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Abstract—Device-to-device (D2D)-enabled cloud radio access
networks (C-RANs) are potential solutions for further improving
spectral efficiency (SE) and decreasing latency by allowing
direct communication between two users. However, due to the
need to acquire global channel state information (CSI) and to
execute centralized algorithms, heavy burdens are placed on
the fronthaul and the baseband unit (BBU) pool. To alleviate
these burdens, a distributed approach to mode selection and
resource allocation for potential D2D pairs under pre-determined
resource allocation of C-RAN users is proposed, in which pairs
of users are endowed with decision-making capabilities. The
proposed procedure is divided into three stages: communication
mode and subchannel selection, utility value determination, and
reinforcement-learning-based strategy update. The core idea is
that the D2D pairs self-optimize the mode selection and resource
allocation without global CSI under several practical constraints.
Simulation results show that enabling D2D can significantly
improve SE for C-RANs. Furthermore, the impacts of the
fronthaul capacity, the centralized signal processing capability
of the BBU pool, and the distance between the D2D transmitter
and the remote radio head are demonstrated and analyzed.

Index Terms— Cloud radio access networks (C-RANSs), device-
to-device (D2D), mode selection, resource allocation, game theory.

I. INTRODUCTION

ITH the explosive increase in mobile data traffic,
operators have to continuously improve network per-
formance [1]. As a promising solution, the cloud radio access
network (C-RAN) has been proposed to enhance spectral effi-
ciency (SE) and energy efficiency (EE) as well as lower operat-
ing and capital expenditures [2], [3]. In C-RANS, the baseband
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processing and upper-layer functionalities are migrated to the
baseband unit (BBU) pool, which connects with distributed
remote radio heads (RRHs) via fronthaul. Many studies have
been conducted on C-RANS, in terms of computing resource
optimization [4], performance analysis [5], system cost mini-
mization [6], and so on.

Since the practical fronthaul is often capacity con-
strained or time-delay constrained, the C-RAN is far from
satisfying the SE and EE requirements of the fifth generation
mobile communication network [7]. Hence, advanced tech-
niques can be introduced to further improve the performance
of C-RANSs. In this paper, device-to-device (D2D) enabled
C-RANs are examined, whose core idea is inspired by D2D
enabled cellular networks with decreased latency and signif-
icant SE/EE gains [8]. In addition, alleviating the burden of
fronthaul is another remarkable benefit brought by D2D, since
the traffic generated by user equipment (UE) communicating
directly does not need to go through fronthaul anymore. In [9],
the considerable SE improvement by integrating D2D with C-
RANSs has been confirmed via stochastic geometry.

To fully boost SE and EE gains, mode selection and resource
allocation schemes play key roles. In D2D enabled C-RANS,
mode selection refers the situation in which a pair of UEs
intending to communicate with each other, termed a potential
D2D pair, can select either D2D mode where direct com-
munication is performed or C-RAN mode where the C-RAN
helps to transmit the traffic, while resource allocation refers to
subchannel allocation among potential D2D pairs. Moreover,
appropriate RRH association and D2D power control schemes
are needed to meet fronthaul capacity constraints, centralized
signal processing capability constraints at the BBU pool,
as well as inter-tier interference constraints. In this paper,
different from [9] which focuses on performance analysis,
the objective of studying the mode selection and resource
allocation problem in uplink D2D enabled C-RANs is to
optimize the system SE and meanwhile alleviate the burdens of
the fronthaul and the BBU pool by making the potential D2D
pairs autonomously optimize the mode selection and resource
allocation under several practical constraints.

A. Related Work and Challenges

Much attention has been paid to resource allocation in
D2D enabled cellular networks recently. In [10], a subchan-
nel sharing protocol is proposed to ensure that the mutual
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interference of two D2D pairs is negligible when they use
the same subchannel. Then, the primal problem aiming at
maximizing the sum rate of D2D pairs is further divided into
a subchannel assignment problem and a power distribution
problem. A minimum weighted EE maximization problem is
studied in [11], where the proposed problem is transformed
into the joint subchannel and power allocation problem for
D2D links.

Furthermore, in [12]-[14], various game models are used
to develop resource allocation schemes with low complexity.
In [12], focusing on a downlink D2D underlaid cellular
network, the spectrum resource allocation for D2D pairs is
modeled as a reverse iterative combinatorial auction. The spec-
trum resources occupied by a cellular user are seen as a bidder
who competes for the packages of D2D pairs to maximize the
channel rate. In [13], a coalition formation based approach is
proposed to address the uplink spectrum sharing for multiple
D2D and cellular users, in which a possible coalition structure
stands for a possible spectrum sharing relationship. To limit
the inter-tier interference, a pricing based D2D power control
scheme is designed in [14], and the competition among D2D
pairs is modeled as a non-cooperative game.

The aforementioned works typically study resource alloca-
tion with all D2D pairs operating in D2D mode. This fixed
setting is not beneficial to the overall system performance, and
hence mode selection should be taken into account [8]. In [15],
a potential D2D transmitter selects the communication mode
according to the comparison between the biased D2D link
quality and the cellular uplink quality, and a similar method
is used in [16]. In [17], a guard zone based mode selection
scheme is proposed, where potential D2D transmitters located
within the guard zones are required to operate in cellular mode
to avoid severe interference to the base stations (BSs).

Actually, resource allocation and mode selection are cou-
pled [18], and thus they need to be optimized jointly. In [19],
a joint mode selection and resource allocation problem to
maximize the system throughput with a minimum rate guar-
antee is formulated, and a particle swarm optimization based
scheme is proposed, where solutions are mapped onto parti-
cles. The joint optimization problem of D2D mode selection,
modulation and coding scheme assignment, radio resource
allocation, and power allocation is decoupled into two sub-
problems in [20], and a Tabu Search metaheuristic based
approach is used to search for the best mode selection. In [21],
three communication modes are considered for D2D users:
cellular mode, dedicated mode, and reuse mode, and the
system throughput maximization problem is decomposed into
a power control problem, and joint mode selection and channel
assignment problem which can be solved by the branch-and-
bound method. An outer approximation based linearization
technique is utilized in [22], to solve the joint admission
control, mode selection, and power allocation problem, which
is shown to be NP-complete.

Although the centralized methods in [18]-[22] have shown
significant performance gains, centralized implementation in
D2D enabled C-RANs can put heavy burdens on the fron-
thaul and the BBU pool due to the need to acquire global
channel state information (CSI) and to execute centralized
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algorithms. Fortunately, the computing capabilities of UEs
are increasingly more powerful, and thus it is possible to let
potential D2D pairs optimize their communication modes and
utilized subchannels autonomously to alleviate the burdens of
the C-RAN infrastructures. Note that this idea corresponds
with the newly emerging notion of fog computing based
radio access networks (F-RANSs) [23], and hence our scenario
can be seen as a special case of F-RANs. To this end,
a distributed approach with low computing burdens as well as
low CSI requirement for potential D2D pairs should be devel-
oped. Meanwhile, during the self-optimization of D2D pairs,
the impacts of limited fronthaul capacity, limited centralized
signal processing capability of the BBU pool, and inter-tier
interference constraints should be considered as well.

