
This is the authors’ final version. The authoritative version will appear in the proceedings of ICCAD 2018.

Designing Adaptive Neural Networks
for Energy-Constrained Image Classification
Dimitrios Stamoulis, Ting-Wu (Rudy) Chin, Anand Krishnan Prakash,
Haocheng Fang, Sribhuvan Sajja, Mitchell Bognar, Diana Marculescu
Department of ECE, Carnegie Mellon University, Pittsburgh, PA

Email: dstamoul@andrew.cmu.edu
ABSTRACT
As convolutional neural networks (CNNs) enable state-of-the-art
computer vision applications, their high energy consumption has
emerged as a key impediment to their deployment on embedded
and mobile devices. Towards efficient image classification under
hardware constraints, prior work has proposed adaptive CNNs,
i.e., systems of networks with different accuracy and computation
characteristics, where a selection scheme adaptively selects the
network to be evaluated for each input image. While previous
efforts have investigated different network selection schemes, we
find that they do not necessarily result in energy savings when
deployed on mobile systems. The key limitation of existing methods
is that they learn only how data should be processed among the
CNNs and not the network architectures, with each network being
treated as a blackbox.

To address this limitation, we pursue a more powerful design
paradigm where the architecture settings of the CNNs are treated
as hyper-parameters to be globally optimized. We cast the design of
adaptive CNNs as a hyper-parameter optimization problem with re-
spect to energy, accuracy, and communication constraints imposed
by the mobile device. To efficiently solve this problem, we adapt
Bayesian optimization to the properties of the design space, reach-
ing near-optimal configurations in few tens of function evaluations.
Our method reduces the energy consumed for image classification
on a mobile device by up to 6×, compared to the best previously
published work that uses CNNs as blackboxes. Finally, we evaluate
two image classification practices, i.e., classifying all images locally
versus over the cloud under energy and communication constraints.

1 INTRODUCTION
Deep convolutional neural networks (CNNs) have been established
as one of the most powerful machine learning techniques for a
plethora of computer vision applications. In response to the growing
demand for state-of-the-art performance in real-world deployment,
∗ Mitchell Bognar was an intern at Carnegie Mellon University; he is currently a
student at Duke University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00
https://doi.org/10.1145/3240765.3240796

the complexity of CNNs has increased significantly, which has come
at the significant cost of energy consumption. As a consequence, the
energy requirements of CNNs have emerged as a key impediment
preventing their deployment on energy-constrained embedded and
mobile devices, such as Internet-of-Things (IoT) nodes, wearables,
and smartphones. For instance, object classification with AlexNet
can drain the smartphone battery within an hour [33]. This design
challenge has resulted in an ever-increasing interest to develop
energy-efficient image classification solutions [24].

As means to reducing the average classification cost by trading
off the accuracy, prior art has investigated the use of adaptive CNNs,
i.e., systems of CNNs with different accuracy and computation
characteristics, where a selection scheme adaptively selects the
network to be evaluated for each input image [1]. A large body of
work from both industry [9] and academia [17–20, 32] exploits the
insight that a large portion of an image dataset can be correctly
classified by simpler CNN architectures. Nevertheless, all previous
approaches focus only on learning how data should be processed
among the CNNs and not the network architectures. Hence, existing
adaptive CNNs are optimized only with respect to the network
selection scheme, with each CNN being treated as a blackbox (i.e.,
pre-trained off-the-shelf CNN).

Moreover, prior work has not explicitly profiled energy savings
on state-of-the-art mobile systems on chip (SoCs). Thus, the re-
ported savings could be attributed to either significant runtime
reduction when executing smaller CNNs on powerful workstation
GPUs or to gate count (area, ergo power) reduction on ASIC-like
designs. In our analysis, however, we found that the energy-limited
mobile SoCs have small headroom for savings, hence limiting the
overall effectiveness of existing adaptive CNN designs. For example,
our results show that existing methods, if tested on commercial
Nvidia Tegra TX1 platforms, could actually lead to an increase in
energy consumption under strict accuracy constraints.

