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he next-generation energy network, the so-called smart
grid (SG), promises tremendous increases in efficiency,
safety, and flexibility in managing the electricity grid as
compared to the legacy energy network. This is needed
today more than ever, as global energy consumption is growing
at an unprecedented rate and renewable energy sources (RESs)
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must be seamlessly integrated into the grid to assure a sustain-
able human development.

Smart meters (SMs) are among the crucial enablers of the
SG concept. They supply accurate, high-frequency informa-
tion about users’ household energy consumption to a utility
provider (UP), which is essential for time-of-use (ToU) pricing,
rapid fault detection, and energy theft prevention, while also
providing consumers with more flexibility and control over
their consumption. However, highly accurate and granular SM
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data also pose a threat to consumer privacy, as nonintrusive
load monitoring (NILM) techniques enable a malicious attack-
er to infer many details of a user’s private life.

This article focuses on privacy-enhancing energy manage-
ment techniques that provide accurate energy consumption
information to the grid operator without sacrificing consumer
privacy. In particular, we focus on techniques that shape and
modify actual user energy consumption by means of physical
resources, such as rechargeable batteries (RBs), RESs, and
demand shaping. A rigorous mathematical analysis of privacy
is presented under various physical constraints on the available
physical resources. Finally, open questions and challenges that
need to be addressed to pave the way to the effective protection
of users’ privacy in future SGs are presented.

SMs for an SG

The current energy grid is one of the engineering marvels of the
20th century. However, it has become inadequate for satisfying
the steadily growing global electricity demand of the 21st cen-
tury. In fact, world energy consumption is predicted to increase
48% from 2012 to 2040 [1], driven by factors such as the growth
of the global economy, the rise of the gross domestic product
per person, the expansion of the planet’s population, an in-
creased penetration of electric vehicles, and a broader mobility
revolution [2]. Other issues that need to be addressed are the
effective integration of RESs and storage capabilities into the
grid, the improvement of the grid’s environmental sustainability,
and the promotion of plug-in hybrid electric vehicles.

To address these challenges, SGs are being engineered.
They are intended to substantially improve energy generation,
transmission, distribution, consumption, and security, provid-
ing enhanced reliability and quality of the electricity supply,
quicker detection of energy outages and theft, better matching
of the energy supply with demand, and greater environmental
sustainability by enabling an easier integration of distributed
generation and storage capabilities. The smartness of an SG
resides in its advanced metering infrastructure, which enables
two-way communication between the utility and its customers
and whose pivotal element in the distribution network is the
SM, the device that monitors a user’s electricity consumption
in almost real time.

In contrast to legacy grids, in which billing data are gath-
ered at the end of a use period, SMs send electricity con-
sumption measurements automatically and at a much higher
resolution. They enable two-way communication with the UP,
the entity that sells energy to the customers, transmitting a
great amount of detailed information. SMs collect and send
bidirectional readings of active, reactive, and apparent power

Table 1. The time resolution of SMs currently in use.

SM Model Time Resolution
ltron Centron [72] 1 min

REX2 [73] 5 min
Kamstrup Omnipower [74] 5 min

Enel Open Meter [75] 15 min

and energy—i.e., so-called four-quadrant metering—that is
purchased from the grid (or sold to it, if the user produces ener-
gy, e.g., by means of a photovoltaic panel). In the latter case,
the user is referred to as a prosumer, i.e., at once a producer
and consumer of electricity who can be financially rewarded
for the energy sold to the grid.

SMs also keep track of historical consumption data over the
previous days, weeks, and months and provide high-resolution
consumption data analytics to the customers to enable them to
monitor their energy consumption via an in-home display, web
portal, or smartphone application in near real time. SMs also
send alerts about voltage quality measurements, helping UPs
fulfill their obligations toward customers concerning energy,
power, and voltage quality, e.g., in accordance with the EN
50160 European standard. Examples of these measurements
include the root mean square voltage variations, e.g., voltage
dropout, sags and swells, and total harmonic distortion.

Data used for billing, such as the current ToU tariff, bal-
ance and debts, credit and prepayment modes, credit alerts,
and topping up, are also sent to the UP. SMs can detect if tam-
pering takes place and send relevant data about it, along with
the security credentials for enabling the correct functioning of
cryptographic protocols, e.g., hashing, digital signatures, and
cyclic redundancy checks. Finally, SM firmware information
and updates are also communicated.

The increased data resolution is crucial for enabling SG func-
tionalities. Table 1 shows the smallest time resolution of some
SMs currently in use, which is on the order of a few minutes.
The European Union recommends a time resolution of at least
15 min to allow the new SG functionalities [3]. For example,
the current SM specifications in the United Kingdom mandate
that an SM send integrated energy readings every 30 min to
the UP, while the data sent to a user’s in-home display can have
a resolution of up to 10 s [4]. It should be noted that, with the
increased adoption of renewable energy generation by prosum-
ers, the increased penetration of electric vehicles and energy
storage technologies, and the diversification of the energy mar-
ket, it is expected that SGs will become more volatile, requiring
meter readings at a much higher rate in the near future.

SMs provide a wide range of benefits to all of the parties in
an SG. Thanks to SMs, UPs can gain better knowledge of their
customers’ needs while reducing the cost of meter readings. SMs
allow UPs to dynamically determine the electricity cost and pro-
duce more accurate bills, thus reducing customers’ complaints
and back-office rebilling. The implementation of ToU pricing
can incentivize demand response and control customer behavior,
while improved demand forecasts and load-shaping techniques
can reduce peak electricity demands. Finally, energy theft can
be detected more easily and quickly.

Distribution system operators (DSOs), i.e., the entities that
operate the grid, benefit from SMs as well, by being able to bet-
ter monitor and manage the grid. SMs allow DSOs to reduce
operational costs and energy losses and improve grid efficien-
cy and system design, distributed system state estimation, and
volt/VAR control. Moreover, DSOs are able to better match
distributed resources with the ongoing electricity demand and
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the grid’s power delivery capability, thus reducing the need to
build new power plants.

Consumers themselves take advantage of SMs to monitor
their consumption in near real time, leading to better consump-
tion awareness and energy usage management. Moreover, con-
sumers receive accurate and timely billing services, with no
more estimated bills, and benefit from ToU pricing by shift-
ing nonurgent loads to off-peak price periods. Microgeneration
and energy storage devices can be integrated more easily, and
profits from selling the generated excess energy can be collect-
ed automatically. Failing or inefficient home appliances, unex-
pected activity or inactivity, and wasted energy are detected
faster and more accurately; in addition, switching between UPs
is made easier by requesting on-demand readings, which, in
turn, increases the competition among UPs and reduces costs
for consumers.

For the aforementioned reasons, the installation of SMs is
proceeding rapidly and attracting massive investment glob-
ally. The SM market is expected to grow from an estimated
US$12.79 billion in 2017 to US$19.98 billion by 2022, register-
ing a compound annual growth rate of 9.34% [5]. Moreover,
the global SM data analytics market, which includes demand
response analytics and grid optimization tools, is expected to
reach US$4.6 billion by 2022 [6], while the global penetration
of SMs is expected to climb from approximately 30% at the
end of 2016 to 53% by the end of 2025 [7]. These figures show
how timely and crucial the research in this field is, and they
highlight the need to quickly resolve potential obstructions that
can threaten the future benefits from this critical technology.

SM privacy risks

An SM’s ability to monitor a user’s electricity consumption in
almost real time presents serious implications for consumer
privacy. In fact, by employing NILM techniques, it is possible
to identify the power signatures of specific appliances from
aggregated household SM measurements. NILM approaches
date back to the 1980s work of George Hart, who first pro-
posed a prototype of an NILM device [9]. Since then, NILM
methods have improved in different directions, e.g., by assum-
ing either high- or low-frequency measurements, by considering
known or learned signatures [10], and even by using off-the-shelf
statistical methods without any a priori knowledge of house-
hold activities [11].

An example of a typical power consumption profile, along
with some detected appliances, is illustrated in Figure 1. As
shown in Figure 2, the UP, a third party that has access to
SM data (by, for example, buying it from the UP), or a mali-
cious eavesdropper may gain insights into users’ activities and
behaviors, and determine such information as a person’s pres-
ence at home, religious beliefs, disabilities, illnesses, and even
the TV channel being watched [12]-[14].

Apart from residential users, SM privacy is particularly
critical for businesses, e.g., factories and data centers, as their
power consumption profile may reveal sensitive information
about the state of their businesses to their competitors. SM pri-
vacy has attracted significant public attention and continues

to be a topic of heated public and political debate. The issue
even stopped the mandatory SM rollout plan in The Nether-
lands in 2009 after a court decided that the forced installa-
tion of SMs would violate consumers’ right to privacy and be
in breach of the European Convention of Human Rights [15].
Indeed, concerns about consumer privacy threaten the wide-
spread adoption of SMs and can be a major roadblock for this
multibillion-dollar industry.

It is worth pointing out that the privacy problem involving
SMs is different from the SM data security problem [16]. In
the latter, there is a sharp distinction between legitimate users
and malicious attackers, whereas in the privacy problem in the
SM context, any legitimate receiver of data can also be consid-
ered malicious. To benefit from the advantages provided by the
SG, users need to share some information about their electric-
ity consumption with the UP and DSO. However, by sharing
accurate and high-frequency information about their energy
consumption, consumers also expose their private lives and
behavior to the UP, which is a fully legitimate user and, at the
same time, a potential malevolent party. This renders traditional
encryption techniques for data privacy ineffective in achieving
privacy against the UP and calls for novel privacy measures and
privacy-protection techniques.

Privacy-enabling techniques for SMs
There is a growing literature on SM privacy-preserving meth-
ods, which can be classified into two main families. The first,
which we call the SM data manipulation (SMDM) approach,
consists of techniques that process the SM data before report-
ing them to the UP; the practices in the second family, called
user demand shaping (UDS), aim at modifying the user’s actu-
al energy consumption. Considered within the first class are
methods such as data obfuscation, data aggregation, data anon-
ymization, and downsampling.

Data obfuscation, i.e., the perturbation of metering data
by adding noise, is a classical privacy-protection method and
has been adapted to SGs in [17] and [18]. In [19], differential
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FIGURE 1. An example of a household electricity consumption profile with
some appliances highlighted. (Figure courtesy of the Dataport database [8].)
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When are you usually away from home?
Do you have an electronic alarm system? How often do you arm it?
How many people are at home? Are they on holiday?

Burglary

Do you have disabilities/illnesses?

Do you eat microwaved food?

Do you drive when sleep deprived?

Is any appliance inefficient?
How often do you entertain?

How often do you eat in? Do you eat hot/cold breakfasts?

Do you wake up at night? What are your sleep cycles?

How many hours do you spend in front of the TV?

Do you need to break the speed limit to get to work on time?

What is your age, gender/sex, race, ethnicity?
Do you come from a nontraditional family?

User Profiling
Discrimination
Targeted Marketing
Insurance Adjusting
Law Enforcement

FIGURE 2. Some questions an attacker may be able to answer by having access to SM data.

privacy, a well-established concept in the data-mining literature,
is applied to SMs, where noise is added not only to the user’s
energy consumption, via the RB, but also to the energy used for
charging the RB itself to provide differential privacy guarantees.
Along these lines, the authors in [20] introduce an information-
theoretic framework to study the tradeoff between the privacy
obtained by altering the SM data and the utility of data for vari-
ous SG functionalities. Note that the more noise added to the
data, the higher the privacy but the less relevant and useful the
data are for monitoring and controlling the grid. In [20], an addi-
tive distortion measure is considered to model the utility, which
allows the characterization of the optimal privacy-versus-utility
tradeoff in an information-theoretic single-letter form.

The data aggregation approach, proposed in [18], [21], and
[22], considers sending the aggregate power measurements for
a group of households so that the UP is prevented from dis-
tinguishing individual consumption patterns. The aggregation
can be performed with or without the help of a trusted third
party (TTP).

