FLightNNs: Lightweight Quantized Deep Neural Networks for
Fast and Accurate Inference

Ruizhou Ding, Zeye Liu, Ting-Wu Chin, Diana Marculescu, and R. D. (Shawn) Blanton
{rding,zeyel,tingwuc,dianam,rblanton}@andrew.cmu.edu
Carnegie Mellon University, Pittsburgh, US.A.

ABSTRACT

To improve the throughput and energy efficiency of Deep Neu-
ral Networks (DNNs) on customized hardware, lightweight neural
networks constrain the weights of DNNs to be a limited combi-
nation (denoted as k € {1,2}) of powers of 2. In such networks,
the multiply-accumulate operation can be replaced with a single
shift operation, or two shifts and an add operation. To provide even
more design flexibility, the k for each convolutional filter can be
optimally chosen instead of being fixed for every filter. In this paper,
we formulate the selection of k to be differentiable, and describe
model training for determining k-based weights on a per-filter basis.
Over 46 FPGA-design experiments involving eight configurations
and four data sets reveal that lightweight neural networks with
a flexible k value (dubbed FLightNNs) fully utilize the hardware
resources on Field Programmable Gate Arrays (FPGAs), our ex-
perimental results show that FLightNNs can achieve 2x speedup
when compared to lightweight NNs with k = 2, with only 0.1%
accuracy degradation. Compared to a 4-bit fixed-point quantiza-
tion, FLightNNs achieve higher accuracy and up to 2x inference
speedup, due to their lightweight shift operations. In addition, our
experiments also demonstrate that FLightNNs can achieve higher
computational energy efficiency for ASIC implementation.

CCS CONCEPTS

« Computing methodologies — Machine learning; . Hard-
ware — Electronic design automation.

ACM Reference Format:

Ruizhou Ding, Zeye Liu, Ting-Wu Chin, Diana Marculescu, and R. D. (Shawn)
Blanton. 2019. FLightNNs: Lightweight Quantized Deep Neural Networks
for Fast and Accurate Inference. In The 56th Annual Design Automation
Conference 2019 (DAC ’19), June 2-6, 2019, Las Vegas, NV, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3316781.3317828

1 INTRODUCTION

Emerging vision, speech and natural language applications have
widely adopted deep learning models and, as a result, have achieved
state-of-the-art accuracy. Furthermore, recent industrial efforts
have focused on implementing the models on mobile devices [1].
However, real-time applications based on these deep models may
incur unacceptably large latencies and can easily drain the battery
on energy-limited devices. For example, smartphones can only run

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6725-7/19/06...$15.00
https://doi.org/10.1145/3316781.3317828

Latency/Energy
LightNN-2
Hardware - .
Constraint = gap
Application LightNN-1

Test error

Figure 1: A discrete Pareto-optimal curve for LightNN
models w.r.t. test error and latency/energy. More continu-
ous Pareto-optimal points are needed to adapt to the la-
tency/energy constraints determined by the hardware and
application.

the AlexNet-based object detection for one hour [2]. Therefore,
prior research has proposed model compression techniques includ-
ing pruning and quantization to satisfy the stringent energy and
speed requirements [3].

One of the recently proposed quantization approaches, LightNN,
constrains the weights of DNNs to be a sum of k powers of 2, and
therefore can use shift and add operations to replace the multi-
plications between activations and weights [4]. For LightNN-11,
all the multiplications of the DNNs will be replaced by a shift op-
eration, while for LightNN-2, two shifts and an add replace the
multiplication. Since shift operations are much more lightweight
on customized hardware (e.g., FPGA or ASIC), LightNNs can achieve
faster speed and lower energy consumption, and generally maintain
accuracy for over-parameterized models [4, 5]. Although LightNNs
provide better energy-efficiency, they lack the flexibility to provide
fine-grained trade-offs between energy and accuracy. As shown
in Fig. 1, the energy efficiency for these models also exhibits gaps,
making the Pareto front of accuracy and energy discrete. However,
a continuous accuracy and energy/latency trade-off is an important
feature for designers to target different market segments (e.g., IoT
devices, edge devices, and mobile devices).

