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rent building management systems (BMSs) are highly ex-

pensive and difficult to justify for small- to medium-sized
buildings. The Internet of Things (IoT), which can collect and
monitor a large amount of data on different aspects of a building
and feed the data to the BMS’s processor, provides a new op-
portunity to integrate intelligence into the BMS for monitoring
and managing a building’s energy consumption to reduce costs.
Although an extensive literature is available on, separately, IoT-
based BMSs and applications of signal processing techniques
for some building energy-management tasks, a detailed study
of their integration to address the overall BMS is limited. As
such, this article will address the current gap by providing an
overview of an IoI-based BMS that leverages signal processing
and machine-learning techniques. We demonstrate how to ex-
tract high-level building occupancy information through simple,
low-cost IoT sensors and study how human activities impact
a building’s energy use—information that can be exploited to
design energy conservation measures that reduce the building’s
energy consumption.

Buildings consume 60% of global electricity. However, cur-

Overview

Collectively, buildings are one of the major electricity consum-
ers, representing 60% of total global electricity consumption.
In the United States, for example, 70% of annual electricity use
is due to buildings [1]. Such intense electricity usage by build-
ings is also true for many other countries (although detailed
statistics may not be fully available due to lack of information
or measurement). Therefore, there has been a significant push
toward studying and developing ways to effectively manage
electricity in buildings through efficient BMSs.

Current BMS solutions are, however, highly expensive and
thus difficult to justify for use in small- and medium-size build-
ings. Additionally, due to a recent push for reducing electricity
consumption and increasing operational efficiency, building
managers need to deal with dynamic and diverse building
requirements including anomaly detection, predictive main-
tenance, occupancy tracking, and electricity use optimization
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with renewable integration. For example, in the United States,
heating, ventilation, and air conditioning (HVAC) airflow is
regulated by the U.S. Occupational Safety and Health Adminis-
tration and is tied to maximum occupancy. Consequently, if no
sensors are present, a room must be ventilated during normal
working hours according to the maximum number of people
who can be in the room (maximum seating capacity), thereby
wasting considerable energy. From this perspective, sensing
capabilities can lead to better situational awareness as well as
more efficient, dynamic, and adaptive management of electric-
ity and energy storage devices by incorporating intelligence
into the BMS. The IoT has emerged as a promising solution to
make this integration a reality.

Essentially, the IoT is a platform that connects devic-
es over the Internet, allows them talk to one another and to
humans, and, by doing so, enables the realization of desir-
able context-specific objectives such as energy savings (e.g.,
scheduling HVAC based on occupancy), condition monitoring
(e.g., fault detection of HVAC), and predictive maintenance
(e.g., the servicing of air filters in HVAC). Considering that
the IoT is expected to change the future of smart BMSs, this
article describes an IoT-based BMS that makes use of signal
processing and machine-learning techniques. We note that
signal processing has been employed extensively in wireless
sensor networks for assisted living and information filter-
ing. Therefore, it could be very helpful for extracting crucial
information about building health using different sensors, as
depicted in Figure 1. Based on this, we describe an energy-
efficiency study conducted in a building test bed. The test bed
is equipped with IoT devices and uses signal processing with
machine learning to understand human activity and its impact
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on a building’s energy use. To this end, the main contributions
of this article are as follows:
providing a literature review on the application of the IoT
in building management as well as a discussion of the de-
sired features of a smart BMS
implementing machine-learning techniques in low-level
devices, such as sensors and other IoT devices, via transfer
learning and semisupervised learning techniques to enable
IoT devices with low computation capability to perform
machine-learning algorithms locally via edge computation
illustrating how such techniques can benefit building man-
agement by providing useful information that can better
characterize energy efficiency
presenting some case studies from experiments in a real-
world environment.

State of the Art

As buildings undergo years of use, their thermal character-
istics deteriorate, indoor spaces get rearranged, and usage
patterns change. In time, their inner and outer microclimates
adjust to the changes in surrounding buildings, overshadow-
ing patterns, city climates, and building retrofitting [2]. As
a consequence, their performance frequently falls short of ex-
pectations. In this context, the IoT opens new opportunities
to integrate intelligence into the BMS in a cost-effective man-
ner through seamless integration of various sensors, smart
meters, and actuators: the BMS can use these to monitor and
identify different energy and environment-related parameters
[3], analyze the health of a building, determine energy and
thermal requirements, and, ultimately, determine the electric-
ity usage behavior of different subsystems intelligently. The
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FIGURE 1. A demonstration of the use of sensor fusion and machine learning for loT-based green building management.
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performance of a BMS depends mainly on collecting large
volumes of data from different building subsystems, which
the BMS then analyzes and processes using various signal
processing tools. Based on the application of IoT-based signal
processing techniques in managing various subsystems with-
in a building, existing studies can be divided into five general
categories: 1) lighting, 2) HVAC, 3) flexible loads, 4) human
detection, and 5) diagnostics and prognostics. We briefly de-
scribe these five categories in the following.

