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Abstract— Device-to-device (D2D)-enabled cloud radio access
networks (C-RANs) are potential solutions for further improving
spectral efficiency (SE) and decreasing latency by allowing
direct communication between two users. However, due to the
need to acquire global channel state information (CSI) and to
execute centralized algorithms, heavy burdens are placed on
the fronthaul and the baseband unit (BBU) pool. To alleviate
these burdens, a distributed approach to mode selection and
resource allocation for potential D2D pairs under pre-determined
resource allocation of C-RAN users is proposed, in which pairs
of users are endowed with decision-making capabilities. The
proposed procedure is divided into three stages: communication
mode and subchannel selection, utility value determination, and
reinforcement-learning-based strategy update. The core idea is
that the D2D pairs self-optimize the mode selection and resource
allocation without global CSI under several practical constraints.
Simulation results show that enabling D2D can significantly
improve SE for C-RANs. Furthermore, the impacts of the
fronthaul capacity, the centralized signal processing capability
of the BBU pool, and the distance between the D2D transmitter
and the remote radio head are demonstrated and analyzed.

Index Terms— Cloud radio access networks (C-RANs), device-
to-device (D2D), mode selection, resource allocation, game theory.

I. INTRODUCTION

W ITH the explosive increase in mobile data traffic,

operators have to continuously improve network per-

formance [1]. As a promising solution, the cloud radio access

network (C-RAN) has been proposed to enhance spectral effi-

ciency (SE) and energy efficiency (EE) as well as lower operat-

ing and capital expenditures [2], [3]. In C-RANs, the baseband
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processing and upper-layer functionalities are migrated to the

baseband unit (BBU) pool, which connects with distributed

remote radio heads (RRHs) via fronthaul. Many studies have

been conducted on C-RANs, in terms of computing resource

optimization [4], performance analysis [5], system cost mini-

mization [6], and so on.

Since the practical fronthaul is often capacity con-

strained or time-delay constrained, the C-RAN is far from

satisfying the SE and EE requirements of the fifth generation

mobile communication network [7]. Hence, advanced tech-

niques can be introduced to further improve the performance

of C-RANs. In this paper, device-to-device (D2D) enabled

C-RANs are examined, whose core idea is inspired by D2D

enabled cellular networks with decreased latency and signif-

icant SE/EE gains [8]. In addition, alleviating the burden of

fronthaul is another remarkable benefit brought by D2D, since

the traffic generated by user equipment (UE) communicating

directly does not need to go through fronthaul anymore. In [9],

the considerable SE improvement by integrating D2D with C-

RANs has been confirmed via stochastic geometry.

To fully boost SE and EE gains, mode selection and resource

allocation schemes play key roles. In D2D enabled C-RANs,

mode selection refers the situation in which a pair of UEs

intending to communicate with each other, termed a potential

D2D pair, can select either D2D mode where direct com-

munication is performed or C-RAN mode where the C-RAN

helps to transmit the traffic, while resource allocation refers to

subchannel allocation among potential D2D pairs. Moreover,

appropriate RRH association and D2D power control schemes

are needed to meet fronthaul capacity constraints, centralized

signal processing capability constraints at the BBU pool,

as well as inter-tier interference constraints. In this paper,

different from [9] which focuses on performance analysis,

the objective of studying the mode selection and resource

allocation problem in uplink D2D enabled C-RANs is to

optimize the system SE and meanwhile alleviate the burdens of

the fronthaul and the BBU pool by making the potential D2D

pairs autonomously optimize the mode selection and resource

allocation under several practical constraints.

A. Related Work and Challenges

Much attention has been paid to resource allocation in

D2D enabled cellular networks recently. In [10], a subchan-

nel sharing protocol is proposed to ensure that the mutual
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interference of two D2D pairs is negligible when they use

the same subchannel. Then, the primal problem aiming at

maximizing the sum rate of D2D pairs is further divided into

a subchannel assignment problem and a power distribution

problem. A minimum weighted EE maximization problem is

studied in [11], where the proposed problem is transformed

into the joint subchannel and power allocation problem for

D2D links.

Furthermore, in [12]–[14], various game models are used

to develop resource allocation schemes with low complexity.

In [12], focusing on a downlink D2D underlaid cellular

network, the spectrum resource allocation for D2D pairs is

modeled as a reverse iterative combinatorial auction. The spec-

trum resources occupied by a cellular user are seen as a bidder

who competes for the packages of D2D pairs to maximize the

channel rate. In [13], a coalition formation based approach is

proposed to address the uplink spectrum sharing for multiple

D2D and cellular users, in which a possible coalition structure

stands for a possible spectrum sharing relationship. To limit

the inter-tier interference, a pricing based D2D power control

scheme is designed in [14], and the competition among D2D

pairs is modeled as a non-cooperative game.

The aforementioned works typically study resource alloca-

tion with all D2D pairs operating in D2D mode. This fixed

setting is not beneficial to the overall system performance, and

hence mode selection should be taken into account [8]. In [15],

a potential D2D transmitter selects the communication mode

according to the comparison between the biased D2D link

quality and the cellular uplink quality, and a similar method

is used in [16]. In [17], a guard zone based mode selection

scheme is proposed, where potential D2D transmitters located

within the guard zones are required to operate in cellular mode

to avoid severe interference to the base stations (BSs).

Actually, resource allocation and mode selection are cou-

pled [18], and thus they need to be optimized jointly. In [19],

a joint mode selection and resource allocation problem to

maximize the system throughput with a minimum rate guar-

antee is formulated, and a particle swarm optimization based

scheme is proposed, where solutions are mapped onto parti-

cles. The joint optimization problem of D2D mode selection,

modulation and coding scheme assignment, radio resource

allocation, and power allocation is decoupled into two sub-

problems in [20], and a Tabu Search metaheuristic based

approach is used to search for the best mode selection. In [21],

three communication modes are considered for D2D users:

cellular mode, dedicated mode, and reuse mode, and the

system throughput maximization problem is decomposed into

a power control problem, and joint mode selection and channel

assignment problem which can be solved by the branch-and-

bound method. An outer approximation based linearization

technique is utilized in [22], to solve the joint admission

control, mode selection, and power allocation problem, which

is shown to be NP-complete.

Although the centralized methods in [18]–[22] have shown

significant performance gains, centralized implementation in

D2D enabled C-RANs can put heavy burdens on the fron-

thaul and the BBU pool due to the need to acquire global

channel state information (CSI) and to execute centralized

algorithms. Fortunately, the computing capabilities of UEs

are increasingly more powerful, and thus it is possible to let

potential D2D pairs optimize their communication modes and

utilized subchannels autonomously to alleviate the burdens of

the C-RAN infrastructures. Note that this idea corresponds

with the newly emerging notion of fog computing based

radio access networks (F-RANs) [23], and hence our scenario

can be seen as a special case of F-RANs. To this end,

a distributed approach with low computing burdens as well as

low CSI requirement for potential D2D pairs should be devel-

oped. Meanwhile, during the self-optimization of D2D pairs,

the impacts of limited fronthaul capacity, limited centralized

signal processing capability of the BBU pool, and inter-tier

interference constraints should be considered as well.

B. Contributions and Organization

In this paper, a distributed approach to mode selection and

subchannel allocation for potential D2D pairs under several

practical constraints in an uplink D2D enabled C-RAN is

proposed, which alleviates the burdens on the fronthaul and the

BBU pool. In the proposed approach, D2D pairs are assumed

to have decision-making capabilities, which select their com-

munication modes and subchannels according to individual

strategies. The strategy profile of all the D2D pairs is ensured

to converge to a pure strategy profile by an iterative reinforce-

ment learning process, and the feedback value of utilities is

determined by a distributed RRH association process and a

distributed power control process where the fronthaul capacity

constraints, centralized signal processing capability constraints

at the BBU pool, and inter-tier interference constraints are

considered. The main contributions of the paper are:

• To improve the SE of C-RANs, the uplink D2D enabled

C-RAN is investigated, in which a potential D2D pair

can operate either in D2D mode or C-RAN mode.