To provide a more flexible Pareto front for the LightNN frame-
work, we propose to equip each convolutional filter with the free-
dom to use a different number of shift-and-add operations to ap-
proximate multiplications. Specifically, we introduce a set of free
variables k = {ky, . ..,kp} where each element represents the num-
ber of shift-and-add for the corresponding convolutional filter. As a
result, a more contiguous Pareto front can be achieved. For example,
if we constrain k € {1, 2}¥, then the throughput and energy con-
sumption of the new model will sit between LightNN-1 (k = {1}F)
and LightNN-2 (k = {2}F). Formally, we are solving miny, i L(w, k),
where £ is the loss function and w is the weights vector. However,
the commonly adopted stochastic gradient descent (SGD) algorithm
does not apply in this case since L is non-differentiable w.r.t. k.
In this paper, we propose a differentiable training algorithm which
enables end-to-end optimization with standard SGD. The resulting
network is dubbed FLightNN for its flexible k values.

!LightNN-k quantizes weights to be the sum of k powers of 2.

2 RELATED WORK

Prior work has extensively explored approaches to reduce latency
and energy consumption of DNNs on hardware, through both algo-
rithmic 2, 6] and hardware [7, 8] efforts. Since the latency and en-
ergy consumption of DNNs generally stem from computational cost
and memory accesses, prior work in the algorithmic domain mainly
focuses on the reduction of FLOPs and model size. Some work re-
duces the number of parameters through weight pruning [9], while
some other work introduces structural sparsity via filter pruning
for Convolutional Neural Networks (CNNs) [10] to enable speedup
on general hardware platforms incorporating CPUs and GPUs. To
reduce the model size, previous work has also conducted neural
architecture search with energy constraint [2]. In addition to al-
gorithmic advances, prior art has also proposed methodologies to
achieve fast and energy-efficient DNNs. Some previous work pro-
poses the co-design of the hardware platform and the architecture
of the neural network running on it [11]. Some work proposes more
lightweight DNN units for faster inference on general-purpose hard-
ware [12], while others propose hardware-friendly DNN computa-
tion units to enable energy-efficient implementation on customized
hardware [13].

By reducing the weight and activation precision, DNN quantiza-
tion has proved to be an effective technique to improve the speed
and energy efficiency of DNNs on customized hardware, due to its
lower computational cost and fewer memory accesses [14]. Gupta
et al. show that a DNN with 16-bit fixed-point representation can
achieve competitive accuracy compared to the full-precision net-
work [14]. In the same vein, Zhou et al. explored the DNN accuracy
w.r.t. a wide range of bit widths [15]. These uniform quantization
approaches enable fixed-point hardware implementation for DNNs.
Courbariaux et al. propose BinaryConnect, which uses only 1 bit
for the DNN parameters, turning multiplications into XNOR opera-
tions on customized hardware [16]. However, these models require
an over-parameterized model size to maintain a high accuracy [4].

LightNNs constrain the model weights to be a power of 2, or
the sum of a limited number of powers of 2 [4], while the activa-
tions use fixed-point quantization. Therefore, the multiplication
between weights and activations can be implemented in hardware
by shift operations and fixed-point additions. Compared to DNNs
with fixed-point quantization, LightNNs replace the fixed-point
multipliers by more lightweight shift operators, or shift and addi-
tions. Since the shift operators can be implemented using Look-Up
Table (LUT) on FPGA while fixed-point multipliers require Digital
Signal Processing (DSP) units, LightNNs can have higher inference
speed than fixed-point DNNs when run on DSP-bounded FPGAs.
In addition, in an ASIC implementation, shift operations are more
lightweight than multiplications, making LightNNs more energy
and area efficient than fixed-point DNNs.

However, LightNNs use a single k value (i.e., the number of shifts
per multiplication) across the whole network, and therefore lack
flexibility to provide a fine-grained energy/latency and accuracy
trade-off for hardware designers. Therefore, we propose FLightNNs
which use customized k values for each convolutional filter to en-
able a more continuous Pareto front. Recent work has explored the
idea of differentiable training for architecture search [17] and neu-
ral network pruning [18]. In this paper, we propose an end-to-end
differentiable training algorithm for FLightNNs via approximate

gradient computation for non-differentiable operations and regular-
ization to encourage sparsity. Moreover, the proposed differentiable
training approach uses gradual quantization, which can achieve
higher accuracy than LightNN-1 without increasing latency. In
summary, this paper has the following key contributions:

(i) We propose a differentiable training algorithm for FLightNNs,
which provides a continuous Pareto front for hardware designers
to search for a highly accurate model under the hardware resource
constraints.

(ii) The differentiable training for FLightNNs enables gradual
quantization, and further pushes forward the Pareto-optimal curve.
3 LIGHTNN OVERVIEW
As a quantized DNN model, LightNNs constrain the weights of a
network to be the sum of k powers of 2, denoted as LightNN-k.
Thus, the multiplications between weights and activations can be
implemented with k shift operations and k—1 additions. Specifically,
LightNN-1 constrains the weights to be a power of 2, and only uses
a shift for a multiplication. The approximation function used by
LightNN-k to quantize a full-precision weight w can be formulated
in a recursive way: Q(w) = Qr_1(w) + Q1(w — Qp_1(w)) for k > 1,
where Q1(w) = sign(w) X 2l10g(IWD] which rounds the weight w to
a nearest power of 2.