Lighting

Lighting accounts for a major fraction of global electricity con-
sumption. In office buildings, for example, the electricity used
for lighting can constitute up to 40% of total electricity con-
sumption [4]. From this perspective, a number of studies have
been conducted to develop solutions to help reduce electric-
ity consumption based on a building’s lighting. For instance,
to achieve the desired illumination in a building having low
electricity consumption, the authors in [4] propose a luminaire-
based periodic sensor processing algorithm to implement a
smart lighting control system. In [5], the authors present a
Q-learning-based lighting control system that personalizes and
employs users’ perceptions of their surroundings as the feed-
back signal to better manage lighting intensity. In addition,
[6] and [7] review lighting control techniques that use signal
processing-based daylight-prediction and occupancy-detection
methods, respectively.

HVAC

The HVAC system is another major consumer of electricity,
accounting for 40% of total electricity consumption in U.S.
buildings overall [1]. Consequently, developing some means to
reduce the HVAC’s electricity consumption has received con-
siderable attention. In [8], the authors propose a Kalman filter-
ing-based gray box model to predict and determine statistical
process control limits for fault detection of HVAC systems. A
similar signal processing technique is also used in [9] to control
the power consumption of buildings without compromising the
occupants’ comfort level. An intelligent controller model is de-
signed in [10] that integrates the IoT with cloud computing and
web services; in addition, the authors develop wireless sensor
nodes to monitor the indoor environment and HVAC inlet air as
well as a wireless base station to control the HVAC actuators.
Lastly, [11] proposes a smart home energy-management system
using the IoT and big data analytics, predominantly focused
on the HVAC system’s electricity consumption; in particular,
the proposed mechanism makes use of off-the-shelf business
intelligence and big data analytics software packages to bet-
ter manage energy consumption and meet consumer demand.
Other examples of such studies in the context of HVAC can be
found in [12] and [13].

Flexible loads

The third area of study focuses on monitoring and controlling
electricity consumption by other flexible loads within build-
ings. Examples of such loads include washing machines, dish-

washers, ovens, electric vehicles, and energy storage systems.
IoT devices can effectively monitor the operational status of
these loads and exploit signal processing techniques to pre-
dict their usage patterns and effectively control their opera-
tion for better energy management (or demand response). For
example, a learning-based signal processing tool for demand
management is designed in [14], and a deep-learning-based
signal processing approach is implemented in [15] for non-
intrusive monitoring of all loads in an entire building. In [16],
the authors design a long- and short-term memory for load
forecasting based on residential-behavior learning using re-
current neural networks, while, in [17], accurate indoor oc-
cupancy tracking within a building is implemented using
multisensor fusion.

Human detection

In the area of human detection for BMSs, a number of ma-
chine-learning techniques have been used for head count and
occupancy-detection purposes. For example, parametric and
nonparametric algorithms (including background subtraction
models and Gaussian processes [18]) have been used with a
camera for head count; these algorithms are implemented using
the OpenCV library. Further, for occupancy detection, thermal
imaging [19], pyroelectric infrared sensors [20], and red-green-
blue camera-based techniques have been used extensively. In
addition, the authors of [21] present an example of sound-sen-
sor-based applications for occupancy detection that use high
sampling rates to classify activities.

Diagnostics and prognostics

The HVAC system is the most complex system and greatest
energy consumer in most buildings. Faulty equipment within
the HVAC system leads to inefficient system operation. Hence,
keeping such systems in good operational condition is im-
portant. However, regular maintenance of HVAC systems is
time consuming. Given this context, IoT devices allow us to
develop advanced predictive-maintenance, fault-detection, and
diagnostics applications for these systems. For instance, using
data collected from IoT devices, a data-driven fault-detection
method is developed in [8].

