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Abstract—A secret key generation scheme is proposed for
generating keys to be used for one-time pad encryption. This type
of encryption is suitable for e.g. short packet communication in
distributed inference in IoT. The scheme exploits the phase of the
channel fading coefficient in a Rayleigh fading channel to extract
highly correlated key bits at two legitimate parties. Compared
to other existing methods, the proposed scheme trades off higher
bit error probabilities in the keys for lower error correction
communication requirements. The bit error of generated keys is
characterized via an approximate upper bound, which is shown
to be fairly tight for reasonable signal-to-noise ratios.

I. INTRODUCTION

Data security has traditionally been handled via crypto-

graphic methods that scramble the bits of the data using

another set of bits referred to as the key. Because the key itself

must be kept secret from potential attackers, the distribution

or generation of such keys is a problem of its own.

One approach to generating secret keys is based on the

concept of information theoretic secrecy introduced by Shan-

non [1]. In particular, [2] and [3] established bounds on the

common information of two correlated random variables. This

common information describes how many shared bits two

parties with access to different but correlated random variables

can theoretically establish between themselves without leaking

information of these bits to outside parties.

The first attempts at constructing practical schemes based

on the common information of correlated random variables

include [4] and [5]. In these works, the wireless medium used

in radio communication is found to be a suitable extractor of

common information. Some more recent approaches include

[6], [7], [8], [9].

In this paper, we propose a key generation scheme that is

similar to the ones in [7], [8], [9]. However, unlike the keys

generated in [7], [8], [9], we do not intend for the generated

key to be used in any arbitrary encryption method. Instead, we

specifically design our method to generate keys that are used

for one-time pad encryption. One-time pad encryption is an

encryption method where a key bit is added (via the exclusive

OR operation) to each message bit. This is known to provide

the perfect secrecy discussed by Shannon in [1], but is often

seen as idealistic and not usable in practice as it would require
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keys of the same size as the message itself. However, there

are certain situations where we may be able to generate key

bits at the same rate as new plaintext bits are generated.

One such situation is the wireless sensor network studied in

[10], which inspired this paper. This type of sensor network,

envisioned as an important part of the future Internet of

Things (IoT), can be used to e.g. monitor systems or detect

anomalies. In [10], sensors send short messages of only a

few bits each infrequently to a fusion center, making the

generation of key bits at the message rate feasible. In addition

to providing perfect secrecy for the messages, the use of one-

time pad encryption in this case would allow us to conceal

the encryption itself (due to both input and output bits being

uniformly distributed under nominal conditions), making it

particularly suitable for this particular problem.

With the above in mind, the contributions of this paper are

the following:

• A secret key generation scheme is proposed for generat-

ing keys to be used specifically for one-time pad encryp-

tion. By explicitly focusing on keys used in one-time pad

encryption, we can trade off higher bit error probabilities

in the keys for lower error correction communication

requirements compared to existing generation schemes.

• The bit error of generated keys is characterized via an

approximate upper bound, which is shown to be fairly

tight for reasonable signal-to-noise ratios.

The rest of the paper is organized as follows. In Section II,

the problem of secret key generation is formally described. In

Section III, the proposed key generation scheme is presented.

In Section IV, an upper bound on the bit error probability of

the proposed scheme is derived, and in Section V this bound

is compared to the true error probability. Finally, the paper is

concluded in Section VI.

II. PROBLEM DESCRIPTION

Alice and Bob want to establish a shared key K ∈ K =
{1, . . . , 2k}, represented as a k-bit string. This key has to be

kept secret from the (passive) eavesdropper Eve. In order to

establish the secret key, Alice and Bob have access to a source

of correlated random variables (X,Y, Z) as well as a noiseless

public channel that they can use to communicate with each

other. From the source (X,Y, Z), Alice receives X , Bob Y
and Eve Z. Any communication over the public channel is

assumed noise-free and can be heard by any of the three.
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The secret key generation proceeds as follows. From her

source variables X , Alice will generate messages MA =
mA(X), which she sends in the clear over the public channel

to Bob. Correspondingly, Bob generates from his source

variables Y messages MB = mB(Y ) to be sent over the

public channel to Alice. Upon receiving each other’s messages,

Alice and Bob generate their keys KA = gA(X,MB) and

KB = gB(Y,MA), respectively. Due to the broadcast nature of

the communication channel, Eve will have access to messages

MA and MB in addition to her source variable Z.