LightNNs are trained with a modified backpropagation algorithm.
In the forward phase of each training iteration, the parameters are
first approximated using the Qj function. Then, in the backward
phase, the gradients of loss w.r.t. quantized weights are computed,
and applied to the full-precision weights in the weight update phase.
LightNNs have been proved to be accurate and energy-efficient
on customized hardware [4]. LightNN-2 can generally have an
accuracy close to full-precision DNNs, while LightNN-1 can achieve
higher energy efficiency than LightNN-2. Due to the nature of
the discrete k values, there exists a gap between LightNN-1 and
LightNN-2 w.r.t. accuracy and energy. We propose to customize the
k values for each convolutional filter, and thus, achieve a smoother
energy-accuracy trade-off to provide hardware designers with more
design options.

4 DIFFERENTIABLE TRAINING FOR
FLIGHTNNS

In this section, we first define the quantization function, and then in-
troduce the end-to-end training algorithm for FLightNNs, equipped
with a regularization loss to penalize large k values.

4.1 Quantization function

We first denote the it" filter of the network as w; and the quanti-
zation function for the filter w; as Q. (w;|t), where k = max; k is
the maximum number of shifts used for this network, and vector
t is a latent variable that controls the approximation (e.g., some
threshold value). Also, we denote the residual resulting from the
approximation as r; = W; — Qi (w;|t). Then, we formally define
the quantization function as follows:

Qulwilt) = 0, ifk=0
WISk 1 112>)R,), ik > 1

where R(x) = sign(x) X 2llog(1xD] rounds the input variable to a
nearest power of 2, and [.] is a rounding-to-integer function. This
quantization flow is shown in Fig. 2. To interpret the thresholds t,
to determines whether this filter is pruned out, and t; determines

([ewin=o J
{

[Tio =wi— Qow;lt) = w;]

QWi =R
{
[Tia =wi — Q1 (wilt)]

1
N Since k = 2, output:
o
w R(rio) + REry)

Yes
Output: 0 Output: R(ry1)

Figure 2: Quantization flow for k = 2.

075 05 0375 05 025 025 025 025 0.125
l * 0625 075 05 = I % 05 05 025 +I % 0.025 025 025
125 0.625 0.25 105 0125 025 0.125 0.125
k=2 k=1 k=1
Figure 3: Equivalent conversion from a convolution with a
k; > 1 filter to k; convolutions each with a k; = 1 filter. This
transforms the hardware implementation of the FLightNN

into LightNN-1.

whether one shift is enough, etc. Then, the number of shifts for the
i-th filter is k; = X'~
filter is equivalent to finding optimal thresholds t.

The FLightNN quantization approach targets efficient hardware
implementation. Instead of assigning a customized k; for each
weight, FLightNNs have customized k; values per filter, and there-
fore preserve the structural sparsity. As shown in Fig. 3, the convo-
lution with a k; = 2 filter can be equivalently converted to the sum
of two convolutions each with a k; = 1 filter. Thus, FLightNNs can
be efficiently implemented as LightNN-1 with an extra summation
of feature maps per layer.

4.2 Differentiable training

Instead of picking the threshods ¢ by hand, we consider them as
trainable parameters. Therefore, the loss function £(w?,t) is a
function of both weights and thresholds. Similar to prior work on
DNN quantization [15, 16] we use the straight through estimator

w?
(STE) [19] to compute W By deﬁnlng = 1 where w? =
Q. (w;|t) is the quantized w;; therefore, we have % = % .
ow? . I . '
% = %, which becomes a differentiable expression.

' i

To compute the gradient for thresholds, i.e., %—‘f, we relax the
indicator function g(x, t;) = 1(x > t;) to a sigmoid function [20],
o(.), when computing gradients, i.e., §(x, t;) = o(x — t;). In addition,
we use STE to compute the gradient for R(x). Thus, the gradient

owd
% can be computed by:
J

3Qk (tht 1= 30(||r11||2 tz) OR(r; 1)

—t)—22
Z:(; o, R(r;)+ o(|lrs 1ll2—t;) 6t]

3|| l||2 ot
el ——’)Rm

—Z

Ollri,1lle
at;

6r,]

where and —— are 0 for [< j; otherwise, they can be

computed with the result of W 6” = 1(l = j).
J

2The bias term is omitted for simplicity.

