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Delay Minimization for NOMA-MEC Offloading
Zhiguo Ding , Derrick Wing Kwan Ng , Robert Schober, and H. Vincent Poor

Abstract—This letter considers the minimization of the offload-
ing delay for nonorthogonal multiple access assisted mobile edge
computing (NOMA-MEC). By transforming the delay minimiza-
tion problem into a form of fractional programming, two itera-
tive algorithms based on, respectively, Dinkelbach’s method and
Newton’s method are proposed. The optimality of both methods
is proved and their convergence is compared. Furthermore, cri-
teria for choosing between three possible modes, namely orthog-
onal multiple access, pure NOMA, and hybrid NOMA, for MEC
offloading are established.

Index Terms—Non-orthogonal multiple access (NOMA) and mo-
bile edge computing (MEC) offloading.

I. INTRODUCTION

THE application of non-orthogonal multiple access
(NOMA) to mobile edge computing (MEC) has received

considerable attention recently [1]–[5]. In particular, the supe-
rior performance of NOMA-MEC with fixed resource allocation
was illustrated in [1]. In [2], a weighted sum-energy minimiza-
tion problem was investigated in a multi-user NOMA-MEC sys-
tem. In [3], the energy consumption of NOMA-MEC networks
was minimized assuming that each user has access to multiple
bandwidth resource blocks. In [4], joint power and time allo-
cation was designed for NOMA-MEC, again with the objective
of minimizing the offloading energy consumption. To the best
of the authors’ knowledge, the minimization of the offloading
delay for NOMA-MEC has not yet been studied.

The aim of this letter is to study delay minimization for
NOMA-MEC offloading. Compared to the energy minimization
problems studied in [2]–[5], minimizing the offloading delay is
more challenging, since the delay is the ratio of two rate-related
functions. We first transform the delay minimization problem
into a form of fractional programming. However, the trans-
formed problem is fundamentally different from the original
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fractional programming problem in [6]. To this end, two al-
gorithms based on respectively Dinkelbach’s method and New-
ton’s method are proposed, and their optimality is proved. While
the two methods are equivalent for conventional fractional pro-
gramming, Newton’s method is shown to converge faster than
Dinkelbach’s method for the problem considered here. In addi-
tion, criteria for choosing between three possible modes, namely
orthogonal multiple access (OMA), pure NOMA, and hybrid
NOMA (H-NOMA), for MEC offloading are established. Inter-
estingly, we find that pure NOMA can outperform H-NOMA
when there is sufficient energy for MEC offloading, whereas
H-NOMA always outperforms pure NOMA if the objective is
to reduce the energy consumption.

II. SYSTEM MODEL

Consider a MEC offloading scenario, in which two users,
denoted by user m and user n, offload their computation tasks
to a MEC server [7]. Without loss of generality, assume that
the two users’ tasks contain the same number of nats, denoted
by N , and user m’s computation deadline, denoted by Dm , is
shorter than user n’s, denoted by Dn , i.e., Dm ≤ Dn .

In this work, as user m has a more stringent delay requirement
than user n, user n will be served in an opportunistic manner
as described in the following. In particular, user m’s transmit
power, denoted by Pm , is set to the same value as in OMA, i.e.,
Pm satisfies Dm ln(1 + Pm |hm |2) = N , where hk denotes user
k’s channel gain, k ∈ {m,n}. User n is allowed to access the
time slot of Dm seconds allocated to user m, under the condition
that user m experiences the same rate as for OMA. As shown
in [4], this can be realized if user m’s message is decoded after
user n’s at the MEC server and user n’s data rate, denoted by
Rn , during Dm is set as follows:

Rn = ln
(

1 +
Pn,1 |hn |2

Pm |hm |2 + 1

)
, (1)

where Pn,1 denotes the power used by user n during Dm . If user
n cannot finish its offloading within Dm , a dedicated time slot,
denoted by Tn , is allocated to user n, and the user’s transmit
power during Tn is denoted by Pn,2 . Note that the three cases
with {Pn,1 = 0, Pn,2 �= 0}, {Pn,1 �= 0, Pn,2 = 0}, and {Pn,1 �=
0, Pn,2 �= 0} correspond to OMA, pure NOMA, and H-NOMA,
respectively. We note that both OMA and pure NOMA can be
viewed as special cases of H-NOMA. However, in this paper,
the three modes are considered separately and H-NOMA is
restricted to the case with {Pn,1 �= 0, Pn,2 �= 0}.