Based on the discussion here (summarized in Table 1), it
is clear that the IoT makes possible numerous useful appli-
cations in designing smart and efficient buildings. Never-
theless, obtaining desirable BMS performance by applying
different signal processing techniques depends significant-
ly on the actual IoT devices that monitor and collect large
amounts of data in respective contexts and then feed these
data to the processor. Although, as noted previously, studies
are available separately on IoT-based BMSs and applications
of signal processing techniques for some aspects of build-
ing energy management, studies focused on their integration
for overall building energy operation in practical settings are
limited. We address this lack of integration by providing an
overview of how IoT devices can be coupled with signal pro-
cessing techniques to better understand a building’s electric-
ity usage performance.
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Category Main Focus of the Study Adopted Technical Approach Surveyed Studies
Lighting Use sensor-based data to shape the output of light-emitting- Proportional-integral-derivative control, [4]-17]
diode lighting systems to achieve desired illumination custom-built android mobile applications,
conditions and lower electricity consumption within a building ~ controller optimization
HVAC Reduce electricity consumption by the HVAC system of a Kalman filtering, gray box models, [11, [8]-[13]
building without affecting the privacy and comfort level cloud computing, big data analytics,
of the building's occupants business intelligence models
Flexible loads Monitor and schedule electricity consumption by Machine learning, deep learning, [14]-[17]
flexible loads within a building to reduce electricity costs recurrent neural networks,
behavioral modeling
Human defection ~ Monitor the number of people (or occupancy defection) Background subtraction models, [18]-[21]
in a room within a building fo facilitate energy- Gaussian processes, sound-sensor-
consumption modeling based approaches
Diagnostics and Advance predictive mainfenance, fault detection, and Kalman filtering, gray box models [8]

prognostics

Trending technologies for BMS

Here, we provide an overview of trending technologies being
used for the effective design and development of a BMS data
acquisition, management, and control platform. These tech-
nologies treat the BMS as a cloud-based ecosystem that 1) uses
social interaction among the people within communities to es-
tablish sophisticated global behavior patterns that can achieve
different social, financial, and scientific goals; 2) uses green
energy and storage resources for environmental sustainability;
and 3) affirms the overall establishment of a smart system with
autonomous decision-making capability.

loT for seamless integration and processing

At present, it is difficult and expensive for a building manager
to be fully aware of a building’s health in real time, due to cur-
rent buildings’ limited sensing and control capabilities. Hence,
the design of an integrated data-acquisition and control system
based on an open architecture and a cloud-enabled IoT can help
reduce the cost of setting up a BMS. An integrated IoT system
allows the building manager to monitor and sense the build-
ing’s different environmental parameters (e.g., through motion
and noise detectors, temperature and humidity sensors, and
electricity and water flow meters), collect the relevant human
activity information (occupancy, heat map, etc.), and estimate
the energy usage (e.g., by comparing the current information
with previously collected historical data), which will be fed
into a smart management system that will manipulate actua-
tors (e.g., switches, controllers, and thermostats) to efficiently
manage the building’s environment according to expectations
and designated rules.

Such an IoT platform (which is an open platform) can inter-
face and connect with various subsystems of different ven-
dors, e.g., sensing subsystems (people counting, temperature,
humidity, light, noise, and motion), control subsystems (ther-
mostats, switches, smart plugs, and actuators), and metering
subsystems (energy consumption, water flow, etc.). Currently,
various off-the-shelf products and systems are available for
the IoT; for example, utility use worldwide is trending toward

diagnostics applications of systems using loT-based data

smart energy profiles, such as batteryless energy harvesting
switches (e.g., Enocean), low-cost Wi-Fi controllers (e.g., Par-
ticle) and thermostats (e.g., Nest by Google), and many others.
As these technologies advance, we expect that more and more
IoT devices will be available on the market. Hence, there are
great opportunities to tap the capability of these growing IoT
systems. Nevertheless, to implement an IoT system, one needs
to address the challenges of scalability, flexible provisioning,
interoperability, and low latency [22].

Attribution of energy usage to human activities

One of the key technologies receiving considerable attention for
deployment as a part of a BMS is the integration of human activ-
ity tracking within the control system as a way to understand how
a building’s electricity usage is affected by the number of occu-
pants and their various activities. By “tracking human activity,”
we refer to the tracking of human movement within a designated
area, which can be accomplished using a smartphone scanning
sensor. Essentially, such a sensor can scan smart devices in the vi-
cinity (smartphones, mobile tablets, and the like) and, at the same
time, record the smart device’s duration of stay and media access
control address. This determines not only the heat map (i.e., hu-
man count) of the designated area but also presents information
concerning the duration of stay and the movement path—and,
potentially, social relationships as well. Such tracking can pro-
vide building managers with information on occupants’ efficient
use of different areas in a building and help them in recommend-
ing further modification (architectural or electrical system) of a
space if necessary for greater overall energy efficiency.