Our goal is to design the message functions mA and mB ,

and the key generator functions gA and gB such that

Pr(KA[i] = KB [i]) ≥ 1− ε, ∀i = 1, . . . , k, (1)

I(KA;Z,MA,MB) ≤ ε, (2)

H(KA) ≥ log |K| − ε, (3)

where H(X) denotes the entropy of X , I(X;Y ) the mutual

information of X and Y , and K[i] the ith bit in the key K. In

the above, condition (1) ensures that Alice and Bob generate

the same key bits with a high enough probability; condition (2)

ensures that the key generated by Alice is kept secret from Eve;

and condition (3) ensures that the key bits generated by Alice

are uniformly distributed. Uniformity of the key is necessary

for one-time pad encryption to produce cipher texts that satisfy

Shannon’s secrecy condition in [1].

A. Using the Fading Wireless Channel as Source

So far, we have described the problem from a general point

of view, without specifying the source (X,Y, Z) providing the

input to our key generation protocol. Finding an appropriate

real-world representation of this source is paramount to gener-

ating keys at a high enough rate. In particular, we would like

to find a source where X and Y are highly correlated, while

Z is as uncorrelated as possible with either.

It turns out that the wireless medium provides a good

framework for establishing such a source. Namely, the wireless

channel is reciprocal, meaning that the channel gain from a

terminal A to a terminal B is the same as the channel gain

from B to A (excluding hardware noise). Therefore, A and

B can estimate the channel gain between them independently

from each other, and the resulting estimates will be highly

correlated. Furthermore, if the environment between the ter-

minals is rich enough in scatterers and/or its scatterers are

highly mobile (which is often the case in urban environments),

the instantaneous channel fading coefficient will be highly

variable depending on e.g. the location of the terminals. In

such circumstances, an eavesdropper that is far enough apart

from either terminal will have a very different channel fading

coefficient between itself and either of the two terminals. Thus,

the channel fading coefficient h makes for a suitable source.

In this paper, we will assume that the channel is a Rayleigh

fading channel. This is the most common type of channel

considered in the literature, as it is a good approximation

of an urban environment where we have a high amount of

scatterers and/or mobility in the scatterers and with no line

of sight (LoS) between transmitter and receiver. In a Rayleigh

fading channel the channel fading coefficient h ∈ C is complex

normally distributed with mean 0 and variance P , denoted

h ∼ CN (0, P ). That is, both the real and imaginary compo-

nents of h are normally distributed with mean 0 and variance

P and independent of each other. Then, for a transmitted signal

s ∈ C, the received signal r ∈ C is r = hs+v, where v ∈ C is

some independent additive noise. Both Alice and Bob will try

to estimate the channel fading coefficient h. Alice’s estimate

hA, and Bob’s corresponding estimate hB are assumed to be

hA = h+ wA, hB = h+ wB (4)

That is, the only difference in their estimates comes from the

additive noise terms wA and wB . For the rest of this paper,

we will assume that wA ∼ CN (0, N) and wB ∼ CN (0, N)
for some constant noise variance N .

Meanwhile, Eve’s channel fading coefficient hAE between

herself and Alice, and hBE between herself and Bob are

both assumed independent from h (in a fast fading channel

this is the case when she is at least half a wavelength away

from either of the two). Thus, regardless of which channel

Eve chooses to estimate, this estimate hE will be completely

independent from hA and hB . We then choose (hA, hB , hE)
as our source (X,Y, Z).

Notice that because Z = hE is independent from hA and

hB , condition (2) can be written as

I(KA;MA,MB) ≤ ε. (5)

That is, we only need to ensure that the messages sent over the

public channel are independent from the generated key KA.

III. SECRET KEY GENERATION

The secret key generation protocol proposed in this paper

consists of the following two steps:

1) Quantization: The continuous channel fading coeffi-

cient estimates hA and hB are quantized into one of

a finite number of possible discrete symbols S ∈ S and

S′ ∈ S , respectively. This is done via the quantization

function q : C �→ S .

2) Information reconciliation: Alice and Bob exchange

messages MA = m(hA) and MB = m(hB) over

the public channel that, together with the quantization

function q from the previous step and their channel

estimates hA and hB allows them to determine keys

KA = g(hA,MB) and KB = g(hB ,MA) with a low

enough bit error probability.

