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T
he next-generation energy network, the so-called smart 

grid (SG), promises tremendous increases in efficiency, 

safety, and flexibility in managing the electricity grid as 

compared to the legacy energy network. This is needed 

today more than ever, as global energy consumption is growing 

at an unprecedented rate and renewable energy sources (RESs) 

must be seamlessly integrated into the grid to assure a sustain-

able human development. 

Smart meters (SMs) are among the crucial enablers of the 

SG concept. They supply accurate, high-frequency informa-

tion about users’ household energy consumption to a utility 

provider (UP), which is essential for time-of-use (ToU) pricing, 

rapid fault detection, and energy theft prevention, while also 

providing consumers with more flexibility and control over 

their consumption. However, highly accurate and granular SM 
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data also pose a threat to consumer privacy, as nonintrusive 

load monitoring (NILM) techniques enable a malicious attack-

er to infer many details of a user’s private life. 

This article focuses on privacy-enhancing energy manage-

ment techniques that provide accurate energy consumption 

information to the grid operator without sacrificing consumer 

privacy. In particular, we focus on techniques that shape and 

modify actual user energy consumption by means of physical 

resources, such as rechargeable batteries (RBs), RESs, and 

demand shaping. A rigorous mathematical analysis of privacy 

is presented under various physical constraints on the available 

physical resources. Finally, open questions and challenges that 

need to be addressed to pave the way to the effective protection 

of users’ privacy in future SGs are presented.

SMs for an SG
The current energy grid is one of the engineering marvels of the 

20th century. However, it has become inadequate for satisfying 

the steadily growing global electricity demand of the 21st cen-

tury. In fact, world energy consumption is predicted to increase 

48% from 2012 to 2040 [1], driven by factors such as the growth 

of the global economy, the rise of the gross domestic product 

per person, the expansion of the planet’s population, an in -

creased penetration of electric vehicles, and a broader mobility 

revolution [2]. Other issues that need to be addressed are the 

effective integration of RESs and storage capabilities into the 

grid, the improvement of the grid’s environmental sustainability, 

and the promotion of plug-in hybrid electric vehicles. 

To address these challenges, SGs are being engineered. 

They are intended to substantially improve energy generation, 

transmission, distribution, consumption, and security, provid-

ing enhanced reliability and quality of the electricity supply, 

quicker detection of energy outages and theft, better matching 

of the energy supply with demand, and greater environmental 

sustainability by enabling an easier integration of distributed 

generation and storage capabilities. The smartness of an SG 

resides in its advanced metering infrastructure, which enables 

two-way communication between the utility and its customers 

and whose pivotal element in the distribution network is the 

SM, the device that monitors a user’s electricity consumption 

in almost real time.

In contrast to legacy grids, in which billing data are gath-

ered at the end of a use period, SMs send electricity con-

sumption measurements automatically and at a much higher 

resolution. They enable two-way communication with the UP, 

the entity that sells energy to the customers, transmitting a 

great amount of detailed information. SMs collect and send 

bidirectional readings of active, reactive, and apparent power 

and energy—i.e., so-called four-quadrant metering—that is 

purchased from the grid (or sold to it, if the user produces ener-

gy, e.g., by means of a photovoltaic panel). In the latter case, 

the user is referred to as a prosumer, i.e., at once a producer 

and consumer of electricity who can be financially rewarded 

for the energy sold to the grid. 

SMs also keep track of historical consumption data over the 

previous days, weeks, and months and provide high-resolution 

consumption data analytics to the customers to enable them to 

monitor their energy consumption via an in-home display, web 

portal, or smartphone application in near real time. SMs also 

send alerts about voltage quality measurements, helping UPs 

fulfill their obligations toward customers concerning energy, 

power, and voltage quality, e.g., in accordance with the EN 

50160 European standard. Examples of these measurements 

include the root mean square voltage variations, e.g., voltage 

dropout, sags and swells, and total harmonic distortion. 

Data used for billing, such as the current ToU tariff, bal-

ance and debts, credit and prepayment modes, credit alerts, 

and topping up, are also sent to the UP. SMs can detect if tam-

pering takes place and send relevant data about it, along with 

the security credentials for enabling the correct functioning of 

cryptographic protocols, e.g., hashing, digital signatures, and 

cyclic redundancy checks. Finally, SM firmware information 

and updates are also communicated.

The increased data resolution is crucial for enabling SG func-

tionalities. Table 1 shows the smallest time resolution of some 

SMs currently in use, which is on the order of a few minutes. 

The European Union recommends a time resolution of at least 

15 min to allow the new SG functionalities [3]. For example, 

the current SM specifications in the United Kingdom mandate 

that an SM send integrated energy readings every 30 min to 

the UP, while the data sent to a user’s in-home display can have 

a resolution of up to 10 s [4]. It should be noted that, with the 

increased adoption of renewable energy generation by prosum-

ers, the increased penetration of electric vehicles and energy 

storage technologies, and the diversification of the energy mar-

ket, it is expected that SGs will become more volatile, requiring 

meter readings at a much higher rate in the near future.

SMs provide a wide range of benefits to all of the parties in 

an SG. Thanks to SMs, UPs can gain better knowledge of their 

customers’ needs while reducing the cost of meter readings. SMs 

allow UPs to dynamically determine the electricity cost and pro-

duce more accurate bills, thus reducing customers’ complaints 

and back-office rebilling. The implementation of ToU pricing 

can incentivize demand response and control customer behavior, 

while improved demand forecasts and load-shaping techniques 

can reduce peak electricity demands. Finally, energy theft can 

be detected more easily and quickly.

Distribution system operators (DSOs), i.e., the entities that 

operate the grid, benefit from SMs as well, by being able to bet-

ter monitor and manage the grid. SMs allow DSOs to reduce 

operational costs and energy losses and improve grid efficien-

cy and system design, distributed system state estimation, and 

volt/VAR control. Moreover, DSOs are able to better match 

distributed resources with the ongoing electricity demand and 

Table 1. The time resolution of SMs currently in use.

SM Model Time Resolution
Itron Centron [72] 1 min 
REX2 [73] 5 min 
Kamstrup Omnipower [74] 5 min 
Enel Open Meter [75] 15 min 
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the grid’s power delivery capability, thus reducing the need to 

build new power plants.

Consumers themselves take advantage of SMs to monitor 

their consumption in near real time, leading to better consump-

tion awareness and energy usage management. Moreover, con-

sumers receive accurate and timely billing services, with no 

more estimated bills, and benefit from ToU pricing by shift-

ing nonurgent loads to off-peak price periods. Microgeneration 

and energy storage devices can be integrated more easily, and 

profits from selling the generated excess energy can be collect-

ed automatically. Failing or inefficient home appliances, unex-

pected activity or inactivity, and wasted energy are detected 

faster and more accurately; in addition, switching between UPs 

is made easier by requesting on-demand readings, which, in 

turn, increases the competition among UPs and reduces costs 

for consumers.

For the aforementioned reasons, the installation of SMs is 

proceeding rapidly and attracting massive investment glob-

ally. The SM market is expected to grow from an estimated 

US$12.79 billion in 2017 to US$19.98 billion by 2022, register-

ing a compound annual growth rate of 9.34% [5]. Moreover, 

the global SM data analytics market, which includes demand 

response analytics and grid optimization tools, is expected to 

reach US$4.6 billion by 2022 [6], while the global penetration 

of SMs is expected to climb from approximately 30% at the 

end of 2016 to 53% by the end of 2025 [7]. These figures show 

how timely and crucial the research in this field is, and they  

highlight the need to quickly resolve potential obstructions that 

can threaten the future benefits from this critical technology.

SM privacy risks
An SM’s ability to monitor a user’s electricity consumption in 

almost real time presents serious implications for consumer 

privacy. In fact, by employing NILM techniques, it is possible 

to identify the power signatures of specific appliances from 

aggregated household SM measurements. NILM approaches 

date back to the 1980s work of George Hart, who first pro-

posed a prototype of an NILM device [9]. Since then, NILM 

methods have improved in different directions, e.g., by assum-

ing either high- or low-frequency measurements, by considering 

known or learned signatures [10], and even by using off-the-shelf 

statistical methods without any a priori knowledge of house-

hold activities [11]. 

An example of a typical power consumption profile, along 

with some detected appliances, is illustrated in Figure 1. As 

shown in Figure 2, the UP, a third party that has access to 

SM data (by, for example, buying it from the UP), or a mali-

cious eavesdropper may gain insights into users’ activities and 

behaviors, and determine such information as a person’s pres-

ence at home, religious beliefs, disabilities, illnesses, and even 

the TV channel being watched [12]–[14]. 

Apart from residential users, SM privacy is particularly 

critical for businesses, e.g., factories and data centers, as their 

power consumption profile may reveal sensitive information 

about the state of their businesses to their competitors. SM pri-

vacy has attracted significant public attention and continues 

to be a topic of heated public and political debate. The issue 

even stopped the mandatory SM rollout plan in The Nether-

lands in 2009 after a court decided that the forced installa-

tion of SMs would violate consumers’ right to privacy and be 

in breach of the European Convention of Human Rights [15]. 

Indeed, concerns about consumer privacy threaten the wide-

spread adoption of SMs and can be a major roadblock for this 

multibillion-dollar industry.

It is worth pointing out that the privacy problem involving 

SMs is different from the SM data security problem [16]. In 

the latter, there is a sharp distinction between legitimate users 

and malicious attackers, whereas in the privacy problem in the 

SM context, any legitimate receiver of data can also be consid-

ered malicious. To benefit from the advantages provided by the 

SG, users need to share some information about their electric-

ity consumption with the UP and DSO. However, by sharing 

accurate and high-frequency information about their energy 

consumption, consumers also expose their private lives and 

behavior to the UP, which is a fully legitimate user and, at the 

same time, a potential malevolent party. This renders traditional 

encryption techniques for data privacy ineffective in achieving 

privacy against the UP and calls for novel privacy measures and 

privacy-protection techniques.