In this paper, we make the following observation: the minimum
energy achieved by adaptive CNNs can be significantly reduced
if the architecture of each individual network is optimized jointly
with the network selection scheme. Our key insight is to treat the
architectural choices of each network (e.g., number of hidden units,
number of feature maps, etc.) as hyper-parameters. To the best of
our knowledge, there is no global, systematic methodology for the
hardware-constrained hyper-parameter optimization of adaptive
CNNs based on hardware measurements on a real mobile platform,
even though prior art has highlighted this suboptimality [20]. Such
observation constitutes the key motivation behind our work.

Our work makes the following contributions:

ar
X

iv
:1

80
8.

01
55

0v
2

 [c
s.L

G
]

7
A

ug
 2

01
8

https://doi.org/10.1145/3240765.3240796

(1) Globally optimized adaptive CNNs: To the best of our
knowledge, we are first to optimize systems of adaptive
CNNs for both the network architectures and the network
selection scheme, under hardware constraints imposed by
the mobile platforms. Our methodology identifies designs
that outperform the best previously published approaches in
resource-constrained adaptive CNNs by up to 6× in terms of
minimum energy per image and by up to 31.13% in terms of
accuracy improvement, when tested on a commercial Nvidia
mobile SoC and the CIFAR-10 dataset.

(2) Adaptive CNNs as hyper-parameter problem: To enable
this design paradigm, our work formulates the design of
adaptive CNNs as a hyper-parameter optimization problem,
where the architectural parameters of each network, such as
the number of hidden units and the number of feature maps,
are treated as hyper-parameters to be jointly optimized in-
trinsically with respect to hardware constraints. We show
that our formulation is generic and able to incorporate dif-
ferent design goals that are significant in a mobile design
space. In our results, we consider optimization under energy,
accuracy, and communication constraints.

(3) Enhancing Bayesian optimization for designing adap-
tive CNNs: To solve this challenging hyper-parameter opti-
mization problem, we adapt Bayesian optimization (BO) to
exploit properties of the mobile design space. In particular,
we observe that once the accuracy and hardware measure-
ments (power, runtime, energy) have been obtained for a
set of candidate CNN designs, it is relatively inexpensive
to sweep over different network selection schemes to pop-
ulate the optimization process with more data points. This
fine-tuning step allows the modified BO, which we denote as
BO+ in the remainder of the paper, to reach the near-optimal
region faster compared to a hardware-unaware BO method-
ology, and to effectively reach the optimal designs identified
by exhaustive (grid) search.

(4) Insightful design space exploration: Image classification
under mobile hardware constraints constitutes a challenging
design space with several trade-offs possible. We exploit the
effectiveness of our method as a useful aid for design space
exploration, and we evaluate two representative practices
for image classification with adaptive CNNs, i.e., classify-
ing all images locally or over the cloud under energy and
communication constraints. We investigate both these meth-
ods under different energy, communication, and accuracy
constraints on a commercial Nvidia system, thus providing
computer vision practitioners and mobile platform designers
with insightful directions for future research.

2 RELATED WORK
Adaptive CNN execution: Prior art has shown that a large per-
centage of images in an image dataset are easy to classify even
with a simpler CNN configuration [32]. Since the “easy” examples
do not require the computational complexity and overhead of a
massive, monolithic CNN, this inspires the use of adaptive CNNs
with varying levels of accuracy and complexity. This insight of
dynamically trading off accuracy with energy-efficiency can be

found in several existing approaches from different groups and
under different names (e.g., conditional [18], scalable [32], etc.).

The early efforts to enable energy efficiency were based on “early-
exit” conditions placed at each layer of a CNN, aiming at bypassing
later stages of a CNN if the classifier has a “confident” predic-
tion in earlier stages. These methods include the scalable-effort
classifier [32], the conditional deep learning classifier [18], the
distributed neural network [31], the edge-host partitioned neural
network [15], and the cascading neural network [16]. However,
recent work shows that adaptive execution at the network level
outperforms layer-level execution [1]. Hence, we focus on network-
level designs. We note that our formulation is generic and can be
flexibly applied to the layer-wise case.