The above differs slightly from how we defined the key

generation in the previous section. First of all, the quantization

was not discussed previously, and is a necessary first step to

convert the continuous channel estimates to discrete symbols

that can be used as keys. In addition, we do not use separate

message and key generator functions at Alice and Bob.

In the following subsections we will describe these two steps

in detail.



A. Quantization

For the quantization, our goal is to design a quantization

function q : C �→ S that maps the (continuous) complex

channel fading coefficient estimate hA (or hB) to a discrete

symbol S ∈ S = {1, . . . , 2k}. Note that k is a system

parameter, and should be chosen carefully. Because the final

output K ∈ K of the key generator function g must satisfy

the uniformity condition (3), we will find it helpful to make

sure that the output of q is also uniform.

The channel fading coefficient h is a complex number,

and therefore has an amplitude and a phase. In particular,

we notice that, since h ∼ CN (0, P ) in the Rayleigh fading

channel considered, the phase of h is uniformly distributed.

Thus, we can construct the quantization function q to have a

uniform output with 2k possible values by simply partitioning

the phase space of h into 2k equally sized intervals. Each of

these intervals will then correspond to one symbol S ∈ S .

More precisely, the quantization can be described via the

quantization parameter k using the following definition:

Definition 1. Given k, define

θ = 2π/2k (6)

to be the size (angle) of a quantization interval. Then, for each
n = 1, 2, . . . , 2k,

gn = (n− 1)θ (7)

is the angle of quantization border n.

Now let φA be the phase of hA. Then q(hA) = n for the

n ∈ S that satisfies:

gn ≤ φA ≤ gn+1, (8)

where g2k+1 = 2π. Because φA is uniformly distributed, and

gn+1 − gn = θ for all n, so is the output S as desired.

B. Information Reconciliation

For the information reconciliation, our goal is to design a

message function m : C �→ M that maps channel estimates

hA (or hB) to the set of messages M, and a key generator

function g : C×M �→ K that maps the symbols acquired in

the previous phase together with the received messages to the

final key space K. Recall that m and g must be designed such

that conditions (1), (5), and (3) can be satisfied for a given ε.
We will achieve this by introducing guard zones around the

quantization borders gn.

In particular, notice that if φA is close to one of the borders

gn, n = 1, 2, . . . , 2k, then it is likely that φB is on the other

side of the border. In such a case the two quantized symbols

S = q(hA) and S′ = q(hB) will be different, which is

undesirable. To guard against this, we add guard zones around

the borders, which allow us to disregard any estimates hA and

hB that fall within them.

The guard zones are rectangular areas around each border

gn. For this, it will be convenient to treat the complex space

C as the 2-dimensional real space R
2. Therefore, let vec :

θ

δ

Fig. 1: Example of quantization borders (black lines) and their

corresponding guard zones (red areas) for k = 3. The area

enclosed in blue corresponds to one quantization sector, within

which any estimates hA (or hB) are quantized to the same

symbol S.

C �→ R
2 denote an operator that maps a complex number to a

vector in 2D-space. That is vec(x+iy) = (x, y). Then we can

define the guard zones via the guard parameter δ as follows:

Definition 2. The guard zone Gn ⊂ C corresponding to
quantization border gn, n = 1, . . . , 2k and with parameter
δ, is

Gn = {h | − δ/2 ≤ vec(h)Tvec(ei(gn+π/2)) ≤ δ/2} (9)

The union of all guard zones is denoted G:

G =

2k⋃
n=1

Gn. (10)

Of key importance will be the guard parameter δ, which

defines the width of the guard zones. As we will see later on,

adjusting the size of δ will allow us to achieve the desired bit

error probability ε. Also notice that, because the quantization

borders are symmetric around the origin, the guard zones

Gn for n = 2k−1 + 1, . . . , 2k are simply duplicates of the

first 2k−1 guard zones, and can therefore be ignored when

appropriate. Fig. 1 illustrates the quantization borders and their

corresponding guard zones for k = 3.

Our message space M will now be M = {0, 1} and the

message function is defined as

m(hA) =

{
1 if hA ∈ G

0 otherwise.
(11)

That is, if the estimate is in a guard zone, Alice will send the

message 1, and otherwise she will send the message 0. Bob

performs the corresponding operations based on his estimate

hB .

The key space K is K = S ∪ {⊥}, where ⊥ denotes an

empty key (i.e. a 0-bit key). After receiving Bob’s message

MB , Alice generates her key KA via the following function

g(hA,MB) =

{
q(hA) if MB = 0 and hA /∈ G

⊥ otherwise.
(12)

Correspondingly, Bob generates his key as KB = g(hB ,MA).