Big data analytics for insightful analysis

Big data management is, in essence, the core software layer that
ultimately drives the BMS through big data analytics, including
prediction (e.g., predictive maintenance), model building, com-
plexity mapping, and visualization. Big data analytics aids the
dynamic management of energy consumption via monitoring
and analyzing energy-related activities to minimize unintended
energy and water consumption. This is basically a process of
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examining the large data set obtained through the IoT. Using this
process, a building manager can identify information on human
activity, weather conditions, the microclimate within the build-
ing, and related energy wastage. Doing so requires designing al-
gorithms that can accurately extract the intercorrelations among
load consumption, human occupancy and movement activity,
energy wastage, renewable energy generation, and weather con-
ditions, allowing the creation of effective models from real-time
large-scale data sets to perform predictive maintenance.

Renewable energy and storage for

increasing the flow of green energy

To facilitate the flow and use of green energy, BMSs also ex-
plore possible provisioning of renewable energy resources in
buildings through dynamic scheduling and control. In particu-
lar, the BMS first collects data on weather conditions and sub-
sequent renewable energy generation through the low-cost IoT
system. Then, together with the information about human ac-
tivity within the building, the BMS exploits big data analytics
to determine how to optimally schedule the dispatch of renew-
able energy from its distributed sources as well as the charging
and discharging of the respective storage devices.

For example, a solar thermal system integrated with hot water
storage is becoming very popular in commercial buildings. Based
on the previously discussed process (i.e., using the available solar
generation for heating water to meet demand based on human
activity), a building’s BMS can use its big data analytics to predict
how much hot water will be needed for the building. Thus, it can
dynamically schedule the heat pump to turn on to heat hot water
based on the availability of renewable energy.

loT-based human activity detection

and building efficiency

As mentioned earlier, understanding human activity is particu-
larly important to energy efficiency. In this section, we provide
a brief case study to illustrate how low-cost IoT devices can be
used along with signal processing and machine-learning tech-
niques to understand the number of people in a particular area of
a building and provide building management with key insights
for effectively managing the building’s electricity consumption.

Head counting with an overhead camera

To realize a low-cost head count camera, we use a camera with
a fish-eye lens that captures images at 30 frames/s. The camera
is installed directly on top of the entrance door of the selected
room. The images captured by the camera are processed lo-
cally. Only the head count number is uploaded to the cloud.
For head counting, we explore a number of signal processing
techniques including the following.

OpenCV image processing

We first use the OpenCV library with traditional image-process-
ing techniques for head counting. To overcome the influence of
moving objects such as a door, the background subtraction method
is fused with the color detection method in head count detection.
Unfortunately, the accuracy of this method becomes unacceptable

when the light inside the room is switched off. This motivates us to
use deep-learning techniques in the head count camera.

Motivation for fransfer leaming

Recently, deep learning—and, especially, convolutional neural
networks (CNNs)—has made great progress in object recogni-
tion. However, building an object-recognition model with CNNs
is tedious due to the significant amount of data and the resource
requirements for training purposes. For instance, the model for
the ImageNet Large Scale Visual Recognition Challenge was
trained on 1.2 million images over a period of 23 weeks in mul-
tiple graphics processing units. As a consequence, it has become
popular among researchers and practitioners to use transfer
learning and fine-tuning (i.e., transferring the network weights,
which have been trained on a rich data set, to the designated
task, e.g., detecting people on images in this study). In particu-
lar, we use the pretrained single shot detection (SSD) multibox
model [23] as the network due to its higher accuracies, high
frame rate, and suitability for embedded application.

SSD multibox

SSD matches objects with default boxes having multiple feature
maps with different aspect ratios. Each element of the feature
map has either four or six default boxes associated with it. Any
default box having a Jaccard overlap higher than a threshold of
0.5 with a ground truth box is considered a match. SSD has six
feature maps in total, each responsible for a different scale of ob-
jects, thus allowing it to identify objects across a large range of
scales. SSD runs 3 x 3 convolution filters on the feature map to
classify and predict the offset to the default boxes.

