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B
uildings consume 60% of global electricity. However, cur-
rent building management systems (BMSs) are highly ex-
pensive and difficult to justify for small- to medium-sized 

buildings. The Internet of Things (IoT), which can collect and 
monitor a large amount of data on different aspects of a building 
and feed the data to the BMS’s processor, provides a new op-
portunity to integrate intelligence into the BMS for monitoring 
and managing a building’s energy consumption to reduce costs. 
Although an extensive literature is available on, separately, IoT-
based BMSs and applications of signal processing techniques 
for some building energy-management tasks, a detailed study 
of their integration to address the overall BMS is limited. As 
such, this article will address the current gap by providing an 
overview of an IoT-based BMS that leverages signal processing 
and machine-learning techniques. We demonstrate how to ex-
tract high-level building occupancy information through simple, 
low-cost IoT sensors and study how human activities impact 
a building’s energy use—information that can be exploited to 
design energy conservation measures that reduce the building’s 
energy consumption.

Overview
Collectively, buildings are one of the major electricity consum-
ers, representing 60% of total global electricity consumption. 
In the United States, for example, 70% of annual electricity use 
is due to buildings [1]. Such intense electricity usage by build-
ings is also true for many other countries (although detailed 
statistics may not be fully available due to lack of information 
or measurement). Therefore, there has been a significant push 
toward studying and developing ways to effectively manage 
electricity in buildings through efficient BMSs.

Current BMS solutions are, however, highly expensive and 
thus difficult to justify for use in small- and medium-size build-
ings. Additionally, due to a recent push for reducing electricity 
consumption and increasing operational efficiency, building 
managers need to deal with dynamic and diverse building 
requirements including anomaly detection, predictive main-
tenance, occupancy tracking, and electricity use optimization 
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with renewable integration. For example, in the United States, 
heating, ventilation, and air conditioning (HVAC) airflow is 
regulated by the U.S. Occupational Safety and Health Adminis-
tration and is tied to maximum occupancy. Consequently, if no 
sensors are present, a room must be ventilated during normal 
working hours according to the maximum number of people 
who can be in the room (maximum seating capacity), thereby 
wasting considerable energy. From this perspective, sensing 
capabilities can lead to better situational awareness as well as 
more efficient, dynamic, and adaptive management of electric-
ity and energy storage devices by incorporating intelligence 
into the BMS. The IoT has emerged as a promising solution to 
make this integration a reality.

Essentially, the IoT is a platform that connects devic-
es over the Internet, allows them talk to one another and to 
hu  mans, and, by doing so, enables the realization of desir-
able context-specific objectives such as energy savings (e.g., 
scheduling HVAC based on occupancy), condition monitoring 
(e.g., fault detection of HVAC), and predictive maintenance 
(e.g., the servicing of air filters in HVAC). Considering that 
the IoT is expected to change the future of smart BMSs, this 
article describes an IoT-based BMS that makes use of signal 
processing and machine-learning techniques. We note that 
signal processing has been employed extensively in wireless 
sensor networks for assisted living and information filter-
ing. Therefore, it could be very helpful for extracting crucial 
information about building health using different sensors, as 
depicted in Figure 1. Based on this, we describe an energy-
efficiency study conducted in a building test bed. The test bed 
is equipped with IoT devices and uses signal processing with 
machine learning to understand human activity and its impact 

on a building’s energy use. To this end, the main contributions 
of this article are as follows:

 ■ providing a literature review on the application of the IoT 
in building management as well as a discussion of the de -
sired features of a smart BMS

 ■ implementing machine-learning techniques in low-level 
devices, such as sensors and other IoT devices, via transfer 
learning and semisupervised learning techniques to enable 
IoT devices with low computation capability to perform 
machine-learning algorithms locally via edge computation

 ■ illustrating how such techniques can benefit building man-
agement by providing useful information that can better 
characterize energy efficiency

 ■ presenting some case studies from experiments in a real-
world environment.