Privacy-enabling techniques for SMs
There is a growing literature on SM privacy-preserving meth-

ods, which can be classified into two main families. The first, 

which we call the SM data manipulation (SMDM) approach, 

consists of techniques that process the SM data before report-

ing them to the UP; the practices in the second family, called 

user demand shaping (UDS), aim at modifying the user’s actu-

al energy consumption. Considered within the first class are 

methods such as data obfuscation, data aggregation, data anon-

ymization, and downsampling. 

Data obfuscation, i.e., the perturbation of metering data 

by adding noise, is a classical privacy-protection method and 

has been adapted to SGs in [17] and [18]. In [19], differential 

FIGURE 1. An example of a household electricity consumption profile with 

some appliances highlighted. (Figure courtesy of the Dataport database [8].)
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 privacy, a well-established concept in the data-mining literature, 

is applied to SMs, where noise is added not only to the user’s 

energy consumption, via the RB, but also to the energy used for 

charging the RB itself to provide differential privacy guarantees. 

Along these lines, the authors in [20] introduce an information-

theoretic framework to study the tradeoff between the privacy 

obtained by altering the SM data and the utility of data for vari-

ous SG functionalities. Note that the more noise added to the 

data, the higher the privacy but the less relevant and useful the 

data are for monitoring and controlling the grid. In [20], an addi-

tive distortion measure is considered to model the utility, which 

allows the characterization of the optimal privacy-versus-utility 

tradeoff in an information-theoretic single-letter form. 

The data aggregation approach, proposed in [18], [21], and 

[22], considers sending the aggregate power measurements for 

a group of households so that the UP is prevented from dis-

tinguishing individual consumption patterns. The aggregation 

can be performed with or without the help of a trusted third 

party (TTP). 

The data anonymization approach, on the other hand, 

mainly considers utilizing pseudonyms rather than the real 

identities of consumers [23], [24]. Another method, proposed 

in [25], reduces the SM sampling rate to a level that does not 

pose any privacy threat. However, the SMDM family suffers 

from the following shortcomings.

 ■ Adding noise to the SM readings causes a mismatch 

between the reported values and the real energy con-

sumption, which prevents DSOs and UPs from accurately 

monitoring the grid state; rapidly reacting to outages, 

energy theft, or other problems; and producing accurate 

and timely billing services. These would significantly 

limit the SM benefits.

 ■ DSOs, UPs, or, more generally, any eavesdropper can 

embed additional sensors right outside a household or a 

business (street-level measurements are already available 

to DSOs and UPs) to monitor the energy consumption with-

out fully relying on SM readings.

 ■ The anonymization and aggregation techniques that 

include the presence of a TTP only shift the problem of 

trust from one entity (the UP) to another (the TTP).

These issues are avoided by the UDS approaches, which 

directly modify the actual energy consumption profile of the 

user, called the user load, rather than modifying the data sent 

to the UP. In this family, the SM accurately reports the energy 

taken from the grid without any modification; however, this is 

not the energy that is actually consumed by the appliances. This 

is achieved by filtering the user’s actual electricity consump-

tion via a rechargeable energy storage device, i.e., an RB, or by 

exploiting an RES, which can be used to partially hide the con-

sumer’s energy consumption. Examples of RESs include solar 

panels and micro wind farms. 

Another technique is to partially shift a consumer’s demand. 

If we denote the energy received from the grid as the grid load, 

the idea is to physically differentiate the grid load from the user 

FIGURE 2. Some questions an attacker may be able to answer by having access to SM data.

When are you usually away from home?

Do you have an electronic alarm system? How often do you arm it?

How many people are at home? Are they on holiday?

Do you have disabilities/illnesses?

How often do you eat in? Do you eat hot/cold breakfasts?

Do you eat microwaved food?

Do you wake up at night? What are your sleep cycles?

Do you drive when sleep deprived?

How many hours do you spend in front of the TV?

Is any appliance inefficient?

How often do you entertain? 

Do you need to break the speed limit to get to work on time?

What is your age, gender/sex, race, ethnicity?

Do you come from a nontraditional family?
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load. Note that the effect of using an RB or an RES can also 

be considered as adding noise to the household consumption, 

but the noise in this case corresponds to a physical variation 

in the energy received from the grid. Moreover, different from 

the approaches in the SMDM family, the SM measurements 

provided by the UDS methods are exact, and there is no issue 

of any data mismatch between the SM data and the effective 

user demand from the grid. Thus, when UDS methods are 

deployed, the utility of SMs for the SG is not diminished since 

the users’ energy consumption is neither misreported nor dis-

torted. As a result, while the privacy-versus-utility tradeoff 

is of particular concern for the SMDM techniques, with the 

UDS methods, SG utility is never diminished. Instead, other 

tradeoffs are considered, such as privacy versus cost or pri-

vacy versus wasted energy. Figure 3 shows an overview of the 

privacy-enabling approaches.

The focus of this article is on UDS techniques, which have 

been receiving growing attention from the research communi-

ty in recent years. The physical resources these techniques rely 

on, such as RBs or RESs at consumer premises, are already 

becoming increasingly available, thanks to government incen-

tives and the decreasing cost of solar panels and household and 

electric vehicle RBs. Moreover, shaping and filtering users’ 

actual energy consumption by means of physical resources 

render any data misreporting or distortion unnecessary and 

thus, do not undermine the utility of the SG concept itself. 

We present a signal processing perspective on SM priva-

cy by treating the user load as a stochastic time series, which 

can be filtered and distorted by using an RB, an RES, and/or 

demand shaping/scheduling. The available energy generated 

by the RES can also be modeled as a random sequence, whose 

statistics depend on the energy source (e.g., solar or wind) and 

the specifications of the renewable energy generator. Addition-

ally, the finite-capacity battery imposes instantaneous limita-

tions on the available energy. We also note that such physical 

resources can be used as well for cost minimization purposes 

by the users, e.g., by acquiring and storing energy over  low-cost 

periods and utilizing the stored energy in the RB and the ener-

gy generated by an RES over peak-cost periods. Accordingly, 

we also study the tradeoff between privacy and cost, as well 

as the minimization of the wasted renewable energy. Next, we 

describe and summarize the progress made in recent years 

toward quantifying SM privacy leakage in a rigorous manner, 

report the most significant results, and highlight a number of 

future research directions.

Current household batteries, typical energy  
demands, and renewable energy generation
Table 2 lists the storage capacity and peak power of some of 

the currently available RBs for residential use. As can be seen, 

the capacities are in the range of a few kilowatthours. For 

example, the peak power that batteries with a 4-kWh capacity 

FIGURE 3. An overview of the privacy-enabling approaches for SMs.
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• Data Anonymization (e.g., Pseudonyms)
• Data Obfuscation (e.g., Differential Privacy)
• Data Aggregation (e.g., Homomorphic
   Encryption, Paillier Cryptosystems)
• Sampling Period Modification

• RB
• RES
• Demand Shifting

Table 2. The specifications of some currently available residential batteries.

Household RB Capacity (kWh) RB Charging Peak Power (kW) RB Discharging Peak Power (kW) 
Sunverge SIS-6848 [76] 7.7, 11.6, 15.5, 19.4 6.4 6 

SonnenBatterie eco [77] 4 16- 3 8- 3 8-
Tesla Powerwall 2 [78] 13.5 5 5 
LG RESU 48V [79] 2.9, 5.9, 8.8 3, 4.2, 5 3, 4.2, 5 
Panasonic battery system LJ-SK56A [80] 5.3 2 2 
Powervault G200-LI-2/4/6KWH [81] 2, 4, 6 0.8, 1.2 0.7, 1.4 
Orison Panel [82] 2.2 1.8 1.8 
SimpliPhi PHI 3.4–48V [83] 3.4 1.5 1.5 
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can output sustainably is on the order of 1–2 kW. However, as 

the typical electricity consumption is very spiky (e.g., see 

Figure 1), current batteries cannot fully hide the consumption 

spikes, because of the charging/discharging peak power con-

straints. For example, while a 4-kWh battery can hide a con-

stant consumption of 2 kW over 2 h, it cannot fully conceal 

spikes in the user load of more than 2 kW. An example of this 

effect can be noticed in the simulation of Figure 4.

The typical household average power consumption also lies 

within the range of a few kilowatts, as shown in Table 3, where 

the distribution of the average user power consumption values 

over different years obtained from various databases is report-

ed, with various time resolutions. Analyzing the Dataport data-

base [8], we observe that, independent of the period considered, 

the average user energy demand is fewer than 2 kWh 80–90% 

of the time. Current batteries charged at full capacity would 

then be able to satisfy the demand continuously for only a few 

hours. However, completely covering the consumption over a 

few hours may come at the expense of revealing the energy 

consumption fully at future time periods. In fact, once the RB 

is discharged, it needs to be charged again before being able to 

hide the user consumption; hence, the use of the RB introduces 

memory into the system, as decisions taken at a certain time 

have an impact on the privacy performance at later times. 

We should also remark that residential electricity consump-

tion is forecast to increase significantly in the coming years 

[71], emphasizing the need to intelligently exploit limited-

capacity storage devices to hide energy consumption behav-

ior. We also would like to emphasize that the privacy leakage 

is caused mostly by these spikes, which are typically more 

informative (e.g., the oven, microwave, and heater) compared 

to more regular consumption (e.g., the refrigerator). Moreover, 

because of electricity price variations, users may prefer charg-

ing/discharging the battery during certain time periods, which 

limits the available energy that can be used for privacy. Finally, 

it is expected that the increasingly wider adoption of electric 

vehicles and the mass production and adoption of energy-hun-

gry smart devices will inevitably increase the typical house-

hold electricity consumption, further limiting RBs’ capability 

to fully hide the user load.

Table 4 shows the average power generated by typical resi-

dential solar panels, which are the most common residential 

RESs. The location, technology, inclination, and size of the 

solar panel affect the generated power, as shown in Table 5 for 

one of the databases considered, where kWp denotes the kilo-

watt peak, i.e., the output power achieved by a panel under full 

solar radiation. As expected, around 50% of the time, i.e., at 

night, no energy is generated at all, while there are differences 

in the distribution of the average values for the two databases 

considered, due to the different locations. Comparing these 

FIGURE 4. Examples of the user load, grid load, and target load over the 

course of a day when a piecewise target profile is considered [33]. The 

price periods are highlighted by arrows of different colors. Note that the 

target load assumes a different constant value for each price period.
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Table 3. The distribution of the average household power consumption (resolution refers to the measurement frequency). 