In D2D mode, the two UEs in the same pair com-

municate directly, while they communicate with the

help of the C-RAN in C-RAN mode. Unlike traditional

D2D enabled cellular scenarios, the proposed model has

unique features such as capacity-constrained fronthaul

and uplink coordinated multipoint transmission. Under

the pre-determined resource allocation of C-RAN UEs,

an optimization problem aiming at maximizing the overall

SE is formulated. Specifically, the overall SE is not only

related to the communication mode selection and resource

allocation of D2D pairs, but also depends on the RRH

association process and power control process, where the

fronthaul capacity constraints, centralized signal process-

ing capability constraints at the BBU pool, and inter-tier

interference constraints are taken into account.

• The formulated problem is handled by a distributed

approach with three stages. In the action selection stage,

each D2D pair first selects a communication mode and a

subchannel according to its individual strategy. Next, in

the utility value determination stage, the RRH association

of D2D pairs in C-RAN mode is modeled as a many-

to-many matching game, and the power control of D2D

pairs in D2D mode is modeled as a Stackelberg game.

In the strategy update stage, each pair updates its strategy
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TABLE I

SUMMARY OF NOTATION

using a reinforcement learning process. These three stages

are repeated until a pure strategy profile of D2D pairs

is reached, which is desired in practical implementation.

The nature of the proposal is that D2D pairs self-

optimize the mode selection and resource allocation under

several practical constraints such as fronthaul capacity

constraints.

• The properties of the proposed approach are discussed,

in terms of optimality, stability, etc. Simulation results

show that the proposed method converges and the benefits

of enabling D2D in C-RANs are significant. Furthermore,

the reasons why D2D can improve SE in C-RANs are

analyzed.
The remainder of this paper is organized as follows.

Section II describes the uplink D2D enabled C-RAN model.

Section III proposes the optimization problem of interest, and

presents a distributed approach to solve it. The utility value

determination stage is specified in Section IV, and Section V

discusses the properties of the proposed approach. Simulation

results are presented in Section VI, followed by the conclusion

in Section VII. For convenience, some important notation is

listed in Table I.

II. SYSTEM MODEL

The considered system model shown in Fig. 1 consists

of one BBU pool, one high power node (HPN), multiple

RRHs, multiple potential D2D pairs, and multiple C-RAN UEs

(CUEs) that are incapable of conducting D2D communication.

The HPN is responsible for delivering system information

to UEs, and can communicate with the BBU pool through

the backhaul [24]. Assume that the system operates in Time-

Division Duplex mode, and RRHs connect with the BBU

pool via capacity-constrained fronthaul. The set of potential

Fig. 1. An uplink D2D enabled C-RAN.

D2D pairs is denoted by N = {1, 2, . . . , |N |} with the

transmitter and the receiver of the pair n denoted by Tx(n)
and Rx(n), respectively, and each pair can operate either

in D2D mode or C-RAN mode. Specifically, if the pair n
selects the D2D mode, Tx(n) transmits to Rx(n) directly in

the uplink time slot. While if the pair n selects the C-RAN

mode, Tx(n) is served by multiple RRHs via joint reception

with Rx(n) keeping quiet in the uplink time slot, and then

the RRHs transmit the message of Tx(n) to Rx(n) via

joint beamforming as in [25] with Tx(n) keeping silent in

the downlink time slot. Compared to the traditional cellular

mode in [18]–[22], the C-RAN mode can be beneficial from

the viewpoint of the centralized signal processing capability

of the BBU pool. Define the set of RRHs and the set of

CUEs as K = {1, 2, . . . , |K|} and C = {1, 2, . . . , |C|},

respectively. The set of all transmitting UEs including both

CUEs and the transmitters of potential D2D pairs is denoted by

M = {1, 2, . . . , |C| , |C| + 1, . . . , |C| + |N |}, where m ∈ M
represents CUE m if 1 ≤ m ≤ |C|, and m ∈ M represents

Tx(m−|C|) if |C|+1 ≤ m ≤ |C|+|N |. In addition, each RRH

and transmitting UE is equipped with a single antenna. The

set of available subchannels is denoted by D = {1, 2, . . . , |D|}
with |D| = |C|, and the bandwidth of each subchannel is B.

For the pair n in D2D mode that transmits over subchan-

nel d, the received symbol at Rx(n) is given by

y
(D)
n,d =

√
pn,dh

(D)
n,d sn+

∑

m∈M,m �=|C|+n

√
pm,dh

(D)
m,n,dsm + wn,

(1)

where sn ∼ CN (0, 1) is the symbol of Tx(n), pn,d is the

transmit power of Tx(n), h
(D)
n,d is the channel coefficient

between Tx(n) and Rx(n), h
(D)
m,n,d is the channel coefficient

between transmitting UE m and Rx(n), and wn ∼ CN (0, σ2)
is the noise at Rx(n).

Then the data rate achieved by the pair n is given by

R
(D)
n,d = log

(

1 +
pn,d|h(D)

n,d |2
∑

m∈M,m �=|C|+n pm,d|h(D)
m,n,d|2 + σ2

)

. (2)

When the pair n selects C-RAN mode, Tx(n) would trans-

mit to RRHs. Denote the set of RRHs that Tx(n) associates

with by Kn, and the received symbol vector of these RRHs
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over subchannel d is given by

y
(C)
n,d =

√
pn,dh

(C)
n,dsn+

∑

m∈M,m �=|C|+n

√
pm,dh

(C)
m,n,dsm + zn,

(3)

where h
(C)
n,d ∈ C|Kn|×1 is the channel vector from Tx(n) to

its associated RRHs, h
(C)
m,n,d ∈ C|Kn|×1 is the channel vector

from transmitting UE m to the associated RRHs of Tx(n),
and zn ∈ C|Kn|×1 is the noise vector which is distributed as

CN (0, σ2I|Kn|).
Suppose that minimum mean square error (MMSE) detec-

tion is used at the BBU pool; then the estimated symbol for

Tx(n) is given by

ŝn,d = gH
n,dy

(C)
n,d , (4)

where gn,d ∈ C
|Kn|×1 is the MMSE receiver for Tx(n).

The mean square error (MSE) of Tx(n) can be expressed

as

E

[

(ŝn,d − sn) (ŝn,d − sn)
H
]

= gH
n,dBn,dgn,d − gH

n,dbn,d − bH
n,dgn,d + 1, (5)

where Bn,d = bn,db
H
n,d +

∑

m∈M,m �=|C|+n

bm,n,db
H
m,n,d +σ2I,

bn,d =
√

pn,dh
(C)
n,d , and bm,n,d =

√
pm,dh

(C)
m,n,d.

Hence, the MMSE receiver for Tx(n) is given by

gn,d = Bn,d
−1bn,d, (6)

where it can be seen that the main computing burden comes

from the calculation of the inverse of a |Kn| × |Kn| matrix

Bn,d with computational complexity O
(

|Kn|3
)

. In this paper,

the centralized signal processing capability of the BBU pool

is assumed to be constrained, and hence |Kn|, the number

of RRHs that Tx(n) associates with, should be limited.

Therefore, define V as the maximum number of RRHs that

each UE can associate with; the reasonable value of V can be

3 or 4 according to the result in [26].

When the pair n operates in the C-RAN mode, the transmit

rate achieved in uplink can be written as

R
(C)
n,d = log

⎛

⎜

⎝
1 +

pn,d

∣

∣

∣gH
n,dh

(C)
n,d

∣

∣

∣

2

In,d + σ2gH
n,dgn,d

⎞

⎟

⎠
, (7)

where In,d =
∑

m∈M,m �=|C|+n

pm,d

∣

∣

∣gH
n,dh

(C)
m,n,d

∣

∣

∣

2

. For CUE

c ∈ C, its achieved data rate in uplink Rc has a similar form

to equation (7).

III. PROBLEM FORMULATION AND

A DISTRIBUTED APPROACH

In this section, an optimization problem aiming at maxi-

mizing the overall SE under multiple practical constraints is

formulated, and a distributed approach is proposed.

A. Problem Formulation

For CUEs, their RRH association, subchannel allocation,

and transmit power can be assumed to be pre-determined.