State of the Art
As buildings undergo years of use, their thermal character-
istics deteriorate, indoor spaces get rearranged, and usage 
patterns change. In time, their inner and outer microclimates 
adjust to the changes in surrounding buildings, overshadow-
ing patterns, city climates, and building retrofitting [2]. As 
a consequence, their performance frequently falls short of ex-
pectations. In this context, the IoT opens new opportunities 
to integrate intelligence into the BMS in a cost-effective man-
ner through seamless integration of various sensors, smart 
meters, and actuators: the BMS can use these to monitor and 
identify different energy and environment-related parameters 
[3], analyze the health of a building, determine energy and 
thermal requirements, and, ultimately, determine the electric-
ity usage behavior of different subsystems intelligently. The 

FIGURE 1. A demonstration of the use of sensor fusion and machine learning for IoT-based green building management.
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 performance of a BMS depends mainly on collecting large 
volumes of data from different building subsystems, which 
the BMS then analyzes and processes using various signal 
processing tools. Based on the application of IoT-based signal 
processing techniques in managing various subsystems with-
in a building, existing studies can be divided into five general 
categories: 1) lighting, 2) HVAC, 3) flexible loads, 4) human 
detection, and 5) diagnostics and prognostics. We briefly de-
scribe these five categories in the following.

Lighting
Lighting accounts for a major fraction of global electricity con-
sumption. In office buildings, for example, the electricity used 
for lighting can constitute up to 40% of total electricity con-
sumption [4]. From this perspective, a number of studies have 
been conducted to develop solutions to help reduce electric-
ity consumption based on a building’s lighting. For instance, 
to achieve the desired illumination in a building having low 
electricity consumption, the authors in [4] propose a luminaire-
based periodic sensor processing algorithm to implement a 
smart lighting control system. In [5], the authors present a 
Q-learning-based lighting control system that personalizes and 
employs users’ perceptions of their surroundings as the feed-
back signal to better manage lighting intensity. In addition, 
[6] and [7] review lighting control techniques that use signal 
processing-based daylight-prediction and occupancy-detection 
methods, respectively.

HVAC
The HVAC system is another major consumer of electricity, 
accounting for 40% of total electricity consumption in U.S. 
buildings overall [1]. Consequently, developing some means to 
reduce the HVAC’s electricity consumption has received con-
siderable attention. In [8], the authors propose a Kalman filter-
ing-based gray box model to predict and determine statistical 
process control limits for fault detection of HVAC systems. A 
similar signal processing technique is also used in [9] to control 
the power consumption of buildings without compromising the 
occupants’ comfort level. An intelligent controller model is de-
signed in [10] that integrates the IoT with cloud computing and 
web services; in addition, the authors develop wireless sensor 
nodes to monitor the indoor environment and HVAC inlet air as 
well as a wireless base station to control the HVAC actuators. 
Lastly, [11] proposes a smart home energy-management system 
using the IoT and big data analytics, predominantly focused 
on the HVAC system’s electricity consumption; in particular, 
the proposed mechanism makes use of off-the-shelf business 
intelligence and big data analytics software packages to bet-
ter manage energy consumption and meet consumer demand. 
Other examples of such studies in the context of HVAC can be 
found in [12] and [13].

Flexible loads
The third area of study focuses on monitoring and controlling 
electricity consumption by other flexible loads within build-
ings. Examples of such loads include washing machines, dish-

washers, ovens, electric vehicles, and energy storage systems. 
IoT devices can effectively monitor the operational status of 
these loads and exploit signal processing techniques to pre-
dict their usage patterns and effectively control their opera-
tion for better energy management (or demand response). For 
example, a learning-based signal processing tool for demand 
management is designed in [14], and a deep-learning-based 
signal processing approach is implemented in [15] for non-
intrusive monitoring of all loads in an entire building. In [16], 
the authors design a long- and short-term memory for load 
forecasting based on residential-behavior learning using re-
current neural networks, while, in [17], accurate indoor oc-
cupancy tracking within a building is implemented using 
multisensor fusion.

Human detection
In the area of human detection for BMSs, a number of ma-
chine-learning techniques have been used for head count and 
occupancy-detection purposes. For example, parametric and 
nonparametric algorithms (including background subtraction 
models and Gaussian processes [18]) have been used with a 
camera for head count; these algorithms are implemented using 
the OpenCV library. Further, for occupancy detection, thermal 
imaging [19], pyroelectric infrared sensors [20], and red-green-
blue camera-based techniques have been used extensively. In 
addition, the authors of [21] present an example of sound-sen-
sor-based applications for occupancy detection that use high 
sampling rates to classify activities.