Source Location Resolution Time Frame 
Number 
of Houses 0,0.5 kW6 @ (0.5,1 kW@  (1,2 kW@  (2,3 kW@  (3,4 kW@  (4, ) kW+3  

Dataport 
[8]

Texas,  
United 
States 

60 min 1 January– 
31 May 2016

512 38 30 20 7 3 2 

1 January– 
31 December 2015

703 36 26 20 9 5 4 

1 January– 
31 December 2014

720 39 25 20 8 4 4 

1 January– 
31 December 2013

419 35 25 21 9 5 5 

1 January– 
31 December 2012

182 31 26 24 10 5 5 

Intertek 
[26]

United  
Kingdom

2 min 1 May 2010– 
31 July 2011

251 18 24 47 11 0 0 

Dred 
[27] 

The  
Netherlands

1 s 5 July 2015– 
5 December 2015

1 98 1.8 0.4 0 0 0 

Uci [28] France 1 min 16 December 2006– 
26 November 2010

1 47 9 28 8 4 2 

The values in each column indicate the percentage of time the average consumption falls into the corresponding interval.
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values with those in Table 2, we note that the battery capacities 

are large enough to store many hours of average solar energy 

generated by the solar panels most of the time.

A signal processing perspective on SM privacy
A generic discrete-time SM system model is depicted in Fig -

ure 5. In this model, each time slot is normalized to unit time; 

therefore, the power and energy values within a time slot are 

used interchangeably. X Xt !  denotes the total power de -

manded by the appliances in the household in time slot ,t

i.e., the user load, where X  is the user 

load alphabet, i.e., the set of values that 

Xt  can assume. The sequence { }Xt  re -

presents the user’s private information 

that needs to be protected. Y Yt !  is 

the power received from the grid in 

time slot ,t  i.e., the grid load, which is 

measured and reported to the UP by the 

SM, while Y  denotes the grid load 

alphabet. We assume that the user load 

and grid load power values remain con-

stant within a time slot. In practice, this 

can be considered as a discrete-time lin-

ear approximation of a continuous-load 

profile. This approximation can be made 

as accurate as desired by reducing the 

time slot duration.

In current systems, where no energy 

manipulation is employed, , ;Y X tt t 6=  

that is, the actual energy consumption of 

the appliances is reported to the UP by 

the SM. Instead, we will assume that an 

RB and an RES are available to the user 

to physically distort the energy consump-

tion, so that what the user receives from 

the grid, ,Yt  does not reveal too much 

information about the energy used by the appliances, .Xt  We 

remark here that the time slots in our model correspond to time 

instants when the electricity is actually requested by the user and 

drawn from the grid, rather than the typically longer sampling 

interval used for sending SM measurements to the UP. In fact, we 

assume that the SM measures and records the output power val-

ues at each time slot. This is because our aim is to protect consum-

ers’ privacy not only from the UP but also from the DSO or any 

other attacker that may deploy a sensor on the consumer’s power 

line, recording the electricity consumption in almost real time. 

SG

SM

UP

RES

Yt

Yt

Bt

Et

Xt

Xt – Yt

Grid Load User Load

RB

EMU

FIGURE 5. The system model. , , ,X Y Et t t  and Bt  denote the consumer’s power demand, i.e., the user 

load; the SM readings, i.e., the grid load; the power produced by the RES; and the battery state of 

charge at time ,t  respectively. The dashed line represents the meter readings being reported to the UP. 

EMU: energy management unit.

Table 4. The distribution of the average power generated by residential photovoltaic systems. 

Source Location Resolution Time Frame 
Number 
of Houses 0 kW  (0,0.5 kW@  (0.5,1 kW@  (1,2 kW@  (2,3 kW@  (3,4 kW@  (4, ) kW+3  

Dataport 
[8] 

Texas, 
United 
States 

60 min 1 January 
2012–31 
May 2016

351 49 17 7 9 7 6 5 

Microgen 
[29]

United 
Kingdom 

30 min 1 January–31 
December 
2015

100 51.7 36.4 9.8 2 0.1 0 0 

The values in each column indicate the percentage of time the average generation falls into the corresponding interval.

Table 5. The specifications of the solar panels studied in the Microgen [29] database. 

Solar Panel Area (m2) Solar Panel Cell Type Nominal Installed Capacity (kWp)

( , ]0 15 ( , ]15 20 ( , ]220 5 ( , ]025 3 ( , )30 3+ Monocrystalline Polycrystalline ( , ]20 ( , ]2 3 ( , ]3 4 ( , )4 3+

5 35 44 15 1 93 7 4 36 59 1 

The values in each column indicate the percentage of solar panels that satisfy the corresponding property.
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The amount of energy stored in the RB at time t  is 

[ , ],B B0 maxt !  where Bmax  denotes the maximum battery 

capacity. X Yt t-  is the power taken from the RB, and the bat-

tery charging and discharging processes are often constrained 

by the so-called charging and discharging power constraints 

Pct  and ,Pdt  respectively, i.e., , .P X Y P tc t t d 6# #- -t t  There 

is also typically a constraint on the average energy that can 

be retrieved from an RB, imposed by an average power con-

straint ,Pr  i.e., ( ) .X Y PE t
n

n t t1
1

#R -=
r6 @  Losses in the battery 

charging and discharging processes may also be taken into 

account to model a more realistic energy management sys-

tem. The renewable energy generated at time t  by the RES is 

represented by ,E Et !  where [ , ] .E0E max=  RBs and RESs 

are expensive facilities, and installation and operation costs 

can be reduced if they are shared by multiple users, e.g., 

users within the same neighborhood or block of apartments. 

Moreover, sharing these resources allows the centralized 

management of the energy system, which also leads to a 

more efficient use of the available resources. The renewable 

energy can be stored in the RB or used immediately so that 

a user can

 ■ increase privacy by not reporting the actual power con-

sumption to the UP

 ■ decrease electricity costs by purchasing and storing elec-

tricity from the grid when it is cheaper and using it to satis-

fy future demand—or even selling it back to the UP when 

the price increases

 ■ increase energy efficiency by reducing the waste of gener-

ated renewable energy when it is not needed and, when it is 

not profitable, to sell it to the UP.

The random processes X  and E  are often modeled as 

Markov processes or as sequences of independent and iden-

tically distributed (i.i.d.) random variables. Although the 

UP typically does not know the instantaneous outcomes of 

these processes, it may well know their statistics. In some 

cases, the UP may know the realizations of the renewable 

energy process ,E  for example, if it has access to additional 

information from sensors deployed near the household that 

measure different parameters, e.g., the solar or the wind 

power intensity, and if it knows the specifications of the 

user’s renewable energy generator, e.g., the model and size 

of the solar panel.

Given these definitions, the equation expressing the evolu-

tion of the energy level in the battery is

 { ( ), }.minB B E X Y Bmaxt t t t t1 = + - -+  (1)

Sometimes, the user load does not need to be satisfied imme-

diately in its entirety. In fact, it can be further classified into 

demand that must be met immediately (e.g., lighting or cook-

ing) and demand that can be satisfied at a later time, the so-

called elastic demand (e.g., charging an electric vehicle or 

running a dishwasher or washing machine). For the latter 

demand, the user’s only concern is that a certain task needs to 

be finished by a certain deadline (e.g., the electric car must be 

fully charged by 8 a.m.), and it does not matter exactly when 

the consumption takes place. This flexibility allows the con-

sumer to employ demand response to increase privacy and lower 

the energy cost.

The electricity unit cost at time ,t  denoted by ,Ct  can be 

modeled as a random variable or in accordance with a specific 

ToU tariff. The cost incurred by a user to purchase Yt  units 

of power over a time interval tx  at price Ct  is thus given by 

.Y Ct t tx  When the presence of an RES is considered, the pro-

sumer may be able to sell part of the energy generated to the 

grid to further improve privacy and minimize the energy cost. 

If this occurs, the net metering approach is typically consid-

ered, i.e., the utilities purchase consumer-generated electricity 

at the current retail electricity rate. The battery wear and tear 

due to charging and discharging the RB can also be taken into 

account and modeled as an additional cost [30].

The energy management policy 
The energy management unit (EMU) is the intelligence of the 

system, located at the user’s premises, where the SM privacy-

preservation and cost-optimization algorithms are physically 

implemented. The energy management policy (EMP), imple-

mented by the EMU, determines at any time t  the amount of 

energy that should be drawn from the grid and the RB, given 

the previous values of the user load ,Xt  renewable energy ,Et  

level of energy in the battery ,Bt  and grid load ,Yt 1-  i.e.,

 : , ,f tX E B Y Yt
t t t t 1

"# # # 6
-  (2)

where ,f F!  and F  denotes the set of feasible policies, i.e., 

policies that produce grid load values that satisfy the RB and 

RES constraints at any time as well as the battery update 

equation in (1). The optimal policy is chosen to minimize the 

long-term information leakage about a consumer’s electricity 

consumption, possibly along with other criteria, such as the 

minimization of electricity cost or wasted energy. The EMP 

prevents outages, and typically it is not allowed to draw more 

energy from the grid to be wasted simply for the sake of 

increased privacy.

The policy ft  in (2) corresponds to an online EMP, i.e., 

one in which the action taken by the EMU at any time slot 

depends only on the information available causally right up to 

that time. Alternatively, in an offline optimization framework, 

the policy takes actions based also on future information 

about the system state, i.e., the user load and RES energy gen-

eration, in a noncausal fashion. In the SM privacy literature, 

both offline and online SM privacy-preserving algorithms 

have been considered. Online algorithms are more realis-

tic and relevant for real-world applications; however, offline 

algorithms may lead to interesting intuition or bounds on the 

performance. Moreover, noncausal knowledge of the electric-

ity price process is a realistic assumption in today’s energy 

networks; and even the noncausal knowledge of power con-

sumption may be valid for certain appliances, such as refrig-

erators, boilers, heaters, and electric vehicles, whose energy 

consumption can be accurately predicted over certain finite 

time frames.
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A heuristic privacy measure:  
Variations in the grid load profile
As in many other problems involving privacy, a wide consen-

sus over the best privacy measures for SMs has not yet been 

reached. A number of privacy measures have been proposed in 

the literature, each with its own benefits and limitations. 

