n(t) + Ik’,u,n(t))

(29)

We can rewrite (28) as (30), shown at the top of this page.
Since (30) is convex, to satisfy the series of constraints,
the Lagrangian of the problem (30) can be expressed by (31),

shown at the top of this page, where A and [ are the Lagrange

multiplier vectors for the constraints in (17). Taking the first

order derivation of F'(\, 3) with respect to wy, ., »(t), we can

get the optimal power allocation as follows:

Whu,n (1)

W,u,n (1)

B Q)+ Beul®)
2(Vnee + Zku(t) + Aeu(t))

Ui,n + Tiun(t) + Li,un(t)
gk,u,n(t) .

Based on the subgradient method [28], the master dual
problem in (32) can be solved by

N
AL = {Aﬁm—eﬁ (Pkm—Zwkyu’n(t

n=1

l+1 |:ﬁku_52(ZRkun

n=1

pk,u,n(t) =

(32)

Jr
))} , Vk € K, uel,

u)} , Vke K, uel.
(33)

After the time interval T', we get the average queue length Q,

total average capacity R*"¢, average power consumption P*

and the average energy efficient EE 7%’ as

T K U
Q:TZ > Qrult) (34)
t=1 k=1u=1
1 T
R = 2> User(t) (35)
) 1?1 K U
P=2) >0 prult) (36)

t=1 k=1u=1
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ave

T
g = Z NEE-
r=

The above proposed approach based on Lyapunov optimization
for solving the EE optimization problem in (19) can be
summarized in Algorithm 2.

(37)

Algorithm 2 Lyapunov Optimization Based Resource Alloca-
tion Algorithm

Initialize the ay, ., (t) using suboptimal Algorithm 1;

2: Initialize pg 4, (t) using equal power allocation;
Initialize the value of A}'3* and Q. (1);

4: For each time slot, calculate the auxiliary variables v, ,, (t)
for each time slot and admitted traffic 7y ,,(t) by solving
(25) and (27) respectively;
repeat

6: Obtain the optimal allocation of power in the current time

slot according to (32);
Update the Lagrange multipliers A and [ by solving (33);

8:  Solve (12) using the Dinkelbach method in [1] to get the

optimal value of ngg in an iteration way;
until Convergence or certain stopping criteria is met

10: Calculate the traffic queue Q. (t) and the virtual queues
of Hy ,(t) and Zj ,(t) of next time slot by solving (6),
(18), (19) respectively.

D. Complexity Analysis

The complexity of the proposed algorithms is analyzed in
this subsection. The worst-case complexity of proposed subop-
timal Algorithm 1 is O(KUN~+1/2K |U/D,,|?) in which the
finding of preference lists is O(K U N). The optimal algorithm
of subchannel matching can only be obtained by searching
over all possible combinations of users Whose computational
complexity can be approximated as O(K [%] ~ ). We see from
the above analysis that the proposed suboptlmal subchannel
matching Algorithm 1 has a much lower polynomial com-
plexity than exhaustive search. In Algorithm 2, the calculation
of (32) for each user in each SCBS on each subchannel entails
KUN operations. Thus the complexity of Algorithm 2 is
O(TLKUN) where L is the number of iterations in each
time slot. As the complexity of Algorithm 2 increases with
the number of users and the convergence of E'FE is influenced
by the control parameter V', Algorithm 2 may be practical for
a middle-scale realtime network and the value of V' should be
well chosen. Furthermore, cellular users are typically distrib-
uted in clusters. Therefore, the cellular users in a cell can be
divided into several clusters, and the proposed algorithm can
be used in each cluster. Subchannels are not shared between
different clusters. Since the number of users in each cluster
is small, the complexity of the proposed algorithms will be
further reduced.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance bounds of the
proposed Algorithm 2 based on Lyapunov optimization.

5677

A. Stability of Queues

In this work, all the actual queues Q. (t) and virtual
queues of Hy, ,,(t) and Zy, ,,(t) are mean rate stable, as we will
now show. We assume the expectation of Py, (t) and Uy (t)
are bounded as

(38)
(39)

Rmin S E{Utot(t)} S Rmax

Pmin < E{Ptot(t)} S Pmax

where Puin, Pmax, RBmin and Ry, are finite constants. From
the boundedness assumptions, there is a positive constant C'
satisfying

A@(t) < C. (40)

It can be written as

E{L(®(t+1))} - E{L(®(t)} < C. (41)
Considering telescoping sums over ¢t € {0,1,...,7 — 1} in
the above inequality, we can get