B. Contributions and Organization

In this paper, a distributed approach to mode selection and
subchannel allocation for potential D2D pairs under several
practical constraints in an uplink D2D enabled C-RAN is
proposed, which alleviates the burdens on the fronthaul and the
BBU pool. In the proposed approach, D2D pairs are assumed
to have decision-making capabilities, which select their com-
munication modes and subchannels according to individual
strategies. The strategy profile of all the D2D pairs is ensured
to converge to a pure strategy profile by an iterative reinforce-
ment learning process, and the feedback value of utilities is
determined by a distributed RRH association process and a
distributed power control process where the fronthaul capacity
constraints, centralized signal processing capability constraints
at the BBU pool, and inter-tier interference constraints are
considered. The main contributions of the paper are:

o To improve the SE of C-RANSs, the uplink D2D enabled
C-RAN is investigated, in which a potential D2D pair
can operate either in D2D mode or C-RAN mode.
In D2D mode, the two UEs in the same pair com-
municate directly, while they communicate with the
help of the C-RAN in C-RAN mode. Unlike traditional
D2D enabled cellular scenarios, the proposed model has
unique features such as capacity-constrained fronthaul
and uplink coordinated multipoint transmission. Under
the pre-determined resource allocation of C-RAN UEs,
an optimization problem aiming at maximizing the overall
SE is formulated. Specifically, the overall SE is not only
related to the communication mode selection and resource
allocation of D2D pairs, but also depends on the RRH
association process and power control process, where the
fronthaul capacity constraints, centralized signal process-
ing capability constraints at the BBU pool, and inter-tier
interference constraints are taken into account.

e The formulated problem is handled by a distributed
approach with three stages. In the action selection stage,
each D2D pair first selects a communication mode and a
subchannel according to its individual strategy. Next, in
the utility value determination stage, the RRH association
of D2D pairs in C-RAN mode is modeled as a many-
to-many matching game, and the power control of D2D
pairs in D2D mode is modeled as a Stackelberg game.
In the strategy update stage, each pair updates its strategy
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TABLE I
SUMMARY OF NOTATION

N The set of potential D2D pairs
Tz(n) The transmitter of the potential D2D pair n

Rz(n) The receiver of the potential D2D pair n

K The set of RRHs

C The set of CUEs that are incapable of conducting D2D
communication

xng), a:SF) Mode selection indicators for the potential D2D pair n

M The set of all transmitting UEs including both transmitters
of potential D2D pairs and CUEs

D The set of available subchannels

Pn,d The transmit power of T'z(n) on subchannel d

gfd) The channel coefficient between Tz(n) and Rx(n) on

subchannel d

hgfgl d The channel coefficient between transmitting UE m and
Rz (n) on subchannel d

hff,; d The channel coefficient between Tz(n) and RRH k on
subchannel d

hfd) The channel vector from T'z(n) to its associated RRHs
on subchannel d

\%4 The maximum number of RRHs with which a UE can
associate

Fy, The maximum number of UEs that the fronthaul between
RRH £ and the BBU pool can still serve given the RRH
association of CUEs

Pmaz The maximum transmit power of a transmitting UE

Qni The -th available action of decision-maker n

Tr,an. The probability that decision-maker n selects action a,;

using a reinforcement learning process. These three stages
are repeated until a pure strategy profile of D2D pairs
is reached, which is desired in practical implementation.
The nature of the proposal is that D2D pairs self-
optimize the mode selection and resource allocation under
several practical constraints such as fronthaul capacity
constraints.

o The properties of the proposed approach are discussed,
in terms of optimality, stability, etc. Simulation results
show that the proposed method converges and the benefits
of enabling D2D in C-RANSs are significant. Furthermore,
the reasons why D2D can improve SE in C-RANs are

analyzed.
The remainder of this paper is organized as follows.

Section II describes the uplink D2D enabled C-RAN model.
Section III proposes the optimization problem of interest, and
presents a distributed approach to solve it. The utility value
determination stage is specified in Section IV, and Section V
discusses the properties of the proposed approach. Simulation
results are presented in Section VI, followed by the conclusion
in Section VII. For convenience, some important notation is
listed in Table I.
II. SYSTEM MODEL

The considered system model shown in Fig. 1 consists
of one BBU pool, one high power node (HPN), multiple
RRHSs, multiple potential D2D pairs, and multiple C-RAN UEs
(CUESs) that are incapable of conducting D2D communication.
The HPN is responsible for delivering system information
to UEs, and can communicate with the BBU pool through
the backhaul [24]. Assume that the system operates in Time-
Division Duplex mode, and RRHs connect with the BBU
pool via capacity-constrained fronthaul. The set of potential
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Fig. 1. An uplink D2D enabled C-RAN.
D2D pairs is denoted by N' = {1,2,...,|N]|} with the
transmitter and the receiver of the pair n denoted by T'z(n)
and Rx(n), respectively, and each pair can operate either
in D2D mode or C-RAN mode. Specifically, if the pair n
selects the D2D mode, Tz(n) transmits to Rx(n) directly in
the uplink time slot. While if the pair n selects the C-RAN
mode, T'z(n) is served by multiple RRHs via joint reception
with Rz(n) keeping quiet in the uplink time slot, and then
the RRHs transmit the message of Txz(n) to Rxz(n) via
joint beamforming as in [25] with Tz(n) keeping silent in
the downlink time slot. Compared to the traditional cellular
mode in [18]-[22], the C-RAN mode can be beneficial from
the viewpoint of the centralized signal processing capability
of the BBU pool. Define the set of RRHs and the set of
CUEs as K = {1,2,...,|K|} and C = {1,2,...,|C|},
respectively. The set of all transmitting UEs including both
CUEs and the transmitters of potential D2D pairs is denoted by
M ={1,2,...,[C|,|C| +1,...,|C| + |N|}, where m € M
represents CUE m if 1 < m < |C|, and m € M represents
Tx(m—|C|) if [C|+1 < m < |C|+|N]. In addition, each RRH
and transmitting UE is equipped with a single antenna. The
set of available subchannels is denoted by D = {1,2,...,|D|}
with |D| = |C|, and the bandwidth of each subchannel is B.
For the pair n in D2D mode that transmits over subchan-
nel d, the received symbol at Rxz(n) is given by

D D D
yé,d) = \/pn,dhﬁbjanr Z \/pm7dh£n721/,d8m + wy,,
meM,m#|C|+n
(1

where s, ~ CN(0,1) is the symbol of T'z(n), py.q4 is the
transmit power of Tx(n), hif; is the channel coefficient

between T'z(n) and Rx(n), hinD 2L 4 is the channel coefficient
between transmitting UE m and Rz (n), and w,, ~ CN(0,0?)
is the noise at Rxz(n).

Then the data rate achieved by the pair n is given by
D
Pralhi) 2

(D) 2 2
mEM,m7é|C|+npm7d|hm,n,d| +o

R") =log 1+ 2
When the pair n selects C-RAN mode, T'x(n) would trans-

mit to RRHs. Denote the set of RRHs that T'x(n) associates

with by KC,,, and the received symbol vector of these RRHs
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over subchannel d is given by

Y§lcd) = \/pn,dhgfd)sn‘f' Z

meM,m#[Cl+n

\/pm,dhfnczzl}dsm + zp,
3)

where h(c) Cl®knIx1 s the channel vector from Tz(n) to

its a55001ated RRHs, h( ) 4 € Cl&nI%1 is the channel vector
from transmitting UE m/ to the associated RRHs of Tz(n),
and z, € CIKnIx1 ig the noise vector which is distributed as
CN(0, JQIWH‘).

Suppose that minimum mean square error (MMSE) detec-
tion is used at the BBU pool; then the estimated symbol for
Tx(n) is given by

C
=gy, )

where g, 4 € C*»*1 is the MMSE receiver for Tz(n).
The mean square error (MSE) of Tz(n) can be expressed
as

E (én,d - Sn) (§n,d - Sn)H

= g{;{dBn,dgn,d - grl;{dbn,d - bi{dgn,d +1, (5)

where B,, ¢ = bn,dand + >
meM,m#[|C|+n

bua = /Brahl ). and by g = \/Brrdhls h .
Hence, the MMSE receiver for T'z(n) is given by

H 2
bmvn:dbm,n,d to I’

8n,d = Bn,d_lbn,d; (6)

where it can be seen that the main computing burden comes
from the calculation of the inverse of a |K,| x |K,| matrix
B,, ¢ with computational complexity O QICn ). In this paper,
the centralized signal processing capability of the BBU pool
is assumed to be constrained, and hence |IC,|, the number
of RRHs that Tz(n) associates with, should be limited.
Therefore, define V' as the maximum number of RRHs that
each UE can associate with; the reasonable value of V' can be
3 or 4 according to the result in [26].