Diagnostics and prognostics
The HVAC system is the most complex system and greatest 
energy consumer in most buildings. Faulty equipment within 
the HVAC system leads to inefficient system operation. Hence, 
keeping such systems in good operational condition is im-
portant. However, regular maintenance of HVAC systems is 
time consuming. Given this context, IoT devices allow us to 
develop advanced predictive-maintenance, fault-detection, and 
diagnostics applications for these systems. For instance, using 
data collected from IoT devices, a data-driven fault-detection 
method is developed in [8].

Based on the discussion here (summarized in Table 1), it 
is clear that the IoT makes possible numerous useful appli-
cations in designing smart and efficient buildings. Never-
theless, obtaining desirable BMS performance by applying 
different signal processing techniques depends significant-
ly on the actual IoT devices that monitor and collect large 
amounts of data in respective contexts and then feed these 
data to the processor. Although, as noted previously, studies 
are available separately on IoT-based BMSs and applications 
of signal processing techniques for some aspects of build-
ing energy management, studies focused on their integration 
for overall building energy operation in practical settings are 
limited. We address this lack of integration by providing an 
overview of how IoT devices can be coupled with signal pro-
cessing techniques to better understand a building’s electric-
ity usage performance.
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Trending technologies for BMS
Here, we provide an overview of trending technologies being 
used for the effective design and development of a BMS data 
acquisition, management, and control platform. These tech-
nologies treat the BMS as a cloud-based ecosystem that 1) uses 
social interaction among the people within communities to es-
tablish sophisticated global behavior patterns that can achieve 
different social, financial, and scientific goals; 2) uses green 
energy and storage resources for environmental sustainability; 
and 3) affirms the overall establishment of a smart system with 
autonomous decision-making capability.

IoT for seamless integration and processing
At present, it is difficult and expensive for a building manager 
to be fully aware of a building’s health in real time, due to cur-
rent buildings’ limited sensing and control capabilities. Hence, 
the design of an integrated data-acquisition and control system 
based on an open architecture and a cloud-enabled IoT can help 
reduce the cost of setting up a BMS. An integrated IoT system 
allows the building manager to monitor and sense the build-
ing’s different environmental parameters (e.g., through motion 
and noise detectors, temperature and humidity sensors, and 
electricity and water flow meters), collect the relevant human 
activity information (occupancy, heat map, etc.), and estimate 
the energy usage (e.g., by comparing the current information 
with previously collected historical data), which will be fed 
into a smart management system that will manipulate actua-
tors (e.g., switches, controllers, and thermostats) to efficiently 
manage the building’s environment according to expectations 
and designated rules.

Such an IoT platform (which is an open platform) can inter-
face and connect with various subsystems of different ven-
dors, e.g., sensing subsystems (people counting, temperature, 
humidity, light, noise, and motion), control subsystems (ther-
mostats, switches, smart plugs, and actuators), and metering 
subsystems (energy consumption, water flow, etc.). Currently, 
various off-the-shelf products and systems are available for 
the IoT; for example, utility use worldwide is trending toward 

smart energy profiles, such as batteryless energy harvesting 
switches (e.g., Enocean), low-cost Wi-Fi controllers (e.g., Par-
ticle) and thermostats (e.g., Nest by Google), and many others. 
As these technologies advance, we expect that more and more 
IoT devices will be available on the market. Hence, there are 
great opportunities to tap the capability of these growing IoT 
systems. Nevertheless, to implement an IoT system, one needs 
to address the challenges of scalability, flexible provisioning, 
interoperability, and low latency [22].

Attribution of energy usage to human activities
One of the key technologies receiving considerable attention for 
deployment as a part of a BMS is the integration of human activ-
ity tracking within the control system as a way to understand how 
a building’s electricity usage is affected by the number of occu-
pants and their various activities. By “tracking human activity,” 
we refer to the tracking of human movement within a designated 
area, which can be accomplished using a smartphone scanning 
sensor. Essentially, such a sensor can scan smart devices in the vi-
cinity (smartphones, mobile tablets, and the like) and, at the same 
time, record the smart device’s duration of stay and media access 
control address. This determines not only the heat map (i.e., hu-
man count) of the designated area but also presents information 
concerning the duration of stay and the movement path—and, 
potentially, social relationships as well. Such tracking can pro-
vide building managers with information on occupants’ efficient 
use of different areas in a building and help them in recommend-
ing further modification (architectural or electrical system) of a 
space if necessary for greater overall energy efficiency.