Transfer learning and fine-funing

There are two main procedures we adopt when using the pre-
trained SSD multibox model. The first is transfer learning.
We use an SSD model that is pretrained for the Microsoft
Common Objects in Context (COCO) data set [24]. Then, we
change the number of classes in the box predicator according
to our requirement. Second is fine-tuning. We keep the pre-
trained weights of the feature extractor and use them as initial
values for retraining. Note that, because the feature extractor is
trained for a large rich data set over millions of iterations, the
weights are stable and converged. As such, we only fine-tune
the feature extractor weights according to our data set.

In Figure 2, we depict results based on OpenCV libraries
using only our pretrained SSD model and transfer learning.
Figure 2 also demonstrates a frame captured under low lighting
conditions. One can observe that OpenCV and the pretrained
SSD model do not show good results under low lighting condi-
tions. As illustrated in Figure 2(b), the OpenCV method cap-
tures the same person as two instances, and the pretrained SSD
model does not capture anything at all [Figure 2(c)]. Nonethe-
less, the transfer learning method is well generalized for both
good and low lighting conditions [Figure 2(d)] and can be used
for the people-counting algorithm.

It is important to note that, to reduce the processing com-
plexity and power consumption for occupancy detection, the
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MobileNet architecture is used as the
feature extractor for the SSD model.
The input image size was restricted
to 250 x 250 pixels without losing ac-
curacy, which greatly reduces the com-
putational power. Further, while the
original pretrained SSD MobileNet
can detect 99 object classes accurately,
we reduce the number of classes to two.
This helps lower the power consump-
tion of the module without limiting the
performance of the detection (because
our intention is to detect only person
Versus nonperson cases).

Occupancy detection with a

sound sensor

Because a motion sensor has limited
range, we also explore the suitability
of using a sound sensor for occupancy
detection. We are motivated to explore
sound sensors because the visual ap-
proach using a camera can capture oc-
cupants’ identity and record their activities within a selected
space of the building—which not only violates user privacy but
also requires a very large storage space and data rate for process-
ing in real time. As such, existing studies of occupancy detection
in building environments, such as [25] and [26], have used tech-
niques that exploit environmental information (including carbon
dioxide level, noise level, humidity level, and particulate matter
concentration) instead of using a camera. From this perspective,
an acoustic approach using a sound sensor is a potential alterna-
tive being explored here.

A sound sensor is typically used to detect the loudness in
ambient conditions, with an input taken from a microphone and
amplified. We use a low-cost analog sound sensor with a sig-
nal-to-noise ratio of 55 dB at 1-kHz maximum input frequency.
Note that, due to different room structures (room size, wall
material, furniture, etc.), sensors are placed at different loca-
tions in different rooms, which results in a collection of different
noise levels. The sensor data are sampled every 100 ms. Based
on our empirical research and previous study [27], a sampling
rate of 10 Hz is enough to distinguish human activities within
the environment. In addition, such low-rate sampling can help
reduce the sensors’ energy consumption and computation with-
out losing necessary information.

To accurately detect human occupancy in selected areas, we
explore four different techniques: 1) the threshold method, 2) the
unsupervised learning through clustering method, 3) the super-
vised learning through deep-learning method, and 4) a semisu-
pervised learning technique that employs the deep classifier to
label the unsupervised results.

Thresholding method
We accumulate the sound-sensor data for every 5-min period
and measure an empirical threshold value for each room to

Original

(a)

Google API

(©)

Transfer Learning
from Google API}

(d)

FIGURE 2. Detection results using four different methods in low lighting conditions: (a) the original
frame, (b) using OpenCV libraries, (c) using the SSD model trained for the COCO data set, and (d)
using transfer learning. API: application programming interface.

determine occupancy. We observe that threshold values are
different for different rooms and sometimes even for different
days. As Figure 3 shows, the appropriate threshold for human
activity detected for room P04 is 8,000, while the threshold
becomes 12,000 for room P02. Here, PO2 and P04 are two se-
lected rooms of the test bed (Figure 4). Therefore, simply using
the threshold method is not robust. Further, it is tedious to cali-
brate and find the optimal threshold for each individual room.

Unsupervised learning using clustering

To achieve robust occupancy detection using a noise sensor with
no calibration, we employ unsupervised learning. Instead of send-
ing just the accumulated noise value, we send the noise histogram
for each 5-min interval according to the following arrangement:

bin | (sample values range: 0-6)

bin 2 (sample values range: 6-10)

bin 3 (sample values range: 10-15)

bin 4 (sample values range: 15-30)

bin 5 (sample values range: 30-50)

bin 6 (sample values range: 50-75)

bin 7 (sample values range: 75-100)

bin 8 (sample values range:100 and above).

