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Abstract—A secret key generation scheme is proposed for
generating keys to be used for one-time pad encryption. This type
of encryption is suitable for e.g. short packet communication in
distributed inference in IoT. The scheme exploits the phase of the
channel fading coefficient in a Rayleigh fading channel to extract
highly correlated key bits at two legitimate parties. Compared
to other existing methods, the proposed scheme trades off higher
bit error probabilities in the keys for lower error correction
communication requirements. The bit error of generated keys is
characterized via an approximate upper bound, which is shown
to be fairly tight for reasonable signal-to-noise ratios.

I. INTRODUCTION

Data security has traditionally been handled via crypto-
graphic methods that scramble the bits of the data using
another set of bits referred to as the key. Because the key itself
must be kept secret from potential attackers, the distribution
or generation of such keys is a problem of its own.

One approach to generating secret keys is based on the
concept of information theoretic secrecy introduced by Shan-
non [1]. In particular, [2] and [3] established bounds on the
common information of two correlated random variables. This
common information describes how many shared bits two
parties with access to different but correlated random variables
can theoretically establish between themselves without leaking
information of these bits to outside parties.

The first attempts at constructing practical schemes based
on the common information of correlated random variables
include [4] and [5]. In these works, the wireless medium used
in radio communication is found to be a suitable extractor of
common information. Some more recent approaches include
(61, [71, (81, [9].

In this paper, we propose a key generation scheme that is
similar to the ones in [7], [8], [9]. However, unlike the keys
generated in [7], [8], [9], we do not intend for the generated
key to be used in any arbitrary encryption method. Instead, we
specifically design our method to generate keys that are used
for one-time pad encryption. One-time pad encryption is an
encryption method where a key bit is added (via the exclusive
OR operation) to each message bit. This is known to provide
the perfect secrecy discussed by Shannon in [1], but is often
seen as idealistic and not usable in practice as it would require
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keys of the same size as the message itself. However, there
are certain situations where we may be able to generate key
bits at the same rate as new plaintext bits are generated.

One such situation is the wireless sensor network studied in
[10], which inspired this paper. This type of sensor network,
envisioned as an important part of the future Internet of
Things (IoT), can be used to e.g. monitor systems or detect
anomalies. In [10], sensors send short messages of only a
few bits each infrequently to a fusion center, making the
generation of key bits at the message rate feasible. In addition
to providing perfect secrecy for the messages, the use of one-
time pad encryption in this case would allow us to conceal
the encryption itself (due to both input and output bits being
uniformly distributed under nominal conditions), making it
particularly suitable for this particular problem.

With the above in mind, the contributions of this paper are
the following:

o A secret key generation scheme is proposed for generat-
ing keys to be used specifically for one-time pad encryp-
tion. By explicitly focusing on keys used in one-time pad
encryption, we can trade off higher bit error probabilities
in the keys for lower error correction communication
requirements compared to existing generation schemes.

o The bit error of generated keys is characterized via an
approximate upper bound, which is shown to be fairly
tight for reasonable signal-to-noise ratios.

The rest of the paper is organized as follows. In Section II,
the problem of secret key generation is formally described. In
Section III, the proposed key generation scheme is presented.
In Section IV, an upper bound on the bit error probability of
the proposed scheme is derived, and in Section V this bound
is compared to the true error probability. Finally, the paper is
concluded in Section VI.

II. PROBLEM DESCRIPTION

Alice and Bob want to establish a shared key K € K =
{1,...,2"%}, represented as a k-bit string. This key has to be
kept secret from the (passive) eavesdropper Eve. In order to
establish the secret key, Alice and Bob have access to a source
of correlated random variables (X, Y, Z) as well as a noiseless
public channel that they can use to communicate with each
other. From the source (X,Y, Z), Alice receives X, Bob Y
and Eve Z. Any communication over the public channel is
assumed noise-free and can be heard by any of the three.



The secret key generation proceeds as follows. From her
source variables X, Alice will generate messages My =
ma(X), which she sends in the clear over the public channel
to Bob. Correspondingly, Bob generates from his source
variables Y messages Mp = mp(Y) to be sent over the
public channel to Alice. Upon receiving each other’s messages,
Alice and Bob generate their keys K4 = ga(X, Mp) and
Kp = gp(Y, My), respectively. Due to the broadcast nature of
the communication channel, Eve will have access to messages
M, and Mp in addition to her source variable Z.

