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ABSTRACT

Recent breakthroughs in Machine Learning (ML) applications, and
especially in Deep Learning (DL), have made DL models a key
component in almost every modern computing system. The in-
creased popularity of DL applications deployed on a wide-spectrum
of platforms (from mobile devices to datacenters) have resulted in a
plethora of design challenges related to the constraints introduced
by the hardware itself. “What is the latency or energy cost for an
inference made by a Deep Neural Network (DNN)?” “Is it possible
to predict this latency or energy consumption before a model is
even trained?” “If yes, how can machine learners take advantage
of these models to design the hardware-optimal DNN for deploy-
ment?” From lengthening battery life of mobile devices to reducing
the runtime requirements of DL models executing in the cloud, the
answers to these questions have drawn significant attention.

One cannot optimize what isn’t properly modeled. Therefore, it
is important to understand the hardware efficiency of DL models
during serving for making an inference, before even training the
model. This key observation has motivated the use of predictive
models to capture the hardware performance or energy efficiency
of ML applications. Furthermore, ML practitioners are currently
challenged with the task of designing the DNN model, i.e., of tuning
the hyper-parameters of the DNN architecture, while optimizing
for both accuracy of the DL model and its hardware efficiency.
Therefore, state-of-the-art methodologies have proposed hardware-
aware hyper-parameter optimization techniques. In this paper, we
provide a comprehensive assessment of state-of-the-art work and
selected results on the hardware-aware modeling and optimization
for ML applications. We also highlight several open questions that
are poised to give rise to novel hardware-aware designs in the
next few years, as DL applications continue to significantly impact
associated hardware systems and platforms.

1 INTRODUCTION

Recent advances in Deep Learning (DL) have enabled state-of-the-
art results in numerous areas, such as text processing and computer
vision. These breakthroughs in Deep Neural Networks (DNN) have
been fueled by newly discovered ML model configurations [2] and
advances in hardware platforms. However, the demand for better
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performance in real-world deployment results in increased com-
plexity for both the hardware systems and the DL models. As mod-
ern DNNs grow deeper and more complex, hardware constraints
emerge as a key limiting factor. This “hardware wall” manifests its
unintended, negative effects in several ways.

First, the energy requirements of DNNs have emerged as a key
impediment preventing their deployment on energy-constrained
embedded and mobile devices, such as Internet-of-Things (IoT)
nodes and wearables. For instance, image classification with AlexNet
[26] can drain the smartphone battery within an hour [38]. This
design challenge has resulted in a plethora of recent methodolo-
gies that focus on developing energy-efficient image classification
solutions [31]. However, identifying the most energy-efficient im-
plementation on a given platform or the right DNN model-hardware
platform pair can be challenging. Recent work shows that, while
several DNN architectures can achieve a similar accuracy level [3],
the energy consumption differs drastically among these various
iso-accuracy DNN configurations, many times by as much as 40x.

Second, there is an ever-increasing number of mobile applica-
tions that use on-device Machine Learning (ML) models employed
directly into the smartphone, rather than relying on the cloud to pro-
vide the service. Thus, recent work on the design of DNNs shows an
ever-increasing interest in developing platform- and device-aware
DL models [11, 37]. For instance, state-of-the-art hardware-aware
methodologies from Google Brain consider DL optimization and
design techniques that optimize for both the accuracy of DNNs for
image classification and the runtime of the model on Google Pixel
smartphones [37].

Finally, edge-cloud communication constraints are an important
design consideration for learning on the edge, e.g., for commer-
cially important indoor localization applications based on low-cost
sensing data (e.g., Radio-frequency identification RFID tags and
WiFi signals) [28]. Hence, towards enabling hardware-aware ML
applications, the aforementioned “hardware wall” gives rise to two
main challenges:

Challenge 1: Characterizing hardware performance of DL
models: The efficiency of DL models is determined by their hard-
ware performance with respect to metrics such as runtime or en-
ergy consumption, not only by their accuracy for a given learning
task [37]. To this end, recent work explores modeling methodologies
that aim to accurately model and predict the hardware efficiency
of DNNs. In this paper, we review state-of-the-art modeling tools,
such as the ones employed in Eyeriss [5, 38], or the Paleo [27] and
NeuralPower [3] frameworks.