Big data analytics for insightful analysis
Big data management is, in essence, the core software layer that 
ultimately drives the BMS through big data analytics, including 
prediction (e.g., predictive maintenance), model building, com-
plexity mapping, and visualization. Big data analytics aids the 
dynamic management of energy consumption via monitoring 
and analyzing energy-related activities to minimize unintended 
energy and water consumption. This is basically a process of 

Table 1. A summary of the surveyed literature on applying IoT-based signal processing for BMSs.

Category Main Focus of the Study Adopted Technical Approach Surveyed Studies

Lighting Use sensor-based data to shape the output of light-emitting- 
diode lighting systems to achieve desired illumination  
conditions and lower electricity consumption within a building

Proportional-integral-derivative control, 
 custom-built android mobile applications, 
controller optimization

[4]–[7]

HVAC Reduce electricity consumption by the HVAC system of a  
building without affecting the privacy and comfort level  
of the building’s occupants

Kalman filtering, gray box models,  
cloud computing, big data analytics,  
business intelligence models

[1], [8]–[13]

Flexible loads Monitor and schedule electricity consumption by  
flexible loads within a building to reduce electricity costs

Machine learning, deep learning,  
recurrent neural networks,  
behavioral modeling

[14]–[17]

Human detection Monitor the number of people (or occupancy detection) 
in a room within a building to facilitate energy- 
consumption modeling

Background subtraction models,  
Gaussian processes, sound-sensor- 
based approaches

[18]–[21]

Diagnostics and  
prognostics

Advance predictive maintenance, fault detection, and  
diagnostics applications of systems using IoT-based data

Kalman filtering, gray box models [8]
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 examining the large data set obtained through the IoT. Using this 
process, a building manager can identify information on human 
activity, weather conditions, the microclimate within the build-
ing, and related energy wastage. Doing so requires designing al-
gorithms that can accurately extract the intercorrelations among 
load consumption, human occupancy and movement activity, 
energy wastage, renewable energy generation, and weather con-
ditions, allowing the creation of effective models from real-time 
large-scale data sets to perform predictive maintenance.

Renewable energy and storage for  
increasing the flow of green energy
To facilitate the flow and use of green energy, BMSs also ex-
plore possible provisioning of renewable energy resources in 
buildings through dynamic scheduling and control. In particu-
lar, the BMS first collects data on weather conditions and sub-
sequent renewable energy generation through the low-cost IoT 
system. Then, together with the information about human ac-
tivity within the building, the BMS exploits big data analytics 
to determine how to optimally schedule the dispatch of renew-
able energy from its distributed sources as well as the charging 
and discharging of the respective storage devices.

For example, a solar thermal system integrated with hot water 
storage is becoming very popular in commercial buildings. Based 
on the previously discussed process (i.e., using the available solar 
generation for heating water to meet demand based on human 
activity), a building’s BMS can use its big data analytics to predict 
how much hot water will be needed for the building. Thus, it can 
dynamically schedule the heat pump to turn on to heat hot water 
based on the availability of renewable energy.

IoT-based human activity detection  
and building efficiency
As mentioned earlier, understanding human activity is particu-
larly important to energy efficiency. In this section, we provide 
a brief case study to illustrate how low-cost IoT devices can be 
used along with signal processing and machine-learning tech-
niques to understand the number of people in a particular area of 
a building and provide building management with key insights 
for effectively managing the building’s electricity consumption.

Head counting with an overhead camera
To realize a low-cost head count camera, we use a camera with 
a fish-eye lens that captures images at 30 frames/s. The camera 
is installed directly on top of the entrance door of the selected 
room. The images captured by the camera are processed lo-
cally. Only the head count number is uploaded to the cloud. 
For head counting, we explore a number of signal processing 
techniques including the following.

OpenCV image processing
We first use the OpenCV library with traditional image-process-
ing techniques for head counting. To overcome the influence of 
moving objects such as a door, the background subtraction method 
is fused with the color detection method in head count detection. 
Unfortunately, the accuracy of this method becomes unacceptable 

when the light inside the room is switched off. This motivates us to 
use deep-learning techniques in the head count camera.