For example, each CUE associates with the V nearest RRHs,

and orthogonal subchannels are assigned to CUEs in a ran-

dom manner with one subchannel for each CUE. Moreover,

each CUE and each D2D transmitter in the C-RAN mode

transmit at the maximal power level pmax. Hence, the system

throughput mainly depends on the mode selection, subchannel

allocation, RRH association, and transmit power of D2D

pairs. However, the joint optimization considering all these

items would be quite difficult to solve directly since the

corresponding problem contains both continuous variables

and integer variables that are tightly coupled. In this case,

to reduce the number of optimization variables and keep

our work focused, two mappings f1 and f2 are presented,

which map the mode selection and subchannel allocation

of D2D pairs to their RRH association and transmit power,

respectively.

Further, the mapping f1 should meet the fronthaul capacity

constraint and the centralized signal processing constraint as

follows:
∑

n∈N

fk,n ≤ Fk, ∀k ∈ K, (8)

∑

k∈K

fk,n ≤ V, ∀n ∈ N , (9)

where fk,n ∈ {0, 1} with k ∈ K and n ∈ N indicates whether

RRH k associates with Tx(n) or not, and Fk is the maximum

number of UEs that the fronthaul between RRH k and the BBU

pool can still serve under the RRH association of CUEs. Note

that the reason for not imposing data rate fronthaul constraints

is because they implicitly assume that each fronthaul link

can serve an unlimited number of UEs, which is unrealistic

in practical systems [6]. In addition, since the pairs in D2D

mode reuse the subchannels of CUEs, the mapping f2 should

meet the inter-tier interference constraint and transmit power

constraint as follows:

Ic ≤ θc, ∀c ∈ C, (10)

0 ≤ pd
n ≤ pmax, ∀n ∈ N , d ∈ D, (11)

where Ic =
∑

n∈N

∑

k∈Kc

pd
n

∣

∣

∣h
(C)
n,k,d

∣

∣

∣

2

is the total inter-tier interfer-

ence suffered by CUE c with the subchannel d, Kc is the set of

RRHs that associate with CUE c, pd
n is the transmit power of

the D2D pair n on the subchannel d, h
(C)
n,k,d is the channel coef-

ficient between Tx(n) and the RRH k, θc is the interference

threshold, and pmax is the maximal transmit power of each

pair. In this paper, the mappings f1 and f2 actually represent

Algorithms 2 and 3 (described below), respectively, which

guarantee that the constraints (8), (9), (10), and (11) hold for

any mode selection and subchannel allocation of D2D pairs,

and the corresponding mathematical problems are a combina-

torial utility maximization problem and a mathematical pro-

gram with equilibrium constraints given by (15) and (18)-(20)

in Section IV, respectively. Although f1 and f2 are not optimal

mappings, they possess some advantages such as distributed
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implementation, and further details about their design are

discussed in Section IV.

At this point, the throughput can be expressed with a

function of mode selection and subchannel allocation of D2D

pairs, and the overall SE maximization for the uplink can be

formulated as

max�
x
(D)
n ,x

(C)
n

�
,Q

Usystem

({

x
(D)
n , x

(C)
n

}

,Q, f1, f2

)

|D|B

s.t. (a) x(D)
n , x(C)

n ∈ {0, 1} , ∀n ∈ N ,

(b) x(D)
n + x(C)

n = 1, ∀n ∈ N ,

(c)

|D|
∑

d=1

qd,n = 1, ∀n ∈ N , (12)

where x
(D)
n and x

(C)
n are the mode selection indicators

for the D2D pair n, Q is the matrix with elements

qd,n ∈ {0, 1} with d ∈ D, n ∈ N , which indicates whether

the subchannel d is allocated to D2D pair n or not, Usystem =

∑

n

[

x
(D)
n

∑

d,qd,n=1

BR
(D)
n,d + x

(C)
n

∑

d,qd,n=1

BR
(C)
n,d

]

+
∑

c

BRc

is the system throughput in the uplink, f1

({

x
(D)
n , x

(C)
n

}

,Q
)

represents the RRH association scheme, and

f2

({

x
(D)
n , x

(C)
n

}

,Q
)

represents the power control scheme.

The constraints (a) and (b) jointly require that each D2D pair

can select only one communication mode, while the constraint

(c) states that each pair can use only one subchannel. Note

that the same constraints as constraint (c) can be found

in [27] and [28].

B. Distributed Mode Selection and Resource Allocation

The problem (12) is hard to solve directly due to its

NP-hardness [21], and the corresponding centralized

approaches lead to high complexity and require global

CSI, putting heavy burdens on the BBU pool and fronthaul.

Fortunately, with the ever increasing computing capabilities of

UEs, it is possible to let them help alleviate the burden on the

C-RAN infrastructure. Hence, in this paper, UEs are endowed

with decision-making capabilities, and the problem (12) can

be handled in a way such that D2D pairs autonomously

optimize the mode selection and resource allocation.

To achieve this goal, inspired by the works [29] and

[30], distributed reinforcement learning with joint utility and

strategy estimation is adopted whose process is given as

follows:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

r̂n,an,i
(t) = r̂n,an,i

(t − 1)

+ θ (t)1{an(t)=an,i}

(

r̃n (t) − r̂n,an,i
(t − 1)

)

,

πn,an,i
(t) = πn,an,i

(t − 1)

+ γ (t)
(

β̃
(ζ)
n,an,i (r̂n (t)) − πn,an,i

(t − 1)
)

,

(13)

(i) lim
T→∞

T
∑

t=1

θ (t) = +∞, lim
T→∞

T
∑

t=1

θ(t)2 < +∞,

(ii) lim
T→∞

T
∑

t=1

γ (t) = +∞, lim
T→∞

T
∑

t=1

γ(t)2 < +∞,

(iii) lim
t→∞

γ (t)

θ (t)
= 0, (14)

where an,i is the i-th available action of decision-

maker n, r̂n,an,i
is the utility estimation of action an,i,

r̂n (t) =
(

r̂n,an,1 (t), . . . , r̂n,an,A
(t)
)

where A is the number

of all possible actions, r̃n (t) = rn (t) + ξn is the feedback

value of decision-maker n’s utility at iteration t with ξn being

the feedback noise, πn,an,i
is the probability that decision-

maker n selects action an,i, the strategy of decision-maker

n is a vector of πn,an,i
denoted by πn, β̃

(ζ)
n,an,i (r̂n (t)) =

exp(ζr̂n,an,i
(t))

A�
j=1

exp(ζr̂n,an,j
(t))

, ζ is a parameter to balance exploita-

tion and exploration [29], and θ (t) and γ (t) are learning

rates.

The first equation in (13) for utility estimation originates

from the standard reinforcement learning process to learn the

expected utility [31], while the second equation in (13) is a

revised version of the strategy update in [32]. Meanwhile,

conditions (i) and (ii) in (14) are essential to guarantee

the convergence of the learning procedure, whose roles are

explained in Section V. The reinforcement learning process is

totally distributed and composed of two coupled phases. First,

using the feedback value of the utility, each decision-maker

estimates the utility of each action. Second, decision-makers

update their strategies based on the estimated values. The

benefits of the process lie in the low computational burdens

and low information requirements for the decision-makers,

because only simple mathematical operations are executed,

and each decision-maker needs only to acquire its own utility

value.

To apply the learning process, an action of the D2D pair

n is taken as a combination of a communication mode

and a subchannel, and the utility of the D2D pair n is

given by rn =
Usystem

|D|B . It has been shown that better

system performance can be achieved by taking the utility of

each decision-maker as the system objective, and meanwhile

this setting can guarantee the convergence of the learning

process [30]. The following algorithm is proposed to solve

problem (12):

The iterative approach proposed in Algorithm 1 contains

three stages. At each iteration, each D2D pair first selects

one action randomly according to its current strategy, then

utility value determination is performed, including distributed

RRH association and distributed power control. Based on

the noisy utility feedback, each pair updates its strategy

individually. Note that pairs can acquire the feedback values

from the HPN. Specifically, after RRH association and power

control are performed, potential D2D transmitters and CUEs

transmit. Then the BBU pool measures the total data rate

of all the UEs accessing RRHs whose values are delivered

to the HPN via backhaul, while each receiver of D2D pairs

in the D2D mode measures its data rate whose value is

delivered to the HPN via the control channel. Once the HPN

receives all the necessary data rate information, it calculates
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Algorithm 1 Distributed Mode Selection and Resource

Allocation
1: Stage 1: Initialization

∀n ∈ N , r̂n (t = 0) = (0, . . . , 0),
πn (t = 0) = 1

2|D| (1, . . . , 1).
2: Stage 2: Action Selection

∀n ∈ N , the D2D pair n randomly selects an action

according to πn (t).
3: Stage 3: Utility Value Determination

The transmitters of D2D pairs selecting C-RAN mode

compete for RRH association by the many-to-many match-

ing based process shown in Algorithm 2.