At the network-level, Takhirov et al. have trained an adaptive
classifier [30]. However, the method is applied on regression-based
classifiers of low complexity. Park et al. propose a two-network
adaptive design [20], where the decision of which network to pro-
cess the input data is done by looking into the “confidence score”
of the network output. Bolukbasi et al. extend the formulation of
network-level adaptive systems to multiple networks [1]. Finally,
other works extend the cascading execution to more tree-like struc-
tures for image classification [17, 23].

Nevertheless, existing approaches rely on off-the-shelf network
architectures without studying their architectures jointly. While
prior art has explicitly highlighted this limitation [20], to the best of
our knowledge there is no global, systematic methodology for the
hardware-constrained hyper-parameter optimization of adaptive
CNNs. On the contrary, our work is the first to cast this problem
as a hyper-parameter optimization problem and to enhance a BO
methodology to efficiently solve it, thus effectively designing both
the CNN architectures and the chooser functions among them.

Pruning- and quantization-based energy efficient CNNs:
Beyond adaptive CNNs, there are two key approaches that address
energy efficiency based on CNN parameter reduction. First, prior
art has investigated pruning-based methods to reduce the network
connections [6, 11, 33]. Second, other works reduce directly the
computational complexity of CNNs by quantizing the network
weights [7]. Nevertheless, recent work argues that the effectiveness
of methods targeting the weights and parameters of a monolithic
CNN relies heavily on the performance of this baseline (seed) net-
work [10]. Hence, in our case we focus on adaptive CNN structures
to globally optimize and identify the sizing of the different CNNs.
Existing approaches are complimentary and could be used to fur-
ther reduce computational cost given the globally optimal “seed”
identified with our approach.

Hyper-parameter optimization: Hyper-parameter optimiza-
tion of CNNs has emerged as an increasingly challenging and ex-
pensive process, dubbed by many researchers to be more of an
art than science. In the context of hardware-constrained optimiza-
tion, among different model-based methods for hyper-parameter
optimization, several groups have shown that BO is effective for
architectural search in CNNs [26] and has been successfully used
for the co-design of hardware accelerators and NNs [13, 21], of NNs
under runtime [12] and power constraints [27]. Nevertheless, BO
has not been considered in the design space of adaptive CNNs. We
employ BO to identify both the flow of input images among the
CNNs and their sizing (e.g., number of filters, kernel sizes, etc.).

2

It is worth noting that existing methodologies rely on simplis-

tic proxies of the hardware performance (e.g., counts of the NN’s

weights [8] or energy per operation assumptions [22, 25]), or simu-

lation results [21]. Since our target application is the mobile and

embedded design space, we employ BO with all network architec-

tures sampled and optimized for on commercial mobile platforms

(i.e., NVIDIA boards) based on actual hardware measurements. In

addition, our work is the first to consider BO under constraints for

both the communication and computation energy consumption.

3 BACKGROUND

3.1 Adaptive Neural Networks

Image classification in an adaptive CNN is intuitive. To allow for

inference efficiency, an adaptive CNN system leverages the fact that

many examples are correctly classified by relatively smaller (com-

putationally more efficient) networks, while only a small fraction

of examples require larger (computationally expensive) networks

to be correctly classified.

Figure 1: Classifying an image x using adaptive neural net-

works comprised of M CNNs. The system evaluates Ni first,

and based on a decision functionκi,i+1 decides to useNi (x) as
the final prediction or to evaluate networks in later stages.