Challenge 2: Designing DL models under Hardware Con-
straints: The hyper-parameter optimization of DL models, i.e,
the design of DL models via the tuning of hyper-parameters such
as the number of layers or the number of filters per layer, has



emerged as an increasingly expensive process, dubbed by many
researchers to be more of an art than a science. Hyper-parameter
optimization is a challenging design problem due to several rea-
sons. First, in commercially important Big Data applications (e.g.,
speech recognition), the construction of DL models involves many
tunable hyper-parameters [32] and the training of each configura-
tion takes days, if not weeks, to fully train. More importantly, the
ability of a human expert to identify the best performing DL model
could be hampered significantly if we are to consider hardware
constraints and design considerations imposed by the underlying
hardware [34]. To this end, there is an ever-increasing interest in
works that co-optimize for both the hardware efficiency and the
accuracy of the DL model. In this paper, we investigate the main
tools for employing hardware-aware hyper-parameter optimiza-
tion, such as methodologies based on hardware-aware Bayesian
optimization [34, 35], multi-level co-optimization [30] and Neural
Architecture Search (NAS) [11, 37].

2 RELATED WORK

Reducing the complexity of the ML models has long been a concern
for machine learning practitioners. Hence, while this paper focuses
on hardware-aware modeling and optimization methodologies,
there are orthogonal techniques that have been previously explored
as means to reduce the complexity of DL models. In this section, we
briefly review these approaches as they relate to hardware-aware
modeling and optimization, and we highlight their limitations.

Pruning; Prior art has investigated pruning-based methods that
aim at reducing the ML model complexity by gradually removing
weights of the model and by retraining it [8, 19, 38]. The key insight
behind this type of work, e.g., deep compression [18], is the fact that
modern DL models exhibit redundancy to their features and a small
degradation of accuracy can be traded off for a significant reduction
in the computational cost. This insight has resulted in a significant
body of work that incorporates regularizing terms directly in the
objective function used for the training of DL model training. These
loss regularizers, e.g., L1 norm terms, “zero out” several connections,
thus reducing the overall model complexity directly at training.
For instance, in [15], the authors propose MorhpNet, a resource-
constrained regularization that outperforms prior methodologies in
terms of accuracy given a maximum FLOP constraint. Nonetheless,
these methods use the number of floating points operations or the
number of model parameters as a proxy for the model complexity,
without explicitly accounting for hardware-based metrics such as
energy or power consumption.

Quantization: Beyond pruning-based methodologies that re-
duce the DL model complexity, other works reduce directly their
computational complexity via quantization [7]. The key insight is
that, while the number of FLOPs remains the same, the hardware
execution cost is reduced by reducing the bit-width per multiply-
accumulate (MAC) operation. In turn, the reduced cost per opera-
tion results in overall hardware efficiency, compounded by lower
storage requirements. Several methodologies have explored this
trade-off by considering different bit-width values [9, 10, 17, 24].
Nevertheless, the effectiveness of quantization methods relies heav-
ily on the performance of the pre-quantized (seed) network [15],
without providing any insight on how the sizing of different DL

hyper-parameters affects the overall hardware efficiency and accu-
racy of the DL model.

Discussion: While pruning- and quantization-based methods
have been shown to significantly reduce the computational com-
plexity of ML models, recent work has highlighted some key limi-
tations. First, these methodologies focus on reducing the storage
required by model weights or the number of FLOPs. However, Yang
et al. show that FLOP reduction does not yield the optimal DNN
design with respect to power or energy consumption [38] largely
because the parameter-heavy layers of a DL model are not necessar-
ily the most energy-consuming. Hence, pruning and quantization
methodologies rely on formulations that are hardware-unaware
and they do not necessarily result in Pareto-optimal configura-
tions in terms of hardware efficiency, even though the targeted
FLOP constraint is satisfied. In contrast, hardware-aware modeling
methodologies can pave the way to directly account for energy
consumption or runtime, as discussed in the next section.

Second, pruning methodologies traverse the design space only
locally around the original pre-trained DL model used as a seed.
Consequently, if the configuration of the DL model is viewed as a
hyper-parameter optimization problem to be globally solved, prun-
ing methodologies can only reach locally optimal solutions, whose
effectiveness is bound by the quality of the seed design. Neverthe-
less, Tan et al. show that that hardware-constrained models such as
MobileNets [23] are not Pareto-optimal with respect to accuracy for
a given level of hardware complexity. Instead, state-of-the-art re-
sults in platform-aware hyper-parameter optimization [37] yield DL
design closer to the Pareto front by globally solving the hardware-
aware optimization problem. In this paper, we therefore focus on
hardware-aware optimization techniques based on Bayesian opti-
mization and Neural Architecture Search (NAS).