When the pair n operates in the C-RAN mode, the transmit
rate achieved in uplink can be written as

2
C
R Zlog [ 14 2 ggdhg’d)‘ %)
) =log | 1+
,d In.a+ UQgﬁdgn,d
© J?
where I, = pmdg? 0 d‘ . For CUE

meM,m#[C|+n
c € C, its achieved data rate in uplink R, has a similar form

to equation (7).

III. PROBLEM FORMULATION AND
A DISTRIBUTED APPROACH

In this section, an optimization problem aiming at maxi-
mizing the overall SE under multiple practical constraints is
formulated, and a distributed approach is proposed.
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A. Problem Formulation

For CUEs, their RRH association, subchannel allocation,
and transmit power can be assumed to be pre-determined.
For example, each CUE associates with the V' nearest RRHs,
and orthogonal subchannels are assigned to CUEs in a ran-
dom manner with one subchannel for each CUE. Moreover,
each CUE and each D2D transmitter in the C-RAN mode
transmit at the maximal power level p,,,,. Hence, the system
throughput mainly depends on the mode selection, subchannel
allocation, RRH association, and transmit power of D2D
pairs. However, the joint optimization considering all these
items would be quite difficult to solve directly since the
corresponding problem contains both continuous variables
and integer variables that are tightly coupled. In this case,
to reduce the number of optimization variables and keep
our work focused, two mappings f; and fy are presented,
which map the mode selection and subchannel allocation
of D2D pairs to their RRH association and transmit power,
respectively.

Further, the mapping f; should meet the fronthaul capacity
constraint and the centralized signal processing constraint as
follows:

> fem < Fr, VEEK, ®)
neN
> fon SV, ¥nEN, ©)
ke

where fj , € {0,1} with k € K and n € AV indicates whether
RRH £ associates with T'x(n) or not, and F}, is the maximum
number of UEs that the fronthaul between RRH & and the BBU
pool can still serve under the RRH association of CUEs. Note
that the reason for not imposing data rate fronthaul constraints
is because they implicitly assume that each fronthaul link
can serve an unlimited number of UEs, which is unrealistic
in practical systems [6]. In addition, since the pairs in D2D
mode reuse the subchannels of CUEs, the mapping fo should
meet the inter-tier interference constraint and transmit power
constraint as follows:

I.<#6. Vecelcl,
0< p;il < Prmaz,

where I. = Y. > p

neN ke,
ence suffered by CUE ¢ with the subchannel d, IC. is the set of

RRHs that associate with CUE ¢, p is the transmit power of
the D2D pair n on the subchannel d, B! k) 4 1s the channel coef-
ficient between T'z(n) and the RRH k 6, is the interference
threshold, and pj,q, is the maximal transmit power of each
pair. In this paper, the mappings f1 and fy actually represent
Algorithms 2 and 3 (described below), respectively, which
guarantee that the constraints (8), (9), (10), and (11) hold for
any mode selection and subchannel allocation of D2D pairs,
and the corresponding mathematical problems are a combina-
torial utility maximization problem and a mathematical pro-
gram with equilibrium constraints given by (15) and (18)-(20)
in Section IV, respectively. Although f; and f5 are not optimal
mappings, they possess some advantages such as distributed

(10)

VneN, deD, (1)

2
hilck) d‘ is the total inter-tier interfer-
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implementation, and further details about their design are
discussed in Section IV.

At this point, the throughput can be expressed with a
function of mode selection and subchannel allocation of D2D
pairs, and the overall SE maximization for the uplink can be
formulated as

Usystem ({$5LD)7 J?SLC)} ; Q, f1, fz)
DI B

(D) ()
{zn \ T, } ,Q

st (a) P, 2@ e {0,1}, Vn e N,
(b) =P 4+ 2D =1, VYneN,

|D|
(©) > qan=1, VneN, (12)
d=1
where xSLD) and a:ﬁ,c ) are the mode selection indicators

for the D2D pair n, Q is the matrix with elements
qin € {0,1} with d € D,n € N, which indicates whether
the subchannel d is allocated to D2D pair n or not, Ugystem =

z[xﬁf” > BR({)| + X BR.

n d,qa,n=1
}-Q)

and

> BRgl’Dd) + a:§,c )
d,qq,n=1
is the system throughput in the uplink, f; ({xng), x%c)
represents the  RRH  association  scheme,

fo ({xﬁ,D ), a:ﬁ,c )} , Q) represents the power control scheme.
The constraints (a) and (b) jointly require that each D2D pair
can select only one communication mode, while the constraint
(c) states that each pair can use only one subchannel. Note
that the same constraints as constraint (¢) can be found

in [27] and [28].

B. Distributed Mode Selection and Resource Allocation

The problem (12) is hard to solve directly due to its
NP-hardness [21], and the corresponding centralized
approaches lead to high complexity and require global
CSI, putting heavy burdens on the BBU pool and fronthaul.
Fortunately, with the ever increasing computing capabilities of
UEs, it is possible to let them help alleviate the burden on the
C-RAN infrastructure. Hence, in this paper, UEs are endowed
with decision-making capabilities, and the problem (12) can
be handled in a way such that D2D pairs autonomously
optimize the mode selection and resource allocation.

To achieve this goal, inspired by the works [29] and
[30], distributed reinforcement learning with joint utility and
strategy estimation is adopted whose process is given as
follows:

fn,an,i (t) = fn,an,i (t - 1)

+0 () Lia, (t)=an.i} (Fn (t) = Pra,, (t— 1)),
Tn,an,; (t) = Tn,an,; (t - 1)

5 (1) (B (o (0) = T (£ = 1))

> 0(t) = +o0,

13)

(¢) lim

T—o0

lim
T—oo

T
> 0(t)* < +oo,
t=1
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T T
N _ . 2
(i1) Tlgr;o;:lv(t)—%o? Tlgr;o;:lv(t) < +o0,
¢
(i) lim % 0, (14)

where a,; is the i-th available action of decision-
maker n, 7pq,, 18 the utility estimation of action ay,;,
P (t) = (Pr,any (t), - Pra, 4 (t)) where A is the number
of all possible actions, 7, (t) = r, (t) + &, is the feedback
value of decision-maker n’s utility at iteration ¢ with &, being
the feedback noise, m, 4, ; is the probability that decision-
maker n selects action a,,;, the strategy of decision-maker
n is a vector of m,,, , denoted by 7, ~7(1<()1 (rn (1)) =

M ¢ is a parameter to balance exploita-
ng exp((f’mand (t))
tion and exploration [29], and 6 (¢) and ~y (t) are learning
rates.

The first equation in (13) for utility estimation originates
from the standard reinforcement learning process to learn the
expected utility [31], while the second equation in (13) is a
revised version of the strategy update in [32]. Meanwhile,
conditions (i) and (ii) in (14) are essential to guarantee
the convergence of the learning procedure, whose roles are
explained in Section V. The reinforcement learning process is
totally distributed and composed of two coupled phases. First,
using the feedback value of the utility, each decision-maker
estimates the utility of each action. Second, decision-makers
update their strategies based on the estimated values. The
benefits of the process lie in the low computational burdens
and low information requirements for the decision-makers,
because only simple mathematical operations are executed,
and each decision-maker needs only to acquire its own utility
value.