It is worth noting that the key KA is represented by a k-

bit string. In order to ensure that adjacent quantization sectors

lead to bit strings that only differ by 1 bit, we can use e.g. gray

coding when generating the actual bit strings for the keys.

Finally, let us verify that the fuctions m and g satisfy

conditions (1), (5), and (3). It suffices to consider the reduced

key space K′ = K \ {⊥} = S , as the case K =⊥ means we

do not have a key that needs to be kept secret.

• Reliability: The bit error probability Pr(KA[i] �= KB [i])
depends on the choice of δ. In particular, the larger δ is,

the lower we would expect the bit error to be. In other

words, for a given ε, we can satisfy condition (1) by

choosing a large enough δ.

• Secrecy: The message MA (or MB) only describes the

relative position of the channel estimate hA (or hB)

within the quantization sector corresponding to symbol

S, but contains no information about the symbol S.

Therefore, MA and MB are independent from the key

KA ∈ K′, and condition (5) holds for all ε.
• Uniformity: Due to the circular symmetricity of the

guard zones and the fact that the output of q is uniformly

distributed, the keys KA ∈ K′ will also be uniformly

distributed. Thus, the keys satisfy condition (3) for all ε.

Notice that because conditions (5) and (3) are satisfied

for all ε, we need only concern ourselves with the ε in

condition (1), which therefore corresponds to a desired bit

error probability.

Unlike a lot of related research, we do not use error-

correcting codes to further improve Pr(KA[i] = KB [i]). This

is justified by the fact that we do not require Pr(KA[i] =
KB [i]) to be arbitrarily close to 1, as the use of one-time pad

encryption allows for some bit errors in the keys. Furthermore,

using error correction codes would mean that more bits need

to be communicated between Alice and Bob when the SNR

of estimates hA and hB is smaller, or if we want to increase

Pr(KA[i] = KB [i]). In the scheme proposed in this paper, the

amount of communication stays constant (1 bit per sample),

and a worse SNR or higher Pr(KA[i] = KB [i]) can be handled

by simply increasing the guard size δ.

IV. ANALYTICAL RESULTS

In this section, we will investigate how Pr(KA[i] �= KB [i])
depends on the guard parameter δ. First of all, because KA can

be empty, ⊥, and this case does not lead to any key bits being

generated, we will condition Pr(KA[i] �= KB [i]) on the event

that hA /∈ G and hB /∈ G. Furthermore, we will find it easier

to work with the key error probability Pr(KA �= KB) instead

of the individual bit errors. Therefore, the error probability of

interest is

Pr(KA �= KB | hA /∈ G, hB /∈ G). (13)

We will also slightly alter our model of hA and hB by

assuming hA = h and hB = hA + wB − wA. This is not

entirely equivalent to the original model discussed in Section

II, but will yield results that are easier to read and will end

up being usable in the original problem formulation.

The following proposition captures the sought after error

probability as the quotient of two integrals which we will

subsequently try to find good approximate bounds for.

Proposition 1. The key error probability Pr(KA �=
KB | hA /∈ G, hB /∈ G) is equal to∫∞

r0

∫ θ/2

φ0(r)
PA �=B,B/∈G(h(r, φ))pR,Φ(r, φ)dφdr∫∞

r0

∫ θ/2

φ0(r)
PB/∈G(h(r, φ))pR,Φ(r, φ)dφdr

(14)

where h = h(r, φ) is the channel coefficient h described by
amplitude r and phase φ,

PA �=B,B/∈G(h) = Pr(KA �= KB , hB /∈ G | hA = h)

PB/∈G(h) = Pr(hB /∈ G | hA = h)

pR,Φ(r, φ) is the probability density function of the channel
coefficient h, and

r0 =
δ

2 sin(θ/2)
, φ0(r) = arcsin(

δ

2r
).

Proof: Skipped.

In the above result, we note first of all that the probability

density function pR,Φ(r, φ) of h(r, φ) is

pR,Φ(r, φ) =
r

2πP
e−

r2

2P (15)

which follows directly from our earlier established model for

the channel coefficient h. Although this density function does

not strictly speaking depend on the phase φ, we keep the

notation pR,Φ(r, φ) to emphasize that it is the joint pdf of

both the amplitude r and phase φ of h = h(r, φ).
For the two probabilities PA �=B,B/∈G(h) and PB/∈G(h), it

is not feasible to construct exact expressions. Instead, we will

establish easier to compute upper and lower bounds. Before

doing so, we will need the following definitions.