III. NOMA-ASSISTED MEC OFFLOADING

In this paper, we assume that NOMA-MEC offloading is
transparent to user m, i.e., user m’s delay performance in
NOMA remains the same as that in OMA while user n is ad-
mitted to Dm with its achievable data rate constrained by (1).
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Therefore, Pm and Dm are assumed to be fixed, and our objec-
tive is to minimize user n’ delay by optimizing Pn,1 and Pn,2 as
follows:

minimize
Pn, 1 ,Pn, 2

Dm + Tn

s.t. {Pn,1Pn,2} ∈ S,

(2a)

(2b)

where Tn =
N −Dm ln

(
1+

P n, 1 |h n |2
P m |h m |2 + 1

)

ln(1+ |hn |2 Pn, 2 ) ,

S = {Dm Pn,1 + TnPn,2 ≤ E,Pn,1 ≥ 0, Pn,2 ≥ 0, Tn ≥ 0},
(3)

and E is user n’s energy constraint. We note that Tn is zero
if pure NOMA is used, and the constraint in Eq. (2b) implies
that user n’s power during Dm needs to ensure that user m
experiences the same rate as in OMA.

Define E1 = Dm

(
e

N
D m − 1

)|hn |−2 and E2 = E1e
N

D m . E1
and E2 are the energy thresholds to determine the use of OMA,
pure NOMA, and H-NOMA, as shown in the following.

A. Case E ≥ E2

This corresponds to the case with sufficient energy at user n
for MEC offloading, and the minimal Dm can be achieved by
using pure NOMA, i.e., Pn,2 = 0. The condition for adopting
pure NOMA is shown in the following. Since Pn,2 = 0, all the
energy is consumed during the NOMA phase to minimize the
delay, which means Pn,1 = E

Dm
. Hence, user n is able to offload

its task within Dm if

N ≤ Dm ln
(

1 +
Pn,1 |hn |2

Pm |hm |2 + 1

)

(a)
= Dm ln

(
1 + e−

N
D m

E

Dm
|hn |2

)
, (4)

where step (a) is obtained by assuming that user m’s power, Pm ,
satisfies the constraint Dm ln

(
Pm |hm |2 + 1

)
= N . By solving

the inequality in (4), the condition E ≥ E2 can be obtained.
The performance gain of NOMA-MEC over OMA-MEC

is obvious in this case since user n’s delay in OMA is
Dm + N

ln(1+ |hn |2 Pn, 2 ) , which is strictly larger than Dm . How-
ever, the comparison between OMA and NOMA becomes more
complicated for the energy-constrained cases.

B. Case E1 < E < E2

This corresponds to the case in which there is not sufficient en-
ergy at user n to support pure NOMA. Note that both H-NOMA
and OMA are still applicable. Due to space limitations, we focus
on H-NOMA (Pn,i �= 0, i ∈ {1, 2}), as the OMA solution can
be obtained in a straightforward manner.