Motivation for transfer learning
Recently, deep learning—and, especially, convolutional neural 
networks (CNNs)—has made great progress in object recogni-
tion. However, building an object-recognition model with CNNs 
is tedious due to the significant amount of data and the resource 
requirements for training purposes. For instance, the model for 
the ImageNet Large Scale Visual Recognition Challenge was 
trained on 1.2 million images over a period of 23 weeks in mul-
tiple graphics processing units. As a consequence, it has become 
popular among researchers and practitioners to use transfer 
learning and fine-tuning (i.e., transferring the network weights, 
which have been trained on a rich data set, to the designated 
task, e.g., detecting people on images in this study). In particu-
lar, we use the pretrained single shot detection (SSD) multibox 
model [23] as the network due to its higher accuracies, high 
frame rate, and suitability for embedded application. 

SSD multibox
SSD matches objects with default boxes having multiple feature 
maps with different aspect ratios. Each element of the feature 
map has either four or six default boxes associated with it. Any 
default box having a Jaccard overlap higher than a threshold of 
0.5 with a ground truth box is considered a match. SSD has six 
feature maps in total, each responsible for a different scale of ob-
jects, thus allowing it to identify objects across a large range of 
scales. SSD runs 3 × 3 convolution filters on the feature map to 
classify and predict the offset to the default boxes.

Transfer learning and fine-tuning
There are two main procedures we adopt when using the pre-
trained SSD multibox model. The first is transfer learning. 
We use an SSD model that is pretrained for the Microsoft 
Common Objects in Context (COCO) data set [24]. Then, we 
change the number of classes in the box predicator according 
to our requirement. Second is fine-tuning. We keep the pre-
trained weights of the feature extractor and use them as initial 
values for retraining. Note that, because the feature extractor is 
trained for a large rich data set over millions of iterations, the 
weights are stable and converged. As such, we only fine-tune 
the feature extractor weights according to our data set.

In Figure 2, we depict results based on OpenCV libraries 
using only our pretrained SSD model and transfer learning. 
Figure 2 also demonstrates a frame captured under low lighting 
conditions. One can observe that OpenCV and the pretrained 
SSD model do not show good results under low lighting condi-
tions. As illustrated in Figure 2(b), the OpenCV method cap-
tures the same person as two instances, and the pretrained SSD 
model does not capture anything at all [Figure 2(c)]. Nonethe-
less, the transfer learning method is well generalized for both 
good and low lighting conditions [Figure 2(d)] and can be used 
for the people-counting algorithm.

It is important to note that, to reduce the processing com-
plexity and power consumption for occupancy detection, the 
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MobileNet architecture is used as the 
feature extractor for the SSD model. 
The input image size was restricted  
to 250 × 250 pixels without losing ac -
curacy, which greatly reduces the com-
putational power. Further, while the 
original pretrained SSD MobileNet 
can detect 99 object classes accurately, 
we reduce the number of classes to two. 
This helps lower the power consump-
tion of the module without limiting the 
performance of the detection (because 
our intention is to detect only person 
versus nonperson cases).

Occupancy detection with a  
sound sensor
Because a motion sensor has limited 
range, we also explore the suitability 
of using a sound sensor for occupancy 
detection. We are motivated to explore 
sound sensors because the visual ap-
proach using a camera can capture oc-
cu pants’ identity and record their activities within a selected 
space of the building—which not only violates user privacy but 
also requires a very large storage space and data rate for process-
ing in real time. As such, existing studies of occupancy detection 
in building environments, such as [25] and [26], have used tech-
niques that exploit environmental information (including carbon 
dioxide level, noise level, humidity level, and particulate matter 
concentration) instead of using a camera. From this perspective, 
an acoustic approach using a sound sensor is a potential alterna-
tive being explored here. 

A sound sensor is typically used to detect the loudness in 
ambient conditions, with an input taken from a microphone and 
amplified. We use a low-cost analog sound sensor with a sig-
nal-to-noise ratio of 55 dB at 1-kHz maximum input frequency. 
Note that, due to different room structures (room size, wall 
material, furniture, etc.), sensors are placed at different loca-
tions in different rooms, which results in a collection of different 
noise levels. The sensor data are sampled every 100 ms. Based 
on our empirical research and previous study [27], a sampling 
rate of 10 Hz is enough to distinguish human activities within 
the environment. In addition, such low-rate sampling can help 
reduce the sensors’ energy consumption and computation with-
out losing necessary information. 

To accurately detect human occupancy in selected areas, we 
explore four different techniques: 1) the threshold method, 2) the 
unsupervised learning through clustering method, 3) the super-
vised learning through deep-learning method, and 4) a semisu-
pervised learning technique that employs the deep classifier to 
label the unsupervised results.