Next, D2D pairs selecting D2D mode participate in the

Stackelberg game based power control process shown in

Algorithm 3.

4: Stage 4: Strategy Update

Each D2D pair updates its strategy using formulas in (13).

5: Stage 5: Convergence Check

If the strategy of each player converges, the algorithm

terminates. Otherwise, go back to Stage 2 with the updated

strategies.

the system SE and broadcasts the result to the UEs. Since

the utility of each pair resulting from selecting each action is

determined by the RRH association process and power control

process where constraints (8), (9), and (10) are considered,

the nature of Algorithm 1 is that D2D pairs self-optimize

the communication mode selection and subchannel alloca-

tion under fronthaul capacity constraints, centralized signal

processing capability constraints, and inter-tier interference

constraints.

Actually, the reinforcement learning can handle the com-

munication mode selection, subchannel allocation, transmis-

sion power optimization, and RRH association directly by

modifying the action of each pair as the combination of a

communication mode, a subchannel, a discrete power level,

and a set of RRHs it will associate with, and meanwhile

setting the utility of each pair to 0 if any of the constraints

in our model like the fronthaul capacity constraint is violated.

However, involving the selection of power levels and the set of

RRHs will cause considerable growth of the number of actions

for each pair, and hence the convergence time of reinforcement

learning can be unacceptable due to the long time needed for

estimating the utilities of actions.

IV. UTILITY VALUE DETERMINATION

After each pair selects its action, RRH association is

determined for D2D transmitters in C-RAN mode based on

a matching process, while the pairs selecting D2D mode

participate in a Stackelberg game based power control process,

where the inter-tier interference constraint (10) would be

satisfied when the process terminates.

A. Many-to-Many Matching Based RRH Association

Matching theory can provide a distributed solution for RRH

association that is easy for fast implementation [33]. In the

matching theory based RRH association process, the RRH set

K and the set of D2D transmitters in C-RAN mode NC,Tx

are two teams of players. To characterize the constraints

(8) and (9), the quota of each transmitter is set to V , and

the quota of RRH k is set to Fk. In addition, each transmitter

would like to access RRHs with better CSI, and each RRH

would like to be associated with transmitters with better

communication environments. The matching is defined as an

assignment of the players in NC,Tx to the players in K. If

player n ∈ NC,Tx is assigned to player k ∈ K, it means

that Tx(n) would be associated with RRH k. Note that

the BBU pool acts on behalf of RRHs, and the considered

matching is a many-to-many matching since each transmitter

can be associated with multiple RRHs and each RRH can

accommodate multiple transmitters. Formally, a many-to-many

matching is defined as follows:

Definition 1: A many-to-many matching η is a mapping

from the set NC,Tx ∪ K into the set of all the subsets of

NC,Tx ∪ K such that for every n ∈ NC,Tx and k ∈ K:

1) η (n) is contained in K and η (k) is contained in NC,Tx;

2) |η (n)| ≤ V for all n in NC,Tx;

3) |η (k)| ≤ Fk for all k in K;

4) k is in η (n) if and only if n is in η (k),
where η (n) is the set of RRHs that Tx(n) is associated

with, and η (k) is the set of transmitters communicating with

RRH k. The definition states that a matching is a many-to-

many relation in the sense that each RRH is matched to a set

of transmitters, and vice-versa.

Before designing the matching algorithm, the preference

list for each player should be defined. For Tx(n) selecting

subchannel d, it holds a preference list where the indices of

RRHs are ordered according to ln,k,d =
∣

∣

∣h
(C)
n,k,d

∣

∣

∣

2

, and the

index of the RRH related to the largest ln,k,d is at the top

of the preference list. For RRH k, it holds a preference list

containing the indices of all the transmitters which are ordered

according to l′n,k,d =
ln,k,d�

j∈Md,j �=|C|+n

lj,k,d
with Md denoting the

set of transmitting UEs operating on subchannel d, and the

transmitter related to the largest l′n,k,d is most preferred. Note

that l′n,k,d can coarsely characterize the communication envi-

ronment experienced by Tx(n) from RRH k’s point of view.

The many-to-many matching process with transmitters

proposing is designed for RRH association as summarized in

Algorithm 2, which involves three stages. In the first stage,

the transmitters and the BBU pool collect necessary CSI.

In the second stage, each transmitter makes its own preference

list, while the preference list for each RRH is made by the

BBU pool. The third stage contains two steps. In the first step,

each transmitter proposes to the V RRHs at the top of the

preference list, and then RRH k accepts the best Fk proposals

among the received proposals and rejects the rest. In the sec-

ond step, Tx(n) deletes the indices of RRHs who have rejected

its proposal from the preference list and proposes to the V
RRHs at the top of the new preference list. Afterwards, RRH

k accepts the best Fk proposals among the received proposals

and rejects the rest. The second step is executed repeatedly

until no rejection occurs. The corresponding mathematical

problem that Algorithm 2 solves is a combinatorial utility

maximization problem with fronthaul capacity constraints and
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computing capability constraints as follows [34]:

max
fk,n

∑

k

∑

n

fk,nl′n,k,dn
+
∑

k

∑

n

fk,nln,k,dn

(1)
∑

n∈N

fk,n ≤ Fk, ∀k ∈ K,

(2)
∑

k∈K

fk,n ≤ V, ∀n ∈ N ,

(3) fk,n ∈ {0, 1}, (15)

where dn represents the subchannel allocated to pair n.

Algorithm 2 CSI Based Many-to-Many Matching Algorithm

for RRH Association
1: Stage 1:

The transmitters of pairs in C-RAN mode and the BBU

pool gather necessary CSI.

2: Stage 2:

Each pair and each RRH holds a preference list based on

the collected information.

3: Stage 3:

Each transmitter proposes to the V RRHs at the top of

its preference list.

Each RRH accepts the proposals from the best transmitters

with regard to its quota and preference list, and rejects the

remaining proposals.

4: Stage 4:

Repeat:

Each transmitter deletes the indices of RRHs rejecting its

proposal, and proposes to the V RRHs at the top of the

new preference list.

Each RRH accepts the proposals from the best transmitters

regarding its quota and preference list, and rejects the

remaining proposals.

Until: No rejection occurs.

B. Stackelberg Game Based D2D Power Control

To suppress the inter-tier interference to CUEs, the transmit

power of the D2D pairs in D2D mode should be properly

configured. To this end, the BBU pool can set a price for the

inter-tier interference generated by D2D pairs based on which

D2D pairs adjust their transmit powers. Since the policy is

hierarchical, a Stackelberg game is naturally suited to help

develop a distributed power control scheme, where the BBU

pool is taken as the leader and D2D pairs act as followers [35].

Focusing on an arbitrary subchannel d, the price of unit

interference is denoted by µd. Then for the D2D pair n
operating on subchannel d, it aims to maximize its utility

function through solving the following optimization problem:

max
pd

n

Ud
n

(

µd, p
d
n, pd

−n

)

= R
(D)
n,d − µd

∑

k∈Kc

pd
nln,k,d,

s.t. : 0 ≤ pd
n ≤ pmax, (16)

where p
d
−n denotes the transmit power profile of all the

other pairs in D2D mode using subchannel d, Kc denotes

the set of associated RRHs of CUE c allocated with sub-

channel d, and the optimization objective of the pair n
contains the data rate and the cost of causing inter-tier

interference. It should be mentioned that an additional price

term −ηd

∑

m∈N ′,m �=n

pd
n

∣

∣

∣
h

(D)
n,m,d

∣

∣

∣

2

can be added to the utility

function to account for the impact of interference generated by

the D2D pair n on other D2D pairs with ηd the price per unit

of co-tier interference on subchannel d and N ′ the set of pairs

in D2D mode using subchannel d, which can help to achieve

a better convergence point at the cost of more overhead to

estimate the CSI between the transmitter of the pair n and

the receivers of other pairs. Note that this change would not

affect the analysis and conclusions below. In the following,

the subchannel index d is dropped for simplicity of notation.