The data anonymization approach, on the other hand,
mainly considers utilizing pseudonyms rather than the real
identities of consumers [23], [24]. Another method, proposed
in [25], reduces the SM sampling rate to a level that does not
pose any privacy threat. However, the SMDM family suffers
from the following shortcomings.
® Adding noise to the SM readings causes a mismatch

between the reported values and the real energy con-

sumption, which prevents DSOs and UPs from accurately

monitoring the grid state; rapidly reacting to outages,

energy theft, or other problems; and producing accurate
and timely billing services. These would significantly
limit the SM benefits.

m DSOs, UPs, or, more generally, any eavesdropper can
embed additional sensors right outside a household or a
business (street-level measurements are already available
to DSOs and UPs) to monitor the energy consumption with-
out fully relying on SM readings.

m The anonymization and aggregation techniques that
include the presence of a TTP only shift the problem of
trust from one entity (the UP) to another (the TTP).

These issues are avoided by the UDS approaches, which
directly modify the actual energy consumption profile of the
user, called the user load, rather than modifying the data sent
to the UP. In this family, the SM accurately reports the energy
taken from the grid without any modification; however, this is
not the energy that is actually consumed by the appliances. This
is achieved by filtering the user’s actual electricity consump-
tion via a rechargeable energy storage device, i.e., an RB, or by
exploiting an RES, which can be used to partially hide the con-
sumer’s energy consumption. Examples of RESs include solar
panels and micro wind farms.

Another technique is to partially shift a consumer’s demand.
If we denote the energy received from the grid as the grid load,
the idea is to physically differentiate the grid load from the user
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SMDM Family
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SM Data Sent to UP
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Privacy-Preserving
Techniques

UDS Family
Methods Shape User’s Actual
Energy Consumption

FIGURE 3. An overview of the privacy-enabling approaches for SMs.

load. Note that the effect of using an RB or an RES can also
be considered as adding noise to the household consumption,
but the noise in this case corresponds to a physical variation
in the energy received from the grid. Moreover, different from
the approaches in the SMDM family, the SM measurements
provided by the UDS methods are exact, and there is no issue
of any data mismatch between the SM data and the effective
user demand from the grid. Thus, when UDS methods are
deployed, the utility of SMs for the SG is not diminished since
the users’ energy consumption is neither misreported nor dis-
torted. As a result, while the privacy-versus-utility tradeoff
is of particular concern for the SMDM techniques, with the
UDS methods, SG utility is never diminished. Instead, other
tradeoffs are considered, such as privacy versus cost or pri-
vacy versus wasted energy. Figure 3 shows an overview of the
privacy-enabling approaches.

The focus of this article is on UDS techniques, which have
been receiving growing attention from the research communi-
ty in recent years. The physical resources these techniques rely
on, such as RBs or RESs at consumer premises, are already
becoming increasingly available, thanks to government incen-
tives and the decreasing cost of solar panels and household and
electric vehicle RBs. Moreover, shaping and filtering users’
actual energy consumption by means of physical resources
render any data misreporting or distortion unnecessary and
thus, do not undermine the utility of the SG concept itself.

» Data Anonymization (e.g., Pseudonyms)

* Data Obfuscation (e.g., Differential Privacy)

» Data Aggregation (e.g., Homomorphic
Encryption, Paillier Cryptosystems)

* Sampling Period Modification

*RB
* RES
* Demand Shifting

We present a signal processing perspective on SM priva-
cy by treating the user load as a stochastic time series, which
can be filtered and distorted by using an RB, an RES, and/or
demand shaping/scheduling. The available energy generated
by the RES can also be modeled as a random sequence, whose
statistics depend on the energy source (e.g., solar or wind) and
the specifications of the renewable energy generator. Addition-
ally, the finite-capacity battery imposes instantaneous limita-
tions on the available energy. We also note that such physical
resources can be used as well for cost minimization purposes
by the users, e.g., by acquiring and storing energy over low-cost
periods and utilizing the stored energy in the RB and the ener-
gy generated by an RES over peak-cost periods. Accordingly,
we also study the tradeoff between privacy and cost, as well
as the minimization of the wasted renewable energy. Next, we
describe and summarize the progress made in recent years
toward quantifying SM privacy leakage in a rigorous manner,
report the most significant results, and highlight a number of
future research directions.

Current household batteries, typical energy

demands, and renewable energy generation

Table 2 lists the storage capacity and peak power of some of
the currently available RBs for residential use. As can be seen,
the capacities are in the range of a few kilowatthours. For
example, the peak power that batteries with a 4-kWh capacity

Table 2. The specifications of some currently available residential batteries.

Household RB Capacity (kWh)
Sunverge SIS-6848 [76] 7.7,11.6,15.5,19.4
SonnenBatterie eco [77] 4-16

Tesla Powerwall 2 [78] 13.5

LG RESU 48V [79] 29,59,88
Panasonic battery system L-SK56A [80] 53

Powervault G200-L-2/4/6KWH [81] 2,4,6

Orison Panel [82] 2.2

SimpliPhi PHI 3.4-48V [83] 3.4

RB Charging Peak Power (kW) RB Discharging Peak Power (kW)

6.4 6

3-8 3-8

5 5
3,42,5 3,42,5
2 2
0.8,1.2 0.7, 1.4
1.8 1.8

1.5 1.5
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FIGURE 4. Examples of the user load, grid load, and target load over the
course of a day when a piecewise target profile is considered [33]. The

price periods are highlighted by arrows of different colors. Note that the
target load assumes a different constant value for each price period.

can output sustainably is on the order of 1-2 kW. However, as
the typical electricity consumption is very spiky (e.g., see
Figure 1), current batteries cannot fully hide the consumption
spikes, because of the charging/discharging peak power con-
straints. For example, while a 4-kWh battery can hide a con-
stant consumption of 2 kW over 2 h, it cannot fully conceal
spikes in the user load of more than 2 kW. An example of this
effect can be noticed in the simulation of Figure 4.

The typical household average power consumption also lies
within the range of a few kilowatts, as shown in Table 3, where
the distribution of the average user power consumption values
over different years obtained from various databases is report-
ed, with various time resolutions. Analyzing the Dataport data-
base [8], we observe that, independent of the period considered,
the average user energy demand is fewer than 2 kWh 80-90%

of the time. Current batteries charged at full capacity would
then be able to satisfy the demand continuously for only a few
hours. However, completely covering the consumption over a
few hours may come at the expense of revealing the energy
consumption fully at future time periods. In fact, once the RB
is discharged, it needs to be charged again before being able to
hide the user consumption; hence, the use of the RB introduces
memory into the system, as decisions taken at a certain time
have an impact on the privacy performance at later times.

We should also remark that residential electricity consump-
tion is forecast to increase significantly in the coming years
[71], emphasizing the need to intelligently exploit limited-
capacity storage devices to hide energy consumption behav-
ior. We also would like to emphasize that the privacy leakage
is caused mostly by these spikes, which are typically more
informative (e.g., the oven, microwave, and heater) compared
to more regular consumption (e.g., the refrigerator). Moreover,
because of electricity price variations, users may prefer charg-
ing/discharging the battery during certain time periods, which
limits the available energy that can be used for privacy. Finally,
it is expected that the increasingly wider adoption of electric
vehicles and the mass production and adoption of energy-hun-
gry smart devices will inevitably increase the typical house-
hold electricity consumption, further limiting RBs’ capability
to fully hide the user load.

Table 4 shows the average power generated by typical resi-
dential solar panels, which are the most common residential
RESs. The location, technology, inclination, and size of the
solar panel affect the generated power, as shown in Table 5 for
one of the databases considered, where kWp denotes the kilo-
watt peak, i.e., the output power achieved by a panel under full
solar radiation. As expected, around 50% of the time, i.e., at
night, no energy is generated at all, while there are differences
in the distribution of the average values for the two databases
considered, due to the different locations. Comparing these

Table 3. The distribution of the average household power consumption (resolution refers to the measurement frequency).

Number
Source Location Resolution  Time Frame of Houses
Dataport  Texas, 60 min 1 January- 512
[8] United 31 May 2016
States

1 January- 703

31 December 2015

1 January- 720

31 December 2014

1 January- 419

31 December 2013

1 January- 182

31 December 2012
Inferfek ~ United 2 min 1 May 2010- 251
[26] Kingdom 31 July 2011
Dred The s 5 July 2015- 1
[27] Netherlands 5 December 2015
Uci [28]  France 1 min 16 December 2006~ 1

26 November 2010

[0,0.5]kW (0.5,11kW (1,2]kW (2,3]kW (3,4]kW (4, +o0) kW
38 30 20 7 3 2
36 26 20 9 5 4
39 25 20 8 4 4
35 25 21 9 5 5
31 26 24 10 5 5
18 24 47 11 0 0
98 1.8 0.4 0 0 0
47 9 28 8 4 2

The values in each column indicate the percentage of time the average consumption falls into the corresponding interval.
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Table 4. The distribution of the average power generated by residential photovoltaic systems.

Number

Source Location  Resolution Time Frame  of Houses OkW (0,0.5]kW (0.5,11kW (1,2]1kW (2,31kW (3,4]1kW (4, +oo) kW
Dataport  Texas, 60 min 1 January 351 49 17 7 9 7 6 5
[8] United 2012-31

States May 2016
Microgen  Unifed 30 min 1 January-31 100 517 364 9.8 2 0.1 0 0
[29] Kingdom December

2015

The values in each column indicate the percentage of time the average generation falls info the corresponding interval.

Table 5. The specifications of the solar panels studied in the Microgen [29] database.

Solar Panel Area (m?
0,15  (15,20]
5 35

(20, 25]
44

(25,30] (30, +oo)

15 1 93

Solar Panel Cell Type
Monocrystalline

Nominal Installed Capacity (kWp)
(0,2] (2,3] (3,4] (4, +)
4 36 59 1

Polycrystalline
7

The values in each column indicate the percentage of solar panels that satisfy the corresponding property.

values with those in Table 2, we note that the battery capacities
are large enough to store many hours of average solar energy
generated by the solar panels most of the time.

A signal processing perspective on SM privacy

A generic discrete-time SM system model is depicted in Fig-
ure 5. In this model, each time slot is normalized to unit time;
therefore, the power and energy values within a time slot are
used interchangeably. X; € X denotes the total power de-
manded by the appliances in the household in time slot ¢,
i.e., the user load, where X is the user

load alphabet, i.e., the set of values that

X: can assume. The sequence {X;} re-

presents the user’s private information

that needs to be protected. ¥; € Y is

the power received from the grid in

time slot ¢, i.e., the grid load, which is ﬁ
measured and reported to the UP by the SG —
SM, while Y denotes the grid load . SM _Yt_> EMU X L
all;zihab.edt.lel assume ttllat the us?r load GridlLoad .@ User Load

and grid load power values remain con- —

stant within a time slot. In practice, this T v ,' @ m
can be considered as a discrete-time lin- 7~ ty 1 X— Y

ear approximation of a continuous-load I I I I '/ t

profile. This approximation can be made

as accurate as desired by reducing the up

time slot duration.

In current systems, where no energy
manipulation is employed, Y: = X;, Vt;
that is, the actual energy consumption of
the appliances is reported to the UP by
the SM. Instead, we will assume that an
RB and an RES are available to the user
to physically distort the energy consump-
tion, so that what the user receives from
the grid, Y;, does not reveal too much

information about the energy used by the appliances, X:. We
remark here that the time slots in our model correspond to time
instants when the electricity is actually requested by the user and
drawn from the grid, rather than the typically longer sampling
interval used for sending SM measurements to the UP. In fact, we
assume that the SM measures and records the output power val-
ues at each time slot. This is because our aim is to protect consum-
ers’ privacy not only from the UP but also from the DSO or any
other attacker that may deploy a sensor on the consumer’s power
line, recording the electricity consumption in almost real time.