The noise histogram refers to a set of bins (ranges), in which
each bin represents a specific range of data collected by the
sound sensors. While these eight levels of the histogram are
used in our case, we believe four or even fewer levels could also
be sufficient.

We adopt a similar unsupervised learning process in our
previous work [27] in an outdoor smart city environment. To
generate meaningful features of the histogram data, we use
the localized behavior of wavelet transformation; the Haar
basis function is used as the mother wavelet, due to its own dis-
continuous nature (the Haar basis function is a mathematical
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function that generates the feature set for the histogram’s rep-
resentation of data). We represent each 5-min histogram in
terms of the Haar basis function. Further, principal component
analysis is used to remove the high correlation between histo-
gram bins. In addition, we remove the redundant noise in the
data by using only the n principal components that capture
95% of the variation in the data. Moreover, we use hierarchical
clustering and calculate the optimal number of clusters using
the Calinski-Harabasz index.

Supervised leaming through deep leaming

A major issue in terms of the unsupervised learning technique
is that it is up to a human to interpret the outcome. For ex-
ample, in our case, we may get three to five different clusters as
the output of the unsupervised learning, as shown in Figure 3
(four clusters for room P02 and five clusters for room P04). In
some cases, one cluster represents the unoccupied duration; in
other cases, two clusters may represent the unoccupied dura-

tion. Because the unsupervised learning method does not pro-
vide any meaningful understanding of the clusters, we employ
a deep neural network (DNN) classifier, using the thresholding
method with a “reasonable threshold” as the “ground truth.”
The output of the classifier is the probability of occupancy. For
instance, if the probability of occupancy is greater than 0.5, we
determine that the space is occupied.

To this end, we first use a sparse autoencoder to extract
meaningful features for histograms. When training for feature
extraction, we use only histograms related to one class of data
(i.e., only those histograms related to the occupied class) to
train the autoencoder rather than using the data of both classes
(i.e., occupied and unoccupied). By doing so, we expect to con-
struct more distinguishable features for histograms.

When training the classifier, we fix the weights of the pre-
trained autoencoder and thus optimize only the weights of the
DNN. To do so, we first use the sparse autoencoder to con-
struct sparse features for the histogram and then use these features
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FIGURE 3. The results of occupancy detection in two different meeting rooms (labeled P02 and P04). We visited the site for one day and recorded the

ground truth for evaluation. (a) Meeting room P02 and (b) meeting room P04.
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as inputs for the deep classifier. In the training stage, we use a data
set of 5,000, half of which are used to train the autoencoder. In
both cases, training is performed in 30,000 training epochs. As
mentioned earlier, we use only a single class to train the autoen-
coder. We can thereby improve the overall classification accuracy
by approximately 3% compared to training using both classes.

Semisupervised learning method

To improve detection accuracy, we use the following semisu-
pervised learning technique. For a particular cluster based on
unsupervised learning, we consider the corresponding proba-
bility obtained by the deep classifier. If the majority say “occu-
pied,” then we label that whole cluster “occupied”; if the major-
ity say “unoccupied,” we label that whole cluster “unoccupied.”
Therefore, we obtain more consistent results compared to using
the deep classifier only.

The results for these methods are depicted in Figure 3 for
two different meeting rooms, P02 and PO4. To summarize, we
can observe that the optimal threshold values are different for
different rooms (e.g., 12,000 for PO2 and 800 for P0O4): finding
those values in a large-scale deployment could be tedious. In
the following, we demonstrate how semisupervised learning
that combines both clustering and a deep classifier overcomes
this problem. We train the deep classifier using data from
another two meeting rooms (P01 and P06, with thresholds of
11,000 and 12,000, respectively), which we verify on P02 and
P04, as shown in Figure 3. Finally, we see that the semisu-
pervised learning method provides robust and consistent occu-
pancy detection for PO2 and P04, even though the training set
comes from P01 and P06.