By solving (16), the optimal value of pn under fixed µ and

p−n is given by

p∗n (µ, p−n) =

⎡

⎢

⎣

1

µln ln 2
− ID

n + IC
n + σ2

∣

∣

∣h
(D)
n

∣

∣

∣

2

⎤

⎥

⎦

pmax

0

, (17)

where ln =
∑

k∈Kc

ln,k, ID
n =

∑

m∈N ′,m �=n

pm

∣

∣

∣h
(D)
m,n

∣

∣

∣

2

, IC
n

denotes the total interference from CUE c and D2D transmit-

ters in C-RAN mode, and [x]
xmax

0 = min {xmax, max {x, 0}}.

For the BBU pool, its objective is assumed to make |Ic − θc|
less than a very small value, which is enough to make

constraint (10) approximately satisfied. Based on the above

derivation, a Stackelberg game based D2D power control

process is developed which is shown in Algorithm 3. In the

proposed process, all the pairs using subchannel d first transmit

at maximal powers, and the BBU pool measures Ic for CUE

c. If Ic > θc, the power control process is triggered, and then

the BBU pool initializes a price µ =
µupper+µlower

2 , where

µupper and µlower are the maximal value and the minimal

value of the price, respectively. Given µ, pairs in D2D mode

update their transmit power to maximize utilities. After the

update process converges, the BBU pool again measures Ic.

If Ic > θc, the BBU pool would set µlower = µd and then

set µd =
µupper+µlower

2 . If Ic < θc, the BBU pool would set

µupper = µd and then set µd =
µupper+µlower

2 . The process

repeats until |Ic − θc| is less than a very small value.

Actually, Algorithm 3 solves the following optimization

problem, which is known as a mathematical program with

equilibrium constraints:

min
µ

|Ic − θc| , (18)

s.t. µ ≥ 0, (19)

pn∈arg max
pn

{Un : 0≤pn ≤ pmax} , ∀n ∈ N ′, (20)

where the subproblem composed of (18) and (19) is the

upper level problem related to the BBU pool which sets the

interference price, while the subproblem (20) is the lower

level problem related to each D2D pair, which represents the

equilibrium constraints.
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Algorithm 3 Stackelberg Game Based D2D Power Control

1: Stage 1:

For subchannel d allocated to CUE c, all the pairs

using this subchannel transmit at maximal powers, and

the BBU pool measures Ic. If Ic > θc, the BBU pool sets

µd =
µupper+µlower

2 , and the process goes to Stage 2.

2: Stage 2:

Pairs in D2D mode update the transmit power by

using (17) iteratively:

pn (t) = p∗n (p−n (t − 1)),

until the transmit powers of all the pairs converge.

3: Stage 3:

The BBU pool measures Ic. Then set µlower = µd if

Ic > θc, and set µupper = µd if Ic < θc.

Set µd =
µupper+µlower

2 .

4: Stage 4:

Repeat stage 2 and 3 until |Ic − θc| is less than a very

small value.

V. PROPERTIES OF THE PROPOSED APPROACH

In this section, the properties of the proposed approach in

Algorithm 1 are discussed to make the proposal clear.

A. CSI Requirement

For the D2D pairs, first, the CSI is not needed in the

reinforcement learning process. Second, in the RRH associ-

ation process, each pair only needs to know the CSI between

itself and RRHs. Third, in the power control process, each

pair only needs to know the CSI between its transmitter and

receiver, and the CSI between its transmitter and RRHs, since

the interference from other pairs and CUEs plus noise can be

directly measured at the receiver. For the BBU pool, the CSI

between transmitting UEs and RRHs is needed to make

preference lists for RRHs in the RRH association process and

calculate the MMSE receivers. Compared to the centralized

approaches where global CSI is needed in a central node, D2D

pairs and the BBU pool need only partial CSI in the proposed

distributed approach.

B. The Convergence of Reinforcement Learning

The convergence proof relies on two-time-scale stochastic

approximation. Specifically, (13) can be analyzed by studying

the following ordinary differential equations (ODEs) owing to

conditions (i) and (ii) in (14) [36]:

˙̂rn,an,i
= πn,an,i

(

r̄ (an,i, π−n) − r̂n,an,i

)

,

˙̂πn,an,i
= βn,an,i

(r̂n) − πn,an,i
, (21)

where βn,an,i
(r̂n) =

exp(ζr̂n,an,i)�
an,j∈An

exp(ζr̂n,an,j )
and r̄ (an,i, π−n) is

the expected utility of potential D2D pair n that results from

taking the i-th action when the strategies of other pairs are

π−n. Then, under condition (iii) in (14), the first ODE, which

corresponds to the fast process r̂n,an,i
, can be analyzed by fix-

ing strategy πn,an,i
, and the second ODE, which corresponds

to the slow process πn,an,i
, can be analyzed as if the utility

estimation is accurate, i.e., r̂n,an,i
= r̄ (an,i, π−n) [37]. From

the first ODE, it can be derived that r̂n,an,i
= r̄ (an,i, π−n)

when πn,an,i

= 0, ∀an,i. While for the second ODE, the global

convergence of its trajectory is guaranteed when the utility of

D2D pairs satisfies

rn (an,i, a−n) − rn (a′
n,i, a−n)

= φ (an,i, a−n) − φ (a′
n,i, a−n), (22)

which indicates that the interaction between D2D pairs is an

exact potential game for which a Lyapunov function must

exist [38] and obviously holds for our utility function setting.

Since the convergence point must be a zero point of the

associated ODE, we have πn,an,i
= βn,an,i

(π−n), and this

stable state is called logit equilibrium.

Note that for practical scenarios with time-varying CSI,

r̂n,an,i
will converge to Eh [r̄ (an,i, π−n)] [36], while πn,an,i

will be equal to
exp(ζEh[r̄(an,i,π−n)])�

an,j∈An

exp(ζEh[r̄(an,j ,π−n)]) [36]. Then, in the

following, each device needs only to select actions based on

the learned and fixed strategy, and hence can make a real-time

decision on the selected channel and communication mode,

implicitly taking into account the dynamics of CSI.

C. The Convergence of the RRH Association Process

The convergence of the matching algorithm is guaranteed

by the following theorem.

Theorem 1: The convergence of Algorithm 2 is ensured.

Proof: For each transmitter, the number of RRH indices

on its preference list is limited, and meanwhile the indices

of RRHs rejecting its proposal would be deleted. Hence,

after Stage 4 of Algorithm 2 repeats finitely many times,

no rejections would occur, which means the Algorithm 2 must

converge to a final matching.

The concept of pair-wise stable matching is given below to

make preparations for the proof of stability.

Definition 2 (Pairwise-Stable [39]): The matching η is

pairwise-stable if there are no transmitter n and RRH

k that are not paired with each other under η such that

Chn (η (n) ∪ {k})≻
n

η (n) and Chk (η (k) ∪ {n})≻
k

η (k),

where ∀j ∈ K∪NC,Tx, Chj (W) represents the subset of W
that player j likes best with W denoting the set of possible

partners, and W≻
j
B means j prefers W to B with ≻ being

irreflexive.

Based on the above definition, the stability of the final

matching is ensured by the following theorem.

Theorem 2: The final matching reached by Algorithm 2 is

pairwise-stable.