Note that Tn is the ratio of two functions of Pn,1 and Pn,2 ,
respectively, which motivates the use of fractional program-
ming. However, compared to conventional fractional program-
ming in [6], the problem in (2) is more challenging since the
fractional function Tn does not only appear in the objective func-
tion but also in the constraint. Two iterative algorithms will be
developed based on the following Dinkelbach auxiliary function

parametrized by μ:

F (μ) = maxmize
Pn, 1 ,Pn, 2

ln
(
1 + |hn |2Pn,2

)

− μ
(
N − Dm ln

(
1 + e−

N
D m Pn,1 |hn |2

))
, (5)

where {Pn,1 , Pn,2} ∈ S̃(μ) and1

S̃(μ) =
{
Dm Pn,1 + μ−1Pn,2 ≤ E,Pn,1 ≥ 0, Pn,2 ≥ 0

}
. (6)

Different from the original form in [6], the constraint set S̃(μ)
for the auxiliary function is also a function of μ and F (μ) might
have more than one root.

For a fixed μ, the following lemma provides the optimal H-
NOMA solution for problem (5).

Lemma 1: For a fixed μ, the optimal H-NOMA power allo-
cation policy for problem (5) is given by⎧⎪⎨

⎪⎩
P ∗

n,1(μ) =
E−μ−1

(
e

N
D m −1

)
|hn |−2

Dm +μ−1

P ∗
n,2(μ) =

E+Dm

(
e

N
D m −1

)
|hn |−2

Dm +μ−1

. (7)

Proof: Due to space limitations, only a sketch of the proof
is provided. Problem (5) is convex for a fixed μ, which leads to
the following Karush-Kuhn-Tucker (KKT) conditions [8]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− μDm e
− N

D m |hn |2
1+e

− N
D m Pn, 1 |hn |2

+ λ1Dm − λ2 − λ3 = 0

− |hn |2
1+ |hn |2 Pn, 2

+ λ1μ
−1 − λ2 − λ3 = 0

Dm Pn,1 + μ−1Pn,2 ≤ E

λ1
(
Dm Pn,1 + μ−1Pn,2 − E

)
= 0

Pn,i ≥ 0,∀i ∈ {1, 2}, λiPn,i−1 = 0,∀i ∈ {2, 3}
λi ≥ 0,∀i ∈ {1, 2, 3}

,

where the λi are Lagrange multipliers. For the H-NOMA case,
Pn,1 > 0 and Pn,2 > 0, and hence λ2 = 0 and λ3 = 0 due to the
constraints λiPn,i = 0,∀i ∈ {2, 3}. Therefore, the KKT condi-
tions can be simplified as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− μDm e
− N

D m |hn |2
1+e

− N
D m Pn, 1 |hn |2

+ λ1Dm = 0

− |hn |2
1+ |hn |2 Pn, 2

+ λ1μ
−1 = 0

Dm Pn,1 + μ−1Pn,2 ≤ E

λ1
(
Dm Pn,1 + μ−1Pn,2 − E

)
= 0

Pn,i ≥ 0,∀i ∈ {1, 2}, λ1 ≥ 0

. (8)

Due to the constraint − |hn |2
1+ |hn |2 Pn, 2

+ λ1μ
−1 = 0, we have

λ1 �= 0 for the optimal solution, since otherwise |hn |2
1+ |hn |2 Pn, 2

=
0, which cannot be true. Since λ1 �= 0 and λ1(Dm Pn,1
+μ−1Pn,2 − E) = 0, we have Dm Pn,1 + μ−1Pn,2 − E = 0.
With some algebraic manipulations, the lemma can be proved.

Remark 1: By substituting P ∗
n,1(μ) and P ∗

n,2(μ) into (5),
F (μ) can be expressed as an explicit function of μ. Unlike
[6], F (μ) is not convex and may have multiple roots, which
results in fundamental changes to the convergence proof.

1For the case E < E2 , Tn > 0 as N > Dm ln
(
1 + e

− N
D m E

D m
|hn |2

)
,

and hence the constraint, Tn ≥ 0, can be omitted.
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Algorithm 1: Dinkelbach’s Method Based Algorithm.
b
1: Set t = 0, μ0 = +∞ , δ → 0.
2: while F (μt) < −δ do
3: t = t + 1.
4: Update P t

n,1 and P t
n,2 by using μ = μt−1 in (7).