To apply the learning process, an action of the D2D pair
n is taken as a combination of a communication mode
and a subchannel, and the utility of the D2D pair n is
given by r, = IYSIan It has been shown that better
system performance can be achieved by taking the utility of
each decision-maker as the system objective, and meanwhile
this setting can guarantee the convergence of the learning
process [30]. The following algorithm is proposed to solve
problem (12):

The iterative approach proposed in Algorithm 1 contains
three stages. At each iteration, each D2D pair first selects
one action randomly according to its current strategy, then
utility value determination is performed, including distributed
RRH association and distributed power control. Based on
the noisy utility feedback, each pair updates its strategy
individually. Note that pairs can acquire the feedback values
from the HPN. Specifically, after RRH association and power
control are performed, potential D2D transmitters and CUEs
transmit. Then the BBU pool measures the total data rate
of all the UEs accessing RRHs whose values are delivered
to the HPN via backhaul, while each receiver of D2D pairs
in the D2D mode measures its data rate whose value is
delivered to the HPN via the control channel. Once the HPN
receives all the necessary data rate information, it calculates
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Algorithm 1 Distributed Mode Selection and Resource

Allocation

1: Stage 1: Initialization
YneN, 7, (t=0)=(0,...
m (t=0) = 555 (1,...,1).

2: Stage 2: Action e{ection

VYn € N, the D2D pair n randomly selects an action
according to 7, (t).

3: Stage 3: Utility Value Determination

The transmitters of D2D pairs selecting C-RAN mode
compete for RRH association by the many-to-many match-
ing based process shown in Algorithm 2.

Next, D2D pairs selecting D2D mode participate in the
Stackelberg game based power control process shown in
Algorithm 3.

4: Stage 4: Strategy Update
Each D2D pair updates its strategy using formulas in (13).
5. Stage 5: Convergence Check

If the strategy of each player converges, the algorithm
terminates. Otherwise, go back to Stage 2 with the updated
strategies.

,0),

the system SE and broadcasts the result to the UEs. Since
the utility of each pair resulting from selecting each action is
determined by the RRH association process and power control
process where constraints (8), (9), and (10) are considered,
the nature of Algorithm 1 is that D2D pairs self-optimize
the communication mode selection and subchannel alloca-
tion under fronthaul capacity constraints, centralized signal
processing capability constraints, and inter-tier interference
constraints.

Actually, the reinforcement learning can handle the com-
munication mode selection, subchannel allocation, transmis-
sion power optimization, and RRH association directly by
modifying the action of each pair as the combination of a
communication mode, a subchannel, a discrete power level,
and a set of RRHs it will associate with, and meanwhile
setting the utility of each pair to O if any of the constraints
in our model like the fronthaul capacity constraint is violated.
However, involving the selection of power levels and the set of
RRHs will cause considerable growth of the number of actions
for each pair, and hence the convergence time of reinforcement
learning can be unacceptable due to the long time needed for
estimating the utilities of actions.

IV. UTILITY VALUE DETERMINATION
After each pair selects its action, RRH association is
determined for D2D transmitters in C-RAN mode based on
a matching process, while the pairs selecting D2D mode
participate in a Stackelberg game based power control process,
where the inter-tier interference constraint (10) would be
satisfied when the process terminates.

A. Many-to-Many Matching Based RRH Association
Matching theory can provide a distributed solution for RRH

association that is easy for fast implementation [33]. In the

matching theory based RRH association process, the RRH set
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IC and the set of D2D transmitters in C-RAN mode J\/'qTx
are two teams of players. To characterize the constraints
(8) and (9), the quota of each transmitter is set to V/, and
the quota of RRH £ is set to Fj. In addition, each transmitter
would like to access RRHs with better CSI, and each RRH
would like to be associated with transmitters with better
communication environments. The matching is defined as an
assignment of the players in N¢ 1, to the players in . If
player n € N¢ . is assigned to player k& € K, it means
that Txz(n) would be associated with RRH k. Note that
the BBU pool acts on behalf of RRHs, and the considered
matching is a many-to-many matching since each transmitter
can be associated with multiple RRHs and each RRH can
accommodate multiple transmitters. Formally, a many-to-many
matching is defined as follows:

Definition 1: A many-to-many matching 7 is a mapping
from the set N¢ 1, UK into the set of all the subsets of
Ne 1z UK such that for every n € No o, and k € K:

1) n(n) is contained in K and 7 (k) is contained in N¢ 7y;

2) In(n)| <V for all n in N¢ 1y;

3) | (k)| < Fj, for all k in K;

4) k is in n (n) if and only if n is in 7 (k),
where 7 (n) is the set of RRHs that Ta(n) is associated
with, and 7 (k) is the set of transmitters communicating with
RRH k. The definition states that a matching is a many-to-
many relation in the sense that each RRH is matched to a set
of transmitters, and vice-versa.

Before designing the matching algorithm, the preference
list for each player should be defined. For T'z(n) selecting
subchannel d, it holds a preference list where the 2indices of
hilck) d‘ , and the
index of the RRH related to the largest [, q is at the top
of the preference list. For RRH £, it holds a preference list
containing the indices of all the transmitters which are ordered
according to [}, ; ; = Ln..a 7 With M, denoting the

RRHs are ordered according to I, p.q =

o GEMg TAIC|+n
set of transmitting UEs operating on subchannel d, and the

transmitter related to the largest /], ; ; is most preferred. Note
that l;, k.4 can coarsely characterize the communication envi-
ronment experienced by T'z(n) from RRH k’s point of view.

The many-to-many matching process with transmitters
proposing is designed for RRH association as summarized in
Algorithm 2, which involves three stages. In the first stage,
the transmitters and the BBU pool collect necessary CSI.
In the second stage, each transmitter makes its own preference
list, while the preference list for each RRH is made by the
BBU pool. The third stage contains two steps. In the first step,
each transmitter proposes to the V' RRHs at the top of the
preference list, and then RRH £ accepts the best F}, proposals
among the received proposals and rejects the rest. In the sec-
ond step, T'z(n) deletes the indices of RRHs who have rejected
its proposal from the preference list and proposes to the V'
RRHs at the top of the new preference list. Afterwards, RRH
k accepts the best F}, proposals among the received proposals
and rejects the rest. The second step is executed repeatedly
until no rejection occurs. The corresponding mathematical
problem that Algorithm 2 solves is a combinatorial utility
maximization problem with fronthaul capacity constraints and
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computing capability constraints as follows [34]:
Z Z fk’,nl/n,k',dn + Z Z fk’,nln,k,dn
kK n kK n

1) > fun < Fr, VEEK,
neN

(2) ka’,n SM \V,’I'LE.A/',

ke

(3) fk’m, S {0, 1},

where d,, represents the subchannel allocated to pair n.

max
fren

5)

Algorithm 2 CSI Based Many-to-Many Matching Algorithm
for RRH Association
1: Stage 1:

The transmitters of pairs in C-RAN mode and the BBU

pool gather necessary CSIL.
2: Stage 2:
Each pair and each RRH holds a preference list based on
the collected information.
3: Stage 3:
Each transmitter proposes to the V' RRHs at the top of
its preference list.

Each RRH accepts the proposals from the best transmitters
with regard to its quota and preference list, and rejects the
remaining proposals.

4: Stage 4:

Repeat:

Each transmitter deletes the indices of RRHs rejecting its
proposal, and proposes to the V' RRHs at the top of the
new preference list.

Each RRH accepts the proposals from the best transmitters
regarding its quota and preference list, and rejects the
remaining proposals.

Until: No rejection occurs.