Our goal is to design the message functions m, and mp,
and the key generator functions g4 and gp such that

Pr(Kali] = Kgli])>1—¢, Yi=1,... .k (1)
I(Ka;Z,Ma, Mp) < ¢, (2)
H(K4) > log|K| —¢, 3)

where H(X) denotes the entropy of X, I(X;Y’) the mutual
information of X and Y, and K[7] the ith bit in the key K. In
the above, condition (1) ensures that Alice and Bob generate
the same key bits with a high enough probability; condition (2)
ensures that the key generated by Alice is kept secret from Eve;
and condition (3) ensures that the key bits generated by Alice
are uniformly distributed. Uniformity of the key is necessary
for one-time pad encryption to produce cipher texts that satisfy
Shannon’s secrecy condition in [1].

A. Using the Fading Wireless Channel as Source

So far, we have described the problem from a general point
of view, without specifying the source (X,Y, Z) providing the
input to our key generation protocol. Finding an appropriate
real-world representation of this source is paramount to gener-
ating keys at a high enough rate. In particular, we would like
to find a source where X and Y are highly correlated, while
Z is as uncorrelated as possible with either.

It turns out that the wireless medium provides a good
framework for establishing such a source. Namely, the wireless
channel is reciprocal, meaning that the channel gain from a
terminal A to a terminal B is the same as the channel gain
from B to A (excluding hardware noise). Therefore, A and
B can estimate the channel gain between them independently
from each other, and the resulting estimates will be highly
correlated. Furthermore, if the environment between the ter-
minals is rich enough in scatterers and/or its scatterers are
highly mobile (which is often the case in urban environments),
the instantaneous channel fading coefficient will be highly
variable depending on e.g. the location of the terminals. In
such circumstances, an eavesdropper that is far enough apart
from either terminal will have a very different channel fading
coefficient between itself and either of the two terminals. Thus,
the channel fading coefficient 2 makes for a suitable source.

In this paper, we will assume that the channel is a Rayleigh
fading channel. This is the most common type of channel
considered in the literature, as it is a good approximation
of an urban environment where we have a high amount of

scatterers and/or mobility in the scatterers and with no line
of sight (LoS) between transmitter and receiver. In a Rayleigh
fading channel the channel fading coefficient h € C is complex
normally distributed with mean O and variance P, denoted
h ~ CN(0, P). That is, both the real and imaginary compo-
nents of /& are normally distributed with mean 0 and variance
P and independent of each other. Then, for a transmitted signal
s € C, the received signal r € Cis r = hs+wv, where v € C is
some independent additive noise. Both Alice and Bob will try
to estimate the channel fading coefficient h. Alice’s estimate
h 4, and Bob’s corresponding estimate hp are assumed to be

ha=h+ws, hp=h+wpg @)

That is, the only difference in their estimates comes from the
additive noise terms w4 and wp. For the rest of this paper,
we will assume that wy ~ CN(0,N) and wg ~ CN(0,N)
for some constant noise variance V.

Meanwhile, Eve’s channel fading coefficient h 4 between
herself and Alice, and hpgr between herself and Bob are
both assumed independent from A (in a fast fading channel
this is the case when she is at least half a wavelength away
from either of the two). Thus, regardless of which channel
Eve chooses to estimate, this estimate hr will be completely
independent from h4 and hp. We then choose (ha,hp, hg)
as our source (X,Y, 7).

Notice that because Z = hg is independent from h4 and
hpg, condition (2) can be written as

I(KA;MA,MB)SE. (5)

That is, we only need to ensure that the messages sent over the
public channel are independent from the generated key K 4.

III. SECRET KEY GENERATION

The secret key generation protocol proposed in this paper
consists of the following two steps:

1) Quantization: The continuous channel fading coeffi-

cient estimates h4 and hp are quantized into one of
a finite number of possible discrete symbols S € S and
S’ € S, respectively. This is done via the quantization
function ¢ : C — S.

2) Information reconciliation: Alice and Bob exchange
messages M4 = m(ha) and Mp = m(hg) over
the public channel that, together with the quantization
function ¢ from the previous step and their channel
estimates h4 and hp allows them to determine keys
Ka = g(ha,Mp) and K = g(hp, M) with a low
enough bit error probability.