Proof: The proof follows by contradiction. Assume that

the final matching η is unstable. Then, there must exist

a transmitter-RRH pair (n, k) satisfying n /∈ η (k) and

k /∈ η (n) and meanwhile Chk (η (k) ∪ {n})≻
k

η (k) and

Chn (η (n) ∪ {k})≻
n

η (n). Overall, there are two possible

cases under the instability assumption. One case is that

transmitter n has never proposed to RRH k. In this case,

Chn (η (n) ∪ {k}) = η (n), and Chn (η (n) ∪ {k})≻
n

η (n)

does not hold. The other case is that transmitter n has proposed
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to RRH k. Nevertheless, n /∈ η (k) means the proposal

was rejected. Hence, Chk (η (k) ∪ {n}) = η (k), and then

Chk (η (k) ∪ {n})≻
k

η (k) does not hold. Since contradictions

are found under both cases, the final matching η must be

pairwise-stable.

Next, the optimality of the proposal is given by the follow-

ing theorem.

Theorem 3: The stable matching reached by Algorithm 2 is

Pareto-optimal for D2D transmitters.

Proof: Assume that the stable matching η is not Pareto-

optimal, and then there must exist an RRH and D2D trans-

mitter pair (k, n) satisfying n /∈ η (k) and k /∈ η (n)
such that Chn (η (n) ∪ {k})≻

n
η (n). Nevertheless, since the

matching η is stable, Chk (η (k) ∪ {n})≻
k

η (k) does not hold,

as otherwise the stability of the matching η would be violated.

Actually, since the preference of RRHs over D2D transmitters

is strict, pairing with D2D transmitter n would hurt RRH

k because RRH k must reject a D2D transmitter that is

preferred by it to accommodate D2D transmitter n. Hence,

even though pairing with RRH k helps the improvement of

D2D transmitter n, RRH k would not allow this pairing.

Therefore, under stable matching η, the RRH association

of each D2D transmitter cannot be improved, and thus the

matching η must be Pareto-optimal for D2D transmitters.

Finally, we discuss the signaling overhead to show the

implementation feasibility. In each round of Algorithm 2,

the total number of association requests from D2D transmitters

is at most |NC |V , where NC is the set of D2D transmitters in

C-RAN mode. Meanwhile, each D2D transmitter needs one bit

to send a request to the desired RRH, and each RRH needs one

bit to inform the corresponding D2D transmitter of the deci-

sion on its association. Therefore, the total signalling overhead

in each round requires at most 2|NC |V bits. Nevertheless,

once the request from a D2D transmitter is rejected by the

desired RRH, the D2D transmitter would not send the request

information to the RRH for the second time. Hence, with the

execution of Algorithm 2, the number of available RRHs on

the preference list of each D2D transmitter can be reduced, and

partial transmitters can send request information to fewer than

V RRHs. Thus, the total signalling overhead in each round is

less than 2|NC |V bits with Algorithm 2 running. Moreover,

considering that each D2D transmitter can only possibly

associate with RRHs within a certain distance, the number of

RRHs on the preference list of each D2D transmitter is much

less than the total number of RRHs. Thus, Algorithm 2 can

reach a stable matching after a small number of rounds, and

it can be concluded that the amount of information exchange

required by Algorithm 2 is tolerable.

D. The Convergence of the Power Control Process

We first consider the convergence and stability of the power

update procedure under a given price. For subchannel d,

the power update procedure of the corresponding pairs in

Algorithm 3 can be seen as a non-cooperative game. In each

update, each pair reacts to the power profiles of other pairs

by playing the best response defined in (17). Denote the

set of pairs in D2D mode using subchannel d by N ′
D ⊆

N , and re-label these pairs with i = 1, 2, . . . , |N ′
D|. Fol-

lowing the proof in [40], the following proposition can be

derived.

Theorem 4: Under a given price, the power update pro-

cedure in Algorithm 3 is guaranteed to converge to a pure-

strategy Nash equilibrium (NE) if

∥

∥H̄
∥

∥

1
<

1

max
n∈N

1���h(D)
n

���2
, (23)

where H̄ is a |N ′
D| × |N ′

D| matrix, and

H̄ij =

⎧

⎨

⎩

∣

∣

∣h
(D)
j,i

∣

∣

∣

2

, if i 
= j,

0, otherwise.
(24)

The proof follows by writing the best responses of all the pairs

into a vector form and then applying the Banach contraction

theorem. The physical interpretation for this convergence

result is that the power update process converges if no pair

generates excessive interference to others. The specific defin-

ition of NE is given as follows.

Definition 3: A transmit power profile
[

p∗1, . . . , p
∗
|N ′

D |

]

is

a pure-strategy NE under a given price µ if, for each pair i,
the following holds:

Ui

(

µ, p∗i , p
∗
−i

)

≥ Ui

(

µ, pi, p
∗
−i

)

, ∀pi ∈ Pi, (25)

where p
∗
−i is the transmit power profile of all the pairs except

pair i, and Pi = {pi : 0 ≤ pi ≤ pmax}.

Now we discuss the convergence and stability of the overall

power control process. First, it is intuitive that Ic is a contin-

uous function of µ. Second, Ic can achieve its minimal value

when µ is sufficiently large, while Ic can achieve its maximal

value when µ takes a sufficient small value. Hence, a µ making

|Ic − θc| less than a given small value can always be found by

the process in Algorithm 2 if µlower is sufficiently small and

µupper is sufficiently large. Once such a µ is found, the BBU

pool would not change the price according to the assumption

about its objective. Under this converged price, the result of

the power update procedure would not change. Therefore,

the convergence of Algorithm 2 is ensured. Meanwhile, under

the converged outcome (µ∗, {p∗n}), the BBU pool has no

incentive to change the price under {p∗n}, and each pair has

no incentive to change its transmit power unilaterally under

µ∗. Hence, (µ∗, {p∗n}) is a Stackelberg equilibrium.

E. Overall Convergence

Once the distributed reinforcement learning converges to

the logit equilibrium, each pair can reach its pure strategy by

letting the parameter ζ become sufficiently large as discussed

in subsection G, and then the mode selection and subchannel

allocation of each pair will not change. Therefore, the RRH

association and power control results will not change either,

and the mode selection, subchannel allocation, RRH associ-

ation, and transmit power output determined by Algorithm 1

will be invariant over iterations, which implies the convergence

of Algorithm 1.
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F. Convergence Time

The previous proof has shown that distributed reinforce-

ment learning converges to a logit equilibrium π
∗ =

(

π
∗
1 , . . . ,π

∗
|N|

)

. Following that, we have the inequality for

D2D pair n ∈ N given by
∑

a∈A

rn (a)Πa −
∑

a∈A

rn (a)Π∗
a
≤ ε, ∀πn 
= π

∗
n, (26)

where a is the action profile of all pairs whose set is

denoted by A, Πa = πn,an

∏

m∈N ,m �=n

π∗
m,am

, Π∗
a

=

π∗
n,an

∏

m∈N ,m �=n

π∗
m,am

, and πn,an
is the probability that the

pair n plays action an. This inequality suggests that if one

D2D pair changes its strategy, it cannot achieve an average

utility improvement larger than ε. According to Proposi-

tion 5 in [36], the convergence time for the adopted rein-

forcement learning to reach equilibrium is O
(

log
(

1
ε

))

. This

measure means it will cost more time to achieve a more exact

version of Nash equilibrium. Hence, in reality, if a network

designer wants to build a more stable network, the learning

algorithm should be executed for a longer time. Meanwhile,

it should be noted that this measure is for a fixed network

size. Concerning the impact of network size on convergence

time, when the number of D2D pairs and the number of sub-

channels increase, the convergence time will be longer, since

the interactions between D2D pairs will be more complex and

each pair needs to estimate utilities for more actions.

G. Optimality

Note that when all pairs share an identical utility taken

as the system performance Usystem, the interactions among

pairs to select communication mode and subchannel can

be seen as an exact potential game with potential function

Φ = Usystem [35]. Since all Nash equilibria of this game

maximize Φ either locally or globally, all Nash equilibria

of this game maximize Usystem either locally or globally.