RES

FIGURE 5. The system model. X:, Y;, £, and B: denote the consumer’s power demand, i.e., the user
load; the SM readings, i.e., the grid load; the power produced by the RES; and the battery state of
charge at time ¢, respectively. The dashed line represents the meter readings being reported to the UP.
EMU: energy management unit.
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The amount of energy stored in the RB at time ¢ is
B; € [0, Bmax], where Bmax denotes the maximum battery
capacity. X, — Y is the power taken from the RB, and the bat-
tery charging and discharging processes are often constrained
by the so-called charging and discharging power constraints
P. and Py, respectively, i.e., — P.<X,— Y, < Py, Vt. There
is also typically a constraint on the average energy that can
be retrieved from an RB, imposed by an average power con-
straint P, i.e., E[LX- (X, — Y;)] < P. Losses in the battery
charging and discharging processes may also be taken into
account to model a more realistic energy management sys-
tem. The renewable energy generated at time ¢ by the RES is
represented by E; € &, where & = [0, Emax]. RBs and RESs
are expensive facilities, and installation and operation costs
can be reduced if they are shared by multiple users, e.g.,
users within the same neighborhood or block of apartments.
Moreover, sharing these resources allows the centralized
management of the energy system, which also leads to a
more efficient use of the available resources. The renewable
energy can be stored in the RB or used immediately so that
a user can
B increase privacy by not reporting the actual power con-
sumption to the UP
m decrease electricity costs by purchasing and storing elec-
tricity from the grid when it is cheaper and using it to satis-
fy future demand—or even selling it back to the UP when
the price increases

m increase energy efficiency by reducing the waste of gener-
ated renewable energy when it is not needed and, when it is
not profitable, to sell it to the UP.

The random processes X and E are often modeled as
Markov processes or as sequences of independent and iden-
tically distributed (i.i.d.) random variables. Although the
UP typically does not know the instantaneous outcomes of
these processes, it may well know their statistics. In some
cases, the UP may know the realizations of the renewable
energy process E, for example, if it has access to additional
information from sensors deployed near the household that
measure different parameters, e.g., the solar or the wind
power intensity, and if it knows the specifications of the
user’s renewable energy generator, e.g., the model and size
of the solar panel.

Given these definitions, the equation expressing the evolu-
tion of the energy level in the battery is

Bi+1=min{B;+ Ei— (X; — Y;), Bmnax}. (1
Sometimes, the user load does not need to be satisfied imme-
diately in its entirety. In fact, it can be further classified into
demand that must be met immediately (e.g., lighting or cook-
ing) and demand that can be satisfied at a later time, the so-
called elastic demand (e.g., charging an electric vehicle or
running a dishwasher or washing machine). For the latter
demand, the user’s only concern is that a certain task needs to
be finished by a certain deadline (e.g., the electric car must be
fully charged by 8 a.m.), and it does not matter exactly when

the consumption takes place. This flexibility allows the con-
sumer to employ demand response to increase privacy and lower
the energy cost.

The electricity unit cost at time ¢, denoted by C;, can be
modeled as a random variable or in accordance with a specific
ToU tariff. The cost incurred by a user to purchase Y units
of power over a time interval 7, at price C; is thus given by
7.Y:C;. When the presence of an RES is considered, the pro-
sumer may be able to sell part of the energy generated to the
grid to further improve privacy and minimize the energy cost.
If this occurs, the net metering approach is typically consid-
ered, i.e., the utilities purchase consumer-generated electricity
at the current retail electricity rate. The battery wear and tear
due to charging and discharging the RB can also be taken into
account and modeled as an additional cost [30].

The energy management policy
The energy management unit (EMU) is the intelligence of the
system, located at the user’s premises, where the SM privacy-
preservation and cost-optimization algorithms are physically
implemented. The energy management policy (EMP), imple-
mented by the EMU, determines at any time ¢ the amount of
energy that should be drawn from the grid and the RB, given
the previous values of the user load X', renewable energy E',
level of energy in the battery B’, and grid load Y/, i.e.,
fir X'xEXB XY 'Y, v, )
where fe F, and F denotes the set of feasible policies, i.e.,
policies that produce grid load values that satisfy the RB and
RES constraints at any time as well as the battery update
equation in (1). The optimal policy is chosen to minimize the
long-term information leakage about a consumer’s electricity
consumption, possibly along with other criteria, such as the
minimization of electricity cost or wasted energy. The EMP
prevents outages, and typically it is not allowed to draw more
energy from the grid to be wasted simply for the sake of
increased privacy.

The policy fi in (2) corresponds to an online EMP, i.e.,
one in which the action taken by the EMU at any time slot
depends only on the information available causally right up to
that time. Alternatively, in an offline optimization framework,
the policy takes actions based also on future information
about the system state, i.e., the user load and RES energy gen-
eration, in a noncausal fashion. In the SM privacy literature,
both offline and online SM privacy-preserving algorithms
have been considered. Online algorithms are more realis-
tic and relevant for real-world applications; however, offline
algorithms may lead to interesting intuition or bounds on the
performance. Moreover, noncausal knowledge of the electric-
ity price process is a realistic assumption in today’s energy
networks; and even the noncausal knowledge of power con-
sumption may be valid for certain appliances, such as refrig-
erators, boilers, heaters, and electric vehicles, whose energy
consumption can be accurately predicted over certain finite
time frames.
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A heuristic privacy measure:

Variations in the grid load profile

As in many other problems involving privacy, a wide consen-
sus over the best privacy measures for SMs has not yet been
reached. A number of privacy measures have been proposed in
the literature, each with its own benefits and limitations.
Although it is clear that privacy is achieved when the UP can-
not infer a user’s behavior on the basis of SM measurements,
it is challenging to define a corresponding mathematical mea-
sure that is independent of the particular detection technique
employed by the attacker.

Grid load variance as a privacy measure

One can argue that privacy in SMs can be ensured by oppor-
tunely charging and discharging the RB so that the grid load is
always constant. In fact, the differences in consecutive load
measurements Y;—Y;—1 are indicative of the appliances’
switch-on/off events, the so-called features, and are typically
exploited by the existing NILM algorithms. Ideally, a complete-
ly flat grid load profile would not reveal any feature and would
only leak a user’s long-term average power consumption.
However, this would require a very large battery capacity and/or
a powerful RES. Alternatively, the level of privacy can be mea-
sured by what we might call the distance of the grid load from a
completely flat target load profile, based on the intuition that the
smaller the distance, the higher the level of privacy achieved
[31]. Accordingly, privacy can be defined as the grid load vari-
ance around a prefixed target load profile W.i.e.,

Vi LY E[(vi- W) 3)
=1
where the expectation is over X; and Y;, and typically
W= E[X].

Another important concern for consumers is their energy
cost. With the integration of unreliable RESs into the grid, it
is expected that the unit cost of energy from different UPs will
fluctuate over time. RBs for residential use provide flexibility
to consumers, as they can buy and store energy during low-
cost periods to be used during peak-price periods. The impact
of RBs in reducing the cost of energy to consumers has been
extensively studied in the literature [32]. Note, however, that
the operation of the EMU to minimize the energy cost does not
necessarily align with the goal of minimizing privacy leakage.
Therefore, it is essential to jointly optimize the electricity cost
and user privacy. If the cost of energy and battery wear and
tear are considered, the overall optimization problem becomes

minL 3" B[C,,+ 150 Cy + a(v,— WY, @
=1

where 15(f) = 1 if the battery is charging/discharging at time
¢t and equals 0; otherwise, Cs is the battery operating cost
due to the battery deterioration caused by charging and dis-
charging the RB, and o strikes the tradeoff between privacy
and cost. The expectation in (4) is over the probability distri-
butions of all of the involved random variables, i.e., X, Y,
and C;.

If W, = E[X], Vt, the EMU tries to achieve a flat grid load
profile around the average user energy consumption with as
few deviations as possible. This scenario is illustrated in Fig-
ure 6, where the straight blue line is the fixed target consump-
tion profile W, and the red line indicates the achieved grid
load profile Y;. For i.i.d. X and C processes, an online EMP
can be obtained using Lyapunov optimization [30]. The online
control algorithm can be formulated as a Lyapunov function
with a perturbed weight, and the drift-plus-penalty framework
is adopted, which is typically used for stabilizing a queuing
network, by minimizing the so-called drift while at the same
time minimizing a penalty function. Here, the penalty is rep-
resented by the optimization target, while the Lyapunov drift
is defined as the difference of the level of energy in the RB
at successive time instants. The authors in [30] show that this
approach leads to a mixed-integer nonlinear program, which
they solve by decomposing it into multiple cases and finding a
closed-form solution to each of them.

This problem can also be studied in an offline framework
by assuming that the future user demand profile can be accu-
rately estimated for a certain time horizon and that the energy
cost is known in advance. When privacy and cost of energy are
jointly optimized over a certain time horizon, one can charac-
terize the points on the Pareto boundary of the convex region
formed by all of the cost and privacy leakage pairs by solving
the following convex optimization problem [31]:

min Z [(1— )Y, Ci+ a(Y,— W)?]. 6)

=1

Itis shown in [31] that the optimal offline solution has a water-
filling interpretation. However, unlike the classical water-filling
algorithm, which appears as the solution of the power allocation
problem across parallel Gaussian channels under a total power
constraint, here the water level is not constant but changes across
time because of the instantaneous power constraints.
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FIGURE 6. An example of the user load, grid load, and constant target
load profiles, where the distance Y: — WW; is highlighted. The aim of the
algorithms presented in the “Grid Load Variance as a Privacy Measure”
section is to minimize the average squared distance.
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A completely flat consumption profile may not be feasible
or even desirable—e.g., if the cost varies greatly during the
system operation because of ToU tariffs. Thus, it is reasonable
to assume that a user requests more energy during off-peak
price periods as compared to peak price periods and hence
allows a piecewise constant target load [33]. An example of
this strategy is shown in Figure 4, where it is applied to real
power consumption data from the UK-DALE data set [34]. The
optimization problem (5) becomes

M ]‘(l) i X
min- D0 X (1= oK+ al¥i— WOF|

i=1|t=106-0

(©6)

where C” and W are the cost of the energy purchased from
the UP and the target profile during the ith price period,
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FIGURE 7. The ToU tariff and timing conventions used for a piecewise
target profile [33]. The time instants at which the price of energy changes
are represented by f, for i=1,...,M, and t;o = 0.
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FIGURE 8. The privacy-versus-cost tradeoff when using a Powervault
G200-LI-4KWH battery for the strategies in [31] and [33].

respectively, where 1 < i < M; M is the total number of price
periods during time T; and the ith price period spans from
time slot 7.¢-v to t.®. Figure 7 depicts the timing convention
considered in this scenario. Energy can be sold to the UP to
further improve the privacy-versus-cost tradeoff, as assumed
in [33]. Considering a piecewise target profile improves the
overall privacy-versus-cost tradeoff compared to a constant
target profile, as shown in Figure 8 for a Powervault G200-LI-
4KWH RB when using power consumption data from [34].

A possible extension of the latter work is to consider the
multiuser scenario, where, in principle, each user can fix
its own target profile. As long as the target profile does not
depend on the user’s energy consumption profile, the UP does
not receive much information about the consumer’s activities.
On the other hand, the UP can implicitly incentivize users to
choose different target profiles by setting different ToU prices
for different consumers. Since consumers will tend to buy
more energy when it is cheaper, each of the users in the neigh-
borhood will shift the load to a different time slot, also balanc-
ing the total load on the grid.

Markov decision process formulation

In the online optimization framework, where the user load and

the energy generated by the RES can be modeled as Markov

processes (or as i.i.d. sequences as a special case), the SM pri-

vacy problem can be cast as a Markov decision process (MDP).

An MDP is a discrete-time state-transition system that is for-

mally characterized by the following:

B astate space

B an action space, which includes the possible actions that
can be taken by the decision maker at each state

m the transition probabilities from the current state to the next
state, which describe the dynamics of the system

m the reward (or inversely the cost) process, which indicates
the reward received (or cost incurred) by the decision
maker by taking a particular action in a particular state.