B. Stackelberg Game Based D2D Power Control

To suppress the inter-tier interference to CUEs, the transmit
power of the D2D pairs in D2D mode should be properly
configured. To this end, the BBU pool can set a price for the
inter-tier interference generated by D2D pairs based on which
D2D pairs adjust their transmit powers. Since the policy is
hierarchical, a Stackelberg game is naturally suited to help
develop a distributed power control scheme, where the BBU
pool is taken as the leader and D2D pairs act as followers [35].
Focusing on an arbitrary subchannel d, the price of unit
interference is denoted by pg. Then for the D2D pair n
operating on subchannel d, it aims to maximize its utility
function through solving the following optimization problem:

D
max Ug (ua, ph, p,) = RED = ta D piln koa
2 ke,

st.: 0< pi < Pmazs (16)

where p?, denotes the transmit power profile of all the
other pairs in D2D mode using subchannel d, K. denotes
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the set of associated RRHs of CUE c allocated with sub-
channel d, and the optimization objective of the pair n
contains the data rate and the cost of causing inter-tier
interference. It should be mentié)ned that an additional price
term —n)y >ooopd hP) ‘ can be added to the utility

m,d
) meN’ m#n n’,m )
function to account for the impact of interference generated by

the D2D pair n on other D2D pairs with 74 the price per unit
of co-tier interference on subchannel d and A/ the set of pairs
in D2D mode using subchannel d, which can help to achieve
a better convergence point at the cost of more overhead to
estimate the CSI between the transmitter of the pair n and
the receivers of other pairs. Note that this change would not
affect the analysis and conclusions below. In the following,
the subchannel index d is dropped for simplicity of notation.

By solving (16), the optimal value of p,, under fixed p and
p_p, is given by

Pmax
1 IP4+1¢ 402
* . — _ n n , 17
pn (/vap ) ulnln2 h(D)‘Q ( )
n
0

D D * e
where 1, = > lug I, = > pm‘hm,n , I

keK. meN’ m#n .
denotes the total interference from CUE ¢ and D2D transmit-

ters in C-RAN mode, and [z];™* = min {Zmax, max {z, 0}}.

For the BBU pool, its objective is assumed to make |1, — 6|
less than a very small value, which is enough to make
constraint (10) approximately satisfied. Based on the above
derivation, a Stackelberg game based D2D power control
process is developed which is shown in Algorithm 3. In the
proposed process, all the pairs using subchannel d first transmit
at maximal powers, and the BBU pool measures I. for CUE
c. If I. > 6., the power control process is triggered, and then
the BBU pool initializes a price p = Luzpertliover yhere
Hupper and [ljower are the maximal value and the minimal
value of the price, respectively. Given p, pairs in D2D mode
update their transmit power to maximize utilities. After the
update process converges, the BBU pool again measures ..
If I. > 6., the BBU pool would set fjower = ptg and then
set g = % If I, < 6., the BBU pool would set
fupper = fta and then set jig = Huppertiower The process
repeats until |1, — 0. is less than a very small value.

Actually, Algorithm 3 solves the following optimization
problem, which is known as a mathematical program with
equilibrium constraints:

min |1, — 6./, (18)
w
st. >0, (19)
pn€argmax{U,: 0<p, < pmax}, YneN', (20)
Pn

where the subproblem composed of (18) and (19) is the
upper level problem related to the BBU pool which sets the
interference price, while the subproblem (20) is the lower
level problem related to each D2D pair, which represents the
equilibrium constraints.
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Algorithm 3 Stackelberg Game Based D2D Power Control
1: Stage 1:

For subchannel d allocated to CUE ¢, all the pairs
using this subchannel transmit at maximal powers, and
the BBU pool measures I.. If 1. > 6., the BBU pool sets
g = %, and the process goes to Stage 2.

2: Stage 2:
Pairs in D2D mode update the transmit power by
using (17) iteratively:
P (£) = P} (P (t — 1)),
until the transmit powers of all the pairs converge.
3: Stage 3:
The BBU pool measures I.. Then set pjpwer = pa if
I, > 0., and set fiypper = pq if 1o < Oe.
Set pg = %JQFWOW
4: Stage 4:
Repeat stage 2 and 3 until |1, — .| is less than a very
small value.

V. PROPERTIES OF THE PROPOSED APPROACH

In this section, the properties of the proposed approach in
Algorithm 1 are discussed to make the proposal clear.

A. CSI Requirement

For the D2D pairs, first, the CSI is not needed in the
reinforcement learning process. Second, in the RRH associ-
ation process, each pair only needs to know the CSI between
itself and RRHs. Third, in the power control process, each
pair only needs to know the CSI between its transmitter and
receiver, and the CSI between its transmitter and RRHs, since
the interference from other pairs and CUEs plus noise can be
directly measured at the receiver. For the BBU pool, the CSI
between transmitting UEs and RRHs is needed to make
preference lists for RRHs in the RRH association process and
calculate the MMSE receivers. Compared to the centralized
approaches where global CSI is needed in a central node, D2D
pairs and the BBU pool need only partial CSI in the proposed
distributed approach.

B. The Convergence of Reinforcement Learning

The convergence proof relies on two-time-scale stochastic
approximation. Specifically, (13) can be analyzed by studying
the following ordinary differential equations (ODEs) owing to
conditions (i) and (ii) in (14) [36]:

= Tn,an,; (T (an,ia T ) — rn,an,i)a

= anan,i (Pn) — Tn,an,is

rnvan,i

21

Tn,an,

.\ exp((Pn,a, ;
where () = —2 )
the expected utility of Eétential D2D pair n that results from
taking the i-th action when the strategies of other pairs are
7_,. Then, under condition (iii) in (14), the first ODE, which
corresponds to the fast process 7, q, ;, can be analyzed by fix-
ing strategy my, q, ,, and the second ODE, which corresponds
to the slow process Tn,an.:» Can be analyzed as if the utility

and 7 (ap,;, ™_p) is
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estimation is accurate, i.e., 7nq, , = 7 (Gn,i, T—pn) [37]. From
the first ODE, it can be derived that 7, o, , = 7 (an,, T_p)
when 7, 4, # 0, Yay, ;. While for the second ODE, the global
convergence of its trajectory is guaranteed when the utility of
D2D pairs satisfies

Tn (an,iv afn) —Tn (a,n,iv a,n)
- ¢ (an,i; afn) - ¢ (a/n,i; afn)v

which indicates that the interaction between D2D pairs is an
exact potential game for which a Lyapunov function must
exist [38] and obviously holds for our utility function setting.
Since the convergence point must be a zero point of the
associated ODE, we have 7,4, , = Bn,a,, (7_y), and this
stable state is called logit equilibrium.

Note that for practical scenarios with time-varying CSI,
Tn,a,., Will converge to Ey, [7 (an,q:, ™ _y)] [36], while 7, 4, ,
CP(CEulranmon)) o [36]. Then, in the

will be equal to ZG:A xp(CEn [ (am =]

following, each device needs only to select actions based on
the learned and fixed strategy, and hence can make a real-time
decision on the selected channel and communication mode,
implicitly taking into account the dynamics of CSIL

(22)

C. The Convergence of the RRH Association Process

The convergence of the matching algorithm is guaranteed
by the following theorem.

Theorem 1: The convergence of Algorithm 2 is ensured.

Proof: For each transmitter, the number of RRH indices
on its preference list is limited, and meanwhile the indices
of RRHs rejecting its proposal would be deleted. Hence,
after Stage 4 of Algorithm 2 repeats finitely many times,
no rejections would occur, which means the Algorithm 2 must
converge to a final matching. [ ]

The concept of pair-wise stable matching is given below to
make preparations for the proof of stability.

Definition 2 (Pairwise-Stable [39]): The matching n is
pairwise-stable if there are no transmitter n and RRH
k that are not paired with each other under 7 such that
Chy, (n(n) U{k}) =1 (n) and Chy (n(k)U{n}) =1 (k),
where Vj € KUN¢ 1z, Chj (W) represents the subset of W
that player j likes best with V' denoting the set of possible
partners, and W~ B means j prefers W to B with > being

J

irreflexive.
Based on the above definition, the stability of the final
matching is ensured by the following theorem.

Theorem 2: The final matching reached by Algorithm 2 is
pairwise-stable.