Further, by Proposition 1 in [30], once Algorithm 1 reaches the

equilibrium, ε can approach 0 by increasing ζ. Meanwhile,

when Algorithm 1 converges to the equilibrium, the probability

of each D2D pair playing the i-th action is given by

πn,an,i
=

exp
(

ζr̂n,an,i
(t)
)

A
∑

j=1

exp
(

ζr̂n,an,j
(t)
)

. (27)

Hence, when ζ increases, each pair intends to play the action

with maximal estimated utility, and thus as ζ goes to infinity,

the following result can be derived from (26):

rn

(

an, a∗
−n

)

− rn

(

a∗
n, a∗

−n

)

≤ 0, ∀an 
= a∗
n, (28)

where a∗
n is the action of the pair n with the highest estimated

utility when Algorithm 1 converges, and a
∗
−n is the action

profile of all the other pairs. Note that this inequality is

the standard definition of Nash equilibrium, and it can be

concluded that Algorithm 1 will converge to a global or local

optimal solution to problem (12) as ζ goes to infinity. For the

practical implementation, ζ should be taken at first as a small

value to allow pairs to estimate the utility sufficiently and then

taken as a large value to improve the system performance once

the algorithm converges [29].

H. Overall Complexity

In the action selection stage, a pair needs to generate a

random number to select an action, whose complexity is O (1).
Then for the utility determination stage, the complexity of the

distributed matching based RRH-D2D association for each

D2D pair mainly lies in the sorting algorithm to make a

preference list about RRHs. The sorting complexity for each

pair is O (K log K) with K the number of RRHs in the

network. In addition, the power update formula of each pair

contains only multiplications and additions, and hence the

complexity is O (1). Therefore, the power control complexity

for each pair is O (I) with I the number of power updates until

the power control algorithm converges. As for the strategy

update stage based on reinforcement learning, since each pair

updates the utility estimation of only one action each time,

this update complexity is O (1). For the second equation of

reinforcement learning for the strategy update, the complexity

is O (|D|) because each pair needs to update strategies for

2 |D| actions. Hence, the complexity of all three stages of

Algorithm 1 for each pair is O ((K log K) + I + |D|).

I. The Setting of ζ and Learning Rates

The network configuration has significant impact on the

setting of ζ and learning rates. First, for the parameter ζ, when

the number of D2D pairs increases, the interactions between

D2D pairs will become more complex. Hence, to estimate the

utility of each action accurately, each pair should keep a small

value of ζ for a longer time to extend the duration of action

exploration. In addition, when the number of subchannels

increases, the number of actions for each D2D pair will

increase. In this case, each pair should keep a small value of

ζ for a longer time as well, since the utilities of more actions

need to be estimated. Second, for the learning rate, it affects

the size of the step for updates in reinforcement learning.

When the number of pairs or subchannels increases, each pair

should select learning rates that diminish more slowly with

time. This is because the exploration time should be extended

in both situations as discussed, and hence longer learning time

is needed.

VI. SIMULATION RESULTS AND ANALYSIS

In this section, simulation and numerical results are shown

to evaluate the effectiveness of the proposed appoach, and

demonstrate the benefits of D2D enabled C-RANs.

A. Scenarios and Parameters

The simulation scenario is shown in Fig. 2, where the axes

are in units of meters, and each arrow starts from a D2D

transmitter and points to the paired D2D receiver. We assume

that two subchannels are available, and CUEs 1 and 2 transmit

over subchannels 1 and 2, respectively. The channel coefficient

of each link is composed of path loss and fast fading. The
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Fig. 2. The simulation scenario.

pathloss model is d−2 with d being the distance between two

nodes in the same link, and the fast fading is modeled as

an independent complex Gaussian random variable distributed

as CN (0, 1). Moreover, each UE can associate with at most

four RRHs, and the maximal UE transmit power is 20 dBm.

The number of UEs that each fronthaul link can serve is fixed

as two, and the noise power is set to −104 dBm. The learning

parameter is taken as ζ = t/1000, and the learning rates θ (t)
and γ (t) are set to 1

(t+1)0.6 and 1
(t+1)0.7 , respectively. Note that

the reason for adopting the topology in Fig. 2 is to facilitate the

analysis in Subsection B and the performance comparison with

the optimal solution obtained by exhaustive search. When the

number of subchannels is quite large, the number of actions

of each D2D pair will be large, and hence it can take a

long time for our proposed algorithm to converge to the logit

equilibrium since each D2D pair has more actions to try. Faced

with this problem, we can divide the whole area into multiple

districts, and allocate these districts with orthogonal subsets

of subchannels. In this way, the number of each pair’s actions

can be reduced significantly, and the interactions between D2D

pairs in different districts are independent. Then, the proposed

approach can be applied in each district.

For each pair, four different actions are available:
• Action 1: Operating in D2D mode over subchannel 1.

• Action 2: Operating in D2D mode over subchannel 2.

• Action 3: Operating in C-RAN mode over subchannel 1.

• Action 4: Operating in C-RAN mode over subchannel 2.

To show the advantages of enabling D2D in C-RANs, two

schemes are considered:
• Scheme 1: D2D pairs can choose all the actions listed

above.

• Scheme 2: D2D pairs can only choose Actions 3 and 4,

which suggests the D2D communication is not allowed.

B. Convergence

Figs. 3 and 4 depict the convergence behavior of the

proposed approach, which are obtained by a single simulation

trial. Specifically, the evolution of the strategy of each pair

is presented in Fig. 3. Initially, pairs play actions with equal

probability, but however, after exploring the action spaces for

a period of time, each pair takes the action with the highest

estimated utility.

Fig. 4 shows the evolution of the system SE, where the opti-

mal system performances under Schemes 1 and 2 are obtained

by exhaustive search. In the conducted trial, the SE achieved

TABLE II

RESULTS UNDER Scheme 1

TABLE III

RESULTS UNDER Scheme 2

by the reinforcement learning process first increases with the

number of iterations, and then a near-optimal performance is

achieved, which demonstrates the effectiveness of the proposed

approach. Moreover, it can be seen that the performance of the

C-RAN is greatly improved by allowing direct communication

between UEs. Note that it is common for the reinforcement

learning process to take many iterations to converge, e.g.

2000 iterations, even for a small-scale network as shown in

[30, Fig. 2].

To give greater insight into the poor performance of

Scheme 2, we list the mode selection, subchannel allocation,

RRH association, and power control results when the rein-

forcement learning process converges under Scheme 1 and the

optimal performance is achieved under Scheme 2 in Table II

and III, respectively. Note that the transmit power of UEs

in C-RAN mode that are not associated with any RRH are

set to 0. Then, with the help of the two tables and Fig. 2,

the following conclusions can be drawn. First, due to the

fronthaul capacity constraints, not all the UEs can fully

benefit from the centralized signal processing capability of the

C-RAN. For example, in Table III, pairs 2 and 6 are only

associated with two RRHs, and pairs 3, 4 and 5 are not even

served by any RRH. Second, for the UEs that are not near

enough to RRHs, D2D mode is more attractive because of the

proximity of D2D receivers. For example, in Table II, D2D

pair 6 operates in D2D mode instead of C-RAN mode.

C. The Effects of RRH Association and Power Control

Fig. 5 shows the RRH association evolution when all the

pairs operate in C-RAN mode, where the RRH index 0 means

all the pairs have no RRHs to associate with at the beginning.

It can be seen that each RRH can only accommodate one UE,

and each UE can access four RRHs at most, which shows that

the fronthaul capacity and computing capability constraints

strictly hold by our matching based RRH association process.

Note that each RRH can serve only one UE because it has

accommodated one traditional C-RAN UE, and meanwhile the

RRH association of only three pairs are demonstrated because

the association requests of the other three pairs during the

entire matching process are all rejected. As for the power
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Fig. 3. The evolution of the D2D pairs’ strategies with Figs. (a)-(f) corresponding to the D2D pairs 1-6, respectively.

Fig. 4. The evolution of the overall SE.

Fig. 5. The evolution of RRH association.

control algorithm, we consider the case in which all the

D2D pairs select subchannel 2 and operate in D2D mode.

Fig. 6 shows the evolution of the transmission power of D2D

pairs. It can be seen that the transmission power of pair 2 is

greatly suppressed because it causes most of the interference

to CUE 2 occupying subchannel 2.

D. Enabling D2D Benefit

Fig. 7 highlights the benefit of enabling D2D in C-RANs

by comparing the SE achieved under Schemes 1 and 2, and

Fig. 6. The evolution of the transmission power.