3 HARDWARE-AWARE RUNTIME AND
ENERGY MODELING FOR DL

3.1 DL model-hardware platform interplay

As mentioned before, effective optimization requires efficient and
reliable models. It is not surprising, therefore, that the first efforts
in hardware models for DL have been developed in the context
of hardware efficient DNNs. In [38], Yang et al. have shown that
energy-based pruning achieves better energy-efficiency compared
to its FLOPs-based counterpart. During each iteration of pruning-
finetuning, Yang et al. use an energy consumption model to decide
on which DNN layers to prune next. To this end, the authors de-
velop a predictive model based on measurements on their hardware
accelerator, namely Eyeriss [5]. Their formulation models energy
consumption as a weighted function of the number of accessed to
the different levels of the memory hierarchy, wherein each level
is profiled based on the energy consumption per operation or per
memory access pattern (e.g., overhead to access the register file, the
global buffer, the main memory, etc.).

Specifically, they calculate the energy consumption for each
layer in two parts, computation energy consumption (Ecomp), and
data movement energy consumption (Egq;q)- Ecomp is calculated
by multiplying the number of MACs in the layer by the energy
consumption for running each MAC operations in the computation
core. Eg,41, is the total summation of energy consumption of all the
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Figure 1: Overview of NeuralPower [3].

memory access for each level of energy. In addition, they account
for the impact of data sparsity and bitwidth reduction on energy
consumption. This is based on their assumption that a MAC and its
memory access can be skipped completely when the input activa-
tion or weight is zero. The impact of bitwidth is also calculated by
scaling the energy consumption of corresponding hardware units.

This work provides a good model to evaluate the energy cost
for running DNNSs on the ASICs. However, transferring the model
or methodology to other platforms is not trivial as it may require
additional model selection and training.

In a more recent development, the Paleo framework proposed
by Qi et al. [27] proposes a methodology for modeling of hardware
metrics, i.e., runtime of DNNs, without resorting to FLOPs as a
proxy for hardware efficiency. As opposed to Eyeriss, Paleo has
been developed with general purpose platforms (GPUs) in mind.
In their approach, the authors present an analytical method to
determine the runtime of DNNs executing on various platforms.
The framework has been shown to flexibly scale across different
GPU platforms and DNN types.

Specifically, Paleo divides the runtime for each layer into two
parts, computation time and communication time. For a layer u,
and the operation f on a device d, the total execution time T(u)
can be expressed as:

T(u) = R(Pa(w)) + C(f,d) + W(f.d) 1

where R(Pa(u)) is the time to fetch the input produced by its par-
ent layers, ‘W(f,d) is the time to write the outputs to the local
memory, and C(f, d) is the total computation time with f. Assum-
ing that we are interested in metrics for a device d under aver-
age speed conditions, the computation time can be determined by:
C(f,d) = FLOPs(f)/speed(d). Following a similar assumption on
IO bandwidth, R and W can be calculated as the amount of the
reading/writing data divided by the average IO bandwidth. In the
case of multiple workers, the model still holds by replacing the av-
erage IO bandwidth with the communication bandwidth between
two devices.

Since the peak FLOPs and peak bandwidth provided by the man-
ufacturers are usually different than the actual speed of the devices
running specific DNNs, the authors introduce the concept of plat-
form percent of peak (PPP) to capture the average relative ineffi-
ciency of the platform compared to peak performance. However,
for different devices, the average computation and communication
speeds can vary from one to another. Therefore, one needs to evalu-
ate those metrics with many different tests to obtain reliable values.
In addition, Paleo does not consider models for predicting power
or energy consumption.

3.2 The NeuralPower framework

To provide adaptive and reliable prediction of runtime, power, and
energy for DNNs simultaneously, Cai et al. [3] have introduced
NeuralPower, a layer-wise predictive framework based on sparse
polynomial regression for determining the serving energy consump-
tion of convolutional neural networks (CNNs) deployed on GPU
platforms. Given the architecture of a CNN, NeuralPower provides
an accurate prediction and breakdown for power and runtime across
all layers in the whole network. In their framework, the authors
also provide a network-level model for the energy consumption of
state-of-the-art CNNs.