The goal of an MDP is to find the optimal policy that min-
imizes the average (or discounted) cost either by a specified
time in the future, i.e., by considering the so-called finite-hori-
zon setting, or over an indefinite time period, by considering
the infinite-horizon setting. To solve the corresponding MDP,
the Bellman optimality equations should be formulated [35],
which can be solved to obtain the optimal policy at each state
and time instant. The problem can be solved numerically for
the finite-horizon setting, while the value iteration algorithm
can be employed to obtain the optimal stationary policy in the
infinite-horizon scenario.

In the SM problem, the state at any time ¢ is typically rep-
resented by a combination of the current level of energy in the
battery B, user demand X;, and renewable energy E:. The
action, performed by the EMU, is represented by the current
grid load and the energy used from the RB and RES. State tran-
sitions are modeled by the battery update equation, which is
typically assumed to be deterministic, and by transitions in the
user demand and renewable generation states, which typically
do not depend on users’ actions. The cost function is the privacy
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loss that is experienced when moving from one level of energy
in the battery to another by following a certain action.

However, to consider privacy as the cost function in an MDP,
it is necessary to formulate the privacy leakage in an additive
form across time, so that the total loss of privacy over multiple
time slots is given by the summation of the privacy leakage at
different time slots. This may be challenging, depending on the
privacy measure employed. For example, measuring privacy
via the squared distance of the grid load from a constant target
profile has a straightforward additive formulation, while the
same does not hold when privacy is measured by the mutual
information (MI) between the user and grid load sequences.
This is because the MI takes into account the dependence
between the realization of the user load at time ¢, X; and the
current, past, and future realizations of Y, Y1,...,Y,,....

When the state and action spaces are continuous, it is neces-
sary to discretize them to solve the problem numerically. The
accuracy of the numerical solution can be improved by decreas-
ing the discretization step size, though at the expense of signifi-
cantly higher computational complexity. When the dimensions
of the state and action spaces render numerical evaluation of the
optimal policy unfeasible, one can resort to suboptimal solu-
tions that are easier to optimize and compute numerically yet
may provide near-optimal performance or interesting intuition.
Also, when the information-theoretic privacy measures are
used, it may be possible to simplify the infinite-horizon opti-
mization problem and write it in a single-letter form. We will
provide further insight into this next.

The SM problem is cast as an MDP in [36], where the loss
of privacy is measured by the fluctuations of the grid load
around a constant target load, and the joint optimization of
privacy and cost is studied. The optimal privacy-preserving
policies are characterized by minimizing the expected total
cost. Denote by u, the action at time ¢. To solve the MDP, the
transition probabilities p(X:|X:;-1) and p(B:|B-1,u:) need
to be known; however, this is normally not the case, as the user
load and the energy storage usage are typically nonstation-
ary. The authors in [36] overcome this issue by adopting the
Q-learning algorithm [37], which is an iterative algorithm used
for characterizing the expected cost for each state—action pair
by alternating the exploitation and exploration phases. The cor-
responding offline optimization policy is also characterized in
[36] to be considered as a benchmark for the online algorithm.
The paper characterizes the privacy—cost tradeoff curves and
also evaluates the performance of the proposed algorithm by
means of the empirical mutual information.

Temporal and spatial similarities

in the grid /oa(j) as a privacy measure

Variations in the grid load profile can be captured by consider-
ing the power traces of single appliances and computing dif-
ferences in power consumption both in the time domain, i.e.,
the consumption deviation over time of a specific appliance,
and in the space domain, i.e., the consumption profiles of dif-
ferent appliances. As these variations are computed over a cer-
tain time horizon, when an online algorithm is considered,

future user electricity consumption is estimated by forecasting
the future electricity prices and running Monte Carlo simula-
tions. The optimal decision at any time is characterized by
considering both the current inputs and the forecasts through a
rolling online stochastic optimization process.

Load shifting, i.e., the scheduling of the user’s flexible elec-
tricity demand in accordance with privacy as well as cost con-
cerns, can also be considered. Load shifting is analyzed in [38]
and [39], where privacy, cost of energy, and battery wear and tear
are jointly optimized and an online algorithm is formulated. The
objective is to minimize the sum of the current and expected elec-
tricity and charging/discharging costs together with the weighted
power profile differences measured through the similarity param-
eters for an entire day. In [39], the effectiveness of three similarity
measures are examined separately and jointly, considering only
four typical appliances—an oven, a clothes dryer, a dishwasher,
and an electric vehicle—for the sake of simplicity.

Heuristic algorithms

While the grid load can be flattened by minimizing its variation
around a constant consumption target, several works in the litera-
ture propose heuristic battery charging and discharging algo-
rithms that keep the grid load variations limited. An intuitive
approach is to try to keep the grid load equal to its most recent
value by discharging (or charging) the RB when the current user
load is larger (or smaller) than the previous one. This approach,
called the best-effort (BE) algorithm in [40], tends to eliminate
the higher-frequency components of the user load while still
revealing the lower-frequency components.

In [40], the similarity between the two probability distribu-
tions of the user and grid loads is quantified via the empiri-
cal relative entropy, i.e., the Kullback-Leibler (KL) divergence
[41]. In the same work, the authors also consider cluster classi-
fication, whereby data are clustered according to power levels
and cross-correlation and regression procedures, according to
which the grid load is shifted in time at the point of maximum
cross-correlation with the user load, and regression methods
are then used to compare the two aligned signals.

The study in [42] considers a slightly more sophisticated
approach, called the nonintrusive load-leveling (NILL) algo-
rithm, in which more than one grid load target value, namely, a
steady-state target and low and high recovery state targets, are
allowed, and where the EMU tries to maintain the grid load at
one of these values across time. If the steady-state load cannot
be maintained, the EMU switches to a high (or low) recovery
state in case of persistent light (or heavy) user demand. When
one of the recovery states is reached, the target load is adapted
accordingly to permit the battery to charge or discharge, simi-
lar to the empirical strategies outlined in [43]. The value of the
steady-state target load can be updated whenever a recovery
state is reached, to reduce the occurrences of recovery states,
which is achieved by using an exponential weighted moving
average of the demand. To assess their proposed approach, the
authors in [42] count the number of features, i.e., the number
of times a device is recognized as being on or off based on the
grid load as compared to the user load.
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As also pointed out in [44], these heuristic algorithms suf-
fer from precise load change recovery attacks that can iden-
tify peaks of user demand. We note that the NILL algorithm
essentially quantizes the input load to three values with the help
of the RB. This idea is generalized in [44] by considering an
arbitrary number of quantization levels. Since quantization is a
many-to-few mapping, converting the grid load to a step func-
tion is inherently a nonlinear and irreversible process, which
can be used to provide privacy by maximizing the quantization
error under battery limitations. More specifically, the grid load
is forced to be a multiple of a quantity 3, i.e., Y = h;f3, where
h: is an integer value and S is the largest value that satisfies the
battery’s maximum capacity and power constraints. At any time
slot, given the user load, the grid load is chosen between the two
levels adjacent to the user load, namely, [%] and l%J, where
[-]and | - | denote the ceiling and floor functions, respectively.

The study in [44] proposed three stepping algorithms that
have different quantization levels: 1) the lazy stepping algorithm,
which tries to maintain the external load constant for as long as
possible; 2) the lazy charging algorithm, which keeps charging
(or discharging) the battery until it is full (or empty); and 3) the
random charging algorithm, which chooses its actions at ran-
dom. While the simulation results show that these algorithms
outperform the BE and NILL algorithms, with the lazy stepping
algorithm typically performing the best, it is hard to make gen-
eral claims because of the heuristic nature of these algorithms.
In fact, these approaches do not provide theoretical guarantees
on the level of privacy achieved. Thus, they are not able to make
any general claim about the strength of the proposed privacy-
preserving approaches and their absolute performance. This is
an important limitation, as consumers would like to know the
level of privacy they can achieve, even if it is in statistical terms.
Also, because such heuristics are often based on deterministic
schemes, they are prone to be easily reverse-engineered.

Theoretical guarantees on SM privacy

One of the challenges in SM privacy is to provide theoretical
assurances and fundamental limits on the information leaked
by an SM system, independently of any assumption on the
capability of an attacker or of the particular NILM algorithm
employed. This is essential in privacy research, as privacy-pre-
serving techniques may perform extremely well against some
NILM algorithms and very poorly against others. Moreover,
the privacy assurances should not be based on the complexity
limitations of a potential attacker, as techniques that are cur-
rently thought to be not feasible may become available to
attackers in the future if computational capabilities improve or
if new methods are developed.

Last but not least, establishing a coherent mathematical
framework would allow us to rigorously compare various SM
scenarios and the use of different physical resources, e.g., RBs
of various capacities, RESs of various kinds, and so forth.
Accordingly, signal processing and information-theoretic tools
have been employed in the literature to provide theoretical pri-
vacy assurances. We will overview various statistical measures
for privacy, particularly conditional entropy [43], Fisher infor-

mation (FI) [45], and type II error probability for detecting
user activity [46].

In this statistical framework, it is commonly assumed that
the statistics of the user load and the RES are stationary over
the period of interest and known to the EMU. This assump-
tion is reasonable, especially if the period of stationarity is
sufficiently long for the EMU to observe and learn these statis-
tics [47]-[49]. On the other hand, an online learning theoretic
framework can also be considered to account for the conver-
gence time of the learning algorithm. Alternatively, most of the
works in the literature that carry out a theoretical analysis also
propose suboptimal policies that can be applied on real power
traces, thus allowing the reader to gain an idea of the practical
application and performance of these theoretically motivated
techniques. We take a worst-case approach and assume that the
statistics governing the involved random processes are known
by the attacker. Note that this can only empower the attacker
and strengthen the stated privacy guarantees.

The significance of single-letter expressions

It is expected that a meaningful privacy measure should con-
sider the leakage of a user’s information over a certain time
period of reasonable length, because of the memory effects
introduced by the RB and the RES. The energy consumption
over a short period of time can be easily covered by satisfying
all of the demand from the RB or the RES over this period,
but this may come at the expense of fully revealing the energy
consumption at future time periods. Therefore, the informa-
tion-theoretic analysis typically considers an average informa-
tion rate measured over a given finite time period and often
studies its infinite-horizon asymptotics as well.

However, increasing the time horizon also increases the
problem complexity, and one of the challenges of the infor-
mation-theoretic analysis is to obtain a so-called single-letter
expression for the optimal solution, which would significantly
reduce the problem complexity, particularly when the involved
random variables are defined over finite alphabets. Unfortu-
nately, to date, closed-form or single-letter expressions for the
information leaked in an SM system have been characterized
only for specific settings under various simplifications, e.g.,
considering an i.i.d. or Markov user load or RES generation.

Ml as a privacy measure

The entropy of a random variable X, H(X) is a measure of the
uncertainty of its realization. The MI between random va-
riables X and Y, I(X;Y), measures the amount of infor-
mation shared between the two random variables [41]. The MI
can also be considered as a measure of dependence be-
tween the random variables X and Y, and it is equal to
zero if and only if they are independent. Rewriting the
MI as I(X;Y)= HX)— H(X1Y), where H(X1Y) is the con-
ditional entropy, we can also interpret MI as the average re-
duction in the uncertainty of X from the knowledge of Y.
Therefore, we can measure the privacy leakage about the input
load sequence X" through the SM readings Y" by the MI
between the two sequences I1(X";Y"). This will measure the
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reduction in the uncertainty of the UP about the real energy con-
sumption of the appliances X" after receiving the SM measure-
ments Y. For an SM system with only an RB (but no RES) and a
given EMP f in (2) running over n time slots, the average infor-
mation leakage rate 7} (Bmax, Pa) is defined as

T Buas,P) = L1031 = %[H(X") —HX"1Y"], (7)

where 0 <X,— Y, <P;. The parameters Bmx and Py
emphasize the dependence of the EMP and, therefore, of the
achievable information leakage rate on the battery capacity
and the discharging peak power constraint. The optimal EMP
and the corresponding minimum information leakage rate are
obtained by minimizing (7) over all of the feasible policies
fe F toobtain 7" (Bmax, Pa).