Let us consider the case with M neural networks to choose

from, i.e. N1, ...,Ni , ...,NM , as shown in Figure 1. For an input

data item x ∈ X, we denote the predictions of each i-th network as
Ni (x) ∈ RK , which represents the probabilities of input x belong-
ing to each of the K classes. Note that K is the number of classes
in the classification problem. To quantify the performance with re-

spect to the classification task, we denote the loss L(ỹ(x),y), where
ỹ(x) and y ∈ {1, 2, . . . ,K} are the predicted and true labels, respec-
tively. As common practice, ỹi (x) is defined as the most probable
class based on the current prediction, i.e., ỹi (x) = argmax Ni (x). To
simplify notation, as loss we use the 0-1 loss L(ỹi (x),y) = �ỹi (x)�y ,
showing whether the label ỹi (x) predicted from Ni fails to match

the true label y. Let L(ỹi (x),y) = Li be the loss per network Ni . In

addition, let us denote the performance (cost) term that we want to

optimize for as Ci = C(Ni (x)) of the i-th network.
Given an image to be classified, the N1 is always executed first.

Next, a decision function κ is evaluated to determine whether the
classification decision from N1 should be returned as the final an-
swer or the next network N2 should be evaluated. In general, we
denote decision function κi j : Ni (x) → {0, 1} that provides “con-
fidence feedback” and decides between exiting at state Ni (i.e.,

κi j = 0) or continuing at subsequent stage Nj (i.e., κi j = 1).

3.2 Network selection problem

Adaptive CNNs can be seen as an optimization problem [1, 20]. The

goal of the network selection problem is to select functions κ that
optimize for the per-image inference cost (e.g., average per image

runtime) subject to a constraint on the overall accuracy degradation.

For the sake of notation simplicity, we write the optimization formu-

lation for the two-network case, but the notation can be extended

to an arbitrary number of networksM [1]:

min
θ12
Ex∼X

[
C2 · κ12

(
N1(x)|θ12

)
+C1

]

s .t . E(x,y)∼X×Y
[(
1 − κ12

(
N1(x)|θ12

)) ·
(
L1

(
ỹ1(x),y

)−
L2

(
ỹ2(x),y

))]
≤ B

(1)

where the constraint here intuitively specifies that whenever the

image stays at N1, the error rate difference should not be greater
than B. We observe that in Equation 1 the cost function is optimized
only over the parameters of the decision functions, and not with

respect to the parameters of the individual networks.

Selecting the decision function κ: An effective choice for the
κi j function is a threshold-based formulation [20, 30], where we de-
fine as scoremargin SM the distance between the largest and the sec-
ond largest value of the vector Ni (x) = (N 1i (x),N 2i (x), ...,NK

i (x))
at the output of network Ni . Intuitively, the more “confident” the

CNN is about its prediction, the larger the value of the predicted

output, thus the larger the value of SM (since Ni (x)’s sum to 1).
Without loss of generality, in Figure 1 we show decisions be-

tween two subsequent stages, i.e., j = i + 1, for visualization and
notation simplicity. However, Nj could be any other network in the

design, i.e., j ∈ M ∧ i � j, hence “cascading” the execution to any
later stage. For the case of j = i + 1, let’s denote θi,i+1 the threshold
value for the decision function κi,i+1 between a network Ni and a

network Ni+1. If SM in the output of Ni is larger than θi,i+1, the
inference result from Ni is considered correct, otherwise Ni+1 is

evaluated next, i.e., κi,i+1(Ni (x)|θi,i+1) = �[SMi ≥θi,i+1]

3.3 Network design problem

Existing methodologies have investigated the design of a mono-

lithic CNN as a hyper-parameter optimization problem [12, 27],

where CNN architecture choices (e.g., number of feature maps per

convolution layer, number of neurons in fully connected layers,

etc.) are optimally selected such that the inference cost of the CNN

is minimized subject to maximum error constraint b.
To this end, we define design space H of a CNN, wherein a

point hi = (hi,1,hi,2,hi,3, ...) ∈ H is the vector with elements the

hyper-parameters of the neural network. Intuitively, the choice of

different h values, i.e., of a different network architecture, results in
different characteristics in both loss L(ỹ(x |h),y) and computational
efficiencyC(N (x |h)) of the network. For a single network, the hyper-
parameter optimization problem is written:

min
h∈H

Ex∼X
[
C

(
N (x |h))] s .t . E(x,y)∼X×Y

[
L

(
ỹ(x |h),y)] ≤ b (2)

We note that formulations based on Equation 2 do not incorporate

design choices encountered in adaptive CNNs.