Proof: The proof follows by contradiction. Assume that
the final matching 7 is unstable. Then, there must exist
a transmitter-RRH pair (n, k) satisfying n ¢ n(k) and
k ¢ n(n) and meanwhile Chy (n (k)U{n})Zn(k) and
Chy, (n(n) U{k})>n(n). Overall, there are two possible

n

cases under the instability assumption. One case is that
transmitter n has never proposed to RRH k. In this case,
Chn (n(n)U{k}) = n(n), and Chy (7 (n)U{k}) =1 (n)
does not hold. The other case is that transmitter n has proposed
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to RRH k. Nevertheless, n ¢ 0 (k) means the proposal
was rejected. Hence, Chy, (n (k) U{n}) = n(k), and then
Chy (n (k) U {n}) i 71 (k) does not hold. Since contradictions

are found under both cases, the final matching n must be
pairwise-stable. u
Next, the optimality of the proposal is given by the follow-
ing theorem.
Theorem 3: The stable matching reached by Algorithm 2 is
Pareto-optimal for D2D transmitters.

Proof: Assume that the stable matching 7 is not Pareto-
optimal, and then there must exist an RRH and D2D trans-
mitter pair (k,n) satisfying n ¢ n(k) and &k ¢ n(n)
such that Chy, (n(n) U {k}) > n(n). Nevertheless, since the
matching 7 is stable, Chy, ( (IZ:L) U {n}) > n (k) does not hold,

as otherwise the stability of the matching 1 would be violated.
Actually, since the preference of RRHs over D2D transmitters
is strict, pairing with D2D transmitter n would hurt RRH
k because RRH k£ must reject a D2D transmitter that is
preferred by it to accommodate D2D transmitter n. Hence,
even though pairing with RRH £ helps the improvement of
D2D transmitter n, RRH k& would not allow this pairing.
Therefore, under stable matching 7, the RRH association
of each D2D transmitter cannot be improved, and thus the
matching 1 must be Pareto-optimal for D2D transmitters. M

Finally, we discuss the signaling overhead to show the
implementation feasibility. In each round of Algorithm 2,
the total number of association requests from D2D transmitters
is at most |[N¢|V, where NV is the set of D2D transmitters in
C-RAN mode. Meanwhile, each D2D transmitter needs one bit
to send a request to the desired RRH, and each RRH needs one
bit to inform the corresponding D2D transmitter of the deci-
sion on its association. Therefore, the total signalling overhead
in each round requires at most 2|N¢|V bits. Nevertheless,
once the request from a D2D transmitter is rejected by the
desired RRH, the D2D transmitter would not send the request
information to the RRH for the second time. Hence, with the
execution of Algorithm 2, the number of available RRHs on
the preference list of each D2D transmitter can be reduced, and
partial transmitters can send request information to fewer than
V' RRHs. Thus, the total signalling overhead in each round is
less than 2|N¢|V bits with Algorithm 2 running. Moreover,
considering that each D2D transmitter can only possibly
associate with RRHs within a certain distance, the number of
RRHs on the preference list of each D2D transmitter is much
less than the total number of RRHs. Thus, Algorithm 2 can
reach a stable matching after a small number of rounds, and
it can be concluded that the amount of information exchange
required by Algorithm 2 is tolerable.

D. The Convergence of the Power Control Process

We first consider the convergence and stability of the power
update procedure under a given price. For subchannel d,
the power update procedure of the corresponding pairs in
Algorithm 3 can be seen as a non-cooperative game. In each
update, each pair reacts to the power profiles of other pairs
by playing the best response defined in (17). Denote the
set of pairs in D2D mode using subchannel d by N'p C
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N, and re-label these pairs with i = 1,2,...,|]A"p|. Fol-
lowing the proof in [40], the following proposition can be
derived.

Theorem 4: Under a given price, the power update pro-
cedure in Algorithm 3 is guaranteed to converge to a pure-
strategy Nash equilibrium (NE) if

1
I, < —2— @

where H is a |[N”p| x [N p| matrix, and

2 . . .
, if i # 7,

0, otherwise.

_ (D)
Hij = ‘hj’l

(24)

The proof follows by writing the best responses of all the pairs
into a vector form and then applying the Banach contraction
theorem. The physical interpretation for this convergence
result is that the power update process converges if no pair
generates excessive interference to others. The specific defin-
ition of NE is given as follows.

Definition 3: A transmit power profile |p7,... ,pi"N,DJ is
a pure-strategy NE under a given price p if, for each pair i,
the following holds:

Ui (1,5, 0%5) > Ui (,pisp™5), Vpi € P, (25)
where p* ; is the transmit power profile of all the pairs except
pair 4, and P; = {p; : 0 < p; < Prmaz}-

Now we discuss the convergence and stability of the overall
power control process. First, it is intuitive that /. is a contin-
uous function of . Second, I. can achieve its minimal value
when o is sufficiently large, while I. can achieve its maximal
value when p takes a sufficient small value. Hence, a ;+ making
|I. — 6.| less than a given small value can always be found by
the process in Algorithm 2 if fi44,¢, 1S sufficiently small and
Hupper 1s sufficiently large. Once such a p is found, the BBU
pool would not change the price according to the assumption
about its objective. Under this converged price, the result of
the power update procedure would not change. Therefore,
the convergence of Algorithm 2 is ensured. Meanwhile, under
the converged outcome (p*,{pk}), the BBU pool has no
incentive to change the price under {p}, and each pair has
no incentive to change its transmit power unilaterally under
w*. Hence, (u*, {p}}) is a Stackelberg equilibrium.

E. Overall Convergence

Once the distributed reinforcement learning converges to
the logit equilibrium, each pair can reach its pure strategy by
letting the parameter ¢ become sufficiently large as discussed
in subsection G, and then the mode selection and subchannel
allocation of each pair will not change. Therefore, the RRH
association and power control results will not change either,
and the mode selection, subchannel allocation, RRH associ-
ation, and transmit power output determined by Algorithm 1
will be invariant over iterations, which implies the convergence
of Algorithm 1.
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F. Convergence Time
The previous proof has shown that distributed reinforce-
ment learning converges to a logit equilibrium 7" =
T, ... ,ﬂ"*M). Following that, we have the inequality for
D2D pair n € N given by

Z rn (@) g — Z rn (@)1 < e, Vm, £,

acA acA

(26)

where a is the action profile of all pairs whose set is

denoted by A, o = 7mna, [l 7, Iz =
meN ,m#n o
Tpan 1l T, and 7,4, is the probability that the
meN ,m#n

pair n plays action a,. This inequality suggests that if one
D2D pair changes its strategy, it cannot achieve an average
utility improvement larger than e. According to Proposi-
tion 5 in [36], the convergence time for the adopted rein-
forcement learning to reach equilibrium is O (log (£)). This
measure means it will cost more time to achieve a more exact
version of Nash equilibrium. Hence, in reality, if a network
designer wants to build a more stable network, the learning
algorithm should be executed for a longer time. Meanwhile,
it should be noted that this measure is for a fixed network
size. Concerning the impact of network size on convergence
time, when the number of D2D pairs and the number of sub-
channels increase, the convergence time will be longer, since
the interactions between D2D pairs will be more complex and
each pair needs to estimate utilities for more actions.

G. Optimality

Note that when all pairs share an identical utility taken
as the system performance Usysiem, the interactions among
pairs to select communication mode and subchannel can
be seen as an exact potential game with potential function
® = Usystem [35]. Since all Nash equilibria of this game
maximize ¢ either locally or globally, all Nash equilibria
of this game maximize Ugysiem either locally or globally.
Further, by Proposition 1 in [30], once Algorithm 1 reaches the
equilibrium, € can approach 0 by increasing (. Meanwhile,
when Algorithm 1 converges to the equilibrium, the probability
of each D2D pair playing the i-th action is given by

Prsan.: (E
7Tn,any,; = P (Cr e ( )) . (27)

A
Z exp (C'Pn,an“; (t))
j=1

Hence, when ( increases, each pair intends to play the action
with maximal estimated utility, and thus as  goes to infinity,
the following result can be derived from (26):

Tn (an, a*_n) — T (afb, a’in) <0, Va, #a,, (28)

where a;, is the action of the pair n with the highest estimated
utility when Algorithm 1 converges, and a*,, is the action
profile of all the other pairs. Note that this inequality is
the standard definition of Nash equilibrium, and it can be
concluded that Algorithm 1 will converge to a global or local
optimal solution to problem (12) as ¢ goes to infinity. For the
practical implementation, ¢ should be taken at first as a small
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value to allow pairs to estimate the utility sufficiently and then
taken as a large value to improve the system performance once
the algorithm converges [29].