Thresholding method
We accumulate the sound-sensor data for every 5-min period 
and measure an empirical threshold value for each room to 

determine occupancy. We observe that threshold values are 
different for different rooms and sometimes even for different 
days. As Figure 3 shows, the appropriate threshold for human 
activity detected for room P04 is 8,000, while the threshold 
becomes 12,000 for room P02. Here, P02 and P04 are two se-
lected rooms of the test bed (Figure 4). Therefore, simply using 
the threshold method is not robust. Further, it is tedious to cali-
brate and find the optimal threshold for each individual room.

Unsupervised learning using clustering
To achieve robust occupancy detection using a noise sensor with 
no calibration, we employ unsupervised learning. Instead of send-
ing just the accumulated noise value, we send the noise histogram 
for each 5-min interval according to the following arrangement: 

 ■ bin 1 (sample values range: 0–6)
 ■ bin 2 (sample values range: 6–10)
 ■ bin 3 (sample values range: 10–15)
 ■ bin 4 (sample values range: 15–30)
 ■ bin 5 (sample values range: 30–50)
 ■ bin 6 (sample values range: 50–75)
 ■ bin 7 (sample values range: 75–100)
 ■ bin 8 (sample values range:100 and above). 

The noise histogram refers to a set of bins (ranges), in which 
each bin represents a specific range of data collected by the 
sound sensors. While these eight levels of the histogram are 
used in our case, we believe four or even fewer levels could also 
be sufficient.

We adopt a similar unsupervised learning process in our 
previous work [27] in an outdoor smart city environment. To 
generate meaningful features of the histogram data, we use 
the localized behavior of wavelet transformation; the Haar 
basis function is used as the mother wavelet, due to its own dis -
continuous nature (the Haar basis function is a  mathematical 

Original OpenCV

Transfer Learning

from Google APIGoogle API

Person: 99%

(a) (b)

(c) (d)

FIGURE 2. Detection results using four different methods in low lighting conditions: (a) the original 

frame, (b) using OpenCV libraries, (c) using the SSD model trained for the COCO data set, and (d) 

using transfer learning. API: application programming interface.
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function that generates the feature set for the histogram’s rep-
resentation of data). We represent each 5-min histogram in 
terms of the Haar basis function. Further, principal component 
analysis is used to remove the high correlation between histo-
gram bins. In addition, we remove the redundant noise in the 
data by using only the n principal components that capture 
95% of the variation in the data. Moreover, we use hierarchical 
clustering and calculate the optimal number of clusters using 
the Calinski-Harabasz index.

Supervised learning through deep learning
A major issue in terms of the unsupervised learning technique 
is that it is up to a human to interpret the outcome. For ex-
ample, in our case, we may get three to five different clusters as 
the output of the unsupervised learning, as shown in Figure 3 
(four clusters for room P02 and five clusters for room P04). In 
some cases, one cluster represents the unoccupied duration; in 
other cases, two clusters may represent the unoccupied dura-

tion. Because the unsupervised learning method does not pro-
vide any meaningful understanding of the clusters, we employ 
a deep neural network (DNN) classifier, using the thresholding 
method with a “reasonable threshold” as the “ground truth.” 
The output of the classifier is the probability of occupancy. For 
instance, if the probability of occupancy is greater than 0.5, we 
determine that the space is occupied.

To this end, we first use a sparse autoencoder to extract 
meaningful features for histograms. When training for feature 
extraction, we use only histograms related to one class of data 
(i.e., only those histograms related to the occupied class) to 
train the autoencoder rather than using the data of both classes 
(i.e., occupied and unoccupied). By doing so, we expect to con-
struct more distinguishable features for histograms.

When training the classifier, we fix the weights of the pre-
trained autoencoder and thus optimize only the weights of the 
DNN. To do so, we first use the sparse autoencoder to con-
struct sparse features for the histogram and then use these features 
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as inputs for the deep classifier. In the training stage, we use a data 
set of 5,000, half of which are used to train the autoencoder. In 
both cases, training is performed in 30,000 training epochs. As 
mentioned earlier, we use only a single class to train the autoen-
coder. We can thereby improve the overall classification accuracy 
by approximately 3% compared to training using both classes.