Specifically, NeuralPower introduces a flexible and comprehen-
sive way to build the runtime, power, and energy models for various
DNNs on a variety of platforms. The modeling can be divided into
two parts, as shown in Figure 1.

The layer-level approach provides accurate models for running
a specific layer on each of the considered platform. Instead of using
proxies to determine how fast a layer runs as in Paleo, NeuralPower
learns the models by actually running the DL models on the target
platform. For example, the runtime T of a layer can be expressed
as:

Dr
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The model in Equation 2 consists of two parts. The first part is
the regular degree-Kt polynomial terms which are a function of
the features in the input vector x7 € RP7 . x; is the i-th component
of x7. gjj is the exponent for x; in the j-th polynomial term, and
cj is the coefficient to learn. This feature vector of dimension Dt
includes layer configuration hyper-parameters, such as the batch
size, the input size, and the output size. For different types of layers,
the dimension D7 is expected to vary. For convolutional layers,
for example, the input vector includes the kernel shape, the stride
size, and the padding size, whereas such features are not relevant
to the formulation/configuration of a fully-connected layer. The
second part is comprised of special polynomial terms ¥, which
represent physical operations related to each layer (e.g., the total
number of memory accesses and the total FLOPs). The number of
the special terms differs from one layer type to another. Finally, ¢}
is the coefficient of the s-th special term to learn.

Similarly, a power model can be constructed and the total energy
consumption can be calculated by the product of power consump-
tion and runtime. The models are trained on the real data obtained
from real GPU platforms running state-of-the-art DNNs.



One can compare NeuralPower against Paleo with respect to
runtime prediction only, as the latter does not address energy or
power modeling. Table 1 shows the modeling results for each layer.
As it can be seen, NeuralPower outperforms Paleo in terms of model
accuracy for the most widely used types of layers in CNNs.

Table 1: Comparison of runtime models for common CNN
layers between NeuralPower [3] and Paleo [27].

Layer NeuralPower [3] Paleo [27]
Model size RMSPE  RMSE (ms) | RMSPE  RMSE (ms)
CONV 60 39.97% 1.019 58.29% 4.304
FC 17 41.92% 0.7474 73.76% 0.8265
Pool 31 11.41% 0.0686 79.91% 1.763

For the network level model, NeuralPower uses the summation
of the layer level results to achieve total runtime and total energy.
The average power can be calculated by dividing total energy by
total runtime. Table 2 shows the runtime predictions at network
level for NeuralPower and Paleo. From Table 1 and Table 2, we
can see NeuralPower generally achieves better accuracy in both
layer-level and network-level runtime prediction.

Table 2: Comparison of runtime models for common CNNs
between NeuralPower [3] and Paleo [27].

CNN ‘ Paleo[27] ‘ NeuralPower[3] H Actual runtime
VGG-16 345.83 373.82 368.42
AlexNet 33.16 43.41 39.02

NIN 45.68 62.62 50.66
Overfeat 114.71 195.21 197.99

CIFAR10-6conv 28.75 51.13 50.09

Lastly and most importantly, NeuralPower is currently the state-
of-the-art method in terms of prediction error when capturing the
runtime, power, and energy consumption for various CNNs, with
mean squared error less than 5%. Moreover, NeuralPower achieves
a 70% accuracy improvement compared the previously best model,
i.e., Paleo. Using learning-based polynomial regression models, Neu-
ralPower can be flexibly employed for prediction across different
DL software tools (e.g., Caffe [25] or TensorFlow [1]) and GPU plat-
forms (i.e., both low-power Nvidia Tegra boards and workstation
Nvidia Titan X GPUs).

4 HARDWARE-AWARE OPTIMIZATION FOR
DL

4.1 Model-based optimization

Background: Even without hardware-related design objectives,
the hyper-parameter optimization of DL models, i.e., deciding on
tunable hyper-parameters such as the number of features per layer
or the number of layers, is a challenging design task. Early attempts
towards efficiently solving this problem use sequential model-based
optimization (SMBO) when the objective function (i.e., test error
of each candidate DNN configuration) has no simple closed form
and its evaluations are costly. SMBO methodologies use a surro-
gate (cheaper to evaluate) probabilistic model to approximate the
objective function.
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Figure 2: Model-based optimization (denoted as BayesOpt)
outperforms alternative methods such as random search
and genetic algorithms in terms of finding more accurate,
energy-efficient designs closer to the Pareto front [29].