Privacy with an RES
Alternatively, one can also consider the SM system of Figure 5
with an RES but no RB. Assume that the renewable energy that
can be used over the operation period is constrained by an
average and a peak power constraint. We do not allow selling
the generated renewable energy to the UP, as our goal is to
understand the impact of the RES on providing privacy to the
user. The minimum information leakage rate achieved under
these assumptions and for an i.i.d. user load can be character-
ized by the so-called privacy-power function 7 (P, P,) and for-
mulated in the following single-letter form:

I(P,P)= inf I(X;Y), (8)

prix€P

where P 2 {pyix : yeV,E[(X— V] <P,0<X—-Y<P).
This formulation is presented in [S0] for a discrete user load al-
phabet (i.e., X can assume only values that are multiples of a fixed
quantum) and in [51] for a continuous user load alphabet (i.e., X
can assume any real value within the limits specified by the peak
power constraints of the appliances). The optimal EMP that mini-
mizes (8) is stochastic and memoryless; that is, the optimal grid
load at each time slot is generated randomly via the optimal condi-
tional probability that minimizes (8) by only considering the cur-
rent user load. Another interesting observation is that (8) is in a
form similar to the well-known rate-distortion function in informa-
tion theory, which characterizes the minimum compression rate R
of data, in bits per sample, that is required for the receiver to
reconstruct the source sequence within a specified average distor-
tion level D [41]. Formally, the rate-distortion function R (D) for
an i.i.d. source X € X with distribution px, reconstruction al-
phabet X , and distortion function d(x,x), where the distortion
between sequences X" and X" is given by X! d(x;x0),
characterizes the minimum rate with which an average distor-
tion of D is achievable. The compression rate specifies the size
of the codebook 2™ required to compress the source sequence
of length n, X". Shannon showed that the rate-distortion func-
tion can be obtained in the following single-letter form:

R(D) = min 1X:X). 9)

piixt 2 pxpixd(x.X) <D
)

The analogy between (8) and (9) becomes clear considering
the following distortion measure:

x—y, if0<x—y<P,
0o, otherwise,

d(x,y) = { (10)
and such an analogy enables the use of tools from rate-distor-
tion theory to evaluate the privacy-power function for an SM
system. However, it is important to highlight that, despite the
functional similarity, there are major conceptual differences
between the two problems: 1) in the SM privacy problem, Y" is
the direct output of the encoder rather than the reconstruction
at the decoder side, and 2) unlike the lossy source encoder, the
EMU does not operate over blocks of user load realizations;
instead, it operates symbol by symbol, acting instantaneously
after receiving the appliance load at each time slot.

For discrete user load alphabets, the grid load alphabet
can be constrained to the user load alphabet without loss of
optimality [52], and, since MI is a convex function of the con-
ditional probability pyix € P, the privacy-power function
can be written as a convex optimization problem with linear
constraints. Algorithms such as the Blahut-Arimoto (BA)
algorithm can be used to numerically compute the optimal
conditional distribution [41]. For continuous user load distribu-
tions, the Shannon lower bound is derived in [52], which is a
computable lower bound on the rate-distortion function widely
used in the literature and is shown to be tight for exponential
user load distributions.

These results can be generalized to a multiuser scenario
in which N users, each equipped with a single SM, share the
same RES [52]. This scenario is represented in Figure 9, where
the objective is to minimize the total privacy loss of N con-
sumers (or devices) considered jointly, rather than minimiz-
ing the privacy loss for each of them separately. This requires
the EMU to allocate the shared RES among all of the users in
the most effective manner. The average information leakage
rate can still be written as in (7), by replacing X; and Y; with
X/ = [Xis....Xn: and Y, = [Y14,...,Yn,], where the bold-
face characters denote the vectors representing the N power
measurements. The privacy-power function has the same
expression as in (8), and, for the case of independent but not

Xi; Usert

Xyn: UserN
A

FIGURE 9. A single EMU and RES are shared among N users, each
equipped with an SM. The EMU decides how much energy each user can
retrieve from the RES and from the grid.
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necessarily identically distributed user loads, the optimization
problem (ignoring the peak power constraint) can be cast as

N
I(P)= inf ) Ix(P),
S p<Pi=1

i=

an

where 7 x,(-) denotes the privacy-power function for the ith user
having user load distribution px;(x;). For continuous and expo-
nential user loads, the optimal allocation of the energy generated
by an RES can be obtained by the reverse water-filling algo-
rithm, according to which energy from the RES is used only to
satisfy the users with a low average load, while users with higher
average load need to request energy from the grid as well.

Privacy with an RB

We can also consider the presence of just an RB in the system,
which is thus charged only via the grid (no RES is available to
the EMU). Including an RB complicates the problem signifi-
cantly, and the level of energy in the battery B; plays an
important role when designing a feasible EMP.

This problem can be solved by putting it in the form of an
MDP and finding a suitable additive formulation for the pri-
vacy cost function [53]. The optimization problem is formu-
lated as

L= mfin%I(Bh XY, (12)
where f can be any feasible policy, as specified in (2) (without
including the renewable energy process). The approach in [53]
casts (12) in an additive formulation by noting that there is no
loss of optimality in restricting the focus to charging strategies
f~ that decide on the grid load, based only on the current val-
ues of the user load X; and level of energy in the battery B
and on the past values of the grid load Y'~'. That is, the general
strategy f in (2) is specified as f: XX BX Y™ = Y, v1,
because of the following inequality:

%I(X", BiY" > %Zl I(X., Bs Y1 Y'Y, (13)
=

The conditional distributions in (13) grow exponentially
with time because of the term Y~ !, and the problem becomes
computationally infeasible very quickly. To overcome this
issue, the knowledge of Y'~ ! is summarized into a belief state,
defined as p(X;,B:1Y"~ 1), which can be computed recursively
and interpreted as the belief that the UP has about (X, B;) at
time ¢, given its past observations ¥'~'. This way, the Bellman
equations can be formulated, and the optimal policy can be
identified numerically (with a discretization of the belief state).

For an i.i.d. user load, the single-letter characterization of
the minimum information leakage rate is given by [53] as

J= min /(B — X; X), (14)
where 6 is the probability distribution over B, given the past
output and actions, i.e., 6; = p(bz‘y“ La™ l), and the action
a; is defined as the transition probability from the current

belief, user load, and level of energy in the battery to the cur-
rent grid load. This result is obtained by considering a belief
on W; = B,— X,, rather than (B, X;), and by further restrict-
ing to policies of the type f": W x Y'~' -~ Y, Vt. Since (14)
is convex in 6, the optimal 6" may be obtained by using the
BA algorithm. The optimal grid load turns out to be i.i.d. and
indistinguishable from the demand, while the optimal policy is
memoryless, and the distribution of Y; depends only on W,.
Such a characterization is provided in [54] for a binary i.i.d.
user load, while the authors extend it to an i.i.d. user load of
generic alphabet size in [53], [55], and [56].

Another approach is to model the level of energy in the RB
as a trapdoor channel [57]. In a trapdoor channel, a certain num-
ber of red or blue balls are within the channel, and a new ball of
either color is inserted into it as the channel input at each time
step. After the new ball is inserted, one of the balls present in the
channel is randomly selected and removed from the channel. In
an SM setting, the finite-capacity RB can be viewed as a trap-
door channel, whereby inserting or extracting a ball from the
channel represents charging or discharging the RB, respectively.
An upper bound on the information leakage rate is characterized
in [58] through this model by minimizing the information leak-
age rate over the set of stable output balls, i.e., the set of feasible
output sequences Y" that can be extracted from the channel,
given a certain initial state and an input sequence X" and by
taking inspiration from codebook construction strategies in [59].
Such an upper bound is characterized in [58] as

1

L n, yn
p TXEY) = | (Bmax + 1)/ Xmax |

(15)
where Xmax is the largest value X can assume. It is also
shown in [58] that the average user energy consumption deter-
mines the level of achievable privacy.

Apart from only maximizing privacy, it is of interest to
also minimize the cost. Different from privacy, the cost of
energy has an immediate additive formulation and can be eas-
ily incorporated into the MDP construction. Considering the
random price vector C' = (C1,...,C;), where C; denotes the
unit cost of energy at time slot #, privacy can be defined in the
long time horizon as

P = lim

t— oo

HX'lY',C"
— (16)

This formulation is presented in [43], where the correspond-
ing MDP is constructed and two suboptimal algorithms are
proposed. The first is a greedy algorithm, which maximizes at
any time the current instantaneous reward, while the second is a
battery-centering approach that is aimed at keeping the battery
at a medium level of charge so that the EMU is less constrained
by the battery or the demand in determining the grid load. In the
latter approach, if the grid load depends not on the current user
load or the battery level but only on the current electricity price,
the system is said to be in a hidden state, while it is said to be in
arevealing state otherwise. The latter strategy is analyzed for an
i.i.d. user load by considering the system as a recurrent Markov
chain and adopting random walk theory.
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Privacy with both an RES and an RB

When both an RES and an RB are present, the information-the-
oretic privacy analysis becomes more challenging. As an initial
step, we can consider infinite and zero battery capacities,
which represent, respectively, lower and upper bounds on the
privacy leakage achievable for a practical SM system with a
finite-capacity battery [60], [61]. When Bmax = oo, the problem
can be shown to be equivalent to the average and peak power-
constrained scenario, and, interestingly, the privacy perfor-
mance does not deteriorate, even if the UP knows the exact
amount of renewable energy generated. This shows that keep-
ing the renewable energy generation process private is more
critical when the RB has a limited capacity.

Two different EMPs are shown to achieve the lower bound in
[61]. In the BE policy, at any time slot, the optimal EMP derived
from (11) is employed independently of the level of energy in
the RB if there is sufficient energy in the RB, while otherwise
all of the energy request is satisfied from the grid. The latter
approach leads to full leakage of user consumption, but it can
be shown that these events are rare enough that the information
leakage rate does not increase. In the alternative store-and-hide
policy, an initial storage phase is employed, during which all of
the user’s energy requests are satisfied from the grid while all of
the generated renewable energy is stored in the battery. In the
following hiding phase, the EMU deploys the optimal policy
designed under average and peak power constraints.

On the other extreme, when Bmax = 0, the renewable ener-
gy that can be used at any time slot is limited by the amount
of energy generated within that period. As expected, assuming
that the UP has knowledge of the renewable energy process
significantly degrades the privacy performance for this sce-
nario. Figure 10 compares the minimum information leakage
rate with respect to the renewable energy generation rate p.
for |[X[=|8[=|Y|=5 when Bma = {0,1,2,00}. In this
figure, the curves for a finite battery capacity of Bmax = 1 and
Buax = 2 are obtained numerically by considering a subopti-
mal EMP [61].

The presence of a finite-capacity battery increases the prob-
lem complexity dramatically because of the memory effects
induced by the finite battery, and single-letter expressions are
still lacking for this scenario. A possible approach to find a
theoretical solution to this problem is by extending the MDP
formulation, as investigated in [62].

Detection error probability as a privacy measure
So far, we have considered approaches that try to hide the
complete user energy demand from the UP. However, rather
than hiding the entire energy consumption profile, in some
cases it may be more meaningful to keep specific user activi-
ties private, such as whether there is anyone at home, whether
the alarm has been activated, or whether someone is eating
microwaved food. To keep the answer to such details private,
the goal of the EMU is to maximize the attacker’s probability
of making errors when attempting to discern them.