Definition 3. Let x ∈ C be a point in the complex space.
Then [x]n ∈ R denotes the component of x that points in the
direction of the line perpendicular to quantization border gn.
That is,

[x]n = vec(x)Tvec(ei(gn±π/2)). (16)

where the sign of π/2 is chosen such that [x]n ≥ 0

Definition 4. Given a point h = h(r, φ), we denote its
minimum distance to each quantization border gn by dn(h).
As illustrated in Fig. 2, these distances can be calculated as

dn(h) = |r sin((n− 1)θ − φ)|. (17)

Now we are ready to establish bounds for the probabilities

PA �=B,B/∈G(h) and PB/∈G(h) via the following two lemmas.

Lemma 1. The probability PA �=B,B/∈G(hA) is upper bounded
by

Pr([hA − hB ]1 > d1(hA) + δ/2)

+ Pr([hA − hB ]2 > d2(hA) + δ/2) (18)
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Fig. 2: The minimum distances dn from a point h = h(r, φ)
drawn as red lines.

Proof: First, let us define the following two events E1

and E2 w.r.t. a fixed hA that belongs to quantization sector

g1 ≤ φA ≤ g2:

E1(hB |hA) = {hB is on the other side of border g1.}
E2(hB |hA) = {hB is on the other side of border g2.}

In the above, the border gn is understood to mean the line that

goes through the ray defined by angle gn. Now we see that

PA �=B,B/∈G(hA)

= Pr(KA �= KB , hB /∈ G | hA)

= Pr(E1(hB |hA) ∪ E2(hB |hA), hB /∈ G | hA)

≤ Pr(E1(hB |hA), hB /∈ G | hA)

+ Pr(E2(hB |hA), hB /∈ G | hA)

≤ Pr(E1(hB |hA), hB /∈ G1 | hA)

+ Pr(E2(hB |hA), hB /∈ G2 | hA)

= Pr([hA − hB ]1 > d1(hA) + δ/2)

+ Pr([hA − hB ]2 > d2(hA) + δ/2)

Lemma 2. The probability PB/∈G(hA) is lower bounded by

1−
2k−1∑
n=1

Pr(dn(hA)− δ/2 ≤ [hA − hB ]n ≤ dn(hA) + δ/2)

(19)

Proof: Following the same reasoning as in the previous

Lemma, we can see that

PB/∈G(hA)

= Pr(hB /∈ G | hA)

= 1− Pr(hB ∈ G | hA)

= 1− Pr(hB ∈
2k−1⋃
n=1

Gn | hA)

≥ 1−
2k−1∑
n=1

Pr(hB ∈ Gn|hA)

= 1−
2k−1∑
n=1

Pr(dn(hA)− δ/2 ≤ [hA − hB ]n ≤ dn(hA) + δ/2).

The above Lemmas give bounds that hold for any arbitrary

distribution of the random variable [hA−hB ]n. In our case, the

random variable [hA−hB ]n is normally distributed with mean

0 and variance 2N . Hence, we can compute the probabilities

Pr([hA − hB ]n > dn(hA) + δ/2) and Pr(dn(hA) − δ/2 ≤
[hA − hB ]n ≤ dn(hA) + δ/2) in Lemmas 1 and 2 from the

cumulative distribution function (CDF) of N (0, 2N).
By using the upper bound in Lemma 1 and the lower bound

in Lemma 2 we can compute an upper bound for the error

probability in Proposition 1. Notice that in the case of normally

distributed noise as considered in this paper, we will not have

closed form expressions for either of the two bounds, and

hence we will not have a closed form bound for the integral

in Proposition 1 either. Therefore, in the simulations in the next

section, the upper bound of the error probability will simply

be computed via numeric integration and table lookup.

Finally, recall that the probability we were originally inter-

ested in was the bit error probability. From the above results,

we get an approximate upper bound by simply dividing our

upper bound of Pr(KA �= KB | hA /∈ G, hB /∈ G) by the

number of bits k. As we will see in the next section, this

will give us an upper bound on the bit error probability for

sufficiently large δ.