Different formulations have been used for SMBO probabilistic
models, such as Gaussian Processes (GP) [32] or tree-structured
Parzen estimators (TPE) [2]. Regardless of the choice of the SMBO
formulation, intuitively the probabilistic model encapsulates the
belief about the shape of functions that are more likely to fit the
data observed so far, providing us with a cheap approximation for
the mean and the uncertainty of the objective function.

Each SBMO algorithm has three main steps: (i) maximization of
acquisition function: to select the point (i.e., next candidate DNN
configuration) at which the objective will be evaluated next, SMBO
methods use the so-called acquisition function. Intuitively, the ac-
quisition function provides the direction in the design space toward
which there is an expectation of improvement of the objective. By
evaluating cheaply the acquisition function at different candidate
points (i.e., different DNN configurations), SMBO selects the point
with maximum acquisition function value. (ii) evaluation of the ob-
Jjective: the currently selected DNN design is created and trained to
completion to acquire the validation error. (iii) probabilistic model
update: based on the value of the objective at the currently consid-
ered DNN design, the probabilistic model is updated.

Hardware-aware SMBO: If Gaussian processes are used to for-
mulate the probabilistic model, the resulting special case SMBO con-
stitutes a powerful approach, namely Bayesian optimization [32].
Prior art has proposed general frameworks for employing Bayesian
optimization with multiple objective and constraint terms [21]. To
this end, a natural extension is to use these formulations to solve
the hyper-parameter optimization of DNNs under hardware con-
straints.

Hernéandez-Lobato et al. has successfully used Bayesian optimiza-
tion to design DNNs under runtime constraints [21]. More inter-
estingly, the authors have investigated the co-design of hardware
accelerators and DNNGs in [22, 29], where the energy consumption
and the accuracy of a DNN correspond to objective terms that de-
pend on both DNN design choices (e.g., number of features per layer
or number of layers) and hardware-related architectural decisions
(e.g., bit width and memory size).
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Figure 3: Overview of HyperPower flow and illustration of

In Figure 2, we can observe that the SMBO-based method (de-
noted as BayesOpt) outperforms alternative methods such as ran-
dom search and genetic algorithms in terms of finding more accu-
rate, energy-efficient designs closer to the Pareto front. This is to
be expected, since the model-based approach provides a hardware-
aware model to guide the design space exploration faster towards
Pareto-optimal designs.

4.2 Multi-layer co-optimization

From a different perspective, Minerva [30] presents an automated
co-optimization method including multiple layers in the system
stack: algorithm, architecture and circuit levels. In that approach,
five stages are used: 1. Training space exploration; 2. Microarchitec-
ture design space; 3. Data type quantization; 4. Selective operation
pruning; 5. SRAM fault mitigation. Based on these five steps, the
DNN s can be trained, pruned and deployed to Minerva with low
power consumption, without sacrificing their model accuracy.

In general, the savings from optimization at the software, archi-
tecture, and circuit level, can be combined together. According to
tests on five different datasets, including MNIST, Forest, Reuters,
WebKB, and 20NG, Minerva achieves an average power saving of
8.1x compared with a baseline accelerator. The authors conclude
that fine-grain, heterogeneous datatype optimization, aggressive
prediction and pruning of small activity values, and active hardware
fault detection coupled with domain-aware error mitigation are the
main contributors for the savings. Given its low footprint, Minerva
can be applied to IoT and mobile devices, but it doesn’t rely on a
comprehensive optimization framework that can be extended to
generic platforms. We present next one such approach.

4.3 HyperPower framework

A special case of Bayesian optimization is one where constraints
can be expressed and known a priori; these formulations enable
models that can directly capture candidate configurations as valid
or invalid [14]. In HyperPower [34], Stamoulis et al. investigate
the key insight that predictive models (as discussed in the previous
section) can provide an a priori knowledge on whether the energy
consumption of any DNN configuration violates the energy budget
or not. In other words, predictive models can be used in the context
of Bayesian optimization and can be formulated as a priori known
constraints.