Let the consumer’s behavior that needs to be kept private
belong to a set of M possible activities. Thus, we can treat the

attacker’s decision and the user’s action as an M-ary hypoth-
esis test, i.e., HE H= {ho, hi,...hu-1}. When M =2,
the hypothesis test is said to be binary, and, by convention,
the hypothesis ho, called the null hypothesis, represents the
absence of some factor or condition, while the hypothesis /1,
called the alternative hypothesis, is the complementary con-
dition. For example, answering the question, “Is somebody at
home?” corresponds to a binary hypothesis test, where Ao is the
hypothesis “somebody is not at home” and A is the hypoth-
esis “somebody is at home.” It is reasonable to assume that the
input load will have different statistics under these two hypoth-
eses; accordingly, we assume that under hypothesis 1o (h1),
the energy demand at time slot ¢ is ii.d. with pxin (pxin).
Based on the SM readings, the attacker aims at determining
the best decision rule H (), i.e., the optimal map between the
SM readings and the underlying hypothesis. In other words,
the space of all possible SM readings Y" is partitioned into
two disjoint decision regions Ao and A1, defined as follows:

Ao = {y"| HG" = hol,
A ={y"| G = hu,

amn

(13)

which correspond to the subsets of the SM readings for which

the UP decides for one of the two hypotheses. The attacker’s

binary hypothesis test can incur two types of errors:

m type 1 error, in which a decision /1 is made when /o is the
true hypothesis (a false positive or false alarm); the type 1
error probability is p1 = pyn (HAo)

m type 2 error, in which a decision /o is made when /4 is the
true hypothesis (a false negative or miss); the type 2 error
probability is pu = py in(A1).

The Neyman—Pearson test minimizes the type 2 error
probability for a fixed maximum type 1 error probabil-
ity and makes decisions by thresholding the likelihood ratio
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FIGURE 10. The minimum information leakage rate with respect to the
renewable energy generation rate p. with X = &= Y = {0,1,2,3,4}.
The leakage for Bmax = oo has been found by setting P = 4 [61].
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(py"|h0(y"|h()))/(py"u“(yn|h1)). Consider the worst case
of an all-powerful attacker that has perfect knowledge of the
EMP employed in the asymptotic regime n — oo and denote
by pii" the minimal type 2 probability of error subject to a
constraint on the type 1 error probability. Assuming that a
memoryless EMP is employed by the EMU—i.e., the grid
load at any time slot ¢ depends only on the input load at the
same time slot—then the attacker runs a Neyman—Pearson
detection test on the grid load. We note that the memoryless
EMP assumption is not without loss of optimality. However,
it is justified on the grounds that characterizing the more gen-
eral optimal policy with memory seems to be significantly
more challenging and is unlikely to lend itself to a single-letter
expression. The Chernoff—Stein lemma [41] links the minimal
type 2 error probability pfi™" to the KL divergence D(-1I-)
between the grid load distributions conditioned on the two
hypotheses in the limit of the number of observations going
to infinity:

(19)

) lo min
lim — % =D(pyin H Pyin),

n— oo

where the KL divergence between two probability distribution
functions on X, px and gy, is defined as [41]
Px(x)

D(px|gx) = Y px(x)log====

. 20
= ax () 20)

Not surprisingly, to maximize privacy, the goal of the
EMU is to find the optimal grid load distribution, which,
given the user load X and the true hypothesis H, minimizes
the KL divergence in (19) or, equivalently, minimizes the
asymptotic exponential decay rate of pfi". However, the
EMU is constrained by the available resources in making the
two input load distributions produce similar grid load distri-
butions. In particular, we impose a constraint on the average
RES it can use. Thus, the objective is to solve the following
minimization problem:

min D(pyin H Prim), 21)

PYIHEPYIH

where Prin is the set of feasible EMPs, i.e., those that
satisfy the average RES generation rate P, so that
(1/n)E[Z{=1 X;— Yi|h;] < P, with j= 0, 1. This setting
is studied in [63], where the asymptotic single-letter expres-
sions of two privacy-preserving EMPs in the worst-case sce-
nario are considered, i.e., when the probability of a type 1
error is close to 1. The first policy is a memoryless hypothesis-
aware policy that decides on Y; based only on the current X;
and H, while the second policy is unaware of the correct
hypothesis H but takes into account all of the previous real-
izations of X and Y.

It is noteworthy that, even if the hypothesis-unaware
policy with memory does not have access to the current
hypothesis, it performs at least as well as the memoryless
hypothesis-aware policy. This is because the hypothesis-
unaware policy is able to learn the hypothesis with negligible
error probability after observing the energy demand process

for a sufficiently long period. Additionally, the energy sup-
ply alphabet can be constrained to the energy demand alpha-
bet without loss of optimality, which greatly simplifies the
numerical solution to the problem.

Fl as a privacy measure

FI is another statistical measure that can be employed as a
measure of SM privacy [45]. Let some sample data x be
drawn according to a distribution depending on an underlying
parameter. Then, FI is a measure of the amount of infor-
mation that x contains about the parameter. In the SM set-
ting, Y" is the sample data available to the attacker, while X"
is the parameter underlying the sample data that is to be esti-
mated by the UP. Let X" denote the estimate of the UP. The
FI can be generalized to the multivariate case by the FI
matrix, defined as

FI(x")=

Joew 2Ll

alog(p(y"] x))]

31°g(p(y”X"))]Td :
ox" v

oax"

(22

Assuming an unbiased estimator at the attacker, i.e., the dif-
ference between the estimator’s expected value and the true
average value of the parameter being estimated is zero, the
variance of the estimation error can be bounded via the Cra-
mér—Rao bound as follows:

B[

="z TrEren T, (23)

where ’ xX"=x"(y" z denotes the squared Euclidean norm
and Tr(A) represents the trace of the matrix A. To maximize
the privacy, it is then necessary to maximize the trace of the
inverse of the FI matrix. In [45], two SM settings with RBs are
studied, specifically when the battery charging policy is inde-
pendent of the user load and when it is dependent noncausally
on the entire user load sequence. For both cases, single-letter
expressions are obtained for the maximum privacy. Moreover,
the case of biased estimators, wear and tear on the batteries,
and peak power charging and discharging constraints are also
briefly analyzed in [45].

Empirical Ml as a privacy measure
Approaches aimed at determining theoretical privacy limits
provide important insights and intuition for the optimal EMP
to limit privacy leakage. However, they are often difficult to
optimize or even evaluate numerically, and the relatively sim-
plified formulations obtained in various special cases rely on
restrictive assumptions, e.g., i.i.d. user load and infinite RB
capacity. An alternative is to follow a suboptimal or heuristic
EMP. Although such a policy does not provide theoretical pri-
vacy guarantees, one can evaluate the corresponding privacy
leakage numerically using empirical MI.

One way to compute the empirical M1 is by simulating a dis-
crete time system for a large enough time interval and sampling
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the resulting X" and Y" sequences [64]. The MI between two
observed sequences x" and y" can be approximated as

1(X:Y) z—%logp(y")— %logp(x”)-i- %logp(x",y"), 24)

where p(y"), p(x") and p(x",y") are calculated recursively
through a sum—product computation. When using this method,
the RB is modeled as a finite state machine (FSM), and the
level of energy in the RB evolves in time through a Markov
chain with transition probabilities depending on the specific
policy implemented. An example of an FSM is illustrated
in Figure 11, where all the processes are considered to be
binary and Bernoulli distributed, and the parameters are
gx= Pr{X =1}, p.= Pr{E = 1} and p,, the latter being the
probability of using energy from the battery, provided there is
available energy. The support space for the parameters is dis-
cretized, and the optimal combination of parameters is found,
which minimizes the empirical MI.

This approach is followed in [65], where only a binary RB
is present and for an i.i.d. Bernoulli-distributed user demand,
and in [66] where an RES is also considered. The latter work
also analyzes the wasted energy and characterizes the privacy-
versus-energy efficiency tradeoff for the binary scenario and
the equiprobable user load and renewable energy generation
processes. For larger battery capacities and for an equiprob-
able user load, the authors note that there is a symmetry and
complementarity in the optimal transition probabilities in the
FSM model, which simplifies the numerical analysis. This
model is also employed in [60] and [61] by considering an RES
and designing a suboptimal policy, which, at each time instant,
decides among using all of the available energy, half of it, or
no energy at all, according to a probability chosen to minimize
the overall information leakage.

Another technique for approximating MI is to assume X
and Y to be i.i.d. over a time interval and approximate the MI
via the relative frequency of events (X;,Y;) during the same
time window. In [67], this approach is enriched by additive
smoothing, i.e., avoiding zero probability estimates by adding
a positive scalar, and it is employed together with a model-dis-
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tribution predictive controller, such that, at each time slot 7, the
EMU chooses its actions for a prediction horizon of length 7,
i.e., up to time ¢ + 7. Privacy and cost are jointly optimized by
considering noncausal knowledge of the renewable energy gen-
eration process, user load, and energy prices, while the EMU’s
actions, i.e., the energy that is requested from the grid and
the battery, are forecast over the prediction horizon. The user
and grid load processes are assumed to be i.i.d. within a time
window N > T, which also includes the prediction horizon 7,
and the finite alphabets X and Y are considered. As N > T,
first-order Taylor approximation of the logarithm function is
used, and the corresponding mixed-integer quadratic program
is formulated, which is of manageable size and can be solved
recursively whenever new SM readings are available.

Results show that considering a relatively small predic-
tion horizon T prevents the EMU from fully utilizing the RB
capacity, as the user load that is considered by the algorithm
is generally smaller than the RB capacity. Allowing a longer
prediction interval dramatically improves the performance
in terms of both privacy and cost, at the expense of a much
higher computational complexity. The work also shows that by
increasing the alphabet sizes of X and Y, better privacy per-
formance can be achieved.

Empirical MI normalized by the empirical entropy of the
user load is considered in [68], where an RB is used to mini-
mize the energy cost subject to privacy constraints. Here, two
cost tariffs are considered, a low price and a high price, and
a dynamic programming approach is developed to maximize
the energy stored in the battery at the end of the low-price
period and minimize it at the end of the high-price period. At
every time slot, the optimal probability distribution of the grid
load is computed, which is forced to be independent of the
user load distribution.

Concluding remarks and future challenges

Privacy and the so-called right to be let alone are considered to
be an individual’s inalienable, fundamental rights, which are
safeguarded in many national constitutions worldwide. In
Europe, the General Data Protection Regulation (GDPR) [69],
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FIGURE 11. An example of RB evolution modeled as a finite state machine, with 8= {0,1,...Bmad and X = & = Y = {0,1}. The (x,¢,V, ) represent, for
every time £, the values of the user load, the renewable energy produced, the energy taken out of the battery by the EMU, and the grid load, respectively [61].
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which went into effect on 25 May 2018, sets even more strin-
gent requirements for every technology or device that collects
and processes customer data, including SMs. For these reasons,
addressing the SM privacy problem is crucial for the adoption
of the SG concept. In fact, considering consumers’ growing
privacy concerns over SMs and many other emerging technolo-
gies [70], a critical growth in the adoption of SMs and other SG
technologies will take place only when consumers are given
full control of their privacy and feel they have clear and honest
information on how their data are being used. Only then can
consumer resistance be overcome and users’ trust be assured,
thus paving the way to a more fertile and fair ground for new
products and increased innovation in this domain.

UPs and their partners, including governments, may be
too keen on collecting users’ data indiscriminately and not
well incentivized to develop privacy-enhancing technologies.
Therefore, legislators, public commissions, consumer advo-
cacy groups, and researchers have important roles to play in
tackling the SM privacy problem and preventing SM data from
being gathered haphazardly and sold to third parties without
explicit user consent or even passed to government intelligence
agencies for mass surveillance. The GDPR is a good example
of the initiatives that are needed.

However, given that such a legal framework is still lack-
ing and not yet fully developed globally, it becomes imperative
to push forward the concept of privacy by design, according
to which privacy should be designed in to new products and
services rather than considered only after user complaints and
regulatory impositions. This is because more options are avail-
able during the design stage as compared to the completion
stage, when the product has to be modified following a privacy
incident or a user complaint. Achieving privacy by design is
the ultimate goal of the techniques analyzed in this article.