V. SIMULATION RESULTS

In this section, we will analyze the proposed method via

simulations in terms of (a) the bit error probability and (b)

the bit generation rate. Note that the former is closely tied

to our choice of the guard parameter δ, and the latter to the

quantization parameter k. Hence, we will try to characterize

the bit error probability in terms of δ, and the bit generation

rate in terms of k.

For the bit error probability, we wish to compare our

previously derived bit error probability bound to the true

bit error probability. The analytical bound is computed as

described in the previous section, utilizing numeric integration

and table lookup where necessary. The true error is found via

simulation, by performing a high number of key generation

trials for randomly generated channel estimates hA and hB .

The bit error depends on both δ and k, as well as the

variances P and N of the true channel h and its estimates

hA and hB , respectively. In this case, we are only interested

in the bit error as a function of δ, so we keep k, P and N
constant. Equivalently, we can consider

√
P/N constant, and

we will refer to
√
P/N as the signal-to-noise ratio (SNR) of

the channel estimates. The SNR is expressed in the dB scale.

Fig. 3 shows the true error probability and corresponding

error bound when k = 3 and SNR = 15 dB. Fig. 3a shows

the key error probability, and Fig. 3b the bit error probability.



(a) key error (b) bit error

Fig. 3: The error probability for k = 3 and SNR=15 dB. Solid

blue line shows the true error probability, and red dashed line

the approximate upper bound derived previously. (a) shows

the key error probability (i.e. the probability that any bit in

the keys differs), and (b) the bit error probability.

Recall that the model we had used to derive the upper bound of

the key error was slightly different from the true model. Hence,

this upper bound is not a true upper bound but merely an

approximate upper bound. Nonetheless, Fig 3a suggests that,

for this particular choice of parameters the key error bound

acts as a true upper bound, and a fairly tight one at that. As

for the bit error, we notice that for large enough δ (δ > 0.2),

the bit error bound appears to be a fairly tight upper bound

on the bit error as desired. Recall that the bit error bound was

simply the key error bound divided by k, i.e. we assume that

the keys KA and KB will differ in at most 1 bit. The results

suggest that this is indeed the case for sufficiently large δ.

Next, let us find out how many secret bits we can expect

to generate per channel estimate using the proposed method.

Because this will depend on the bit error probability, we first

set a desired bit error probability ε, which uniquely defines

δ. This δ is found experimentally. Note that for each channel

coefficient h we estimate, we will generate either k or 0 bits.

The latter occurs when hA ∈ G or hB ∈ G. Therefore,

the number of bits we can generate on average is simply

k · Pr(hA /∈ G, hB /∈ G). Clearly, the number of bits we can

generate is upper bounded by k, and we increase the potential

number of bits we can generate by increasing k. On the other

hand, a larger k will decrease Pr(hA /∈ G, hB /∈ G).
Fig. 4a shows the number of key bits generated on average

for different k, and a desired bit error probability of ε = 0.01.

Fig. 4b shows the corresponding experimentally derived values

of δ. As one might expect, the optimal choice of k will depend

on the SNR, with e.g. k = 3 being a good choice for SNRs

in the range 10-20 dB. Generally, the higher the SNR is, the

higher we should choose k.

VI. CONCLUSION

In this paper, we have proposed a secret key generation

scheme that exploits the phase of the channel fading coefficient

in a Rayleigh fading channel. This scheme was explicitly

designed to generate keys to be used in one-time pad encryp-

tion. An example of where such encryption can be used is in

distributed inference applications in IoT where sensors send

short messages infrequently to a fusion center. By focusing on

(a) sbits/estimate (b) δ

Fig. 4: (a) The number of key bits generated on average, and

(b) the corresponding δ as a function of SNR for desired

bit error probability ε = 0.01. Different colors correspond to

different choices of k.

this specific type of keys, we were able to trade off a somewhat

higher bit error for fewer bits needed for communication

compared to other similar methods.

The proposed method has two adjustable parameters: the

quantization parameter k, and the guard parameter δ. The

former is closely tied to the bit generation rate, and the latter

to the bit error probability. Given a desired bit error probability

ε and working environment with known SNR
√

P/N , there

is an optimal k and corresponding δ.

An approximate upper bound for the bit error probability

was derived. This bound appears to be a (fairly tight) upper

bound for δ large enough. Unfortunately, the bound does not

have a closed form expression, making it hard to analyze

exactly how it depends on the parameters δ, k, P , and N .

Future work could include finding an alternative upper bound

on the bit error that can be expressed in closed form.
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