H. Overall Complexity

In the action selection stage, a pair needs to generate a
random number to select an action, whose complexity is O (1).
Then for the utility determination stage, the complexity of the
distributed matching based RRH-D2D association for each
D2D pair mainly lies in the sorting algorithm to make a
preference list about RRHs. The sorting complexity for each
pair is O (Klog K) with K the number of RRHs in the
network. In addition, the power update formula of each pair
contains only multiplications and additions, and hence the
complexity is O (1). Therefore, the power control complexity
for each pair is O (I) with I the number of power updates until
the power control algorithm converges. As for the strategy
update stage based on reinforcement learning, since each pair
updates the utility estimation of only one action each time,
this update complexity is O (1). For the second equation of
reinforcement learning for the strategy update, the complexity
is O (|D]) because each pair needs to update strategies for
2|D| actions. Hence, the complexity of all three stages of
Algorithm 1 for each pair is O ((Klog K) + I + |D)).

L. The Setting of ( and Learning Rates

The network configuration has significant impact on the
setting of ¢ and learning rates. First, for the parameter ¢, when
the number of D2D pairs increases, the interactions between
D2D pairs will become more complex. Hence, to estimate the
utility of each action accurately, each pair should keep a small
value of ¢ for a longer time to extend the duration of action
exploration. In addition, when the number of subchannels
increases, the number of actions for each D2D pair will
increase. In this case, each pair should keep a small value of
¢ for a longer time as well, since the utilities of more actions
need to be estimated. Second, for the learning rate, it affects
the size of the step for updates in reinforcement learning.
When the number of pairs or subchannels increases, each pair
should select learning rates that diminish more slowly with
time. This is because the exploration time should be extended
in both situations as discussed, and hence longer learning time
is needed.

VI. SIMULATION RESULTS AND ANALYSIS

In this section, simulation and numerical results are shown
to evaluate the effectiveness of the proposed appoach, and
demonstrate the benefits of D2D enabled C-RANSs.

A. Scenarios and Parameters

The simulation scenario is shown in Fig. 2, where the axes
are in units of meters, and each arrow starts from a D2D
transmitter and points to the paired D2D receiver. We assume
that two subchannels are available, and CUEs 1 and 2 transmit
over subchannels 1 and 2, respectively. The channel coefficient
of each link is composed of path loss and fast fading. The
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Fig. 2. The simulation scenario.

pathloss model is d~2 with d being the distance between two
nodes in the same link, and the fast fading is modeled as
an independent complex Gaussian random variable distributed
as CN(0,1). Moreover, each UE can associate with at most
four RRHs, and the maximal UE transmit power is 20 dBm.
The number of UEs that each fronthaul link can serve is fixed
as two, and the noise power is set to —104 dBm. The learning
parameter is taken as ¢ = ¢/1000, and the learning rates 6 (¢)
and v (t) are set to (t+i)0'6 and (t+})0,7 , respectively. Note that
the reason for adopting the topology in Fig. 2 is to facilitate the
analysis in Subsection B and the performance comparison with
the optimal solution obtained by exhaustive search. When the
number of subchannels is quite large, the number of actions
of each D2D pair will be large, and hence it can take a
long time for our proposed algorithm to converge to the logit
equilibrium since each D2D pair has more actions to try. Faced
with this problem, we can divide the whole area into multiple
districts, and allocate these districts with orthogonal subsets
of subchannels. In this way, the number of each pair’s actions
can be reduced significantly, and the interactions between D2D
pairs in different districts are independent. Then, the proposed
approach can be applied in each district.

For each pair, four different actions are available:
e Action I: Operating in D2D mode over subchannel 1.

e Action 2: Operating in D2D mode over subchannel 2.
e Action 3: Operating in C-RAN mode over subchannel 1.
o Action 4: Operating in C-RAN mode over subchannel 2.

To show the advantages of enabling D2D in C-RANs, two

schemes are considered:
o Scheme 1: D2D pairs can choose all the actions listed

above.
o Scheme 2: D2D pairs can only choose Actions 3 and 4,
which suggests the D2D communication is not allowed.

B. Convergence

Figs. 3 and 4 depict the convergence behavior of the
proposed approach, which are obtained by a single simulation
trial. Specifically, the evolution of the strategy of each pair
is presented in Fig. 3. Initially, pairs play actions with equal
probability, but however, after exploring the action spaces for
a period of time, each pair takes the action with the highest
estimated utility.

Fig. 4 shows the evolution of the system SE, where the opti-
mal system performances under Schemes 1 and 2 are obtained
by exhaustive search. In the conducted trial, the SE achieved
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TABLE II
RESULTS UNDER Scheme 1
D2D Communication Mode Selected Transmit Associated
Pair Subchannel Power RRHs
1 C-RAN mode 2 100 mW 1,2,3,4
2 C-RAN mode 1 100 mW 5,6,7,8
3 D2D mode 1 100 mW
4 D2D mode 2 100 mW
5 D2D mode 2 100 mW
6 D2D mode 1 100 mW
TABLE III
RESULTS UNDER Scheme 2
D2D Communication Mode Selected Transmit Associated
Pair Subchannel Power RRHs
1 C-RAN mode 2 100 mW 1,2,3,4
2 C-RAN mode 2 100 mW 6,8
3 C-RAN mode 2 0 mW
4 C-RAN mode 1 0 mW
5 C-RAN mode 2 0 mW
6 C-RAN mode 1 100 mW 5,7

by the reinforcement learning process first increases with the
number of iterations, and then a near-optimal performance is
achieved, which demonstrates the effectiveness of the proposed
approach. Moreover, it can be seen that the performance of the
C-RAN is greatly improved by allowing direct communication
between UEs. Note that it is common for the reinforcement
learning process to take many iterations to converge, e.g.
2000 iterations, even for a small-scale network as shown in
[30, Fig. 2].

To give greater insight into the poor performance of
Scheme 2, we list the mode selection, subchannel allocation,
RRH association, and power control results when the rein-
forcement learning process converges under Scheme 1 and the
optimal performance is achieved under Scheme 2 in Table II
and III, respectively. Note that the transmit power of UEs
in C-RAN mode that are not associated with any RRH are
set to 0. Then, with the help of the two tables and Fig. 2,
the following conclusions can be drawn. First, due to the
fronthaul capacity constraints, not all the UEs can fully
benefit from the centralized signal processing capability of the
C-RAN. For example, in Table III, pairs 2 and 6 are only
associated with two RRHs, and pairs 3, 4 and 5 are not even
served by any RRH. Second, for the UEs that are not near
enough to RRHs, D2D mode is more attractive because of the
proximity of D2D receivers. For example, in Table II, D2D
pair 6 operates in D2D mode instead of C-RAN mode.

C. The Effects of RRH Association and Power Control

Fig. 5 shows the RRH association evolution when all the
pairs operate in C-RAN mode, where the RRH index 0 means
all the pairs have no RRHs to associate with at the beginning.
It can be seen that each RRH can only accommodate one UE,
and each UE can access four RRHs at most, which shows that
the fronthaul capacity and computing capability constraints
strictly hold by our matching based RRH association process.
Note that each RRH can serve only one UE because it has
accommodated one traditional C-RAN UE, and meanwhile the
RRH association of only three pairs are demonstrated because
the association requests of the other three pairs during the
entire matching process are all rejected. As for the power
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control algorithm, we consider the case in which all the
D2D pairs select subchannel 2 and operate in D2D mode.
Fig. 6 shows the evolution of the transmission power of D2D
pairs. It can be seen that the transmission power of pair 2 is
greatly suppressed because it causes most of the interference
to CUE 2 occupying subchannel 2.