Semisupervised learning method
To improve detection accuracy, we use the following semisu-
pervised learning technique. For a particular cluster based on 
unsupervised learning, we consider the corresponding proba-
bility obtained by the deep classifier. If the majority say “occu-
pied,” then we label that whole cluster “occupied”; if the major-
ity say “unoccupied,” we label that whole cluster “unoccupied.” 
Therefore, we obtain more consistent results compared to using 
the deep classifier only.

The results for these methods are depicted in Figure 3 for 
two different meeting rooms, P02 and P04. To summarize, we 
can observe that the optimal threshold values are different for 
different rooms (e.g., 12,000 for P02 and 800 for P04): finding 
those values in a large-scale deployment could be tedious. In 
the following, we demonstrate how semisupervised learning 
that combines both clustering and a deep classifier overcomes 
this problem. We train the deep classifier using data from 
another two meeting rooms (P01 and P06, with thresholds of 
11,000 and 12,000, respectively), which we verify on P02 and 
P04, as shown in Figure 3. Finally, we see that the semisu-
pervised learning method provides robust and consistent occu-
pancy detection for P02 and P04, even though the training set 
comes from P01 and P06.

Building efficiency via IoT-based BMSs
In this section, we demonstrate how our designed IoT-based BMS 
can provide insights for buildings’ HVAC efficiency in the future. 
The HVAC system, in particular, is chosen because this system 
is responsible for more than 50% of the energy consumption in 
commercial buildings. A commercial facility in Singapore is 
considered as the green building test bed. In the selected build-
ing, the HVAC system is set up with a modern chiller plant and 
central air-handling unit (AHU) that can be managed by a typical 
BMS. The AHU contains an available-speed supply fan, cooling 
coils, filters, a mixing box, a return air fan, dampers, and several 
variable air volume (VAV) terminal units that supply chilled air 
from the AHU to the terminal zones. 

We select a specific area of the commercial facility for ex -
periment, i.e., the meeting room P03 in Figure 4 (which shows 
the schematic of the selected floor plan). On this floor, there is 
one AHU as well as several rooms with VAV units. Each room 
is equipped with IoT sensors and, at the entrances, head count 
cameras. The multipurpose node is responsible for collecting 
the surrounding environmental information. The environmen-
tal information collected for this experiment includes tempera-
ture, humidity, light intensity, motion, and noise. Head count 
cameras are used to count people who enter and exit the rooms 
within the selected area.

Note that the occupancy within a selected space has a di -
rect influence on the energy consumption of the HVAC sys-
tem, which (in conjunction with information on the respec  tive 
energy consumption pattern of the HVAC system) can be ex -
ploited to regulate the energy consumption of the HVAC. For 
example, in [28], the authors propose a data-driven approach 
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for the energy consumption of an HVAC system in which the 
set-point temperature of the HVAC is regulated according 
to the people activity and occupancy to control energy con-
sumption. Such control is shown to be very effective and can 
reduce an HVAC’s energy consumption in a house by 33%. 
An example of another study that uses people occupancy pat-
terns to control the energy consumption of the HVAC can be 
found in [12].

We select one meeting room of the test bed to demonstrate 
the energy use analysis. To do so, we extract historical 
data for the time span between 1 November and 7 Decem-
ber 2017. After filtering out the weekend days and days with 

missing data (due to maintenance and/or network faults), we 
have data for a total of 21 days to analyze. The AHU operates 
from 7:40  a.m. to 7:40 p.m. each weekday; this schedule is 
maintained by the building manager. However, we consider 
the office hours from 8:00 a.m. to 7:00 p.m. for our study, 
because the building is, for the most part, occupied by people 
only during this period of time.

Based on the collected data on room temperature, chilled air 
temperature, and air flow, we compute the cooling energy for the 
energy use analysis. In this context, the required cooling energy 
for a room is considered as ( )Q m T TC acooling air air room supplyt= -  
[29], where , ,, ,m TC aair air roomt  and Tsupply  represent the air den-
sity at ,20 Cc  the specific heat of air, the volume of air supply, 
room temperature, and chilled air temperature, respectively. 
According to the Qcooling  formula, the energy consumption of 
a room for cooling relies on three variables: room temperature, 
chilled air temperature, and air flow. Among these, chilled 
air temperature and airflow are controlled by the AHU and 
are responsible for reducing room temperature to achieve the 
set point, which is established as 20 °C for the selected room. 
As such, the higher the room temperature, the more cooling 
energy is consumed.