E{L(®(T))} — E{L(®(0))} < TC. (42)
Using (20), we can rewrite (42) as

{Z,w( ) } < 2TC + 2E {L(3(0))} . (43)

Given D(|Zy,(T)

) = B(|1Zku(T)*) = [E(1Zku(T))]* = 0,
we get E(|Zy..(T)

) =
|2) > [E(|Zy.(T)])]?. Thus we have

E(|Z,u(T)]) < \/2TC + 2E {L(®(0))}. (44)
Dividing by 7" and taklng the limit 7" — oo, we have
E(|Zy (T
lim E(Zku(T)]) = 0. (45)

T—o0 T
Therefore, the queues of Zj ,,(T') are mean rate stable. Simi-

larly, we can also prove the queues Q. ,(T) and Hy, ., (T') are
mean rate stable.

B. The Utility and Average Queue Length Performance

The EE performance and the average queue length perfor-
mance obtained by Algorithm 2 are given in Theorem 2.

Theorem 2: Utilizing the proposed optimization solution,
neg is bounded by

B
V Puin
The performance of the average network queue length is
bounded by

opt
NEE 2 Mg —

(46)

B + V(Rmax n%pépmin)
3

Q<
where n%pé is the theoretical maximum achievable utility of
all achievable solutions.

Proof: Please refer to Appendix C.
Since ngr < nEE, which naturally holds from (13), EE is

bounded according to 77/ — 5— Pm“ < nep < . Therefore,

(47)

neE can arbitrarily approach 77y, by setting large enough V/
to make % arbitrarily small. The bound on the average
queue backlog () increases linearly in V' according to (47).
Theorem 2 shows that there exists an [O(1/V"), O(V)] utility-
backlog tradeoff that leads to Little’s Theorem.
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V. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results are given to evaluate the
performance of the proposed algorithms. In the considered
NOMA network, there are K SCBSs comprising U users
distributed randomly in a circular with radius of 30 m and the
SCBSS are distributed randomly in the circular of MBS whose
radius is 500 m. The noise power spectral density is —174
dBm/Hz. We consider a normalized bandwidth which is
B =1 Hz. For the simulation, the maximum average transmit
power and the maximum instantaneous transmit power of user
u in SCBS k is set as 2.5/U Watts and 2.505/U Watts
respectively. We assume that the circuit power of user « is 1
Watt. The time interval 7' is set to 5000 slots which means
traffic arrival rates is 15 bps/Hz. We assume that each user
can access only one OFDMA subchannel.

In Fig. 2, the average queue length versus time ¢ is evaluated
under different values of the control parameter V. The user
QoS requirement is set as Ru = 2 bps/H z and the maximum
number of matched subchannels of each user is D,, = 2 while
the maximum number of matched users of each subchannel
is D,, = 2. It is seen that the value of the average queue
length increases with time ¢ and gradually fluctuates around
a certain fixed value. And for the same value of ¢, a smaller
value of V' leads to a smaller value of average queue length
which agrees with Theorem 2. This conclusion can also be
inferred from Fig. 9.
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Fig. 3 shows the EE performance versus time ¢ with the
same constraints of Fig. 2 except the QoS constraint is R,=1
bps/H z instead. It can be observed that the EE performance
will gradually fluctuate around a certain fixed value with the
increase of ¢ which illustrates the convergence of EE with
time ¢. And larger values of U lead to smaller converged values
of EE. This is because the needs of subchannels will increase
with an increase in the number of users, which leads to a
decrease in the bandwidth of each subchannel.

As shown in Fig. 4, the EE performance is shown versus the
time slot ¢. As ¢ increases, the EE gradually fluctuates around
a certain fixed value. From Fig. 4, we observe that the perfor-
mance of V' = 100 which is the proposed resource allocation
algorithms with the control parameter V' = 100, including
subchannel assignment and power allocation, is much better
than the NOMA-EQ algorithm in [16]. This is because the
NOMA-EQ algorithm is limited to equal power allocation for
each subchannel in NOMA system. For different subchannel
allocation schemes, the EE performance using exhaustive
search, which is denoted by NOMA-Opt, is better than using
our suboptimal algorithm.