5: Update F (μt) by using P t
n,1 and P t

n,2 .

6: Update μt as μt =
ln
(
1+ |hn |2 P t

n, 2

)
N −Dm ln

(
1+e

− N
D m P t

n, 1 |hn |2
)

7: end
8: P ∗

n,1 = P t
n,1 and P ∗

n,2 = P t
n,2 .

Algorithm 2: Newton’s Method Based Algorithm.
1: Set t = 0, μ0 = +∞, δ → 0.
2: while F (μt) < −δ do
3: t = t + 1.
4: Update μt+1 = μt − F (μt )

F ′(μt )
.

5: end
6: P ∗,N

n,1 and P ∗,N
n,2 are obtained by using μ = μt in (7).

Although F (μ) is different from the form in [6], a modi-
fied Dinkelbach’s method can still be developed as shown in
Algorithm 1. In Algorithm 1, δ denotes a small positive thresh-
old. In addition, a Newton’s method-based iterative algorithm
can also be developed as in Algorithm 2, where F ′(μ) denotes
the first-order derivative of F (μ).

Theorem 1 shows the optimality of the two algorithms.
Theorem 1: The two iterative algorithms shown in

Algorithms 1 and 2 converge to the same optimal solution of
problem (2).

Proof: We start the proof by first studying the roots of the
function in (5) which can potentially be the optimal solution. We
note that the steps provided in [6] cannot be straightforwardly
applied to prove the optimality of the modified Dinkelbach’s
method since F (μ) may have multiple roots.

Step 1 of the proof is to show the existence and uniqueness of
the root of F (μ), for

(
e

N
D m − 1

)|hn |−2E−1 < μ < ∞. To prove
this, it is sufficient to show that 1): F (μ) is strictly concave,
2): F (μ) = −∞ for μ → + ∞ and 3): F (μ) > 0 for μ →(
e

N
D m − 1

)|hn |−2E−1 .
The first order derivative of F (μ) is given by

F ′(μ) =
|hn |2E + Dm

(
e

N
D m − 1

)
e

N
D m Dm μ + |hn |2Eμ + 1

−
[

N − Dm

× ln

⎛
⎜⎝1 + e−

N
D m |hn |2

E −
(
e

N
D m −1

)
|hn |−2

μ

Dm + 1
μ

⎞
⎟⎠
⎤
⎥⎦ . (9)

Unlike [6], F ′(μ) is neither strictly negative nor positive. The
second-order derivative of F (μ) is given by

F ′′(μ) =

(
D2

m − (e N
D m Dm + |hn |2E

)2)
(
e

N
D m Dm μ + |hn |2Eμ + 1

)2(μDm + 1)
. (10)

Since e
N

D m > 1 and |hn |2E > 0, we have

F ′′(μ) < 0, (11)

which means that F (μ) is a strictly concave function of μ.

When μ → (
e

N
D m − 1

)|hn |−2E−1 , the H-NOMA solution

approaches P ∗
n,1(μ) → 0 and P ∗

n,2(μ) → (
e

N
D m − 1

)|hn |−2 .
Consequently, F (μ) can be approximated as follows:

F (μ) → ln

(
1 + |hn |2

Eμ + μDm

(
e

N
D m − 1

)|hn |−2

Dm μ + 1

)

− μN → N

Dm
− N

(
e

N
D m − 1

)|hn |−2

E
.