é 0.00003 | === First term of Lreg 2
= — = Second term of £
£ 0.00002 - e
.g Total L e »
B
5 J
£ 0.00001 e - ~
Z w7 N 7 >
0.00000 {_ #7772 "~ i ; E
0.0 0.5 1.0 1.5 2.0
Weight

Figure 4: Regularization loss curve w.r.t. weight value.

Algorithm 1: FLightNN Training Epoch

Input: Training dataset (x, y), where x is input and y is label;
parameters after the (p — 1)-th iteration: w;,_; (weights),
bp,l (biases), and quantization thresholds tp-1; quantization
function Qg (w|t); DNN forward computation function
g(x, w, b); maximum k value used for all filters; regularization
loss coefficients A; learning rate .

Output: Updated weights wy,, biases by, and thresholds b,,.

for each mini-batch of x, y do

1. Quantize weights: w? = Qi (wp-1ltp-1)

2. Forward: compute intermediate results and cross
entropy loss function Lcg with g(-), w4, by—1, and
mini-batch of x; compute regularization loss £,y x with
A and wp_1; get the total loss L;osq1 = LCE + Lreg,k

9Liotal 9Lioral

3. Backward: compute derivatives —5{2fet, byt , and
aLto[al
t,
4. Update parameters: w,, = w,_; — nO=total
-Up P P P = Wp-1 gzawq ;
b, =b,_1 — tutal;t =t, 1 — total
p = Pp-1 =g "t = o1 TN g

end

4.3 Regularization
To encourage smaller k for the filters, we also add a regularization
loss: Lyeg, (W) = Z j performs as a han-
dle to balance accuracy and model sparsity. This regularization loss
is the sum of several group Lasso losses, since they can introduce
structural sparsity [10]. The first item Ao X;||ri,0ll2= A0 Zil|will2
is used to prune the whole filters out, while the other items (j > 0)
regularize the residuals. Fig. 4 shows the two items of regularization
loss and their sum for the case k = 2, with Ag=1e-5 and A;=3e-5.
Therefore, the total loss for training a FLightNN is: £;,;41(W, t) =
Lcg(w,t) + -Ereg,k(w)~

The new training algorithm is summarized in Algo. 1. This is
the same as the conventional backpropagation algorithm for full-
precision DNNs, except that in the forward phase, the weights are
quantized given the thresholds t. Then, due to the differentiability
of the quantization function w.n.t. w and t, one can compute their
gradients and update their values in each training iteration.

5 EXPERIMENTAL RESULTS

In this section, we first introduce the experiment setup. Then, we
show the accuracy results of different quantized DNN models by
software training, as well as their throughput on the FPGA and en-
ergy efficiency on the ASIC, to verify the effectiveness of FLightNNs.

Table 1: Network settings. “Depth" is the number of convolu-
tional layers in the network. “Width" is the number of con-
volutional filters of the largest layer.

Network ID | Parameters | Structure | Depth | Width
1 0.08M VGG 7 64
2 0.7M ResNet 18 128
3 4.6M VGG 7 512
4 0.03M VGG 4 64
5 0.1M VGG 4 128
6 0.7M ResNet 18 128
7 2.8M ResNet 18 256
8 1.8M ResNet 10 256
5.1 Setup

We conduct experiments on both small and large CNNs for CIFAR-
10, SVHN, CIFAR-100 and ImageNet datasets. The eight adopted net-
work configurations are shown in Table 1. To explore the FLightNN
performance on different types of network structures, we use a
VGG structure with a series of stacked convolutional layers for
Network 1, 3, 4 and 5, and adopt the ResNet structure with skip
connections across layers for network 2, 6, 7 and 8. Networks 1,
2 and 3 are used for experiments on CIFAR-10; networks 4 and 5
are used for SVHN; networks 6 and 7 are used for CIFAR-100; the
last one, network 8, is used for ImageNet. For all networks, each
convolutional layer is followed by a batch normalization layer and
a Leaky ReLU activation function [21], and optionally followed by
a max-pooling layer. We use the Adam optimizer [22] to train the
network. For each of the networks, we train different quantized
models including full-precision DNNS, fixed-point DNNs with 4-bit
weights and 8-bit activations, LightNN-2 with 8-bit weights and
8-bit activations, LightNN-1 with 4-bit weights and 8-bit activa-
tions, and FLightNNs with 8-bit activations. Due to large training
times and limitations in computing resources, we train the Ima-
geNet dataset on a ResNet-10 with reduced width (i.e., network 8),
for LightNN-1, LightNN-2 and FLightNNs. For all FLightNNs, we
initialize the threshods t to 0, and set the largest shifts k as 2. For
all, except the 32-bit full-precision model, we use 8-bit fixed-point
quantization for the activations. By varying A, we can have different
accuracy-throughput or accuracy-energy trade-offs for FLightNNs.
All these networks are trained in software through PyTorch.