The above differs slightly from how we defined the key
generation in the previous section. First of all, the quantization
was not discussed previously, and is a necessary first step to
convert the continuous channel estimates to discrete symbols
that can be used as keys. In addition, we do not use separate
message and key generator functions at Alice and Bob.

In the following subsections we will describe these two steps
in detail.



A. Quantization

For the quantization, our goal is to design a quantization
function ¢ : C — S that maps the (continuous) complex
channel fading coefficient estimate h4 (or hp) to a discrete
symbol S € S = {1,...,2F}. Note that k is a system
parameter, and should be chosen carefully. Because the final
output K € I of the key generator function g must satisfy
the uniformity condition (3), we will find it helpful to make
sure that the output of ¢ is also uniform.

The channel fading coefficient h is a complex number,
and therefore has an amplitude and a phase. In particular,
we notice that, since h ~ CN(0, P) in the Rayleigh fading
channel considered, the phase of h is uniformly distributed.
Thus, we can construct the quantization function ¢ to have a
uniform output with 2¥ possible values by simply partitioning
the phase space of h into 2% equally sized intervals. Each of
these intervals will then correspond to one symbol S € S.

More precisely, the quantization can be described via the
quantization parameter k using the following definition:

Definition 1. Given k, define
0 = 2m/2F (6)

to be the size (angle) of a quantization interval. Then, for each
n=12,...,2"%
gn = (n—1)0 (7

is the angle of quantization border n.

Now let ¢4 be the phase of hu. Then g(ha) = n for the
n € S that satisfies:

In < A < gnt,s ®)

where gor. 1 = 27m. Because ¢4 is uniformly distributed, and
gn+1 — gn = 0 for all n, so is the output S as desired.

B. Information Reconciliation

For the information reconciliation, our goal is to design a
message function m : C — M that maps channel estimates
ha (or hp) to the set of messages M, and a key generator
function g : C x M — K that maps the symbols acquired in
the previous phase together with the received messages to the
final key space /C. Recall that m and g must be designed such
that conditions (1), (5), and (3) can be satisfied for a given e.
We will achieve this by introducing guard zones around the
quantization borders g,.

In particular, notice that if ¢ 4 is close to one of the borders
gn»n = 1,2,...,2" then it is likely that ¢ is on the other
side of the border. In such a case the two quantized symbols
S = q(ha) and 8" = q(hp) will be different, which is
undesirable. To guard against this, we add guard zones around
the borders, which allow us to disregard any estimates h 4 and
hp that fall within them.

The guard zones are rectangular areas around each border
gn. For this, it will be convenient to treat the complex space
C as the 2-dimensional real space R2. Therefore, let vec :

Fig. 1: Example of quantization borders (black lines) and their
corresponding guard zones (red areas) for kK = 3. The area
enclosed in blue corresponds to one quantization sector, within
which any estimates h4 (or hp) are quantized to the same
symbol S.

C + R? denote an operator that maps a complex number to a
vector in 2D-space. That is vec(z+1iy) = (x,y). Then we can
define the guard zones via the guard parameter § as follows:

Definition 2. The guard zone G, C C corresponding to
quantization border g,, n = 1,...,2% and with parameter
0, is

Gn={h| —6/2 <vec(h)Tvec(e'9+™/D) < §/2} (9)

The union of all guard zones is denoted G:

2k
G=JGn
n=1

Of key importance will be the guard parameter §, which
defines the width of the guard zones. As we will see later on,
adjusting the size of d will allow us to achieve the desired bit
error probability e. Also notice that, because the quantization
borders are symmetric around the origin, the guard zones
G, for n = 2F=1 4 1,... 2% are simply duplicates of the
first 21 guard zones, and can therefore be ignored when
appropriate. Fig. 1 illustrates the quantization borders and their
corresponding guard zones for k£ = 3.

Our message space M will now be M = {0,1} and the
message function is defined as

1 if h
m(hA)Z{ ithy €@

(10)

. (1)
0 otherwise.
That is, if the estimate is in a guard zone, Alice will send the
message 1, and otherwise she will send the message 0. Bob
performs the corresponding operations based on his estimate
hp.

The key space K is K = S U {L}, where L denotes an
empty key (i.e. a 0-bit key). After receiving Bob’s message
Mp, Alice generates her key K 4 via the following function

q(ha) if Mp=0and ha ¢ G

. (12)
1 otherwise.

g(h'AaMB) - {

Correspondingly, Bob generates his key as Kp = g(hp, Ma).