More specifically, HyperPower introduces a hardware-aware
acquisition function that returns zero for all constraint-violating

the Bayesian optimization procedure during each iteration [34].

candidate designs, hence effectively guiding the design space ex-
ploration toward hardware constraint-satisfying configurations
with optimal DNN accuracy. By accounting for hardware con-
straints directly in the SMBO formulation, HyperPower reaches the
near-optimal region 3.5X faster compared to hardware-unaware
Bayesian optimization. The proposed acquisition function uses pre-
dictive models for power consumption and memory utilization, thus
showing the interplay of both modeling and optimization towards
enabling hardware-aware DL.

The general structure of HyperPower is shown in Figure 3.
Bayesian optimization is a sequential model-based approach that ap-
proximates the objective function with a surrogate (cheaper to eval-
uate) probabilistic model M, based on Gaussian processes (GP). The
GP model is a probability distribution over the possible functions of
f(x), and it approximates the objective at each iteration n + 1 based
on data X := x; € X_, queried so far. HyperPower assumes that
the values f := fi.,, of the objective function at points X are jointly
Gaussian with mean m and covariance K, ie, f | X ~ N(m,K).
Since the observations f are noisy with additive noise € ~ AN(0, 2),
the GP model can be written as y | f, 0 ~ N(f, °I). At each point
x, GP provides a cheap approximation for the mean and the un-
certainty of the objective, written as p 5((y|x) and illustrated in
Figure 3 with the black curve and the grey shaded areas.

Each iteration n+1 of a Bayesian optimization algorithm consists
of three key steps:

Maximization of acquisition function: one first needs to se-
lect the point x,11 (i.e., next candidate NN configuration) at which
the objective (i.e., the test error of the candidate NN) will be eval-
uated next. This task of guiding the search relies on the so-called
acquisition function a(x). A popular choice for the acquisition func-
tion is the Expectation Improvement (EI) criterion, which computes
the probability that the objective function f will exceed (negatively)
some threshold y™, i.e., EI(x) = /_0; max{y* —y,0} - p m(y|x) dy.
Intuitively, a(x) provides a measure of the direction toward which
there is an expectation of improvement of the objective function.

The acquisition function is evaluated at different candidate points
x, yielding high values at points where the GP’s uncertainty is high
(i.e., favoring exploration), and where the GP predicts a high objec-
tive (i.e., favoring exploitation) [32]; this is qualitatively illustrated
in Figure 3 (blue curve). HyperPower selects the maximizer of a(x)
as the point x,,4+1 to evaluate next (green triangle in Figure 3). To en-
able power- and memory-aware Bayesian optimization, HyperPower
incorporates hardware-awareness directly into the acquisition func-
tion.



Evaluation of the objective: Once the current candidate NN
design xp4+1 has been selected, the NN is generated and trained
to completion to acquire the test error. This is the most expensive
step. Hence, to enable efficient Bayesian optimization, HyperPower
focuses on detecting when this step can be bypassed.

Probabilistic model update: As the new objective value y,41
becomes available at the end of iteration n + 1, the probabilistic
model p 5((y) is refined via Bayesian posterior updating (the pos-
terior mean my1(x) and covariance covariance K1 can be ana-
lytically derived). This step is quantitatively illustrated in Figure 3
with the black curve and the grey shaded areas. Attention can be
paid to how the updated model has reduced uncertainty around
the previous samples and newly observed point. For an overview
of GP models the reader is referred to [32].

To enable a priori power and memory constraint evaluations that
are decoupled from the expensive objective evaluation, HyperPower
models power and memory consumption of a network as a function
of the J discrete (structural) hyper-parameters z € Z{ (subset of
x € X); it trains on the structural hyper-parameters z that affect
the NN’s power and memory (e.g., number of hidden units), since
parameters such as learning rate have negligible impact.

To this end, HyperPower employs offline random sampling by
generating different configurations based on the ranges of the con-
sidered hyper-parameters z. Since the Bayesian optimization corre-
sponds to function evaluations with respect to the test error[33],
for each candidate design z; HyperPower measures the hardware
platform’s power P; and memory M; values during inference and
not during the NN’s training. Given the L profiled data points
{(z;, P;, M, l)}{‘: ;> the following models that are linear with respect

to both the input vector z € Z{r and model weights w, m € R/ are
trained, i.e.:

J
Power model : P(z) = Z wj - Zj 3)
j=1
J
Memory model : M(z) = Z mj - zj (4)
J=1

HyperPower trains the models above by employing a 10-fold cross
validation on the dataset {(z;, P;, M, 1)}{“:1. While the authors ex-
perimented with nonlinear regression formulations which can be
plugged-in to the models (e.g., see recent work [3]), these linear func-
tions provide sufficient accuracy. More importantly, HyperPower
selects the linear form since it allows for the efficient evaluation
of the power and memory predictions within the acquisition func-
tion (next subsection), computed on each sampled grid point of the
hyper-parameter space.