5.2 Accuracy-throughput trade-off on FPGA

To show the accuracy-throughput trade-off of the models, we im-
plement the inference of each network’s largest convolutional layer
for each of the quantized DNN models on FPGA since prior work
has shown that convolution operations typically take over 90%
of the computation time of a CNN [23]. Our implementation is
built on the Xilinx Zynq ZC706 evaluation board. Its working fre-
quency is 100 MHz. Pre-synthesis is executed on an Intel 17-4790
CPU (3.6GHz) with 16GB RAM. We use Vivado HLS [24] for FPGA
implementation. The C code of DNN designs are parallelized by
adding HLS-defined pragma and the parallel version is validated
with the Vivado HLS timing analysis tool. To make a fair compar-
ison, the same pragma and directives are used for full-precision,
fixed-point DNNs, LightNNs and FLightNNs, and we follow the
same scheduling settings as prior work [5]. Batched inference is

adopted, and the maximum batch size without running out of FPGA
resources is set to obtain the highest throughtput.

Tables 2, 3, 4 and 5 show the accuracy and throughput com-
parison for full-precision DNNS, fixedpoint DNNs, LightNNs and
FLightNNs. For all the experimented datasets, LightNNs show the
advantage of flexible accuracy-speed trade-offs. In most of the
networks (e.g., networks 1, 3, 6 and 7), FLightNNs can achieve
an accuracy close to LightNN-2, but have much higher speedup
than LightNN-2. Thus, FLightNNs provide continuous trade-offs
for accuracy and speed. Compared to the fixed-point quantiza-
tion, FLightNNs can achieve higher accuracy, and up to 2.0x, 1.8%
and 1.8x speedup for CIFAR-10, SVHN, CIFAR-100 datasets, re-
spectively. This is because the multiplication is replaced by shift
operators, which require only LUT resources on FPGA while the
multipliers require DSP units which are generally more scarce than
LUT. Therefore, the computation for FLightNNs allows larger batch
sizes than that of fixed-point DNNS, increasing data parallelism,
and thus, improving the throughput.

It is also interesting to note that by comparing some FLightNNs
(e.g., FL14, FL4, FL34, FLgq and FL7,) with LightNN-1, we find
that FLightNNs can achieve higher accuracy with the same or even
lower storage as LightNN-1. This is because initially FLightNNs
quantize all the filters with two shifts (since t is initialized as 0), and
gradually add constraints to the filters. This gradual quantization
may be better than training a network with only one shift from
scratch, as LightNN-1 does. The benefit of gradual quantization has
also been observed by prior work [25] which shows that gradually
imposing quantization constraints can achieve better accuracy than
directly quantizing with a strict constraint.

Table 6 shows the FPGA resources utilization for networks 7 and
8. Since full-precision and fixed-point DNNs require DSP for both
multiplication and addition, while LightNNs and FLightNNs only
need DSP for addition, full-precision and fixed-point DNNs have
larger DSP resource utilization. Compared to full-precision DNNs
which use 32-bit floating point operations, fixed-point DNNs only
use 4-bit weights and 8-bit activations, and therefore consume fewer
DSP units. LightNNs and FLightNNs use LUT to implement the
multipliers, and have a higher utilization of LUT than full-precision
and fixed-point DNNs. However, the performance of (F)LightNNs is
not bounded by LUT resources since the maximum usage of LUT by
LightNN-2 is only 42% and 17% for networks 7 and 8, respectively.
Instead, the memory resource (BRAM) bounds the performance
for (F)LightNNs, while for full-precision and fixed-point DNNs, the
performance is bounded by both BRAM and DSP.

5.3 Accuracy-energy trade-off on ASIC
For all quantized DNNs, we designed pipelined implementations
with one stage per neuron, where the computation unit is reused for
each neuron. A 65nm commercial standard library is adopted. The
Synopsys Design Compiler [26] is used to generate the gate-level
netlist of the computation units. The power consumption of all com-
putation operations within one layer is calculated using Synopsys
Primetime. We keep all the DNN architectures implemented in an
unoptimized fashion because our main objective is to compare how
different quantized DNNs impact computational energy.