Building efficiency via loT-based BMSs

In this section, we demonstrate how our designed IoT-based BMS
can provide insights for buildings’ HVAC efficiency in the future.
The HVAC system, in particular, is chosen because this system
is responsible for more than 50% of the energy consumption in
commercial buildings. A commercial facility in Singapore is
considered as the green building test bed. In the selected build-
ing, the HVAC system is set up with a modern chiller plant and
central air-handling unit (AHU) that can be managed by a typical
BMS. The AHU contains an available-speed supply fan, cooling
coils, filters, a mixing box, a return air fan, dampers, and several
variable air volume (VAV) terminal units that supply chilled air
from the AHU to the terminal zones.

We select a specific area of the commercial facility for ex-
periment, i.e., the meeting room P03 in Figure 4 (which shows
the schematic of the selected floor plan). On this floor, there is
one AHU as well as several rooms with VAV units. Each room
is equipped with IoT sensors and, at the entrances, head count
cameras. The multipurpose node is responsible for collecting
the surrounding environmental information. The environmen-
tal information collected for this experiment includes tempera-
ture, humidity, light intensity, motion, and noise. Head count
cameras are used to count people who enter and exit the rooms
within the selected area.

Note that the occupancy within a selected space has a di-
rect influence on the energy consumption of the HVAC sys-
tem, which (in conjunction with information on the respective
energy consumption pattern of the HVAC system) can be ex-
ploited to regulate the energy consumption of the HVAC. For
example, in [28], the authors propose a data-driven approach

Humidity
Temperature
Motion
Brightness
Noise

—

etc.

o ot e 0 S m— Humidity Histogram

il e \’/—\\ 20

| o) |
| m— Temperature Histogram
2 r’L;\/’W‘ =i 10

| o

475 500 525 S50 575 600 625 650 675

25 26 21 28 29

Real Time Monitoring Data Analysis

e
/“’ 2 2 e
£ Y =
\,_ AHU VAV Box,! 10T Devices
7 -
=

Camera

&

Meeting
Room P04

Meeting
Room P05

Meeting
Room P02 Engine
Room

25 2 T
& o U ol
Business

Meeting
Room

Room P01

Meeting
Room P03

Meeting
Room P06

*\‘ r =
Floor Plan

FIGURE 4. A demonstration of the green building test bed.

] ]

——— Iy
TR AN =C= 12

Meeting Room P03

IEEE SIGNAL PROCESSING MAGAZINE | September 2018 |

107



108

0.14

0.12

o©
o

0.08

0.06

Relative Probability

0.04

0.02

0
23 24 25 26 27
Room Temperature (°C)

[ Without Occupancy
[ With Occupancy

FIGURE 5. An illustration of the distribution of room temperature with and
without human occupancy.

=4
[22d
4

I"

4

+
.. 08
= ’
= !
o 4
(U R4
3 e
o 0.6 4L
=
o "

3
(] 1
= 4
§ 04 g
= s
= ‘)
0.2 T
’t
0
¢
4o
0 —
2 4 6 8 10 12

Cooling Energy (kWh)

- = = Without Occupancy
- = = With Occupancy

FIGURE 6. A comparison of cooling energy use with and without human
occupancy.

for the energy consumption of an HVAC system in which the
set-point temperature of the HVAC is regulated according
to the people activity and occupancy to control energy con-
sumption. Such control is shown to be very effective and can
reduce an HVAC’s energy consumption in a house by 33%.
An example of another study that uses people occupancy pat-
terns to control the energy consumption of the HVAC can be
found in [12].

We select one meeting room of the test bed to demonstrate
the energy use analysis. To do so, we extract historical
data for the time span between 1 November and 7 Decem-
ber 2017. After filtering out the weekend days and days with

missing data (due to maintenance and/or network faults), we
have data for a total of 21 days to analyze. The AHU operates
from 7:40 a.m. to 7:40 p.m. each weekday; this schedule is
maintained by the building manager. However, we consider
the office hours from 8:00 a.m. to 7:00 p.m. for our study,
because the building is, for the most part, occupied by people
only during this period of time.

Based on the collected data on room temperature, chilled air
temperature, and air flow, we compute the cooling energy for the
energy use analysis. In this context, the required cooling energy
for aroom is considered as Qcooling = Pair CairMa(Troom — Tsupply)
[29], where pair, Cir, Mas Troom, and Teupply represent the air den-
sity at 20 °C, the specific heat of air, the volume of air supply,
room temperature, and chilled air temperature, respectively.
According to the Qcooling formula, the energy consumption of
aroom for cooling relies on three variables: room temperature,
chilled air temperature, and air flow. Among these, chilled
air temperature and airflow are controlled by the AHU and
are responsible for reducing room temperature to achieve the
set point, which is established as 20 °C for the selected room.
As such, the higher the room temperature, the more cooling
energy is consumed.