HW-IECI: In the context of hardware-constraint optimization,
EI allows to directly incorporate the a priori constraint informa-
tion in a representative way. Inspired by constraint-aware heuris-
tics [14] [16], the authors propose a power and memory constraint-
aware acquisition function:

a(x) = / max{y* 4,0} - p (1)
1[P(z) < PB] - IM(z) < MB] dy

®)

where z are the structural hyper-parameters, p o((y|x) is the pre-
dictive marginal density of the objective function at x based on
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Figure 4: Assessment of HyperPower (denoted as HW-IECI)
against hardware-unaware methods. Best observed test er-
ror against the number of function evaluations [34].

surrogate model M. I[P(z) < PB] and I[M(z) < MB] are the indi-
cator functions, which are equal to 1 if the power budget PB and
the memory budget MB are respectively satisfied. Typically, the
threshold y* is adaptively set to the best value y* = max;=1., y;
over previous observations [32][14].

HyperPower captures the fact that improvement should not be
possible in regions where the constraints are violated. Inspired
by the integrated expected conditional improvement (IECI) [16]
formulation, the authors refer to this proposed methodology as
HW-IECI. Uncertainty can be also encapsulated by replacing the
indicator functions with probabilistic Gaussian models as in [16],
whose implementation is already supported by the used tool [33].

NeuralPower exploits the use of trained predictive models based
on the power and memory consumption of DNNs, allowing the
HyperPower framework to navigate the design space in a constraint
“complying” manner. As shown in Figure 4, the authors observe that
the proposed HyperPower methodology (denoted as HW-IECI) con-
verges to the high-performing, constraint-satisfying region faster
compared to the hardware unaware one.

A key advantage of model-based optimization methodologies
is that, given their black-box optimization nature, they can be ex-
tended to various type of hardware constraints and design con-
siderations. For instance, Stamoulis et al. [35] show that Bayesian
optimization can be used to efficiently design adaptive DNNs un-
der edge-node communication constraints. In particular, hardware-
aware adaptive DNNs achieve 6.1x more energy efficient designs
than state-of-the-art for same accuracy.

4.4 Platform-aware NAS

Traditional SMBO-based black-box optimization methods fit a prob-
abilistic model over the entire design, i.e., the hyper-parameters of
all layers can be simultaneously changed. Hence, while Bayesian op-
timization methodologies are extremely efficient for design spaces
with up to 20 hyper-parameters, they could suffer from high di-
mensionality in larger DL models, e.g, parameter-heavy Recurrent
Neural Networks (RNNs) used in speech recognition applications.
To address this challenge, recent breakthroughs in hyper-parameter
optimization focus on the following insight: DL models designed
by human experts exhibit pattern repetition, such as the residual
cell in ResNet-like configurations [20]. To this end, recent work
focuses on the hyper-parameter optimization of a repetitive mo-
tif, namely cell, which is identified on a simpler dataset. After
the optimal cell is identified, it is repeated several times to con-
struct larger, more complex DL models that achieve state-of-the-art
performance on larger datasets and more complex learning tasks.
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Figure 5: Pareto-optimal candidates (colored dots) identified
by platform-aware NAS-based method [11].

Intuitively, this transferability property of the optimal cell allows
the hyper-parameter optimization probabilistic model to focus on a
smaller structured design spaces with fewer hyper-parameters. Re-
cent work uses techniques such as Reinforcement learning (RL) or
Evolutionary algorithms (EA) to guide the exploration towards the
optimal cell. The body of work based on this insight is called Neural
Architecture Search (NAS). Nevertheless, initial NAS-based meth-
ods focused explicitly on optimizing accuracy, without considering
hardware-related metrics.