It is worth noting that the key K 4 is represented by a k-
bit string. In order to ensure that adjacent quantization sectors
lead to bit strings that only differ by 1 bit, we can use e.g. gray
coding when generating the actual bit strings for the keys.

Finally, let us verify that the fuctions m and g satisfy
conditions (1), (5), and (3). It suffices to consider the reduced
key space K' = K\ {L} =S, as the case K =1 means we
do not have a key that needs to be kept secret.

o Reliability: The bit error probability Pr(K 4[] # Kpli])
depends on the choice of §. In particular, the larger § is,
the lower we would expect the bit error to be. In other
words, for a given €, we can satisfy condition (1) by
choosing a large enough §.

o Secrecy: The message M4 (or Mp) only describes the
relative position of the channel estimate hy (or hp)
within the quantization sector corresponding to symbol
S, but contains no information about the symbol S.
Therefore, M4 and Mp are independent from the key
K4 € K’, and condition (5) holds for all e.

o Uniformity: Due to the circular symmetricity of the
guard zones and the fact that the output of ¢ is uniformly
distributed, the keys K4 € K’ will also be uniformly
distributed. Thus, the keys satisfy condition (3) for all e.

Notice that because conditions (5) and (3) are satisfied
for all ¢, we need only concern ourselves with the e in
condition (1), which therefore corresponds to a desired bit
error probability.

Unlike a lot of related research, we do not use error-
correcting codes to further improve Pr(K 4[i] = Kgli]). This
is justified by the fact that we do not require Pr(Ka[i] =
Kgli]) to be arbitrarily close to 1, as the use of one-time pad
encryption allows for some bit errors in the keys. Furthermore,
using error correction codes would mean that more bits need
to be communicated between Alice and Bob when the SNR
of estimates h4 and hp is smaller, or if we want to increase
Pr(K4[i] = Kgli]). In the scheme proposed in this paper, the
amount of communication stays constant (1 bit per sample),
and a worse SNR or higher Pr(K 4[i{] = Kp[i]) can be handled
by simply increasing the guard size 6.

IV. ANALYTICAL RESULTS

In this section, we will investigate how Pr(K 4[i] # Kp[i])
depends on the guard parameter ¢. First of all, because K 4 can
be empty, L, and this case does not lead to any key bits being
generated, we will condition Pr(K 4[i] # Kgli]) on the event
that hy ¢ G and hp ¢ G. Furthermore, we will find it easier
to work with the key error probability Pr(K 4 # Kp) instead
of the individual bit errors. Therefore, the error probability of
interest is

Pr(Ka# Kp | ha ¢ G,hp ¢ G). (13)

We will also slightly alter our model of hs and hp by
assuming hy = h and hg = hs + wp — wa. This is not
entirely equivalent to the original model discussed in Section
II, but will yield results that are easier to read and will end
up being usable in the original problem formulation.

The following proposition captures the sought after error
probability as the quotient of two integrals which we will
subsequently try to find good approximate bounds for.

Proposition 1. The key error probability Pr(K, #
Kp | ha ¢ G, hp ¢ Q) is equal to

I f9/2 Pysp, Bgc(h(ﬁ ?))pr.a(r, ¢)dodr )
0
fro J O/(QT) Pggc(h(r,¢))pr,a(r, ¢)dodr
where h = h(r, @) is the channel coefficient h described by
amplitude r and phase ¢,
=Pr(Ka # Kp,hg ¢ G| ha =h)
:Pr(hB¢G|hA:h)

Pyzp pec(h)
Ppga(h)

pr.a(r, @) is the probability density function of the channel
coefficient h, and

>

.0
= m, (].50(7“) = arcsm(ﬂ).
Proof: Skipped. |
In the above result, we note first of all that the probability
density function pg o (7, @) of h(r, ) is

r 2

— o7 3F
Pr.a&(T, @) 9P

which follows directly from our earlier established model for
the channel coefficient h. Although this density function does
not strictly speaking depend on the phase ¢, we keep the
notation pr ¢(r,¢) to emphasize that it is the joint pdf of
both the amplitude r and phase ¢ of h = h(r, ¢).