The air density and specific heat coefficient are given as
1.204 kg/m® and 1.012 kJ/°C/kg, respectively. Then, the room
temperature data are extracted for our IoT sensors. The supplied
air volume and temperature are monitored by the BMS; hence,
the date of volume and temperature can be fetched from the
BMS database. We divide the total time period of each experi-
ment into multiple time slots, with each time slot constituting a
5-min interval. Then, we classify the time period with occu-
pancy and without occupancy, respectively, using the occupan-
cy detection technique explained earlier in this section. We
obtain two sets of room temperatures for time periods with and
without human occupancy. Figure 5 shows the distribution
of these two sets of room temperatures. Noticeably, the room
temperature is higher when the room is occupied compared to
the case without occupancy. Consequently, we infer that more
cooling energy will be necessary for consumption during those
time periods with occupancy than those with no occupancy.

In addition, we classify the cooling energy usage based on
the occupancy status. In Figure 6, we show the cumulative dis-
tributions of energy use with and without human occupancys;
a gap between the cooling energy use for the two considered
occupancy states is clearly visible. Based on this figure, the
average cooling energy consumption with occupancy and
without occupancy in each time slot is 6.57 and 6.04 kWh,
respectively. Hence, the average cooling energy consumption
with occupancy is 8.7% higher than that without occupancy.
Furthermore, the average room temperature with and without
occupancy is 25.37 °C and 25.02 °C, respectively, which indi-
cates an increase of 0.35 °C in average room temperature due
to human occupancy.

Based on the previous analysis, it is clear that energy con-
sumed by a building’s HVAC system depends to a large extent
on its occupancy status, in addition to other factors such as the
building’s thermal characteristics, use of various appliances,
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the status of window blinds, and the outdoor climate. Thus,
this study provides useful insights concerning the energy effi-
ciency of a building’s HVAC systems by exploiting its human
occupancy status, which can be determined easily by simply
deploying IoT devices in the building. For instance, the occu-
pancy information can be used to develop suitable control strat-
egies or optimization tools via signal processing techniques
to opportunistically reduce HVAC energy consumption and
subsequently help the occupants reduce their energy costs.
For more information about how occupancy information can
be used to develop suitable control strategies or optimization
tools, readers may refer to [7], [13], and [30].

Condlusions
In this article, we first reviewed the application of IoT-based
signal processing techniques for managing various subsystems
within a building. Then, we provided an overview of how ma-
chine learning can be applied with an IoT device to detect human
occupancy within a building, which contributes significantly to
the building’s energy consumption. In particular, we considered
a transfer learning-based technique that counts people
based on images captured at the entrances of the selected
areas of a building
an unsupervised learning technique labeled by deep-learn-
ing-based occupancy detection that uses information ob-
tained by sound sensors.
Further, we provided a short description of the test bed where
these techniques are deployed for occupancy detection and
showed how the information can help gain insights on the use
of the HVAC system within the test bed. The correlation be-
tween occupancy and energy use, as demonstrated in this study,
has the potential to be used in developing different energy-man-
agement schemes that will help reducing energy consumption
and electricity costs for building managers.
There are many areas into which the work reported here
can be extended.
Widespread deployment: The discussed study was conduct-
ed on a relatively small scale in a commercial building in
Singapore. While using a real facility provides actual user
and system data for our study and analysis, it would be inter-
esting to see how the findings from the study can be extend-
ed to a larger scale, e.g., the entire building, via widespread
deployment of IoT devices.
Detailed modeling of energy usage: Another interesting exten-
sion of the proposed work would be to use machine-learning
techniques to perform more detailed modeling of energy use
by various appliances in the building and then design suitable
techniques to optimize this use to reduce electricity costs.
Applying the IoT beyond building energy: 10T sensors also
provide valuable data for predictive maintenance and anom-
aly detection. Hence, it would be interesting to explore how
the collected data from IoT sensors can be used to help a
building perform asset management, which, in addition to
energy reduction, may reduce other building costs.
Exploring quantitative performance: This article presents
qualitative results for the head counting and occupation

detection study and their importance for building manage-
ment. However, there is a need to extend this work to present
more quantitative analysis in terms of performance compared
with existing studies in the literature and analyze how head
counting impacts the energy consumption of the building.
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