Although it is clear that privacy is achieved when the UP can-

not infer a user’s behavior on the basis of SM measurements, 

it is challenging to define a corresponding mathematical mea-

sure that is independent of the particular detection technique 

employed by the attacker.

Grid load variance as a privacy measure
One can argue that privacy in SMs can be ensured by oppor-

tunely charging and discharging the RB so that the grid load is 

always constant. In fact, the differences in consecutive load 

measurements Y Yt t 1- -  are indicative of the appliances’ 

switch-on/off events, the so-called features, and are typically 

exploited by the existing NILM algorithms. Ideally, a complete-

ly flat grid load profile would not reveal any feature and would 

only leak a user’s long-term average power consumption. 

However, this would require a very large battery capacity and/or 

a powerful RES. Alternatively, the level of privacy can be mea-

sured by what we might call the distance of the grid load from a 

completely flat target load profile, based on the intuition that the 

smaller the distance, the higher the level of privacy achieved 

[31]. Accordingly, privacy can be defined as the grid load vari-

ance around a prefixed target load profile ,W i.e.,

 ,
n

Y W
1

EVn

t

n

t

1

2
_ -

=

^ h6 @/  (3)

where the expectation is over Xt  and ,Yt  and typically 

[ ] .W XE=

Another important concern for consumers is their energy 

cost. With the integration of unreliable RESs into the grid, it 

is expected that the unit cost of energy from different UPs will 

fluctuate over time. RBs for residential use provide flexibility 

to consumers, as they can buy and store energy during low-

cost periods to be used during peak-price periods. The impact 

of RBs in reducing the cost of energy to consumers has been 

extensively studied in the literature [32]. Note, however, that 

the operation of the EMU to minimize the energy cost does not 

necessarily align with the goal of minimizing privacy leakage. 

Therefore, it is essential to jointly optimize the electricity cost 

and user privacy. If the cost of energy and battery wear and 

tear are considered, the overall optimization problem becomes

 1 ( ) ,min
n

C Y t C Y W
1

E
t

n

t t B B t

1

2a+ + -

=

^ h6 @/  (4)

where 1 ( )t 1B =  if the battery is charging/discharging at time 

t  and equals 0; otherwise, CB  is the battery operating cost 

due to the battery deterioration caused by charging and dis-

charging the RB, and a  strikes the tradeoff between privacy 

and cost. The expectation in (4) is over the probability distri-

butions of all of the involved random variables, i.e., , ,X Yt t  

and .Ct

If [ ], ,W X tEt 6=  the EMU tries to achieve a flat grid load 

profile around the average user energy consumption with as 

few deviations as possible. This scenario is illustrated in Fig-

ure 6, where the straight blue line is the fixed target consump-

tion profile Wt  and the red line indicates the achieved grid 

load profile .Yt  For i.i.d. X  and C  processes, an online EMP 

can be obtained using Lyapunov optimization [30]. The online 

control algorithm can be formulated as a Lyapunov function 

with a perturbed weight, and the drift-plus-penalty framework 

is adopted, which is typically used for stabilizing a queuing 

network, by minimizing the so-called drift while at the same 

time minimizing a penalty function. Here, the penalty is rep-

resented by the optimization target, while the Lyapunov drift 

is defined as the difference of the level of energy in the RB 

at successive time instants. The authors in [30] show that this 

approach leads to a mixed-integer nonlinear program, which 

they solve by decomposing it into multiple cases and finding a 

closed-form solution to each of them.

This problem can also be studied in an offline framework 

by assuming that the future user demand profile can be accu-

rately estimated for a certain time horizon and that the energy 

cost is known in advance. When privacy and cost of energy are 

jointly optimized over a certain time horizon, one can charac-

terize the points on the Pareto boundary of the convex region 

formed by all of the cost and privacy leakage pairs by solving 

the following convex optimization problem [31]:

 ( ) ( ) .min Y C Y W1 t t t

t

n
2

1
Y 0t

a a- + -

=
$

6 @/  (5)

It is shown in [31] that the optimal offline solution has a water-

filling interpretation. However, unlike the classical water-filling 

algorithm, which appears as the solution of the power allocation 

problem across parallel Gaussian channels under a total power 

constraint, here the water level is not constant but changes across 

time because of the instantaneous power constraints.
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FIGURE 6. An example of the user load, grid load, and constant target 

load profiles, where the distance Y Wt t-  is highlighted. The aim of the 

algorithms presented in the “Grid Load Variance as a Privacy Measure” 

section is to minimize the average squared distance.
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A completely flat consumption profile may not be feasible 

or even desirable—e.g., if the cost varies greatly during the 

system operation because of ToU tariffs. Thus, it is reasonable 

to assume that a user requests more energy during off-peak 

price periods as compared to peak price periods and hence 

allows a piecewise constant target load [33]. An example of 

this strategy is shown in Figure 4, where it is applied to real 

power consumption data from the UK-DALE data set [34]. The 

optimization problem (5) becomes

 ( ) ,min
N

Y C Y W
1

1 ( ) ( )

t t

t

t
i

t
i

i

M
2

1
,Y W

c

c

( )
( )

( )

t
i

i

i

1

a a- + -

== -

^ h= G//  (6)

where C( )i  and W( )i  are the cost of the energy purchased from 

the UP and the target profile during the ith price period, 

respectively, where ;i M M1 # #  is the total number of price 

periods during time ;T  and the ith price period spans from 

time slot tc( )i 1-  to .tc( )i  Figure 7 depicts the timing convention 

considered in this scenario. Energy can be sold to the UP to 

further improve the privacy-versus-cost tradeoff, as assumed 

in [33]. Considering a piecewise target profile improves the 

overall privacy-versus-cost tradeoff compared to a constant 

target profile, as shown in Figure 8 for a Powervault G200-LI-

4KWH RB when using power consumption data from [34].

A possible extension of the latter work is to consider the 

multiuser scenario, where, in principle, each user can fix 

its own target profile. As long as the target profile does not 

depend on the user’s energy consumption profile, the UP does 

not receive much information about the consumer’s activities. 

On the other hand, the UP can implicitly incentivize users to 

choose different target profiles by setting different ToU prices 

for different consumers. Since consumers will tend to buy 

more energy when it is cheaper, each of the users in the neigh-

borhood will shift the load to a different time slot, also balanc-

ing the total load on the grid.

Markov decision process formulation
In the online optimization framework, where the user load and 

the energy generated by the RES can be modeled as Markov 

processes (or as i.i.d. sequences as a special case), the SM pri-

vacy problem can be cast as a Markov decision process (MDP). 

An MDP is a discrete-time state-transition system that is for-

mally characterized by the following:

 ■ a state space

 ■ an action space, which includes the possible actions that 

can be taken by the decision maker at each state

 ■ the transition probabilities from the current state to the next 

state, which describe the dynamics of the system

 ■ the reward (or inversely the cost) process, which indicates 

the reward received (or cost incurred) by the decision 

maker by taking a particular action in a particular state. 

The goal of an MDP is to find the optimal policy that min-

imizes the average (or discounted) cost either by a specified 

time in the future, i.e., by considering the so-called finite-hori-

zon setting, or over an indefinite time period, by considering 

the infinite-horizon setting. To solve the corresponding MDP, 

the Bellman optimality equations should be formulated [35], 

which can be solved to obtain the optimal policy at each state 

and time instant. The problem can be solved numerically for 

the finite-horizon setting, while the value iteration algorithm 

can be employed to obtain the optimal stationary policy in the 

infinite-horizon scenario.

In the SM problem, the state at any time t  is typically rep-

resented by a combination of the current level of energy in the 

battery ,Bt  user demand ,Xt  and renewable energy .Et  The 

action, performed by the EMU, is represented by the current 

grid load and the energy used from the RB and RES. State tran-

sitions are modeled by the battery update equation, which is 

typically assumed to be deterministic, and by transitions in the 

user demand and renewable generation states, which typically 

do not depend on users’ actions. The cost function is the privacy 
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loss that is experienced when moving from one level of energy 

in the battery to another by following a certain action. 

However, to consider privacy as the cost function in an MDP, 

it is necessary to formulate the privacy leakage in an additive 

form across time, so that the total loss of privacy over multiple 

time slots is given by the summation of the privacy leakage at 

different time slots. This may be challenging, depending on the 

privacy measure employed. For example, measuring privacy 

via the squared distance of the grid load from a constant target 

profile has a straightforward additive formulation, while the 

same does not hold when privacy is measured by the mutual 

information (MI) between the user and grid load sequences. 

This is because the MI takes into account the dependence 

between the realization of the user load at time ,t Xt  and the 

current, past, and future realizations of , , , , .Y Y Yt1 f f

When the state and action spaces are continuous, it is neces-

sary to discretize them to solve the problem numerically. The 

accuracy of the numerical solution can be improved by decreas-

ing the discretization step size, though at the expense of signifi-

cantly higher computational complexity. When the dimensions 

of the state and action spaces render numerical evaluation of the 

optimal policy unfeasible, one can resort to suboptimal solu-

tions that are easier to optimize and compute numerically yet 

may provide near-optimal performance or interesting intuition. 

Also, when the information-theoretic privacy measures are 

used, it may be possible to simplify the infinite-horizon opti-

mization problem and write it in a single-letter form. We will 

provide further insight into this next.