D. Enabling D2D Benefit

Fig. 7 highlights the benefit of enabling D2D in C-RANs
by comparing the SE achieved under Schemes 1 and 2, and
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the results are obtained by conducting 500 independent trials
and then taking the average value. It is reasonable to find that
the SE achieved under Scheme 1 is significantly higher than
the optimal performance under Scheme 2, since D2D mode is
enabled in Scheme 1 and hence UEs can communicate with
the paired receivers directly, which is preferable when the
UEs are far from RRHs or RRHs in the neighborhood are
not available due to the fronthaul capacity constraints. While
in Fig. 8, the benefit of enabling D2D is shown when the
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centralized signal processing capability of the BBU pool is
not powerful, where the fronthaul capacity is set to 7 and each
D2D transmitter is only allowed to associate with one RRH.
Not surprisingly, it can be seen that the optimal performance
under Scheme 2 is much worse than the performance achieved
under Scheme 1. This is because the advantage of C-RAN
mode over D2D mode mainly comes from the centralized
signal processing capability of the BBU pool.

E. The Impact of

The impact of the learning parameter ¢ on SE is evaluated
in Fig. 9. Similar to Figs. 7 and 8, the results are obtained
by conducting multiple independent trials and then taking the
average value. In particular, it can be seen that either a large
learning parameter or a small learning parameter leads to poor
performance, while the parameter setting ¢ = ¢/1000 achieves
a near-optimal performance. This verifies the discussion about
learning parameter selection in Section V.

FE. Performance in Large-Scale Networks

To show the performance of our algorithm in large scale
networks, the network scenario in Fig. 10 is considered,
which contains 14 D2D pairs. Since the computation time
of exhaustive search for the optimal solution in this setting
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becomes prohibitive, we compare our algorithm with a coali-
tion formation based mode selection and subchannel allocation
algorithm proposed in [41], and the same RRH association
and power control algorithms as in our proposed appoach are
adopted for this comparison scheme. In addition, to reduce
the number of iterations, early stopping is adopted [42], which
sets the selection probability of an action to 1 if the updated
probability is larger than 0.55. From Fig. 11, a performance
improvement of 8.2% is observed, which demonstrates the
effectiveness of our proposed appoach. Moreover, it can be
seen that early stopping can effectively reduce the number
of iterations for convergence, meanwhile achieving the same
performance as that of the case without early stopping.

G. Overall Benefits

In this subsection, the benefits of our proposed distrib-
uted algorithm over the centralized scheme adopted in our
simulation are discussed. The centralized case means the
mode selection, subchannel allocation, user-RRH associa-
tion, and power control are all optimized at the BBU pool.
Specifically, mode selection and subchannel allocation are
optimized based on exhaustive search, while user-RRH asso-
ciation and power control schemes are the same as those
in our proposed appoach. Denote the computing resource
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consumed by the centralized method by A. Since the com-
plexity of exhaustion is O ((2 |D|)|M), A can be modeled

as A(2 |D|)|M [26], where A is a constant parameter. Denote
the number of iterations of Algorithm 1 by w, and then the
computing cost saved by the proposed distributed approach is
o (1 W) A2 DM = pia ((2 D))V —w) with
p1 the price per unit computing resource.

Next, we analyze the loss of the distributed scheme incurred
by information exchange in Algorithms 2 and 3. Based on
the analysis of Algorithm 2, the total number of informa-
tion exchanges in each round is at most 2|N¢|V. How-
ever in Algorithm 3, the information exchange is caused
by broadcasting the interference prices corresponding to |D|
subchannels via the high power node. Therefore, an upper
bound on the information exchange cost can be calculated
as  p2 (TD * Tmatching * 2|NC|V + w * |D| * Tstackelberg * ]-)
with po the price of a single information exchange, Tatching
the number of rounds needed for Algorithm 2 to reach a stable
matching in the worst case, and Tiiqckeiverg the number of
rounds needed for Algorithm 3 to reach Stackelberg equilib-
rium in the worst case. Thus, the net gain brought by the
proposed distributed approach can be calculated as

= pl/\ ((2 |ID|)‘N| - w) — P2 (w * Tmatch,ing * 2|NC|V
+w * |D| * Tstackelberg * 1) 3 (29)
and to achieve a positive I', p; and po should satisfy the

following relationship:

Tmatching * 2|-/\[C|Vv + |D| * Tstackelberg
A (EET ) P2

w

p1> (30)

In our simulation setting, |D| = 2, [N'| = 6, Thnatching = 3
as shown in Fig. 6, Tiackeibery = 10 as shown in Fig. 7,
INe| = 6, A = 10, and V = 4. Then, it can be seen that
only if the price per unit computing resource is about 5 times
larger than the price for single control information exchange,
can the proposed distributed approach bring positive gain for
the operator in our simulation scenario. Meanwhile, since
Algorithm 1 can be further speeded up by transfer learning and
early stopping, the condition (30) for a positive I" will more
possibly hold owing to the reduction of ww. In addition, with
the network scale becoming large, the first term in (29) will
increase exponentially, while the second term increases more
slowly. Hence, it is anticipated that the distributed approach
can achieve a more significant benefit in larger scale networks.

VII. FUTURE WORK

In this paper, considering that subchannel allocation and
beamforming design in the downlink time slot will incur
extra challenges, only the optimization for the uplink time
slot of the proposed TDD based D2D enabled C-RAN has
been considered, where D2D transmission and the uplink
transmission of D2D pairs in C-RAN mode coexist. In the
future, we plan to investigate joint uplink and downlink system
performance optimization. Meanwhile, since the convergence
of the distributed reinforcement learning does not rely on the
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specific form of the utility function, it can be used to optimize
latency as well by replacing the current utilities of D2D pairs
with utilities related to latency.

In addition, another interesting topic is to accelerate the
convergence of distributed reinforcement learning to make it
feasible for D2D communications and tackle the dynamics
of the environment such as the dynamic change of C-RAN
UEs’ states. A potential solution is to involve transfer learning
in the reinforcement learning process. Specifically, the author
in [43] improves the actor-critic algorithm by transfer learning,
which shows faster convergence by avoiding the agent having
to learn from scratch. Inspired by [43], the utility estimates and
strategies learned under previous environments can be taken
as useful experience for the utility estimation and strategy
estimation of the distributed learning process, respectively,
considering that there will likely exist some similarity between
the states of environments like C-RAN UEs’ states in different
time periods. In this way, when the state of the environment
such as the C-RAN UEs’ states change, D2D pairs will not
learn from initial points and can achieve good performance
with decreased learning time. Meanwhile, early stopping can
be adopted as well to speed up the learning process.

VIII. CONCLUSION

A distributed approach to joint mode selection and resource
allocation has been developed for an uplink device-to-device
enabled cloud radio access network to optimize the overall
spectral efficiency under the fronthaul capacity, centralized
signal processing capability of the baseband unit pool, and
inter-tier interference constraints. The approach contains three
stages: communication mode and subchannel selection, utility
value determination, and strategy update. The second stage
includes a many-to-many matching based remote radio head
association process and a Stackelberg game based power
control process. Based on the feedback values of utilities,
D2D pairs update their strategies using a reinforcement learn-
ing process. The proposed approach imposed only a light
computing burden on each D2D pair, and meanwhile each
pair and the BBU pool need to acquire only partial channel
state information. The performance gain of enabling D2D in
C-RANSs has been confirmed by numerical simulations, and
the gain depends on the distance between D2D transmitters
and RRHs, the fronthaul capacity, as well as the centralized
signal processing capability of the BBU pool.
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