Fig. 7. The benefits of enabling D2D in C-RANs with constrained fronthaul
capacity.

the results are obtained by conducting 500 independent trials

and then taking the average value. It is reasonable to find that

the SE achieved under Scheme 1 is significantly higher than

the optimal performance under Scheme 2, since D2D mode is

enabled in Scheme 1 and hence UEs can communicate with

the paired receivers directly, which is preferable when the

UEs are far from RRHs or RRHs in the neighborhood are

not available due to the fronthaul capacity constraints. While

in Fig. 8, the benefit of enabling D2D is shown when the
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Fig. 8. The benefits of enabling D2D in C-RANs with constrained centralized
signal processing capability.

Fig. 9. The impacts of different learning parameters.

centralized signal processing capability of the BBU pool is

not powerful, where the fronthaul capacity is set to 7 and each

D2D transmitter is only allowed to associate with one RRH.

Not surprisingly, it can be seen that the optimal performance

under Scheme 2 is much worse than the performance achieved

under Scheme 1. This is because the advantage of C-RAN

mode over D2D mode mainly comes from the centralized

signal processing capability of the BBU pool.

E. The Impact of ζ

The impact of the learning parameter ζ on SE is evaluated

in Fig. 9. Similar to Figs. 7 and 8, the results are obtained

by conducting multiple independent trials and then taking the

average value. In particular, it can be seen that either a large

learning parameter or a small learning parameter leads to poor

performance, while the parameter setting ζ = t/1000 achieves

a near-optimal performance. This verifies the discussion about

learning parameter selection in Section V.

F. Performance in Large-Scale Networks

To show the performance of our algorithm in large scale

networks, the network scenario in Fig. 10 is considered,

which contains 14 D2D pairs. Since the computation time

of exhaustive search for the optimal solution in this setting

Fig. 10. The simulation scenario with 14 D2D pairs.

Fig. 11. The performance of the proposed appoach compared to a state-of-
the-art approach.

becomes prohibitive, we compare our algorithm with a coali-

tion formation based mode selection and subchannel allocation

algorithm proposed in [41], and the same RRH association

and power control algorithms as in our proposed appoach are

adopted for this comparison scheme. In addition, to reduce

the number of iterations, early stopping is adopted [42], which

sets the selection probability of an action to 1 if the updated

probability is larger than 0.55. From Fig. 11, a performance

improvement of 8.2% is observed, which demonstrates the

effectiveness of our proposed appoach. Moreover, it can be

seen that early stopping can effectively reduce the number

of iterations for convergence, meanwhile achieving the same

performance as that of the case without early stopping.

G. Overall Benefits

In this subsection, the benefits of our proposed distrib-

uted algorithm over the centralized scheme adopted in our

simulation are discussed. The centralized case means the

mode selection, subchannel allocation, user-RRH associa-

tion, and power control are all optimized at the BBU pool.

Specifically, mode selection and subchannel allocation are

optimized based on exhaustive search, while user-RRH asso-

ciation and power control schemes are the same as those

in our proposed appoach. Denote the computing resource
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consumed by the centralized method by ∆. Since the com-

plexity of exhaustion is O
(

(2 |D|)|N |
)

, ∆ can be modeled

as λ(2 |D|)|N |
[26], where λ is a constant parameter. Denote

the number of iterations of Algorithm 1 by ̟, and then the

computing cost saved by the proposed distributed approach is

ρ1

(

1 − ̟

(2|D|)|N|

)

λ(2 |D|)|N |
= ρ1λ

(

(2 |D|)|N | − ̟
)

with

ρ1 the price per unit computing resource.

Next, we analyze the loss of the distributed scheme incurred

by information exchange in Algorithms 2 and 3. Based on

the analysis of Algorithm 2, the total number of informa-

tion exchanges in each round is at most 2|NC |V . How-

ever in Algorithm 3, the information exchange is caused

by broadcasting the interference prices corresponding to |D|
subchannels via the high power node. Therefore, an upper

bound on the information exchange cost can be calculated

as ρ2 (̟ ∗ Tmatching ∗ 2|NC |V + ̟ ∗ |D| ∗ Tstackelberg ∗ 1)
with ρ2 the price of a single information exchange, Tmatching

the number of rounds needed for Algorithm 2 to reach a stable

matching in the worst case, and Tstackelberg the number of

rounds needed for Algorithm 3 to reach Stackelberg equilib-

rium in the worst case. Thus, the net gain brought by the

proposed distributed approach can be calculated as

Γ = ρ1λ
(

(2 |D|)|N | − ̟
)

− ρ2 (̟ ∗ Tmatching ∗ 2|NC |V
+̟ ∗ |D| ∗ Tstackelberg ∗ 1) , (29)

and to achieve a positive Γ, ρ1 and ρ2 should satisfy the

following relationship:

ρ1 >
Tmatching ∗ 2|NC |V + |D| ∗ Tstackelberg

λ
(

(2|D|)|N|

̟
− 1

) ρ2. (30)

In our simulation setting, |D| = 2, |N | = 6, Tmatching = 3
as shown in Fig. 6, Tstackelberg = 10 as shown in Fig. 7,

|NC | = 6, λ = 10, and V = 4. Then, it can be seen that

only if the price per unit computing resource is about 5 times

larger than the price for single control information exchange,

can the proposed distributed approach bring positive gain for

the operator in our simulation scenario. Meanwhile, since

Algorithm 1 can be further speeded up by transfer learning and

early stopping, the condition (30) for a positive Γ will more

possibly hold owing to the reduction of ̟. In addition, with

the network scale becoming large, the first term in (29) will

increase exponentially, while the second term increases more

slowly. Hence, it is anticipated that the distributed approach

can achieve a more significant benefit in larger scale networks.

VII. FUTURE WORK

In this paper, considering that subchannel allocation and

beamforming design in the downlink time slot will incur

extra challenges, only the optimization for the uplink time

slot of the proposed TDD based D2D enabled C-RAN has

been considered, where D2D transmission and the uplink

transmission of D2D pairs in C-RAN mode coexist. In the

future, we plan to investigate joint uplink and downlink system

performance optimization. Meanwhile, since the convergence

of the distributed reinforcement learning does not rely on the

specific form of the utility function, it can be used to optimize

latency as well by replacing the current utilities of D2D pairs

with utilities related to latency.

In addition, another interesting topic is to accelerate the

convergence of distributed reinforcement learning to make it

feasible for D2D communications and tackle the dynamics

of the environment such as the dynamic change of C-RAN

UEs’ states. A potential solution is to involve transfer learning

in the reinforcement learning process. Specifically, the author

in [43] improves the actor-critic algorithm by transfer learning,

which shows faster convergence by avoiding the agent having

to learn from scratch. Inspired by [43], the utility estimates and

strategies learned under previous environments can be taken

as useful experience for the utility estimation and strategy

estimation of the distributed learning process, respectively,

considering that there will likely exist some similarity between

the states of environments like C-RAN UEs’ states in different

time periods. In this way, when the state of the environment

such as the C-RAN UEs’ states change, D2D pairs will not

learn from initial points and can achieve good performance

with decreased learning time. Meanwhile, early stopping can

be adopted as well to speed up the learning process.

VIII. CONCLUSION

A distributed approach to joint mode selection and resource

allocation has been developed for an uplink device-to-device

enabled cloud radio access network to optimize the overall

spectral efficiency under the fronthaul capacity, centralized

signal processing capability of the baseband unit pool, and

inter-tier interference constraints. The approach contains three

stages: communication mode and subchannel selection, utility

value determination, and strategy update. The second stage

includes a many-to-many matching based remote radio head

association process and a Stackelberg game based power

control process. Based on the feedback values of utilities,

D2D pairs update their strategies using a reinforcement learn-

ing process. The proposed approach imposed only a light

computing burden on each D2D pair, and meanwhile each

pair and the BBU pool need to acquire only partial channel

state information. The performance gain of enabling D2D in

C-RANs has been confirmed by numerical simulations, and

the gain depends on the distance between D2D transmitters

and RRHs, the fronthaul capacity, as well as the centralized

signal processing capability of the BBU pool.
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