Motivated by this observation, the recently published NAS frame-
works MnasNet [37] and DPP-Net [11] propose formulations that
co-design the cell for both DNN accuracy and runtime. More specif-
ically, DPP-Net proposes a progressive search for Pareto-optimal
DNNs, where a probabilistic model is obtained on smaller cell de-
signs and new, more complex cells are being proposed by the prob-
abilistic model as the search progresses. The DPP-Net NAS-based
progressive model ranks candidate cell configurations based on
a weighted ranking of both the anticipated DL accuracy and the
runtime of each configuration measured on a hardware platform.
Similarly, MnasNet considers a multi-objective term to be optimized,
then accounts for both runtime (on a Google Pixel phone platform)
and accuracy of candidate cell designs. Figure 5 in [11] shows the
Pareto optimal DNN candidates with respect to error and FLOPS.
The NAS-based method, i.e.,, DPP-Net, is able to identify models
with a large number of parameters and slow inference time. The
DPP-Nets can achieve better trade-off among multiple objectives
compared with state-of-the-art mobile CNNs and models designed
using architecture search methods. Similarly, the MNAS method
outperforms the state-of-the-art handcrafted designs, namely Mo-
bileNet [23], by identifying designs closer to the Pareto front.

The ever-increasing interest of ML practitioners in NAS meth-
ods shows that these methodologies will provide the foundation
for novel hardware-aware optimization techniques. Several open
questions remain to be investigated, as we motivate further in the
following section.

5 UNEXPLORED RESEARCH DIRECTIONS

5.1 Hardware-aware modeling

As motivated in the previous section, the development of predictive
models to capture the hardware performance of DL application
has already played a critical role in the context of hyper-parameter
optimization. To this end, we postulate that predictive models are
poised to have significant impact towards enabling hardware-aware

ML. However, the following directions of research are crucial for
applicability of these models in a co-design environment

5.1.1 Hardware-aware models for DL with general topologies.
Current work has addressed building models largely for linear or
pipelined neural network structures. However, as mentioned before,
such predictive models should be suitably extended or developed
anew for nonlinear DNN structures [3]. This is of critical impor-
tance especially in the context of NAS-based methods, where the
cell design consists of several concatenating operations that are
executed in a nonlinear fashion with several non-sequential depen-
dencies, unlike the case of traditional DNN designs. To this end, the
development of hardware-aware predictive models for NAS-like
frameworks is essential.

5.1.2  Cross-platform hardware-aware models. Existing runtime
and energy models currently consider specific types of platforms,
with Nvidia GPUs being the hardware fabric in both the Paleo [27]
and the NeuralPower [3] frameworks. It is therefore important
to explore other platforms and segments of computing systems
spanning the entire edge to server continuum. It becomes crucial
to develop predictive models for capturing the runtime or energy
consumption for other types of neural accelerators and platforms,
such as reconfigurable architectures presented in [12]. Towards this
direction, we postulate that cross-platform models or models that
account for chip variability effects [4, 6, 36] can significantly help
ML practitioners to transfer knowledge from one type of hardware
platform to another and to choose the best model for that new
platform.

5.2 Hardware-aware optimization

There are several directions to advance state-of-the-art in the con-
text of hardware-aware hyper-parameter optimization, especially
given the recent interest in NAS-based formulations.

5.2.1 Multi-objective optimization. The design of DL models
is a challenging task that requires different trade-offs beyond the
currently investigated accuracy versus runtime/energy cases. For
instance, while the use of a simpler DNN design can improve the
overall runtime, it could significantly degrade the utilization or
throughput achieved given a fixed underlying hardware platform.
Hence, we believe that several novel approaches that focus on
hardware-aware hyper-parameter optimization would be extending
current SMBO models to multiple design objectives.

5.2.2 Hardware-DL model co-optimization. We postulate that
model-based hyper-parameter optimization approaches will allow
innovation beyond the design of DL models, since the predictive
models can be viewed also as a function of the underlying hardware
platform. That is, Bayesian optimization- and NAS-based formula-
tions can be extended to cases where both the DL model and the
hardware are co-designed. For instance, the optimal NAS-like cell
can be identified while varying the hardware hyper-parameters of
a reconfigurable architectures presented, such as the number of
processing elements [12]. Initial efforts focusing on the design of
hardware accelerators based on 3D memory designs [13] already
exploit energy-based models [5] for design space exploration.



6 CONCLUSION

To conclude, tools and methodologies for hardware-aware machine
learning have increasingly attracted attention of both academic
and industry researchers. In this paper, we have discussed recent
work on modeling and optimization for various types of hardware
platforms running DL algorithms and their impact on improving
hardware-aware DL design. We point out several potential new di-
rections in this area, such as cross-platform modeling and hardware-
model co-optimization.
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