As suggested by the title of Section III-B, it is assumed that
E > E1 , which means

F (μ) > 0, (12)

for μ → (
e

N
D m − 1

)|hn |−2E−1 .
When μ → ∞, F (μ) can be approximated as follows:

F (μ) → ln

(
1 + |hn |2

E + Dm

(
e

N
D m − 1

)|hn |−2

Dm

)

−μ

(
N − Dm ln

(
1 + e−

N
D m |hn |2 E

Dm

))
→ −∞,

(13)

where the last step is obtained since for H-NOMA
(
N −

Dm ln
(
1 + e−

N
D m |hn |2 E

Dm

))
> 0. Combining (11), (12), and

(13), the proof for the first step is complete. The unique root of
F (μ) for μ >

(
e

N
D m − 1

)|hn |−2E−1 is denoted by μ∗, where

μ∗ >
(
e

N
D m − 1

)|hn |−2E−1 .
Step 2 is to show that T ∗

n � 1
μ∗ is the optimal solution of prob-

lem (2). This step can be proved by using contradiction. Assume
that the optimal solution of problem (2) is smaller than T ∗

n , de-
noted by T̄ ∗

n . Denote μ̄∗ = 1
T̄ ∗

n
and hence μ̄∗ > μ∗. Following

steps similar to those in [6], we have F (μ̄∗) = 0, i.e., μ̄∗ is also
a root of F (μ) and μ̄∗ > μ∗ >

(
e

N
D m − 1

)|hn |−2E−1 , which
contradicts the uniqueness of the root of F (μ). Step 2 means
that finding the optimal solution of problem (2) is equivalent
to finding the largest root of F (μ). Therefore, the optimality of
Newton’s method can be straightforwardly shown, and in the
following, we only focus on the modified Dinkelbach’s method.

Step 3 is to show F (μ) is a strictly decreasing function of μ,
for μ∗ ≤ μ ≤ ∞, which can be proved by using the facts that
μ∗ is the unique root of F (μ) for μ >

(
e

N
D m − 1

)|hn |−2E−1 ,
and F (μ) is concave.

Step 4 is to show F (μt+1) < 0 if F (μt) < 0 for the modified
Dinkelbach’s method. Since F (μt) < 0 and F (μ) is a strictly
decreasing function for μ ≥ μ∗, we have μt > μ∗. The conver-
gence analysis for Newton’s method is provided first to facil-
itate that of Dinkelbach’s method. The quadratic convergence
analysis for Newton’s method yields the following [9]:

μ∗ − μt+1 = − F ′′(μξ )
2F ′(μt)

(μ∗ − μt)2 , (14)

where μ∗ ≤ μξ ≤ μt . Note that F ′(μt) < 0 and F ′′(μξ ) < 0.
Therefore, we have

μ∗ − μt+1 < 0 (15)

which means F (μt+1) < 0 for Newton’s method.
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For Dinkelbach’s method, F (μ) is first expressed as F (μ) =
A(μ) − μB(μ), which means that μ is updated as follows:

μt+1 =
A(μt)
B(μt)

= μt +
F (μt)
B(μt)

. (16)

Recall that Newton’s method updates μ as follows:

μt+1 = μt − F (μt)
F ′(μt)

= μt +
F (μt)

B(μt) − (A′(μt) − μtB′(μt))
.

(17)

From (9), A′(μt) − μtB
′(μt) can be expressed as follows:

A′(μt) − μtB
′(μt) =

|hn |2E + Dm

(
e

N
D m − 1

)
e

N
D m Dm μ + |hn |2Eμ + 1

> 0. (18)

Note that B(μ) > (A′(μt) − μtB
′(μt)) > 0 since F ′(μt) < 0.

Therefore, the step size of Newton’s method is larger than that
of Dinkelbach’s method. In other words, starting with the same
μt , μt+1 obtained from Newton’s method is smaller than that
of Dinkelbach’s method, which means F (μt+1) < 0 also holds
for Dinkelbach’s method.

Step 5 is to show μt+1 < μt , which can be proved by using
(16) and (17). An interesting property deduced from Steps 4 and
5 is that if the initial value of μ is set as ∞, μt is decreasing and
approaches μ∗ as the number of iterations increases, but will
never pass μ∗, as F (μt) is always negative.