In Fig. 5, the average EE performance is shown versus the
parameter V' with different values of D,, which is the number
of users matched with each subchannel and D,, = 1 represents
OFDMA. The user QoS requirement is set as R, = 2 bps JHz
and the maximum number of matched subchannels of each
user is D, = 1. It is shown that, with an increase in the
parameter V, the value of average EE increases and converges
to a certain value both for NOMA at the same value of D,, and
for OFDMA. It is seen that the average EE for NOMA is better
than the average EE for OFDMA. And for the same value of
V, a larger value of D,, leads to a larger value of average
EE. This is because our proposed algorithm provides more
freedom in the bandwidth allocation of assigned subchannels.
For the same set of users under the same value of D,, the
larger of the value of D, is, the larger is the bandwidth of
each subchannel.

Fig. 6 shows the average EE performance versus the para-
meter V' with different values of D, where the user QoS
requirement is set as R, = 2 bps/Hz and the maximum
number of matched users of each subchannel is D,, = 2. It is
seen that, for each value of D,, the average EE increases and
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converges to a certain value with increasing V. For the same
value of V, a larger value of D, leads to a larger value of
average EE due to the various selection of subchannels.

Fig. 7 illustrates the convergence of the total average capac-
ity with increasing V' with different values of D,,. Different
from the trend of average EE, for the same value of D,, the
total average transmit capacity decreases with increasing V.
For the same value of V, a larger value of D, results in a
larger value of total average transmit capacity. This is because
every user has more subchannel selections to guarantee the
QoS requirement.
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Fig. 8 shows the average power consumption versus the
parameter V' for different values of D,,. The set of constraints
is as Fig. 5 and Fig. 6. We see that the average power
consumption decreases steadily with increasing V. For the
same value of V, different from the trend of the total average
capacity, a larger value of D, results in a lower value of
average power consumption. The average power consumption
of D, = 3 is 3% smaller than that of D,, = 1 when V' = 120.

Fig. 9 depicts the average queue length versus the parame-
ter V' with different values of D,,. The user QoS requirement is
set as R, = 2 bps /Hz and the maximum number of matched
users of each subchannel is D,, = 2 in the NOMA scheme.
With different values for D,,, the average queue length grows
steadily with increasing V. For the same value of V, a larger
value of D, leads to a lower value of average queue length.

In Fig. 10, the average EE versus V' with different QoS
requirements is shown. We set the maximum number of
allocated subchannels of each user as D, = 2 and the
maximum number of matched users of each subchannel as
D,, = 2. As shown in Fig. 10, for the same value of V, a larger
value of the QoS requirement results in a smaller converged
value of average EE. A smaller value of QoS requirement
leads to a larger value of EE due to the fact that a smaller
value of QoS requirement enlarges the feasible region of the
optimizing variable.
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Fig. 11 shows the average power consumption versus V' for
different QoS requirements. The maximum number of allo-
cated subchannels of each user is D,, = 2 and the maximum
number of matched users of each subchannel is D, = 2.
As the parameter V' increases, average power consumption
continues to decrease. From Fig. 11, we can observe that for
the same value of V, a larger value of the QoS requirement
results in a larger value of average power consumption.

In Fig. 12, the total average transmit capacity is evaluated
versus V' for different QoS requirements. The mean traffic
arrival rate is set at o = 15bps/H z and the other constraints
are the same as in Fig. 11. It can be observed that, the trend of
this curve is similar to the average power consumption curves
in Fig. 11. For the same parameter V/, a larger value of the
QoS requirement results in a larger value of the total average
transmit capacity.

VI. CONCLUSION

We have investigated dynamic resource allocation in down-
link NOMA networks. In particular, we have proposed a
suboptimal subchannel assignment algorithm based on the
two-side matching method. We have formulated the power
allocation as a mixed integer programming problem by con-
sidering a minimum QoS requirement, and maximum power
constraint. Based on the framework of Lyapunov optimization,
the problem of energy efficient optimization has been broken
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down into three subproblems, two of which are linear and
the rest of which can be solved via Lagrangian optimization.
The mathematical analysis and simulation results have demon-
strated the effectiveness of the proposed algorithms.

APPENDIX A

The proof of Theorem 1 is similar to the method in [27].
For the sake of notational simplicity, we define © as the set of
of feasible solutions of the optimization problem in (12) and

K U _
_ k,z::ul,z::lgR(rk’u) _ G(P)
e = Prot = T(P)>

of generality, we define 77’y and {P*} € © as the optimal
energy efficiency and the optimal power allocation policy of
the original objective function in (12), respectively. We can
get the optimal energy efficiency as
W2 = e 2 %,v{f’} co,
G(P) = ngpT(P) <0
G(P*) — 1T (P*) = 0.

respectively. Without loss

(48)

Therefore, we can conclude that max G(P) —n%sT(P) = 0 is

achievable by power allocation policy {P*} which completes
the forward implication.