The accuracy and computational energy trade-offs for the quan-
tized DNN models are shown in Fig. 5. The energy shown in Fig. 5

Table 2: Accuracy and FPGA throughput for CIFAR-10. In
the “Model" column, “Full", “L-2", “L-1", “FP", “FL" indi-
cate full-precision DNN, LightNN-2, LightNN-1, Fixed-point
DNN, and FLightNN, respectively. The subscript “xWyA" in-
dicates x bits for weights and y bits for activations. The
FLightNN results are shown in bold face. We use subscript a
and b to denote the two trained FLightNNs for each network.
These notations also apply for Table 3, 4 and 5.

Accuracy | Storage | Throughput

ID| Model) (MB) (images/s) Speedup
Full 86.36 0.31 3.2e2 1x
L-2swsa | 86.17 0.08 2.2¢3 7.0X
1 L-14wsaA 84.82 0.04 4.5e3 14.4%
FPawvsa | 85.09 0.04 3.3e3 10.5%
FL14 85.70 0.04 4.8e3 15.0%
FLy3 85.91 0.06 4.0e3 12.6x
Full 91.70 2.8 1.4e2 1X
L-25wsa | 91.64 0.7 1.63 11.5%
5 | Llawsa | 9115 0.4 2.7¢3 19.0%
FPywsa | 9117 0.4 1.5¢3 10.7x
FL,, 91.36 0.4 2.8¢3 18.9%
FL,;, 91.48 0.7 1.9¢3 13.0x
Full 92.85 18.5 1.3 1X
L-2gwsa 92.72 4.6 10.2 7.8X
5 | Tlawsa | 9193 23 39.2 30.2x
FPawsa | 92.23 23 19.8 15.2%
FLs, 9259 23 39.2 30.2x
FL;, 92.62 3.3 27.2 21.0x

Table 3: Accuracy and FPGA throughput for SVHN.
Accuracy | Storage | Throughput

ID| Model @) (MB) (images/s) Speedup
Full 94.96 0.12 2.2e3 1x
L-25wsa | 94.90 0.03 45¢3 2.09%
4 L-14wsa 94.16 0.02 8.3e3 3.63X
FPywsa 93.70 0.02 3.7¢3 1.70X
FL4q 94.67 0.02 6.7¢3 3.11x
FLy, 94.88 0.03 5.3e3 2.37X
Full 96.44 0.4 1.1e3 1x
L-2gwsa 96.38 0.1 2.1e3 2.00x
s | L-lawsa | 9593 0.05 3.7¢3 3.53x
FPawsa | 96.02 0.05 1.8¢3 171X
FLs, 96.21 0.06 3.2e3 3.06x
FLs;, 96.24 0.08 3.0e3 2.84x

only includes the computational energy consumption for the largest
layer of each network. We can clearly observe that FLightNNs pro-
vide a more continuous Pareto front for LightNN-2 and LightNN-1,
regardless of the network type (i.e., VGG or ResNet), size and the
datasets. Similar to the observation in Sec. 5.2, in some networks
FLightNNs can achieve higher accuracy than LightNN-1 with lower
computational energy cost.

6 DISCUSSION

Since FLightNNs customize the k; for each filter, LightNN-1 and
LightNN-2 can be considered as two special cases for FLightNNs.

Table 4: Accuracy and FPGA throughput for CIFAR-100.

D! Model Accuracy | Storage Throughput Speedup
(%) (MB) (images/s)
Full 69.16 2.8 2.5e2 1x
L-23wsa 68.84 0.7 1.6e3 6.4%
¢ | L-lawsa | 6732 0.4 2.7€3 10.6X
FPivsa 67.67 0.4 1.5€3 5.98X
FL¢, 68.59 0.4 2.7€3 10.6%
FLg), 68.76 0.6 1.8e3 6.88x
Full 71.22 11.2 7.4el 1x
L-25wsa | 70.96 2.8 6.0e2 8.11x
7 [Llawsa | 6971 14 1.1e3 15.2%
FP4vsa 69.34 14 6.9¢2 9.26X
FL7, 70.85 14 1.1e3 15.2X
FL;;, 70.87 2.4 7.4e2 9.98x

Table 5: Top-5 Accuracy and FPGA throughput for Ima-
geNet.

Accuracy | Storage | Throughput
ID| Model) Y (MB? (imagcges/i) Speedup
L-25wsa | 7504 1.8 272 1
g | Llawsa | 7294 0.9 5.2e2 1.95%
FLg, 74.80 15 3.1e2 1.16x
FLg), 75.00 17 2.8e2 1.06x

Table 6: FPGA resource utilization for different quantized
DNN models.