In this article, we have focused exclusively on techniques
that adopt physical resources, such as RESs and RBs, to provide
privacy to users. The main motivation and benefits of these
techniques is that they do not undermine the value of the SG
concept. Each of the outlined techniques has its unique advan-
tages and disadvantages and focuses on a particular aspect
of privacy. However, despite the considerable efforts put into
developing SM privacy-preserving techniques, the full extent of
the SM privacy problem is far from completely understood, and
a unified and coherent vision for SM privacy (just as in many
other domains) is still elusive.

In the context of SM privacy, UDS-based methods manipu-
late a physical quantity, energy, to ensure privacy for users. This
entails that physical constraints, such as those related to an RB
or an RES, play a crucial role in finding the optimal privacy-
preserving strategy. We expect that the techniques developed
for enhancing SM privacy can prove useful in other privacy-
sensitive settings in which physical quantities are involved, such
as gas and water meters and location privacy.

Research challenges
Various challenges must be addressed before privacy by design
can become a reality in SM systems. First, a generic privacy

measure or a combination of different measures must be deter-
mined and adopted to formally quantify loss of privacy, in the
same way a user’s electricity bill is computed. Such a measure
should be device independent and should enable the comparison
of various privacy-preserving strategies. It is also necessary to
understand the implications of the various privacy measures on
the grid load. From this point of view, theoretical measures may
be preferable because of their abstract and fundamental nature,
i.e., they are independent of any assumptions about the attacker’s
algorithms. However, their relevance in real-world scenarios
must be assessed further, and, if necessary, valid suboptimal pri-
vacy measures or algorithms should be put forward and stan-
dardized as a proxy for more rigorous privacy assurances.

Another important goal is to give consumers as much flex-
ibility as possible in setting their desired level of privacy, trad-
ing off privacy with the cost of electricity or other services. It is
also essential to allow consumers the possibility of setting dif-
ferent privacy requirements for different devices, as users may
consider the information about the usage of a certain device as
more sensitive compared to others. This may happen because
certain devices are naturally more correlated to the user’s
activities or presence at home, such as the use of a teakettle, a
microwave, or an oven, or because a user may decide to hide
the usage of a certain appliance for personal reasons.

In the near future, a wider use of electric vehicles will also
bring additional complications to the SM privacy problem, as
mobility patterns may be inferred by analyzing the charging
and discharging events. This problem can be tackled by load
shifting, which is expected to play an important role in jointly
optimizing electricity cost and privacy. Load shifting, as well
as other privacy-preserving techniques introduced here, will
be more accurate and relevant thanks to the development of
reliable prediction techniques for future electricity consump-
tion, e.g., by using machine-learning techniques. The prolifera-
tion of various energy-hungry smart devices will complicate
the problem further and overburden RBs even more.

Finally, the use of shared physical resources should also be
investigated in more depth, as cities are becoming more and
more densely populated and consumers may want to team up
to install storage devices or energy generators that are still rath-
er costly. In cities, solar panels or mini wind turbines may be
installed on the roofs of blocks of apartments, and RBs may be
put in communal areas; these resources can be used jointly by all
of the users in a building. Such resource-sharing models make
the privacy problem even more complicated and challenging and
might call for a game-theoretic formulation of the problem.

Overall, we hope that presenting this overview of the SM
privacy problem and current solutions will further encourage
research and development in this area, so that remaining open
issues will be solved and SMs’ full potential will be realized.

Acknowledgments

Giulio Giaconi gratefully acknowledges the Engineering and
Physical Sciences Research Council (EPSRC) of the United
Kingdom for funding his Ph.D. studies (award reference
#1507704). This work was also supported in part by the

IEEE SIGNAL PROCESSING MAGAZINE | November 2018 |



EPSRC through the project COPES (#173605884), and by the
U.S. National Science Foundation under grants CNS-1702808
and ECCS-1549881.

Authors

Giulio Giaconi (g.giaconi @imperial.ac.uk) received his B.Sc.
and M.Sc. degrees (honors) in communications engineering
from Sapienza University of Rome, Italy, in 2011 and 2013,
respectively, and his Ph.D. degree from the Department of
Electrical and Electronic Engineering, Imperial College
London, in 2018. He is currently a research scientist with BT
Applied Research, Security Futures Practice. In 2013, he was
a visiting student with Imperial College London, working on
indoor localization via visible light communications. His cur-
rent research interests include cybersecurity, data privacy,
information and communication theory, signal processing, and
machine learning. In 2014, he received the Excellent Graduate
Student Award from Sapienza University of Rome.

Deniz Giindiiz (d.gunduz@imperial.ac.uk) received his B.S.
degree from Middle East Technical University and his M.S. and
Ph.D. degrees from the New York University Polytechnic School
of Engineering in 2004 and 2007, respectively. He is a reader in
information theory and communications in the Department of
Electrical and Electronic Engineering, Imperial College London.
He is an editor of IEEE Transactions on Communications and
IEEE Transactions on Green Communications and Networking.
He was the recipient of the IEEE Communications Society
Communication Theory Technical Committee Early Achievement
Award in 2017; a starting grant of the European Research
Council in 2016; the IEEE Communications Society Best
Young Researcher Award for the Europe, Middle East, and
Africa Region in 2014; and the Best Paper Award at the 2016
IEEE Wireless Communications and Networking Conference.

H. Vincent Poor (poor@princeton.edu) is the Michael
Henry Strater University Professor of Electrical Engineering
at Princeton University, New Jersey. His interests include
information theory and signal processing, with applications
in wireless networks, energy systems, and related fields. He
is an IEEE Fellow, a member of the National Academy of
Engineering and National Academy of Sciences, and a foreign
member of the Chinese Academy of Sciences and the Royal
Society. He received the IEEE Signal Processing Society
Technical Achievement and Society Awards in 2007 and 2011,
respectively. Recent recognition of his work includes the 2017
IEEE Alexander Graham Bell Medal and a D.Sc. honoris
causa from Syracuse University, also in 2017.

References

[1] U.S. Energy Information Administration. (2016). International energy outlook
2016. U.S. Energy Inform. Admin. Washington, D.C. Tech. Rep. DOE/EIA-0484(2016).
[Online]. Available: https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf

[2] BP Global. (2016). BP energy outlook, 2016 edition. BP p.l.c. London. [Online].
Available: https://biomasspower.gov.in/document/Reports/bp-energy-
outlook-2016.pdf

[3] ERGEG. (2011). Final guidelines of good practice on regulatory aspects of
smart metering for electricity and gas. European Regulators Group for Electrici-
ty and Gas. Brussels, Belgium. Tech. Rep. E10-RMF-29-05. [Online]. Available:
http://www.smartgrids-cre.fr/media/documents/ERGEG_Guidelines_of_good_
practice.pdf

[4] Department of Energy and Climate Change. (2014). Smart metering equipment
technical specifications: Version 2. Dpt. Energy and Climate Change, London.
[Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/
system/uploads/attachment_data/file/381535/SMIP_E2E_SMETS2.pdf

[5] Markets and Markets, “Smart meters market by type (electric, water, and gas),
application (commercial, residential, and industrial), technology (automatic meter
reading and advanced metering infrastructure), and by region: Global forecasts to
2022,” Rep. 2477, 2017.

[6] “Smart grid data analytics market—Global industry analysis, size, share, growth,
trends and forecast 2015-2022,” Transparency Market Res., Albany, NY, Tech.
Rep. TMRGI 3966, 2015.

[7] Navigant Research. (2016). Market data: Smart meters. Navigant Research,
Washington, D.C. [Online]. Available: https://www.navigantresearch.com/reports/
market-data-smart-meters

[8] Pecan Street Inc. Dataport. [Online]. Available: https://dataport.cloud/

[9] G. Hart, “Prototype nonintrusive appliance load monitor,” MIT Energy Lab. Tech.
Rep. and Electric Power Res. Inst., Cambridge, MA, Tech. Rep. RP 2568-2, 1985.

[10] G. Hart, “Nonintrusive appliance load monitoring,” Proc. IEEE, vol. 80, no. 12,
pp. 1870-1891, 1992.

[11] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin, “Private
memoirs of a smart meter,” in Proc. ACM Workshop Embedded Sensing Systems
Energy Efficiency Building, Zurich, 2010, pp. 61-66.

[12] A. Prudenzi, “A neuron nets based procedure for identifying domestic appli-
ances pattern-of-use from energy recordings at meter panel,” in Proc. IEEE Power
Engineering Society Winter Meeting, New York, 2002, pp. 941-946.

[13] E. Quinn, “Privacy and the new energy infrastructure,” Social Sci. Res.
Network, 2009. doi: 10.2139/ssrn.1370731.

[14] I. Rouf, H. Mustafa, M. Xu, W. Xu, R. Miller, and M. Gruteser, “Neighbor-
hood watch: Security and privacy analysis of automatic meter reading systems,”
in Proc. ACM Conf. Computer and Communications Security, Raleigh, NC, 2012,
pp. 462-473.

[15] C. Cuijpers and B.-J. Koops, “Smart metering and privacy in Europe: Lessons
from the Dutch case,” in European Data Protection: Coming of Age, S. Gutwirth,
R. Leenes, P. de Hert, and Y. Poullet, Eds. Dordrecht, The Netherlands: Springer-
Verlag, 2012, pp. 269-293.

[16] J. Loeb, “Smart meters: What would it take to stop the national rollout jugger-
naut?” IET Eng. Technol., vol. 12, no. 5, pp. 32-34, 2017.
[17] Y. Kim, E. Ngai, and M. Srivastava, “Cooperative state estimation for preserv-
ing privacy of user behaviors in smart grid,” in Proc. IEEE Int. Conf. Smart Grid
Communications. Brussels, Belgium, 2011, pp. 178—183.

[18] J.-M. Bohli, C. Sorge, and O. Ugus, “A privacy model for smart metering,” in
Proc. IEEE Int. Conf. Communications. Cape Town, South Africa, 2010, pp. 1-5.

[19] M. Backes and S. Meiser, “Differentially private smart metering with battery
recharging,” in Proc. Int. Workshop Data Privacy Management and Autonomous
Spontaneous Security. Egham, U.K., 2014, pp. 194-212.

[20] L. Sankar, S. Rajagopalan, S. Mohajer, and H. V. Poor, “Smart meter privacy: A
theoretical framework,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 837-846, 2013.
[21] F. D. Garcia and B. Jacobs, “Privacy-friendly energy-metering via homomor-
phic encryption,” in Proc. Int. Conf. Security and Trust Management. Athens, Greece,
2010, pp. 226-238.

[22] F. Li, B. Luo, and P. Liu, “Secure and privacy-preserving information aggrega-
tion for smart grids,” Int. J. Security Netw., vol. 6, no. 1, pp. 28-39, 2011.

[23] R. Petrlic, “A privacy-preserving concept for smart grids,” in Proc. Sicherheit
in vernetzten Systemen:18. DFN Workshop, 2010, pp. BI-B14.

[24] C. Efthymiou and G. Kalogridis, “Smart grid privacy via anonymization of

smart metering data,” in Proc. IEEE Int. Conf. Smart Grid Communications.
Gaithersburg, MD, 2010, pp. 238-243.

[25] A. Cérdenas, S. Amin, and G. A. Schwartz, “Privacy-aware sampling for resi-
dential demand response programs,” in Proc. ACM Int. Conf. High Confidence
Networked Systems, Beijing, China, 2012.

[26] J.-P. Zimmermann, M. Evans, J. Griggs, N. King, L. Harding, P. Roberts, and
C. Evans, “Household electricity survey: A study of domestic electrical product
usage,” Intertek Testing and Certification Ltd., Milton Keynes, U.K., Tech. Rep.
R66141, 2012.