The SM problem is cast as an MDP in [36], where the loss 

of privacy is measured by the fluctuations of the grid load 

around a constant target load, and the joint optimization of 

privacy and cost is studied. The optimal privacy-preserving 

policies are characterized by minimizing the expected total 

cost. Denote by ut  the action at time .t  To solve the MDP, the 

transition probabilities ( | )p X Xt t 1-  and ( | , )p B B ut t t1-  need 

to be known; however, this is normally not the case, as the user 

load and the energy storage usage are typically nonstation-

ary. The authors in [36] overcome this issue by adopting the 

Q-learning algorithm [37], which is an iterative algorithm used 

for characterizing the expected cost for each state–action pair 

by alternating the exploitation and exploration phases. The cor-

responding offline optimization policy is also characterized in 

[36] to be considered as a benchmark for the online algorithm. 

The paper characterizes the privacy–cost tradeoff curves and 

also evaluates the performance of the proposed algorithm by 

means of the empirical mutual information.

Temporal and spatial similarities  
in the grid load as a privacy measure
Variations in the grid load profile can be captured by consider-

ing the power traces of single appliances and computing dif-

ferences in power consumption both in the time domain, i.e., 

the consumption deviation over time of a specific appliance, 

and in the space domain, i.e., the consumption profiles of dif-

ferent appliances. As these variations are computed over a cer-

tain time horizon, when an online algorithm is considered, 

future user electricity consumption is estimated by forecasting 

the future electricity prices and running Monte Carlo simula-

tions. The optimal decision at any time is characterized by 

considering both the current inputs and the forecasts through a 

rolling online stochastic optimization process. 

Load shifting, i.e., the scheduling of the user’s flexible elec-

tricity demand in accordance with privacy as well as cost con-

cerns, can also be considered. Load shifting is analyzed in [38] 

and [39], where privacy, cost of energy, and battery wear and tear 

are jointly optimized and an online algorithm is formulated. The 

objective is to minimize the sum of the current and expected elec-

tricity and charging/discharging costs together with the weighted 

power profile differences measured through the similarity param-

eters for an entire day. In [39], the effectiveness of three similarity 

measures are examined separately and jointly, considering only 

four typical appliances—an oven, a clothes dryer, a dishwasher, 

and an electric vehicle—for the sake of simplicity.

Heuristic algorithms
While the grid load can be flattened by minimizing its variation 

around a constant consumption target, several works in the litera-

ture propose heuristic battery charging and discharging algo-

rithms that keep the grid load variations limited. An intuitive 

approach is to try to keep the grid load equal to its most recent 

value by discharging (or charging) the RB when the current user 

load is larger (or smaller) than the previous one. This approach, 

called the best-effort (BE) algorithm in [40], tends to eliminate 

the higher-frequency components of the user load while still 

revealing the lower-frequency components. 

In [40], the similarity between the two probability distribu-

tions of the user and grid loads is quantified via the empiri-

cal relative entropy, i.e., the Kullback–Leibler (KL) divergence 

[41]. In the same work, the authors also consider cluster classi-

fication, whereby data are clustered according to power levels 

and cross-correlation and regression procedures, according to 

which the grid load is shifted in time at the point of maximum 

cross-correlation with the user load, and regression methods 

are then used to compare the two aligned signals.

The study in [42] considers a slightly more sophisticated 

approach, called the nonintrusive load-leveling (NILL) algo-

rithm, in which more than one grid load target value, namely, a 

steady-state target and low and high recovery state targets, are 

allowed, and where the EMU tries to maintain the grid load at 

one of these values across time. If the steady-state load cannot 

be maintained, the EMU switches to a high (or low) recovery 

state in case of persistent light (or heavy) user demand. When 

one of the recovery states is reached, the target load is adapted 

accordingly to permit the battery to charge or discharge, simi-

lar to the empirical strategies outlined in [43]. The value of the 

steady-state target load can be updated whenever a recovery 

state is reached, to reduce the occurrences of recovery states, 

which is achieved by using an exponential weighted moving 

average of the demand. To assess their proposed approach, the 

authors in [42] count the number of features, i.e., the number 

of times a device is recognized as being on or off based on the 

grid load as compared to the user load.
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As also pointed out in [44], these heuristic algorithms suf-

fer from precise load change recovery attacks that can iden-

tify peaks of user demand. We note that the NILL algorithm 

essentially quantizes the input load to three values with the help 

of the RB. This idea is generalized in [44] by considering an 

arbitrary number of quantization levels. Since quantization is a 

many-to-few mapping, converting the grid load to a step func-

tion is inherently a nonlinear and irreversible process, which 

can be used to provide privacy by maximizing the quantization 

error under battery limitations. More specifically, the grid load 

is forced to be a multiple of a quantity ,b  i.e., ,hYt tb=  where 

ht  is an integer value and b  is the largest value that satisfies the 

battery’s maximum capacity and power constraints. At any time 

slot, given the user load, the grid load is chosen between the two 

levels adjacent to the user load, namely, Xt
b
` j and ,Xt

b
8 B  where 

·^ h and ·6 @ denote the ceiling and floor functions, respectively. 

The study in [44] proposed three stepping algorithms that 

have different quantization levels: 1) the lazy stepping algorithm, 

which tries to maintain the external load constant for as long as 

possible; 2) the lazy charging algorithm, which keeps charging 

(or discharging) the battery until it is full (or empty); and 3) the 

random charging algorithm, which chooses its actions at ran-

dom. While the simulation results show that these algorithms 

outperform the BE and NILL algorithms, with the lazy stepping 

algorithm typically performing the best, it is hard to make gen-

eral claims because of the heuristic nature of these algorithms. 

In fact, these approaches do not provide theoretical guarantees 

on the level of privacy achieved. Thus, they are not able to make 

any general claim about the strength of the proposed privacy-

preserving approaches and their absolute performance. This is 

an important limitation, as consumers would like to know the 

level of privacy they can achieve, even if it is in statistical terms. 

Also, because such heuristics are often based on deterministic 

schemes, they are prone to be easily reverse-engineered.

Theoretical guarantees on SM privacy
One of the challenges in SM privacy is to provide theoretical 

assurances and fundamental limits on the information leaked 

by an SM system, independently of any assumption on the 

capability of an attacker or of the particular NILM algorithm 

employed. This is essential in privacy research, as privacy-pre-

serving techniques may perform extremely well against some 

NILM algorithms and very poorly against others. Moreover, 

the privacy assurances should not be based on the complexity 

limitations of a potential attacker, as techniques that are cur-

rently thought to be not feasible may become available to 

attackers in the future if computational capabilities improve or 

if new methods are developed. 

Last but not least, establishing a coherent mathematical 

framework would allow us to rigorously compare various SM 

scenarios and the use of different physical resources, e.g., RBs 

of various capacities, RESs of various kinds, and so forth. 

Accordingly, signal processing and information-theoretic tools 

have been employed in the literature to provide theoretical pri-

vacy assurances. We will overview various statistical measures 

for privacy, particularly conditional entropy [43], Fisher infor-

mation (FI) [45], and type II error probability for detecting 

user activity [46].

In this statistical framework, it is commonly assumed that 

the statistics of the user load and the RES are stationary over 

the period of interest and known to the EMU. This assump-

tion is reasonable, especially if the period of stationarity is 

sufficiently long for the EMU to observe and learn these statis-

tics [47]–[49]. On the other hand, an online learning theoretic 

framework can also be considered to account for the conver-

gence time of the learning algorithm. Alternatively, most of the 

works in the literature that carry out a theoretical analysis also 

propose suboptimal policies that can be applied on real power 

traces, thus allowing the reader to gain an idea of the practical 

application and performance of these theoretically motivated 

techniques. We take a worst-case approach and assume that the 

statistics governing the involved random processes are known 

by the attacker. Note that this can only empower the attacker 

and strengthen the stated privacy guarantees.

The significance of single-letter expressions
It is expected that a meaningful privacy measure should con-

sider the leakage of a user’s information over a certain time 

period of reasonable length, because of the memory effects 

introduced by the RB and the RES. The energy consumption 

over a short period of time can be easily covered by satisfying 

all of the demand from the RB or the RES over this period, 

but this may come at the expense of fully revealing the energy 

consumption at future time periods. Therefore, the informa-

tion-theoretic analysis typically considers an average informa-

tion rate measured over a given finite time period and often 

studies its infinite-horizon asymptotics as well. 

However, increasing the time horizon also increases the 

problem complexity, and one of the challenges of the infor-

mation-theoretic analysis is to obtain a so-called single-letter 

expression for the optimal solution, which would significantly 

reduce the problem complexity, particularly when the involved 

random variables are defined over finite alphabets. Unfortu-

nately, to date, closed-form or single-letter expressions for the 

information leaked in an SM system have been characterized 

only for specific settings under various simplifications, e.g., 

considering an i.i.d. or Markov user load or RES generation.