Maximum resource utilization
ID| Model BRAM ‘ DSP ‘ T ‘ TOT Speedup
Full 896 642 69,344 | 128,339 1x
L-2gws4 1,024 4 66,491 | 90,949 8.11%
7 | L-lawsa | 1024 4 66,491 | 90,949 | 15.2x
FPywsa | 1,024 | 514 | 7,110 | 90,949 | 9.26x
FL7, 1,024 4 84,192 | 90,949 9.98%
FL7;, 1,024 4 63,648 | 80,940 15.2%
L-25wsa | 832 16 3,156 | 38,022 1X
g | L-lswsa | 800 16 3,084 | 36,906 | 1.95x
FLg, 800 16 5,070 36,098 1.16X
FLg;, 800 16 6,272 37,406 1.06X
Available 1,090 900 437,200 | 218,600

Therefore, the Pareto front created by the searched FLightNN so-
lutions should be the upper bound for the front of LightNN-1 and
LightNN-2 with varied parameter numbers. We test this hypoth-
esis on CIFAR-100 dataset using networks with varied number
of convolutional filters. As shown in Fig. 6, the accuracy-storage
Pareto-front created by FLightNNs is consistently higher than the
LightNNs. This indicates that instead of only filling in the Pareto
front of LightNNs, FLightNNs can push forward the Pareto front,
due to their larger design space. The proposed differentiable train-
ing algorithm optimizes both k; and weight values in an end-to-end
fashion, and therefore significantly reduces searching effort com-
pared to exhaustive or heuristic methods with multiple rounds of

CIFAR-10 Network 1 CIFAR-10 Network 2

86.5 91.8
-2
a-2
: 86.0 Flgs s 91.6
< FL1a = Flap
g'855 £9147 FL,,
B 2
g &P 2
< 85.0 91.2 &P
d-1 -1
84.5 91.0
0.05 0.10 0.15 0.20 0.25 0.2 0.4 0.6 0.8 1.0
Energy (uJ) Energy (uJ)
CIFAR-10 Network 3 SVHN Network 4
92.8 95.0
-2 FlLgr ol-2
92.6 {Fk3a Flgp Flyas
= S 945
S 924 =
g g 1
£ 922 i H o-
2 2 94.0
92.0
d-1 &P
91.8 93.5
5.0 7.5 10.0 12.5 15.0 0.1 0.2 0.3 0.4 0.5
Energy (u4J) Energy (uJ)
SVHN Network 5 69.0 CIFAR-100 Network 6
’ FLg, 92
96.4 -2 FLea ol
@ 2 68.5
S FL; B
= Fls, A° =
#.96.2 2 =
8 2 68.0
g g &P
g &P g
< 96.0 < 67.5
@-1 d-1
95.8 67.0
0.1 0.2 0.3 0.4 0.5 0.2 0.4 0.6 0.8 1.0
Energy (uJ) Energy (uJ)
715 CIFAR-100 Network 7 ImageNet Network 8
. FLgp o2
=107, FLy &2 - 7 Flos o %
2 =
705 e
g 74
£ £
= 70.0 E
2 d-1 2
69.5 oP 73 a1
69.0
3 4 0.75 1.00 1.25 1.50 1.75 2.00

zkinerg) (7)) Energy (1J)

Figure 5: Accuracy and computational energy consumption
in ASIC for different quantized models on CIFAR-10, SVHN,
CIFAR-100 and ImageNet datasets. FLightNNs are marked
as red triangles, while the other models are shown as blue

dots.

training. Future work will further improve training efficiency by
using optimized training loss [27] or proper labels [28].

7 CONCLUSION

In this paper, we propose FLightNNs which customize the number
of shift operations for each filter of LightNNs. Equipped with the
proposed differentiable training algorithm, FLightNNs can achieve
a flexible trade-off between accuracy and speed/energy. Our experi-
mental results on FPGA and ASIC simulations show that FLightNNs
can provide a more continuous Pareto front for LightNN models and
consistently outperform fixed-point DNNs w.r.t. both accuracy and
speed/energy. Moreover, due to the gradual quantization nature of
the differentiable training, FLightNNs can achieve higher accuracy
than LightNN-1 without sacrificing speed and energy efficiency,
and thus, push forward the Pareto-optimal front. These promising
results suggest the potentials for FLightNNs to achieve fast and
accurate inference on learning-based customized hardware.
ACKNOWLEDGMENTS

This research was supported in part by NSF CCF Grant No. 1815899.
REFERENCES

[1] “Nnapi,” https://developer.android.com/ndk/guides/neuralnetworks/, accessed:
2018-10-15.