3.4 Key insight behind our work

In summary, the two aforementioned optimization problems are

decoupled and have not been jointly studied to date. On the one

hand, the network selection problem (Equation 1) assumes the archi-

tectures of CNNs (i.e., vectors h) to be fixed and that the networks

3

are already available and pretrained. Consequently, the optimiza-

tion problem in Equation 1 is solved only over possible κ’s. On
the other hand, the network design problem (Equation 2) assumes a

single monolithic CNN and cannot be directly applied to adaptive

CNNs. In the following section, we describe how our methodology

elegantly formulates and optimizes both problems jointly.

4 PROPOSED METHODOLOGY

4.1 Hyper-parameter optimization

We formulate the design of adaptive CNNs as a hyper-parameter

optimization problem with respect to both the decision functions as

well as the networks’ sizing. For the system ofM neural networks
we can define design space Z that consists of the set of hyper-

parameters for each network hi and hyper-parameters θ ’s of the
decision functions κ’s, i.e., z = (h1, ...,hM ,θ12,θ23, ...), z ∈ Z.

Energy minimization: Our goal is to minimize the average

(expected) energy consumption per image subject to a maximum

accuracy degradation. Let us denote as E(Ni (x |hi)) the energy con-
sumedwhen executing neural networkNi to classify an input image

x ∈ X. For the two-network system (i.e.,M = 2), we write:
min

z=(h1,h2,θ12)
Ex∼X

[
E2

(
N2(x |h2)

) · κ12
(
N1(x |h1)|θ12

)
+

E1
(
N1(x |h1)

)]

s .t . E(x,y)∼X×Y
[(
1 − κ12

(
N1(x |h1)|θ12

)) ·
(
L1

(
ỹ1(x |h1),y

) − L2
(
ỹ2(x |h2),y

))]
≤ B

(3)

As a key contribution of our work, note that in the proposed

formulation (Equation 3) the overall energy and accuracy explic-

itly depend on the architecture of the networks based on the val-

ues of the respective hyper-parameters hi . Moreover, please note
that, unlike prior art that resorts in exhaustive (offline) or itera-

tive (online) methods to find a value for the threshold [20, 30], a

hyper-optimization treatment allows us to directly incorporate the

θ values as hyper-parameters that will be co-optimized alongside
the sizing of the networks.

Considering different design paradigms: Existing method-

ologies from several groups consider cases that either (i) all net-

works execute locally on the same hardware platform [20, 30], and

(ii) some of the networks are executed on remote servers, hence

some of the images will be communicated over the web [16]. The

formulation of the objective function in Equation 3 allows us to

consider energy consumption under different design paradigms.

First, let us consider the case where all networks are executed

locally. We denote as τ (Ni (x)) and P(Ni (x)) the runtime and power
required when evaluating a neural network Ni an input image

x ∈ X. The expected (per image) energy is therefore written as:
Ex∼X

[
P2

(
N2(x |h2)

) · τ (
N2(x |h2)

) · κ12
(
N1(x |h1)|θ12

)

+ P1
(
N1(x |h1)

) · τ (
N1(x |h1)

)] (4)

Second, we consider the case where some of the images x ∈ X are
sent to the server over the network and the result is being commu-

nicated back. In this case, the energy consumed is the product of the

power consumed from the client node P(Ni (x)) and total runtime
τ (Ni (x)) that takes to send the image and receive the result. For

the case of the two-network system, this design will correspond

to having N1 executing on the edge device and N2 on the server
machine. Hence, the total energy consumption is:

Ex∼X
[
Pidle ·

(
τserver

(
N2(x |h2)

)
+ τcommunication

)
·

κ12
(
N1(x |h1)|θ12

)
+ P1

(
N1(x |h1)

) · τedдe
(
N1(x |h1)

)] (5)

where τedдe and τserver is the runtime when executing on the edge
device and the server, respectively, and Pidle is the idle power of
the edge device while waiting for the result.