MI as a privacy measure
The entropy of a random variable , ( )XX H  is a measure of the 

uncertainty of its realization. The MI between random va -

riables X  and ,Y  ( ; ),I X Y  measures the amount of infor-

mation shared between the two random variables [41]. The MI 

can also be considered as a measure of dependence be -

tween the random variables X  and ,Y  and it is equal to 

zero if and only if they are independent. Rewriting the 

MI as ( ; ) ( ) ( | ),I X Y H X H X Y= -  where ( | )H X Y  is the con-

ditional entropy, we can also interpret MI as the average re -

duction in the uncertainty of X  from the knowledge of .Y  

Therefore, we can measure the privacy leakage about the input 

load sequence Xn  through the SM readings Yn  by the MI 

be  tween the two sequences ( ; ) .I X Yn n  This will measure the 
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reduction in the uncertainty of the UP about the real energy con-

sumption of the appliances Xn  after receiving the SM measure-

ments .Yn  For an SM system with only an RB (but no RES) and a 

given EMP f  in (2) running over n time slots, the average infor-

mation leakage rate ( , )B PI maxf
n

d
t  is defined as

 ( , ) ( ; ) [ ( ) ( | )],B P
n
I X Y

n
H X H X Y

1 1
I maxf
n

d
n n n n n

_ = -t  (7)

where .X Y P0 t t d# #- t  The parameters Bmax  and Pdt  

emphasize the dependence of the EMP and, therefore, of the 

achievable information leakage rate on the battery capacity 

and the discharging peak power constraint. The optimal EMP 

and the corresponding minimum information leakage rate are 

obtained by minimizing (7) over all of the feasible policies 

f F!  to obtain ( , ) .B PI max
n

d
t

Privacy with an RES
Alternatively, one can also consider the SM system of Figure 5 

with an RES but no RB. Assume that the renewable energy that 

can be used over the operation period is constrained by an 

average and a peak power constraint. We do not allow selling 

the generated renewable energy to the UP, as our goal is to 

understand the impact of the RES on providing privacy to the 

user. The minimum information leakage rate achieved under 

these assumptions and for an i.i.d. user load can be character-

ized by the so-called privacy-power function ( , )P PI dr t  and for-

mulated in the following single-letter form:

 , ; ,infP P I X YI
p P|Y X

=
!

r t^ ^h h  (8)

where { : , [( )] , }.p y X Y P X Y P0EP Y|Y X_ ! # # #- -r t  

This formulation is presented in [50] for a discrete user load al -

phabet (i.e., X  can assume only values that are multiples of a fixed 

quantum) and in [51] for a continuous user load alphabet (i.e., X  

can assume any real value within the limits specified by the peak 

power constraints of the appliances). The optimal EMP that mini-

mizes (8) is stochastic and memoryless; that is, the optimal grid 

load at each time slot is generated randomly via the optimal condi-

tional probability that minimizes (8) by only considering the cur-

rent user load. Another interesting observation is that (8) is in a 

form similar to the well-known rate-distortion function in informa-

tion theory, which characterizes the minimum compression rate R  

of data, in bits per sample, that is required for the receiver to 

reconstruct the source sequence within a specified average distor-

tion level D [41]. Formally, the rate-distortion function ( )R D  for 

an i.i.d. source X X!  with distribution ,pX  reconstruction al -

phabet ,Xt  and distortion function ( , ),d x xt  where the distortion 

between sequences Xn  and Xnt  is given by ( , ),d x xn
n
i i i

1
1R = t  

characterizes the minimum rate with which an average distor-

tion of D is achievable. The compression rate specifies the size 

of the codebook 2nR  required to compress the source sequence 

of length , .n Xn  Shannon showed that the rate-distortion func-

tion can be obtained in the following single-letter form:

 ( ) ( ; ) .minR D I X X
: ( , )p p p d x x D
( , )

X
x x

=
#| |X X X X

t
tt

t

t/
 (9)

The analogy between (8) and (9) becomes clear considering 

the following distortion measure:

 ( , )
,

,

 ,

,

if

otherwise
d x y

x y x y P0

3

# #
=

- - t)  (10)

and such an analogy enables the use of tools from rate-distor-

tion theory to evaluate the privacy-power function for an SM 

system. However, it is important to highlight that, despite the 

functional similarity, there are major conceptual differences 

between the two problems: 1) in the SM privacy problem, Yn  is 

the direct output of the encoder rather than the reconstruction 

at the decoder side, and 2) unlike the lossy source encoder, the 

EMU does not operate over blocks of user load realizations; 

instead, it operates symbol by symbol, acting instantaneously 

after receiving the appliance load at each time slot. 

For discrete user load alphabets, the grid load alphabet 

can be constrained to the user load alphabet without loss of 

optimality [52], and, since MI is a convex function of the con-

ditional probability ,p P|Y X !  the privacy-power function 

can be written as a convex optimization problem with linear 

constraints. Algorithms such as the Blahut–Arimoto (BA) 

algorithm can be used to numerically compute the optimal 

conditional distribution [41]. For continuous user load distribu-

tions, the Shannon lower bound is derived in [52], which is a 

computable lower bound on the rate-distortion function widely 

used in the literature and is shown to be tight for exponential 

user load distributions.

These results can be generalized to a multiuser scenario 

in which N  users, each equipped with a single SM, share the 

same RES [52]. This scenario is represented in Figure 9, where 

the objective is to minimize the total privacy loss of N  con-

sumers (or devices) considered jointly, rather than minimiz-

ing the privacy loss for each of them separately. This requires 

the EMU to allocate the shared RES among all of the users in 

the most effective manner. The average information leakage 

rate can still be written as in (7), by replacing X t  and Yt  with 

[ , , ]X X X, ,t t N t1 f=  and [ , , ],Y Y Y, ,t t N t1 f=  where the bold-

face characters denote the vectors representing the N  power 

measurements. The privacy-power function has the same 

expression as in (8), and, for the case of independent but not 

SG

SM

SM

UP

RES

User 1

User N

EMU

Y1,t X1,t

YN ,t XN ,t

Et

FIGURE 9. A single EMU and RES are shared among N  users, each 

equipped with an SM. The EMU decides how much energy each user can 

retrieve from the RES and from the grid.
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necessarily identically distributed user loads, the optimization 

problem (ignoring the peak power constraint) can be cast as

 ( ) ( ),infP PI I
P P

X

i

N

i

1i

i

N
i

1

=

# =

=

r

r

/
/

 (11)

where ( )IX i $  denotes the privacy-power function for the ith user 

having user load distribution ( ) .p xX ii  For continuous and expo-

nential user loads, the optimal allocation of the energy generated 

by an RES can be obtained by the reverse water-filling algo-

rithm, according to which energy from the RES is used only to 

satisfy the users with a low average load, while users with higher 

average load need to request energy from the grid as well.

Privacy with an RB
We can also consider the presence of just an RB in the system, 

which is thus charged only via the grid (no RES is available to 

the EMU). Including an RB complicates the problem signifi-

cantly, and the level of energy in the battery Bt  plays an 

important role when designing a feasible EMP.

This problem can be solved by putting it in the form of an 

MDP and finding a suitable additive formulation for the pri-

vacy cost function [53]. The optimization problem is formu-

lated as

 ( , ; ),minL
n
I B X Y

1* n n
1

f
_  (12)

where f  can be any feasible policy, as specified in (2) (without 

including the renewable energy process). The approach in [53] 

casts (12) in an additive formulation by noting that there is no 

loss of optimality in restricting the focus to charging strategies 

f l that decide on the grid load, based only on the current val-

ues of the user load Xt  and level of energy in the battery Bt  

and on the past values of the grid load Yt 1- . That is, the general 

strategy f  in (2) is specified as : , ,f tX B Y Yt
t 1
"# # 6

-
l  

because of the following inequality: 

 ( , ; ) ( , ; | ).
n
I X B Y

n
I X B Y Y

1 1n n

t

n

t t t
t

1

1

1
$

=

-/  (13)

The conditional distributions in (13) grow exponentially 

with time because of the term ,Yt 1-  and the problem becomes 

computationally infeasible very quickly. To overcome this 

issue, the knowledge of Yt 1-  is summarized into a belief state, 

defined as , | ,p X B Yt t
t 1-^ h  which can be computed recursively 

and interpreted as the belief that the UP has about ,X Bt t^ h at 

time ,t  given its past observations .Yt 1-  This way, the Bellman 

equations can be formulated, and the optimal policy can be 

identified numerically (with a discretization of the belief state).

For an i.i.d. user load, the single-letter characterization of 

the minimum information leakage rate is given by [53] as

 ( ; ),minJ I B X X*

PB

_ -
!i

 (14)

where i  is the probability distribution over ,B  given the past 

output and actions, i.e., , ,p b y at t
t t1 1

_i - -` j  and the action 

a t  is defined as the transition probability from the current 

belief, user load, and level of energy in the battery to the cur-

rent grid load. This result is obtained by considering a belief 

on ,W B Xt t t_ -  rather than , ,B Xt t^ h  and by further restrict-

ing to policies of the type : , .f tW � �t
t 1
"# 6

-
m  Since (14) 

is convex in ,i  the optimal *i  may be obtained by using the 

BA algorithm. The optimal grid load turns out to be i.i.d. and 

indistinguishable from the demand, while the optimal policy is 

memoryless, and the distribution of Yt  depends only on .W t  

Such a characterization is provided in [54] for a binary i.i.d. 

user load, while the authors extend it to an i.i.d. user load of 

generic alphabet size in [53], [55], and [56]. 

Another approach is to model the level of energy in the RB 

as a trapdoor channel [57]. In a trapdoor channel, a certain num-

ber of red or blue balls are within the channel, and a new ball of 

either color is inserted into it as the channel input at each time 

step. After the new ball is inserted, one of the balls present in the 

channel is randomly selected and removed from the channel. In 

an SM setting, the finite-capacity RB can be viewed as a trap-

door channel, whereby inserting or extracting a ball from the 

channel represents charging or discharging the RB, respectively. 

An upper bound on the information leakage rate is characterized 

in [58] through this model by minimizing the information leak-

age rate over the set of stable output balls, i.e., the set of feasible 

output sequences Yn  that can be extracted from the channel, 

given a certain initial state and an input sequence Xn  and by 

taking inspiration from codebook construction strategies in [59]. 

Such an upper bound is characterized in [58] as

 
7

( ; )
( ) /

,
An

I X Y
B X

1

1

1

max max

n n
#

+
 (15)

where Xmax  is the largest value X  can assume. It is also 

shown in [58] that the average user energy consumption deter-

mines the level of achievable privacy.

Apart from only maximizing privacy, it is of interest to 

also minimize the cost. Different from privacy, the cost of 

energy has an immediate additive formulation and can be eas-

ily incorporated into the MDP construction. Considering the 

random price vector ( , , ),C C Ct
t1 f=  where Ct  denotes the 

unit cost of energy at time slot ,t  privacy can be defined in the 

long time horizon as

 
( | , )

.lim
t

H X Y C
P

t

t t t

_
"3

 (16)

This formulation is presented in [43], where the correspond-

ing MDP is constructed and two suboptimal algorithms are 

proposed. The first is a greedy algorithm, which maximizes at 

any time the current instantaneous reward, while the second is a 

battery-centering approach that is aimed at keeping the battery 

at a medium level of charge so that the EMU is less constrained 

by the battery or the demand in determining the grid load. In the 

latter approach, if the grid load depends not on the current user 

load or the battery level but only on the current electricity price, 

the system is said to be in a hidden state, while it is said to be in 

a revealing state otherwise. The latter strategy is analyzed for an 

i.i.d. user load by considering the system as a recurrent Markov 

chain and adopting random walk theory.