For the two probabilities P4.p p¢c(h) and Ppgg(h), it
is not feasible to construct exact expressions. Instead, we will
establish easier to compute upper and lower bounds. Before
doing so, we will need the following definitions.

5)

Definition 3. Let @ € C be a point in the complex space.
Then [x],, € R denotes the component of x that points in the
direction of the line perpendicular to quantization border g,.
That is,

(2], = vec(z) T vec(e'9nT™/2), (16)

where the sign of 7/2 is chosen such that [z], > 0

Definition 4. Given a point h = h(r,$), we denote its
minimum distance to each quantization border g, by d,(h).
As illustrated in Fig. 2, these distances can be calculated as

dn(h) =

Now we are ready to establish bounds for the probabilities
Pazxp pga(h) and Ppg(h) via the following two lemmas.

|rsin((n —1)0 — ). (17)

Lemma 1. The probability Py+p p¢c(ha) is upper bounded
by
Pr([hA — hB]l > d1(hA) + (5/2)

+P1“([hA—hB}2 >d2(hA)+5/2) (18)



Fig. 2: The minimum distances d,, from a point h = h(r, ¢)
drawn as red lines.

Proof: First, let us define the following two events Fy
and F, w.rt. a fixed h4 that belongs to quantization sector

g1 < da < go
Ey(hp|lha) = {hp is on the other side of border g;.}
Es(hplha) = {hp is on the other side of border g-.}

In the above, the border g, is understood to mean the line that
goes through the ray defined by angle g,,. Now we see that

Paxp pgc(ha)
=Pr(Ka# Kp,hp ¢ G | ha)
= Pr(Ey(hglha) U Ex(hplha),hp ¢ G | ha)
< Pr(By(hplha),hp ¢ G | ha)

+ Pr(Es(hplha),hg ¢ G | ha)
< Pr(Ei(hplha),hp & G1 | ha)

+ Pr(Ex(hplha), hp ¢ Go | ha)
=Pr([ha — hpli > di(ha) +6/2)

+ Pr([ha — hpl2 > da(ha) +0/2)

|

Lemma 2. The probability Pggc(ha) is lower bounded by

2k—1
1= Pr(dn(ha) = 6/2 < [ha — hpln < dn(ha) +6/2)

n=1
(19)

Proof: Following the same reasoning as in the previous
Lemma, we can see that

Ppga(ha)
= PI‘(hB ¢ G | hA)
=1—Pr(hg € G| ha)

2k—1

=1-Pr(hp € | Gu | ha)

n=1

Zk—l

>1- Y Pr(hp € Gnlha)
n=1

2k—1

=1-> Pr(dn(ha) = 6/2 < [ha — hpln < dn(ha) +6/2).
n=1

|

The above Lemmas give bounds that hold for any arbitrary
distribution of the random variable [h4 —hg],,. In our case, the
random variable [h 4 —hp],, is normally distributed with mean
0 and variance 2N. Hence, we can compute the probabilities
Pr([ha — hpln > dn(ha) +6/2) and Pr(d,(ha) — 6/2 <
[ha — hpln < dn(ha)+0/2) in Lemmas 1 and 2 from the
cumulative distribution function (CDF) of N (0,2N).

By using the upper bound in Lemma 1 and the lower bound
in Lemma 2 we can compute an upper bound for the error
probability in Proposition 1. Notice that in the case of normally
distributed noise as considered in this paper, we will not have
closed form expressions for either of the two bounds, and
hence we will not have a closed form bound for the integral
in Proposition 1 either. Therefore, in the simulations in the next
section, the upper bound of the error probability will simply
be computed via numeric integration and table lookup.

Finally, recall that the probability we were originally inter-
ested in was the bit error probability. From the above results,
we get an approximate upper bound by simply dividing our
upper bound of Pr(K4 # Kp | ha ¢ G,hp ¢ G) by the
number of bits k. As we will see in the next section, this
will give us an upper bound on the bit error probability for
sufficiently large 9.

V. SIMULATION RESULTS

In this section, we will analyze the proposed method via
simulations in terms of (a) the bit error probability and (b)
the bit generation rate. Note that the former is closely tied
to our choice of the guard parameter 6, and the latter to the
quantization parameter k. Hence, we will try to characterize
the bit error probability in terms of J, and the bit generation
rate in terms of k.