Energy-constrained optimization: We can also consider the

problem of minimizing classification error, while not exceeding a

maximum energy per image Emax . This design case is significant

for image classification under the energy budget imposed by mobile

hardware engineers. Formally, we can solve:

min
z=(h1,h2,θ12)

E(x,y)∼X×Y
[(
1 − κ12(N1(x |h1)|θ12)

)
·

(
L1

(
ỹ1(x |h1),y

) − L2
(
ỹ2(x |h2),y

))]

s .t . Ex∼X
[
E2

(
N2(x |h2)

) · κ12
(
N1(x |h1)|θ12

)
+

E1
(
N1(x |h1)

)] ≤ Emax

(6)

4.2 Adapting Bayesian optimization

Solving Equations 3 and 6 gives rise to a daunting optimization

problem, due to the fact that the constraint and objective have terms

that are costly to evaluate. That is, to obtain the overall accuracy,

all networks need to be trained, hence each step of an optimization

algorithm can take hours to complete.

To enable energy-aware hyper-parameter optimization, we use

Bayesian optimization. The effectiveness of Bayesian optimization

comes from of the approximation the costly “black-box” functions

with a surrogate model, based on Gaussian processes [26], which is

cheaper to evaluate. The design of adaptive CNNs (Equations 3, 6)

corresponds to constrained minimizing function f (z) over design
space Z and constraint д(z), i.e., minz∈Z f (z), subject to д(z) ≤
c . We adapt Bayesian optimization in this design space and we
summarize the methodology in Algorithm 1.

In each step d , Bayesian optimization queries the objective func-
tion f and the constraint function д at a candidate point zd and
records observations u,v ∈ R, respectively, acquiring a tuple
〈zd ,ud ,vd 〉. In the context of a system of adaptive neural networks,
this corresponds to profiling the energy, runtime, and power of each

network Ni (line 8), to obtain the expected energy consumption

and accuracy on an image dataset X (line 11).
In general, Bayesian optimization consists of three steps: first,

the probabilistic modelsM (for f and д) are fitted based on the

set of d − 1 data points D ∈ Z = 〈zl ,ul ,vl 〉d−1
l=1

collected so far

(line 2); second, the probabilistic modelsM are used to compute a so-

called acquisition function α(z,M), which quantifies the expected
improvement of the objective function at arbitrary points z ∈ Z,
conditioned on the observation historyD (α(·) in line 3); last, f and
д are evaluated at point zd , which is the current feasible optimizer
of the acquisition function (line 3).

Fine-tuning the functions κ: We make the observation that if
wemaintain the sizing of the networks considered in each outer iter-

ation of Algorithm 1, we can fine-tune across the decision functions

4

Algorithm 1 Bayesian optimization framework
Input: Obj. function f (z), constraint д(z), constraint value c , de-

sign spaceZ, Num. iterations D
Output: Optimizer z∗ of adaptive neural networks

1: for d = 1, 2, ...,D do
2: M ← fit models on data so far D
3: zd ← argmaxz∈Z α(z,M) // acquisition function max.
4: // Training and profiling each network Ni
5: for i = 1, 2, ...,M do
6: Li (zi,d) ← train network Ni
7: // power, runtime measurements on device
8: Ei (zdi) ←energy of Ni
9: end for
10: // Evaluate accuracy and energy consumption
11: ud ,vd ← evaluate obj. f (zd) and const. д(zd)
12: D = D ∩ {zd ,ud ,vd }
13: // κ function fine-tuning
14: for each decision function κi,i+1 do
15: for θ ′i,i+1 = 0.0, ..., 1.0 do
16: zd ← (hd1 , ...,h

d
M , ...,θ

′
i j , ...)