73IEEE SIGNAL PROCESSING MAGAZINE   |   November 2018   |

Privacy with both an RES and an RB
When both an RES and an RB are present, the information-the-

oretic privacy analysis becomes more challenging. As an initial 

step, we can consider infinite and zero battery capacities, 

which represent, respectively, lower and upper bounds on the 

privacy leakage achievable for a practical SM system with a 

finite-capacity battery [60], [61]. When ,Bmax 3=  the problem 

can be shown to be equivalent to the average and peak power-

constrained scenario, and, interestingly, the privacy perfor-

mance does not deteriorate, even if the UP knows the exact 

amount of renewable energy generated. This shows that keep-

ing the renewable energy generation process private is more 

critical when the RB has a limited capacity. 

Two different EMPs are shown to achieve the lower bound in 

[61]. In the BE policy, at any time slot, the optimal EMP derived 

from (11) is employed independently of the level of energy in 

the RB if there is sufficient energy in the RB, while otherwise 

all of the energy request is satisfied from the grid. The latter 

approach leads to full leakage of user consumption, but it can 

be shown that these events are rare enough that the information 

leakage rate does not increase. In the alternative store-and-hide 

policy, an initial storage phase is employed, during which all of 

the user’s energy requests are satisfied from the grid while all of 

the generated renewable energy is stored in the battery. In the 

following hiding phase, the EMU deploys the optimal policy 

designed under average and peak power constraints.

On the other extreme, when ,B 0max =  the renewable ener-

gy that can be used at any time slot is limited by the amount 

of energy generated within that period. As expected, assuming 

that the UP has knowledge of the renewable energy process 

significantly degrades the privacy performance for this sce-

nario. Figure 10 compares the minimum information leakage 

rate with respect to the renewable energy generation rate pe  

for 5X E Y= = =  when { , , , }.B 0 1 2max 3=  In this 

figure, the curves for a finite battery capacity of B 1max =  and 

B 2max =  are obtained numerically by considering a subopti-

mal EMP [61].

The presence of a finite-capacity battery increases the prob-

lem complexity dramatically because of the memory effects 

induced by the finite battery, and single-letter expressions are 

still lacking for this scenario. A possible approach to find a 

theoretical solution to this problem is by extending the MDP 

formulation, as investigated in [62].

Detection error probability as a privacy measure
So far, we have considered approaches that try to hide the 

complete user energy demand from the UP. However, rather 

than hiding the entire energy consumption profile, in some 

cases it may be more meaningful to keep specific user activi-

ties private, such as whether there is anyone at home, whether 

the alarm has been activated, or whether someone is eating 

microwaved food. To keep the answer to such details private, 

the goal of the EMU is to maximize the attacker’s probability 

of making errors when attempting to discern them.

Let the consumer’s behavior that needs to be kept private 

belong to a set of M  possible activities. Thus, we can treat the 

attacker’s decision and the user’s action as an M-ary hypoth-

esis test, i.e., { , , }.H h h hH M0 1 1f! = -  When ,M 2=  

the hypothesis test is said to be binary, and, by convention, 

the hypothesis ,h0  called the null hypothesis, represents the 

absence of some factor or condition, while the hypothesis ,h1  

called the alternative hypothesis, is the complementary con-

dition. For example, answering the question, “Is somebody at 

home?” corresponds to a binary hypothesis test, where h0  is the 

hypothesis “somebody is not at home” and h1  is the hypoth-

esis “somebody is at home.” It is reasonable to assume that the 

input load will have different statistics under these two hypoth-

eses; accordingly, we assume that under hypothesis h0  ,h1^ h  

the energy demand at time slot t  is i.i.d. with p |X h0  .p |X h1^ h  

Based on the SM readings, the attacker aims at determining 

the best decision rule  ( ),H $t  i.e., the optimal map between the 

SM readings and the underlying hypothesis. In other words, 

the space of all possible SM readings Yn  is partitioned into 

two disjoint decision regions A0  and ,A1  defined as follows:

 ( ) ,y H y hA
n n

0 0_ =t$ .  (17)

 ( ) ,y H y hA
n n

1 1_ =t$ .  (18)

which correspond to the subsets of the SM readings for which 

the UP decides for one of the two hypotheses. The attacker’s 

binary hypothesis test can incur two types of errors:

 ■ type 1 error, in which a decision h1  is made when h0  is the 

true hypothesis (a false positive or false alarm); the type 1 

error probability is ( )p p A|I Y h 0n
1=

 ■ type 2 error, in which a decision h0  is made when h1  is the 

true hypothesis (a false negative or miss); the type 2 error 

probability is ( ) .p p A|II Y h 1n
0=

The Neyman–Pearson test minimizes the type 2 error 

probability for a fixed maximum type 1 error probabil-

ity and makes decisions by thresholding the likelihood ratio 

2.5

2

1.5

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Renewable Energy Generation Rate

M
in

im
u
m

 I
n
fo

rm
a
ti
o
n
 L

e
a
k
a
g
e
 R

a
te

Bmax = 0, EMU and UP

Bmax = {0, 1, 2}

Bmax = ∞

FIGURE 10. The minimum information leakage rate with respect to the 

renewable energy generation rate pe  with { , , , , } .0 1 2 3 4X E Y= = =  

The leakage for Bmax 3=  has been found by setting P 4=t  [61].
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.p y h p y h| |Y h
n

Y h
n

0 1n n
0 1^ ^ ^ ^hh hh  Consider the worst case 

of an all-powerful attacker that has perfect knowledge of the 

EMP employed in the asymptotic regime n " 3 and denote 

by pII
min  the minimal type 2 probability of error subject to a 

constraint on the type 1 error probability. Assuming that a 

memoryless EMP is employed by the EMU—i.e., the grid 

load at any time slot t  depends only on the input load at the 

same time slot—then the attacker runs a Neyman–Pearson 

detection test on the grid load. We note that the memoryless 

EMP assumption is not without loss of optimality. However, 

it is justified on the grounds that characterizing the more gen-

eral optimal policy with memory seems to be significantly 

more challenging and is unlikely to lend itself to a single-letter 

expression. The Chernoff–Stein lemma [41] links the minimal 

type 2 error probability pII
min  to the KL divergence (· | | ·)D  

between the grid load distributions conditioned on the two 

hypotheses in the limit of the number of observations going 

to infinity:

 ,lim
log

n

p
D p p| |

II
min

n
Y h Y h0 1- =

"3
^ h  (19)

where the KL divergence between two probability distribution 

functions on , pX X  and ,q X  is defined as [41]

 ( )
( )

( )
.logD p q p x

q x

p x
X X X

x X

X

X

_

!

^ h /  (20)

Not surprisingly, to maximize privacy, the goal of the 

EMU is to find the optimal grid load distribution, which, 

given the user load X  and the true hypothesis ,H  minimizes 

the KL divergence in (19) or, equivalently, minimizes the 

asymptotic exponential decay rate of .pII
min  However, the 

EMU is constrained by the available resources in making the 

two input load distributions produce similar grid load distri-

butions. In particular, we impose a constraint on the average 

RES it can use. Thus, the objective is to solve the following 

minimization problem:

 ,min D p p| |Y h Y h
p

0 1
P| |Y H Y H!

^ h  (21)

where P |Y H  is the set of feasible EMPs, i.e., those that 

sat isfy the average RES generation rate ,Pr  so that 

,n X Y h P1 E i
n

i i j1 #R -=
r^ h 6 @  with  ,  .j 0 1=  This setting 

is studied in [63], where the asymptotic single-letter expres-

sions of two privacy-preserving EMPs in the worst-case sce-

nario are considered, i.e., when the probability of a type 1 

error is close to 1. The first policy is a memoryless hypothesis-

aware policy that decides on Yt  based only on the current Xt  

and ,H  while the second policy is unaware of the correct 

hypothesis H  but takes into account all of the previous real-

izations of X  and .Y

It is noteworthy that, even if the hypothesis-unaware 

policy with memory does not have access to the current 

hypothesis, it performs at least as well as the memoryless 

hypothesis-aware policy. This is because the hypothesis-

unaware policy is able to learn the hypothesis with negligible 

error probability after observing the energy demand process 

for a sufficiently long period. Additionally, the energy sup-

ply alphabet can be constrained to the energy demand alpha-

bet without loss of optimality, which greatly simplifies the 

numerical solution to the problem.

FI as a privacy measure
FI is another statistical measure that can be employed as a 

measure of SM privacy [45]. Let some sample data x  be 

drawn according to a distribution depending on an underlying 

parameter. Then, FI is a measure of the amount of infor-

mation that x  contains about the parameter. In the SM set-

ting, Yn  is the sample data available to the attacker, while Xn  

is the parameter underlying the sample data that is to be esti-

mated by the UP. Let Xnt  denote the estimate of the UP. The 

FI can be generalized to the multivariate case by the FI 

matrix, defined as
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(22)

Assuming an unbiased estimator at the attacker, i.e., the dif-

ference between the estimator’s expected value and the true 

average value of the parameter being estimated is zero, the 

variance of the estimation error can be bounded via the Cra-

mér–Rao bound as follows:

 ( ( ) ),Trx x y xE FI
n n n n

2

2 1
$-

-t ^ h8 B  (23)

where ( )x x yn n n
2

2
- t  denotes the squared Euclidean norm 

and ( )Tr A  represents the trace of the matrix .A  To maximize 

the privacy, it is then necessary to maximize the trace of the 

inverse of the FI matrix. In [45], two SM settings with RBs are 

studied, specifically when the battery charging policy is inde-

pendent of the user load and when it is dependent noncausally 

on the entire user load sequence. For both cases, single-letter 

expressions are obtained for the maximum privacy. Moreover, 

the case of biased estimators, wear and tear on the batteries, 

and peak power charging and discharging constraints are also 

briefly analyzed in [45].