For the bit error probability, we wish to compare our
previously derived bit error probability bound to the true
bit error probability. The analytical bound is computed as
described in the previous section, utilizing numeric integration
and table lookup where necessary. The true error is found via
simulation, by performing a high number of key generation
trials for randomly generated channel estimates h4 and hp.

The bit error depends on both § and k, as well as the
variances P and N of the true channel h and its estimates
ha and hp, respectively. In this case, we are only interested
in the bit error as a function of J, so we keep k, P and N
constant. Equivalently, we can consider \/P/N constant, and
we will refer to \/P/N as the signal-to-noise ratio (SNR) of
the channel estimates. The SNR is expressed in the dB scale.

Fig. 3 shows the true error probability and corresponding
error bound when £ = 3 and SNR = 15 dB. Fig. 3a shows
the key error probability, and Fig. 3b the bit error probability.



SNR = 15 dB SNR = 15 dB

—— simiilation
- approx. upper bound

0.1

“ 0.05

(a) key error

Fig. 3: The error probability for £k = 3 and SNR=15 dB. Solid
blue line shows the true error probability, and red dashed line
the approximate upper bound derived previously. (a) shows
the key error probability (i.e. the probability that any bit in
the keys differs), and (b) the bit error probability.

(b) bit error

Recall that the model we had used to derive the upper bound of
the key error was slightly different from the true model. Hence,
this upper bound is not a true upper bound but merely an
approximate upper bound. Nonetheless, Fig 3a suggests that,
for this particular choice of parameters the key error bound
acts as a true upper bound, and a fairly tight one at that. As
for the bit error, we notice that for large enough ¢ (6 > 0.2),
the bit error bound appears to be a fairly tight upper bound
on the bit error as desired. Recall that the bit error bound was
simply the key error bound divided by £, i.e. we assume that
the keys K 4 and Kp will differ in at most 1 bit. The results
suggest that this is indeed the case for sufficiently large 0.

Next, let us find out how many secret bits we can expect
to generate per channel estimate using the proposed method.
Because this will depend on the bit error probability, we first
set a desired bit error probability e, which uniquely defines
0. This 0 is found experimentally. Note that for each channel
coefficient A we estimate, we will generate either & or O bits.
The latter occurs when hy € G or hg € G. Therefore,
the number of bits we can generate on average is simply
k-Pr(ha ¢ G,hp ¢ G). Clearly, the number of bits we can
generate is upper bounded by k, and we increase the potential
number of bits we can generate by increasing k. On the other
hand, a larger k will decrease Pr(hy ¢ G, hp ¢ G).

Fig. 4a shows the number of key bits generated on average
for different k, and a desired bit error probability of ¢ = 0.01.
Fig. 4b shows the corresponding experimentally derived values
of 4. As one might expect, the optimal choice of k£ will depend
on the SNR, with e.g. £k = 3 being a good choice for SNRs
in the range 10-20 dB. Generally, the higher the SNR is, the
higher we should choose k.

VI. CONCLUSION

In this paper, we have proposed a secret key generation
scheme that exploits the phase of the channel fading coefficient
in a Rayleigh fading channel. This scheme was explicitly
designed to generate keys to be used in one-time pad encryp-
tion. An example of where such encryption can be used is in
distributed inference applications in IoT where sensors send
short messages infrequently to a fusion center. By focusing on

e=0.01 e=0.01

-k =1

shits/estimate

0
o 10 20 30 0 10 20 30
SNR (dB) SNR (dB)

(a) sbits/estimate (b) §

Fig. 4: (a) The number of key bits generated on average, and
(b) the corresponding & as a function of SNR for desired
bit error probability e = 0.01. Different colors correspond to
different choices of k.

this specific type of keys, we were able to trade off a somewhat
higher bit error for fewer bits needed for communication
compared to other similar methods.

The proposed method has two adjustable parameters: the
quantization parameter k, and the guard parameter §. The
former is closely tied to the bit generation rate, and the latter
to the bit error probability. Given a desired bit error probability
¢ and working environment with known SNR /P/N, there
is an optimal k& and corresponding J.

An approximate upper bound for the bit error probability
was derived. This bound appears to be a (fairly tight) upper
bound for ¢ large enough. Unfortunately, the bound does not
have a closed form expression, making it hard to analyze
exactly how it depends on the parameters §, k, P, and N.
Future work could include finding an alternative upper bound
on the bit error that can be expressed in closed form.
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