The air density and specific heat coefficient are given as 
1.204 kg/m3 and 1.012 kJ/°C/kg, respectively. Then, the room 
temperature data are extracted for our IoT sensors. The supplied 
air volume and temperature are monitored by the BMS; hence, 
the date of volume and temperature can be fetched from the 
BMS database. We divide the total time period of each experi-
ment into multiple time slots, with each time slot constituting a 
5-min interval. Then, we classify the time period with occu-
pancy and without occupancy, respectively, using the occupan-
cy detection technique explained earlier in this section. We 
obtain two sets of room temperatures for time periods with and 
without human occupancy. Figure 5 shows the distribution 
of these two sets of room temperatures. Noticeably, the room 
temperature is higher when the room is occupied compared to 
the case without occupancy. Consequently, we infer that more 
cooling energy will be necessary for consumption during those 
time periods with occupancy than those with no occupancy.

In addition, we classify the cooling energy usage based on 
the occupancy status. In Figure 6, we show the cumulative dis-
tributions of energy use with and without human occupancy; 
a gap between the cooling energy use for the two considered 
occupancy states is clearly visible. Based on this figure, the 
average cooling energy consumption with occupancy and 
without occupancy in each time slot is 6.57 and 6.04 kWh, 
respectively. Hence, the average cooling energy consumption 
with occupancy is 8.7% higher than that without occupancy. 
Furthermore, the average room temperature with and without 
occupancy is 25.37 °C and 25.02 °C, respectively, which indi-
cates an increase of 0.35 °C in average room temperature due 
to human occupancy.

Based on the previous analysis, it is clear that energy con-
sumed by a building’s HVAC system depends to a large extent 
on its occupancy status, in addition to other factors such as the 
building’s thermal characteristics, use of various appliances, 
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the status of window blinds, and the outdoor climate. Thus, 
this study provides useful insights concerning the energy effi-
ciency of a building’s HVAC systems by exploiting its human 
occupancy status, which can be determined easily by simply 
deploying IoT devices in the building. For instance, the occu-
pancy information can be used to develop suitable control strat-
egies or optimization tools via signal processing techniques 
to opportunistically reduce HVAC energy consumption and 
subsequently help the occupants reduce their energy costs. 
For more information about how occupancy information can 
be used to develop suitable control strategies or optimization 
tools, readers may refer to [7], [13], and [30].

Conclusions
In this article, we first reviewed the application of IoT-based 
signal processing techniques for managing various subsystems 
within a building. Then, we provided an overview of how ma-
chine learning can be applied with an IoT device to detect human 
occupancy within a building, which contributes significantly to 
the building’s energy consumption. In particular, we considered

 ■ a transfer learning-based technique that counts people 
based on images captured at the entrances of the selected 
areas of a building 

 ■ an unsupervised learning technique labeled by deep-learn-
ing-based occupancy detection that uses information ob -
tained by sound sensors. 

Further, we provided a short description of the test bed where 
these techniques are deployed for occupancy detection and 
showed how the information can help gain insights on the use 
of the HVAC system within the test bed. The correlation be-
tween occupancy and energy use, as demonstrated in this study, 
has the potential to be used in developing different energy-man-
agement schemes that will help reducing energy consumption 
and electricity costs for building managers.

There are many areas into which the work reported here 
can be extended.

 ■ Widespread deployment: The discussed study was conduct-
ed on a relatively small scale in a commercial building in 
Singapore. While using a real facility provides actual user 
and system data for our study and analysis, it would be inter-
esting to see how the findings from the study can be extend-
ed to a larger scale, e.g., the entire building, via widespread 
deployment of IoT devices.

 ■ Detailed modeling of energy usage: Another interesting exten-
sion of the proposed work would be to use machine-learning 
techniques to perform more detailed modeling of energy use 
by various appliances in the building and then design suitable 
techniques to optimize this use to reduce electricity costs.

 ■ Applying the IoT beyond building energy: IoT sensors also 
provide valuable data for predictive maintenance and anom-
aly detection. Hence, it would be interesting to explore how 
the collected data from IoT sensors can be used to help a 
building perform asset management, which, in addition to 
energy reduction, may reduce other building costs.

 ■ Exploring quantitative performance: This article presents 
qualitative results for the head counting and occupation 

detection study and their importance for building manage-
ment. However, there is a need to extend this work to present 
more quantitative analysis in terms of performance compared 
with existing studies in the literature and analyze how head 
counting impacts the energy consumption of the building.
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