Empirical MI as a privacy measure
Approaches aimed at determining theoretical privacy limits 

provide important insights and intuition for the optimal EMP 

to limit privacy leakage. However, they are often difficult to 

optimize or even evaluate numerically, and the relatively sim-

plified formulations obtained in various special cases rely on 

restrictive assumptions, e.g., i.i.d. user load and infinite RB 

capacity. An alternative is to follow a suboptimal or heuristic 

EMP. Although such a policy does not provide theoretical pri-

vacy guarantees, one can evaluate the corresponding privacy 

leakage numerically using empirical MI.

One way to compute the empirical MI is by simulating a dis-

crete time system for a large enough time interval and  sampling 
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the resulting Xn  and Yn  sequences [64]. The MI between two 

observed sequences xn  and y n  can be approximated as

( ; ) , ,log log logI X Y
n

p y
n

p x
n

p x y
1 1 1n n n n

.- - +^ ^ ^h h h  (24)

where ( ), ( )p y p xn n  and ( , )p x yn n  are calculated recursively 

through a sum–product computation. When using this method, 

the RB is modeled as a finite state machine (FSM), and the 

level of energy in the RB evolves in time through a Markov 

chain with transition probabilities depending on the specific 

policy implemented. An example of an FSM is illustrated 

in Figure 11, where all the processes are considered to be 

binary and Bernoulli distributed, and the parameters are 

{ }, { }Pr Prq X p E1 1x e= = = =  and ,pv  the latter being the 

probability of using energy from the battery, provided there is 

available energy. The support space for the parameters is dis-

cretized, and the optimal combination of parameters is found, 

which minimizes the empirical MI. 

This approach is followed in [65], where only a binary RB 

is present and for an i.i.d. Bernoulli-distributed user demand, 

and in [66] where an RES is also considered. The latter work 

also analyzes the wasted energy and characterizes the privacy-

versus-energy efficiency tradeoff for the binary scenario and 

the equiprobable user load and renewable energy generation 

processes. For larger battery capacities and for an equiprob-

able user load, the authors note that there is a symmetry and 

complementarity in the optimal transition probabilities in the 

FSM model, which simplifies the numerical analysis. This 

model is also employed in [60] and [61] by considering an RES 

and designing a suboptimal policy, which, at each time instant, 

decides among using all of the available energy, half of it, or 

no energy at all, according to a probability chosen to minimize 

the overall information leakage.

Another technique for approximating MI is to assume X

and Y  to be i.i.d. over a time interval and approximate the MI 

via the relative frequency of events ,X Yt t^ h during the same 

time window. In [67], this approach is enriched by additive 

smoothing, i.e., avoiding zero probability estimates by adding 

a positive scalar, and it is employed together with a model-dis-

tribution predictive controller, such that, at each time slot ,t  the 

EMU chooses its actions for a prediction horizon of length ,T  

i.e., up to time .t T+  Privacy and cost are jointly optimized by 

considering noncausal knowledge of the renewable energy gen-

eration process, user load, and energy prices, while the EMU’s 

actions, i.e., the energy that is requested from the grid and 

the battery, are forecast over the prediction horizon. The user 

and grid load processes are assumed to be i.i.d. within a time 

window ,N T&  which also includes the prediction horizon ,T

and the finite alphabets X  and Y  are considered. As ,N T&  

first-order Taylor approximation of the logarithm function is 

used, and the corresponding mixed-integer quadratic program 

is formulated, which is of manageable size and can be solved 

recursively whenever new SM readings are available. 

Results show that considering a relatively small predic-

tion horizon T  prevents the EMU from fully utilizing the RB 

capacity, as the user load that is considered by the algorithm 

is generally smaller than the RB capacity. Allowing a longer 

prediction interval dramatically improves the performance 

in terms of both privacy and cost, at the expense of a much 

higher computational complexity. The work also shows that by 

increasing the alphabet sizes of X  and ,Y  better privacy per-

formance can be achieved.

Empirical MI normalized by the empirical entropy of the 

user load is considered in [68], where an RB is used to mini-

mize the energy cost subject to privacy constraints. Here, two 

cost tariffs are considered, a low price and a high price, and 

a dynamic programming approach is developed to maximize 

the energy stored in the battery at the end of the low-price 

period and minimize it at the end of the high-price period. At 

every time slot, the optimal probability distribution of the grid 

load is computed, which is forced to be independent of the 

user load distribution.

Concluding remarks and future challenges
Privacy and the so-called right to be let alone are considered to 

be an individual’s inalienable, fundamental rights, which are 

safeguarded in many national constitutions worldwide. In 

Europe, the General Data Protection Regulation (GDPR) [69], 
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(1 – qx )pe

(0, 1, 0, 0)

(1 – qx )pe

(0, 1, 0, 0)

(1 – qx )pe

B = 0 B = BmaxB = 1 B = 2

FIGURE 11. An example of RB evolution modeled as a finite state machine, with { , , }B0 1B maxf=  and { , } .0 1X E Y= = =  The ( , , , )x e v y  represent, for 

every time ,t  the values of the user load, the renewable energy produced, the energy taken out of the battery by the EMU, and the grid load, respectively [61].
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which went into effect on 25 May 2018, sets even more strin-

gent requirements for every technology or device that collects 

and processes customer data, including SMs. For these reasons, 

addressing the SM privacy problem is crucial for the adoption 

of the SG concept. In fact, considering consumers’ growing 

privacy concerns over SMs and many other emerging technolo-

gies [70], a critical growth in the adoption of SMs and other SG 

technologies will take place only when consumers are given 

full control of their privacy and feel they have clear and honest 

information on how their data are being used. Only then can 

consumer resistance be overcome and users’ trust be assured, 

thus paving the way to a more fertile and fair ground for new 

products and increased innovation in this domain.

UPs and their partners, including governments, may be 

too keen on collecting users’ data indiscriminately and not 

well incentivized to develop privacy-enhancing technologies. 

Therefore, legislators, public commissions, consumer advo-

cacy groups, and researchers have important roles to play in 

tackling the SM privacy problem and preventing SM data from 

being gathered haphazardly and sold to third parties without 

explicit user consent or even passed to government intelligence 

agencies for mass surveillance. The GDPR is a good example 

of the initiatives that are needed. 

However, given that such a legal framework is still lack-

ing and not yet fully developed globally, it becomes imperative 

to push forward the concept of privacy by design, according 

to which privacy should be designed in to new products and 

services rather than considered only after user complaints and 

regulatory impositions. This is because more options are avail-

able during the design stage as compared to the completion 

stage, when the product has to be modified following a privacy 

incident or a user complaint. Achieving privacy by design is 

the ultimate goal of the techniques analyzed in this article.

In this article, we have focused exclusively on techniques 

that adopt physical resources, such as RESs and RBs, to provide 

privacy to users. The main motivation and benefits of these 

techniques is that they do not undermine the value of the SG 

concept. Each of the outlined techniques has its unique advan-

tages and disadvantages and focuses on a particular aspect 

of privacy. However, despite the considerable efforts put into 

developing SM privacy-preserving techniques, the full extent of 

the SM privacy problem is far from completely understood, and 

a unified and coherent vision for SM privacy (just as in many 

other domains) is still elusive.

In the context of SM privacy, UDS-based methods manipu-

late a physical quantity, energy, to ensure privacy for users. This 

entails that physical constraints, such as those related to an RB 

or an RES, play a crucial role in finding the optimal privacy-

preserving strategy. We expect that the techniques developed 

for enhancing SM privacy can prove useful in other privacy-

sensitive settings in which physical quantities are involved, such 

as gas and water meters and location privacy.

Research challenges
Various challenges must be addressed before privacy by design 

can become a reality in SM systems. First, a generic privacy 

measure or a combination of different measures must be deter-

mined and adopted to formally quantify loss of privacy, in the 

same way a user’s electricity bill is computed. Such a measure 

should be device independent and should enable the comparison 

of various privacy-preserving strategies. It is also necessary to 

understand the implications of the various privacy measures on 

the grid load. From this point of view, theoretical measures may 

be preferable because of their abstract and fundamental nature, 

i.e., they are independent of any assumptions about the attacker’s 

algorithms. However, their relevance in real-world scenarios 

must be assessed further, and, if necessary, valid suboptimal pri-

vacy measures or algorithms should be put forward and stan-

dardized as a proxy for more rigorous privacy assurances.

Another important goal is to give consumers as much flex-

ibility as possible in setting their desired level of privacy, trad-

ing off privacy with the cost of electricity or other services. It is 

also essential to allow consumers the possibility of setting dif-

ferent privacy requirements for different devices, as users may 

consider the information about the usage of a certain device as 

more sensitive compared to others. This may happen because 

certain devices are naturally more correlated to the user’s 

activities or presence at home, such as the use of a teakettle, a 

microwave, or an oven, or because a user may decide to hide 

the usage of a certain appliance for personal reasons.

In the near future, a wider use of electric vehicles will also 

bring additional complications to the SM privacy problem, as 

mobility patterns may be inferred by analyzing the charging 

and discharging events. This problem can be tackled by load 

shifting, which is expected to play an important role in jointly 

optimizing electricity cost and privacy. Load shifting, as well 

as other privacy-preserving techniques introduced here, will 

be more accurate and relevant thanks to the development of 

reliable prediction techniques for future electricity consump-

tion, e.g., by using machine-learning techniques. The prolifera-

tion of various energy-hungry smart devices will complicate 

the problem further and overburden RBs even more. 

Finally, the use of shared physical resources should also be 

investigated in more depth, as cities are becoming more and 

more densely populated and consumers may want to team up 

to install storage devices or energy generators that are still rath-

er costly. In cities, solar panels or mini wind turbines may be 

installed on the roofs of blocks of apartments, and RBs may be 

put in communal areas; these resources can be used jointly by all 

of the users in a building. Such resource-sharing models make 

the privacy problem even more complicated and challenging and 

might call for a game-theoretic formulation of the problem.

Overall, we hope that presenting this overview of the SM 

privacy problem and current solutions will further encourage 

research and development in this area, so that remaining open 

issues will be solved and SMs’ full potential will be realized.
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