[2] T-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolutional
neural networks using energy-aware pruning,” in IEEE CVPR, pp. 6071-6079, 2017.

[3] D.Lin, S. Talathi, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in International Conference on Machine Learning,
Pp. 2849-2858, 2016.

3 N
< ~

=3
®

Accuracy (%)

=3
a

Storage (MB)
Figure 6: Accuracy-storage front for LightNN-2 LightNN-1
and FLightNN. The Pareto front of FLightNN is the upper
bound of LightNNs.

[4] R. Ding, Z. Liu, R. Shi, D. Marculescu, and R. Blanton, “Lightnn: Filling the
gap between conventional deep neural networks and binarized networks,” in
Proceedings of the on Great Lakes Symposium on VLSI, pp. 35-40, 2017.

[5] R.Ding, Z. Liu, R. Blanton, and D. Marculescu, “Lightening the load with highly
accurate storage- and energy-efficient lightnns,” ACM transactions on Reconfig-
urable Technology and Systems, vol. 11, no. 3, pp. 20-44, 2018.

[6] I Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks,” in Advances in Neural Information Processing Systems, pp. 4107—
4115, 2016.

[7] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional neural networks,” IEEE Journal

of Solid-State Circuits, vol. 52, no. 1, pp. 127-138, 2017.

H. Zhao and J. Liu, “Processing-in-memory for energy-efficient neural network

training: A heterogeneous approach,” in IEEE/ACM International Symposium on

Microarchitecture, 2018.

[9] S.Han,]. Pool, J. Tran, and W. Dally, “Learning both weights and connections for
efficient neural network,” in Advances in Neural Information Processing Systems,
pp. 1135-1143, 2015.

[10] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in
deep neural networks,” in Advances in Neural Information Processing Systems, pp.
2074-2082, 2016.

[11] D. M. Brooks, “Co-designed systems for deep learning hardware accelerators,” in
IEEE VLSI Design, Automation and Test (VLSI-DAT), International Symposium, pp.
1-1, 2018.

[12] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510-4520, 2018.

[13] H. Tann, S. Hashemi, R. I. Bahar, and S. Reda, “Hardware-software codesign

of accurate, multiplier-free deep neural networks,” in 54th Design Automation

Conference (DAC), pp. 1-6, 2017.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with

limited numerical precision,” in Proceedings of the 32nd International Conference

on Machine Learning, pp. 1737-1746, 2015.

S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low

bitwidth convolutional neural networks with low bitwidth gradients,” arXiv

preprint arXiv:1606.06160, 2016.

[16] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neu-
ral networks with binary weights during propagations,” in Advances in neural
information processing systems, pp. 3123-3131, 2015.

[17] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,”
arXiv preprint arXiv:1806.09055, 2018.

[18] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural networks
through 1 0 regularization,” in International Conference on Learning Representa-
tions, 2018.

[19] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradi-
ents through stochastic neurons for conditional computation,” arXiv preprint
arXiv:1308.3432, 2013.

[20] J. Han and C. Moraga, “The influence of the sigmoid function parameters on
the speed of backpropagation learning,” in International Workshop on Artificial
Neural Networks, pp. 195-201, 1995.

[21] A.L.Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in Proc. ICML, vol. 30, no. 1, pp. 3, 2013.

[22] D.P.Kingma and J. Ba, “Adam: A method for stochastic optimization,” ICLR, 2015.

[23] C.Zhang, P.Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based
accelerator design for deep convolutional neural networks,” in Proceedings of the
International Symposium on Field-Programmable Gate Arrays, pp. 161-170, 2015.

[24] Xilinx, “Vivado high-level synthesis,” https://www.xilinx.com/products/design-
tools/vivado/integration/esl-design.html, 2017.

[25] Y.Dong, R.Ni, J. Li, Y. Chen, J. Zhu, and H. Su, “Learning accurate low-bit deep
neural networks with stochastic quantization,” BMVC, 2017.

[26] S. M. U. Manual, “Synopsys inc,” Mountain View, CA, 2010.

[27] R.Ding, T.-W. Chin, D. Marculescu, and Z. Liu, “Regularizing activation distribu-
tion for training binarized deep networks,” in IEEE CVPR. IEEE, 2019.

[28] Z. Chen, R. Ding, T.-W. Chin, and D. Marculescu, “Understanding the impact of
label granularity on cnn-based image classification,” in 2018 IEEE International
Conference on Data Mining Workshops (ICDMW). IEEE, 2018, pp. 895-904.

[8

[14

[15

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20190429080835
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