Then, the converse implication of Theorem 1 is proved as
below. Suppose P is the optimal power allocation policy of
the equivalent objective function such that

G(P;) — n¥sT(P:) = 0. (49)

Then, for any feasible power allocation policy {P} € ©,
we can obtain the following inequality:

G(P) = npguT(P) < G(P) — nggT(P;) = 0. (50)
The above inequality implies
G(P) ¢
—= <P
P <npm VYV{P}e©O 5D
and
G(P3 opt
(Pe) _ e (52)
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This implies that the optimal power allocation policy {PZ} for
the equivalent objective function is also the optimal resource
allocation policy for the original objective function.

APPENDIX B

Let Y7 and Y5 be the optimal utilities of problems (15) and
(17), respectively. The optimal solutions that achieve Y; and
Y, are denoted by X; and X, respectively. Since the utility
functions of (15) and (17) are non-decreasing concave function
which can be expressed as U (-), by Jensen’s inequality,
we have

U (%) > T(X) = Vs (53)
Due to the fact that the solution Xo satisfies the constraint
(5, we can write

U(x

) > U (X2). (54)

Moreover, since X5 also satisfies the constraints of problem
(15), we have

Yi2U (X)) 2 Ya. (55)

Since X is an optimal solution to the problem (15), it_also
satisfies the constraints C1 — C4. By choosing X» = X; at
each slot, we get

Yy > U(Xq) =U (X1) = V1. (56)
Therefore, Y7 = Y5 is proved and we can further conclude the

equivalence of the problems (15) and (17).

APPENDIX C
PROOF OF THEOREM 2

To prove the bounds on the EE and the average queue
length, Lemma 1 is introduced below.

Lemma 1: For arbitrary arrival rates, a randomized stationary
control policy II exists and it chooses a feasible control
decision independent of current traffic queues and virtual
queues. We get the following steady state values:

E[rl(t)] =} (57)
E[R} ()] > E[r/(t)] +e =1 +¢ (58)
E[P, —pli(t) <6 (59)
E[UL(t)] > Elpp ()] (n7s — 6). (60)

Proof: The proof of Lemma 1 is similar to one found
in [29].
Substituting (57)—(60) into (22) and taking the limit 6 — 0,

we can get
- UEEPtot}

<B- VU%%E(ptHot( ) + VneeE(phy,(t

A(®(t) -VE { > grlw)

uelU
—e> Qult)

uclU
(61)
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For Q. (t) > 0, the inequality (61) can be further simplified to

A(®(t) ~ VE { S gr(v) - nEEpm}

uwelU
< B — Vi E(piy(t) + VieeE(pi,(t). (62)

Using telescoping sums over ¢ € {0,1...,T — 1} and iterated

expectations, we have

{ E{L(®(T))} = E{L(®(0))} }
—VE {Utot — NEE (t)ptot}

T[B = Vi E(pe (1))} + VE(pl, (¢ Z E{ner}.
t=0
(63)
Dividing (63) by VT, we get
= =
? Z E {UEE(t)Ptot} - ? Z E {Utot}
t=0 t=0
B
< 7~ 1P (1))
1 E{L(2(0))}
+ E(po: () 72 Z E{npp} + —— - (649
Taking the limit 7" — oo, one has
= =
m [ > E{nsn(t)pior} — T > E{Uint}]
t=0 t=0
= Utot - Utot =0. (65)
We obtain
B
v e B (Do (1) + neeE(ppy(t) = 0. (66)
Rearranging (66), we have
o B O
neE > N — . (67)

—— > R —
VE(pg)t (t)) EE VPmin

Similarly, taking iterated expectations and applying telescop-
ing sums over t € {0,1,...,7 — 1} to (61), we get

{ E{L(®(T))} — E {L(®(0))} }
—VE {Utot — NEE (t)ptot (t)}
< T[B Vn(”’ 2 E (P (1))]

—62 D> E{Qut)]

t=0 kEKuGU

Z E{nes}.

Dividing (68) by €T and taking a hmlt as T' — oo, we obtain

hm —Z ZE{Qu

t=0 wueld
BVt E(pih, (1)

% i E{UEE(t)ptot(t)}

+¥ lim
€ T—oo

B+ V(Rmax — n%pépmm)

g

+VE@Y (t (68)

Q=

(69)
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