Step 6 is to show that Dinkelbach’s method converges to μ∗.
This can be proved by contradiction. Assume that the method
converges to μ̆, i.e., lim→∞μt = μ̆ and μ̆ �= μ∗. Although F (μ)

might have more than one root, F (μt) is always negative if
μ0 = ∞, as illustrated by Step 4. Therefore, μt is always larger
than μ∗, i.e., μ̆ > μ∗. Since F (μ) is strictly decreasing for μ >
μ∗, we have the conclusion that 0 = F (μ̆) < F (μ∗) = 0, which
cannot be true. The proof is complete. �

Corollary 1: The algorithm based on Newton’s method con-
verges faster than the one based on Dinkelbach’s method.

Proof: The corollary can be proved by using Step 4 in the
proof for Theorem 1. �

Remark 2: The rationale behind the existence condition of
the H-NOMA solution, i.e., E > E1 , can be explained as fol-
lows. From the proof of Theorem 1, we learn that F (μ) is
a decreasing function of μ for μ > μ∗. On the other hand,
P ∗

n,1(μ) and P ∗
n,2(μ) are increasing functions of μ. So it is im-

portant to ensure that when μ is reduced to a value μ̄, such that

P ∗
n,1(μ̄) = 0, i.e., μ̄ = e

N
D m −1

E |hn |2 , F (μ) is positive. Otherwise, a
positive root of F (μ) does not exist, and there is no feasible
H-NOMA solution. By substituting μ̄ into (7) and solving the
inequality F (μ̄) > 0, the existence condition is obtained. Sim-
ilarly, one can find that E ≥ N |hn |−2 is the condition under
which OMA is feasible. Hence, OMA-MEC is the only feasible
option to minimize the delay if N |hn |−2 ≤ E ≤ E1 , i.e., there
is very limited energy available for MEC offloading.

Remark 3: For the case E1 < E < E2 , both OMA and
NOMA are applicable. Simulation results show that H-NOMA
always yields less delay than OMA, although we have yet to
obtain a formal proof for this conjecture.

IV. NUMERICAL STUDIES

In this section, the performance of the proposed MEC of-
floading scheme is studied and compared by using computer

Fig. 1. Impact of NOMA on MEC offloading and the convergence of the two
proposed iterative method.

simulations, where normalized channel gains are adopted for
the purpose of clearly demonstrating the impact of the channel
conditions on the delay. In Fig. 1a, the impact of NOMA on
the MEC offloading delay is shown as a function of the energy
consumption. Note that the curves for NOMA-MEC are gener-
ated based on the combination of H-NOMA and pure NOMA,
i.e., if E ≥ Dm

(
e

N
D m − 1

)
e

N
D m |hn |−2 , pure NOMA is used,

otherwise H-NOMA is used. For a given amount of energy con-
sumed, Fig. 1a shows that the use of NOMA reduces the delay
significantly. Particularly when there is plenty of energy avail-
able at user n, i.e., E ≥ Dm

(
e

N
D m − 1

)
e

N
D m |hn |−2 , the use of

NOMA ensures that Dm is sufficient for offloading and there is
no need to utilize extra time. Fig. 1b provides a comparison of
the convergence rates of the two proposed iterative algorithms.
Note that both algorithms start with a delay of 0 (μ0 = ∞) and
only the delay after convergence in the figure is achievable. As
shown in the figure, Dinkelbach’s method generally converges
more slowly than Newton’s method, as predicted by Corollary
1, although they perform the same in conventional scenarios [6].

V. CONCLUSION

In this paper, two iterative algorithms have been developed to
minimize the offloading delay of NOMA-MEC. The optimality
of the algorithms has been proven and their rates of convergence
have been analyzed. Furthermore, criteria for choosing between
the three possible modes, OMA, pure NOMA, and H-NOMA,
for MEC offloading have been established. An important topic
for future research is to investigate NOMA-MEC for general
scenarios with more than two users.
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