[27] A. S. N. U. Nambi, A. R. Lua, and R. V. Prasad, “LocED: Location-aware
energy disaggregation framework,” in Proc. ACM Int. Conf. Embedded Systems
Energy-Efficient Built Environments, 2015, pp. 45-54.

[28] D. Dheeru and E. Karra Taniskidou. (2017). UCI machine learning repository.
[Online]. Available: http://archive.ics.uci.edu/ml

[29] University of Sheffield, Sheffield Solar, Microgen database. [Online].
Available: https://microgen-database.sheffield.ac.uk/

[30] L. Yang, X. Chen, J. Zhang, and H. V. Poor, “Cost-effective and privacy-pre-
serving energy management for smart meters,” /EEE Trans. Smart Grid, vol. 6, no.
1, pp. 486-495, 2015.

7

|EEE SIGNAL PROCESSING MAGAZINE | November 2018 |



78

[31] O. Tan, J. Gémez-Vilardebd, and D. Giindiiz, “Privacy-cost trade-offs in
demand-side management with storage,” IEEE Trans. Inf. Forensics Security, vol.
12, no. 6, pp. 1458-1469, 2017.

[32] A. Lever, D. Sanders, N. Lehmann, M. Ravishankar, M. Ashcroft, G. Strbac,
M. Aunedi, F. Teng, and D. Pudijanto. (2016). Can storage help reduce the cost of a
future UK electricity system? Carbon Trust and Imperial Coll. London. [Online].
Available: https://www.carbontrust.com/media/672486/energy-storage-report.pdf

[33] G. Giaconi, D. Giindiiz, and H. V. Poor, “Optimal demand-side management
for joint privacy-cost optimization with energy storage,” in Proc. IEEE Int. Conf.
Smart Grid Communications, Dresden, Germany, 2017, pp. 265-270.

[34] J. Kelly and W. Knottenbelt, “The UK-DALE dataset, domestic appliance-level
electricity demand and whole-house demand from five UK homes,” Scientific Data,
vol. 2, Mar. 2015. doi: 10.1038/sdata.2015.7.

[35] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 2, 3rd ed.
Belmont, MA: Athena Scientific, 2007.

[36] Y. Sun, L. Lampe, and V. W. S. Wong, “Smart meter privacy: Exploiting the
potential of household energy storage units,” IEEE Internet Things J., vol. 5, no. 1,
pp. 69-78, 2018.

[37] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[38] J. Wu, J. Liu, X. S. Hu, and Y. Shi, “Privacy protection via appliance schedul-
ing in smart homes,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design,
Austin, TX, 2016, pp. 1-6.

[39] Z. Chen and L. Wu, “Residential appliance DR energy management with elec-
tric privacy protection by online stochastic optimization,” /EEE Trans. Smart Grid,
vol. 4, no. 4, pp. 1861-1869, 2013.

[40] G. Kalogridis, C. Efthymiou, S. Denic, T. Lewis, and R. Cepeda, “Privacy for
smart meters: Towards undetectable appliance load signatures,” in Proc. IEEE Int.
Conf. Smart Grid Communications, Gaithersburg, MD, 2010, pp. 232-237.

[41] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York:
Wiley-Interscience, 1991.

[42] S. McLaughlin, P. McDaniel, and W. Aiello, “Protecting consumer privacy
from electric load monitoring,” in Proc. ACM Conf. Computer and Communications
Security, Chicago, 2011, pp. 87-98.

[43] J. Yao and P. Venkitasubramaniam, “The privacy analysis of battery control
mechanisms in demand response: Revealing state approach and rate distortion
bounds,” IEEE Trans. Smart Grid, vol. 6, no. 5, pp. 2417-2425, 2015.

[44] W. Yang, N. Li, Y. Qi, W. Qardaji, S. McLaughlin, and P. McDaniel,
“Minimizing private data disclosures in the smart grid,” in Proc. ACM Conf.
Computer and Communications Security, Raleigh, NC, 2012, pp. 415-427.

[45] F. Farokhi and H. Sandberg, “Fisher information as a measure of privacy:
Preserving privacy of households with smart meters using batteries,” IEEE Trans.
Smart Grid, 2017. doi: 10.1109/TSG.2017.2667702.

[46] Z. Li and T. J. Oechetering, “Privacy on hypothesis testing in smart grids,” in
Proc. IEEE Information Theory Workshop, Jerusalem, Israel, 2015, pp. 337-341.

[47] K. Qian, C. Zhou, M. Allan, and Y. Yuan, “Modeling of load demand due to
EV battery charging in distribution systems,” IEEE Trans. Power Syst., vol. 26, no.
2, pp. 802-810, 2011.

[48] P. A. Leicester, C. I. Goodier, and P. N. Rowley, “Probabilistic analysis of solar
photovoltaic self-consumption using bayesian network models,” /ET Renew. Power
Gen., vol. 10, no. 4, pp. 448-455, 2016.

[49] W. Labeeuw and G. Deconinck, “Residential electrical load model based on
mixture model clustering and Markov models,” IEEE Trans. Ind. Informat., vol. 9,
no. 3, pp. 1561-1569, 2013.

[50] D. Giindiiz and J. Gémez-Vilardebd, “Smart meter privacy in the presence of
an alternative energy source,” in Proc. IEEE Int. Conf. Communications, Budapest,
Hungary, 2013, pp. 2027-2031.

[51] J. Gémez-Vilardeb6 and D. Giindiiz, “Privacy of smart meter systems with an
alternative energy source,” in Proc. IEEE Int. Symp. Information Theory, Istanbul,
Turkey, 2013, pp. 2572-2576.

[52] J. Gomez-Vilardeb6 and D. Giindiiz, “Smart meter privacy for multiple users in
the presence of an alternative energy source,” IEEE Trans. Inf. Forensics Security,
vol. 10, no. 1, pp. 132-141, 2015.

[53] S. Li, A. Khisti, and A. Mahajan, “Information-theoretic privacy for smart me-
tering systems with a rechargeable battery,” IEEE Trans. Inf. Theory, vol. 64, no. 5,
pp. 3679-3695, 2018.

[54] S. Li, A. Khisti, and A. Mahajan, “Structure of optimal privacy-preserving poli-
cies in smart-metered systems with a rechargeable battery,” in Proc. IEEE Int.
Workshop Signal Processing Advances Wireless Communication, 2015, pp. 375-379.

[55] S. Li, A. Khisti, and A. Mahajan, “Privacy preserving rechargeable battery pol-
icies for smart metering systems,” in Proc. Int. Zurich Seminar Communicatioins,
Zurich, 2016, pp. 121-124.

[56] S. Li, A. Khisti, and A. Mahajan, “Privacy-optimal strategies for smart meter-

ing systems with a rechargeable battery,” in Proc. American Control Conf., Boston,
2016, pp. 2080-2085.

[57] H. Permuter, P. Cuff, B. Van Roy, and T. Weissman, “Capacity of the trapdoor
channel with feedback,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3150-3165, 2008.

[58] M. Arrieta and 1. Esnaola, “Smart meter privacy via the trapdoor channel,” in
Proc. IEEE Int. Conf. Smart Grid Communications, Dresden, Germany, 2017, pp.
277-282.

[59] R. Ahlswede and A. Kaspi, “Optimal coding strategies for certain permuting
channels,” IEEE Trans. Inf. Theory, vol. 33, no. 3, pp. 310-314, 1987.

[60] G. Giaconi, D. Giindiiz, and H. V. Poor, “Smart meter privacy with an energy
harvesting device and instantaneous power constraints,” in Proc. IEEE Int. Conf.
Communications, London, 2015, pp. 7216-7221.

[61] G. Giaconi, D. Giindiiz, and H. V. Poor, “Smart meter privacy with renewable
energy and an energy storage device,” IEEE Trans. Inf. Forensics Security, vol. 13,
no. 1, pp. 129142, 2018.

[62] G. Giaconi and D. Giindiiz, “Smart meter privacy with renewable energy and a
finite capacity battery,” in Proc. IEEE Int. Workshop Signal Processing Advances
Wireless Communication, Edinburgh, U.K., 2016, pp. 1-5.

[63] Z. Li, T. J. Oechtering, and D. Giindiiz, “Smart meter privacy based on adver-
sarial hypothesis testing,” in Proc. IEEE Int. Symp. Information Theory, Aachen,
Germany, 2017, pp. 774-778.

[64] D.-M. Arnold, H.-A. Loeliger, P. Vontobel, A. Kavcic, and W. Zeng, “Si-
mulation-based computation of information rates for channels with memory,” IEEE
Trans. Inf. Theory, vol. 52, no. 8, pp. 3498-3508, 2006.

[65] D. Varodayan and A. Khisti, “Smart meter privacy using a rechargeable bat-
tery: Minimizing the rate of information leakage,” in Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing, Prague, Czech Republic, 2011, pp. 1932—
1935.

[66] O. Tan, D. Giindiiz, and H. V. Poor, “Increasing smart meter privacy through
energy harvesting and storage devices,” IEEE J. Sel. Areas Commun., vol. 31, no. 7,
pp. 1331-1341, 2013.

[67] J. X. Chin, T. T. D. Rubira, and G. Hug, “Privacy-protecting energy manage-
ment unit through model-distribution predictive control,” IEEE Trans. Smart Grid,
vol. 8, no. 6, pp. 3084-3093, 2017.

[68] J. Koo, X. Lin, and S. Bagchi, “Privatus: Wallet-friendly privacy protection for
smart meters,” in Proc. European Symp. Research Computer Security, Pisa, Italy,
2012, pp. 343-360.

[69] European Parliament and Council of the European Union, “Regulation (EU)
2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation),” Official J. European Union, pp. L 119/1-L 119/88, May
2016.

[70] “Consumer intelligence series: Protect.me (an in-depth look at what consumers
want, what worries them, and how companies can earn their trust—and their busi-
ness),” PwC, White Paper, Sept. 2017.

[71] European Environment Agency. (2015, Sept. 4). Total electricity consumption:
Ooutlook from IEA. [Online]. Available: https://www.eea.europa.eu/data-and-
maps/indicators/total-electricity-consumption-outlook-from-iea/total-electricity-
consumption-outlook-from-1

[72] Itron. Itron Centron. [Online]. Available: https://www.itron.com/na/technology/
product-services-catalog/products/0/7/5/centron

[73] Honeywell. REX2 meter. [Online]. Available: https://www.elstersolutions
.com/en/product-details-na/826/en/REX2_meter

[74] Kamstrup. Omnipower electricity meters. [Online]. Available: https://www
kamstrup.com/en-us/products-and-solutions/smart-grid/electricity-meters

[75] Enel SpA. (2016, June 27). Enel presents Enel Open Meter, the new electronic
meter. [Online]. Available: https:/www.enel.com/content/dam/enel-com/pressrelease/
porting_pressrelease/1666038-1_PDF-1.pdf

[76] Sunverg Energy Inc. Maximize the value of your solar power. [Online].
Available: http:/www.sunverge.com/energy-management/

[77] Sonnen. The sonnenBatterie. [Online]. Available: https://sonnen-batterie.com/
en-us/sonnenbatterie

[78] Tesla. Powerwall. [Online]. Available: https:/www.tesla.com/powerwall

[79] LG Chem. ESS battery. [Online]. Available: http:/www.lgchem.com/global/
ess/ess/product-detail-PDEC0001

[80] Panasonic. LJ-SK56A residential storage battery system. [Online]. Available:
http://www.panasonic.com/au/consumer/energy-solutions/residential-storage-
battery-system/lj-sk56a.html

[81] Powervault. [Online]. Available: http://www.powervault.co.uk/technical/
technical-specifications/

[82] Orison. Meet Orison: The first all-in-one, self-installable home battery system.
[Online]. Available: http://orison.energy/

[83] SimpliPhi Power. Phi 3.5 battery. [Online]. Available: http://simpliphipower
.com/product/phi3-4-smart-tech-battery/ m

IEEE SIGNAL PROCESSING MAGAZINE | November 2018 |