17: u ′,v ′ ← evaluate f (z′) and д(z′)
18: D = D ∩ {z′,u ′,v ′}
19: end for
20: end for
21: end for
22: return z∗ ← argmaxz {u1, ...,uD } s .t . v∗ ≤ c

κ. This step (lines 15 -19), which in the case of threshold-based κ’s
corresponds to sweeping across θ values, has negligible complexity
compared to the overall optimization overhead and it is equivalent
to the threshold-based optimization employed by prior art (without
changing the architecture of the networks [20]).

The benefit of the κ-based fine-tuning is twofold. First, in earlier
stages of Bayesian optimizationmore data are being appended to the
observation historyD which improves the convergence of Bayesian
optimization. Second, in the later states of Bayesian optimization,
the κ-based optimization serves as fine-tuning around the near-
optimal region. Effectively, our methodology combines the design
space exploration properties inherent to Bayesian optimization-
based methods, and the exploitation scope of optimizing only over
the κ functions. As confirmed in our results, Algorithm 1 improves
upon the designs considered during Bayesian optimization.

5 EXPERIMENTAL SETUP
To enable energy-aware Bayesian optimization of adaptive CNNs,
we implement the key steps of Algorithm 1 on top of the Spearmint
tool [26]. For all considered cases, we employ Bayesian optimization
for 50 objective function evaluations. As commercial embedded
board we use NVIDIA Tegra TX1, on which we deploy and profile
the candidate networksNi ’s. To measure the energy and power, and
runtime values, we use the power sensors available on the board.
The use of Tegra (i.e., ARM-based architecture) limits our choices
of the Deep Learning packages to Caffe [14]. Nevertheless, energy
profiling has been successfully employed to other DL platforms (as

shown in [2]), hence our findings can be extended to tools such as
TensorFlow. We train the candidate networks on a server machine
with an NVIDIA GTX 1070.

To enable a representative comparison with prior art, we con-
sider a two-network system with CaffeNet as N1 and VGG-19 as N2,
as in [20]. For a three-network case, we consider LeNet, CaffeNet,
and VGG-19 as N1, N2, and N3, respectively. Without loss of gener-
ality, we employ hyper-parameter optimization and we learn the
structure of the CaffeNet network, without changing the LeNet or
VGG-19 networks. For the convolution layers we vary the number
of feature maps (32-448) and the kernel size (2-5), and for the fully
connected layers the number of units (500-4000).1 Due to resource
limitations (Tegra storage, runtime requirements of Bayesian opti-
mization, etc.) we currently assess the proposed methodology on
CIFAR-10. In the future, we plan to investigate the transferability to
larger datasets (e.g., ImageNet) and platforms beyond commercial
GPUs (e.g., hardware accelerators [4]). In addition, we plan to ex-
plore the use of predictive models that span different types of deep
learning frameworks and commercial GPUs [2], and which could
be flexibly extended to account for process variations [5, 28, 29]
and thermal effects [3].

We consider the following test cases of adaptive image classifi-
cation: (i) all CNNs execute locally on the mobile system and we
denote this case as local; (ii) only N1, i.e., the less complex network
is deployed on the mobile system (edge node), while the more ac-
curate networks execute on a server (remote execution). For every
image item, the decision function selects whether to use the local
prediction or to communicate the image to the server and receive
the result of the more complex network. We compute the communi-
cation time to transfer jpeg images and to receive the classification
results back over two types of connectivity, via Ethernet and over
WiFi, which we denote as Ethernet and wireless respectively. As an
interesting direction in the context of IoT applications, our method
can be flexibly extended to profile and design for other compression
and communication protocols (e.g., 4G modules, Bluetooth, etc.),
whose integration we leave for future work.

6 EXPERIMENTAL RESULTS
Adaptive CNNs as hyper-parameter optimization problem:
We first demonstrate the advantages that hyper-parameter opti-
mization offers in this design space. For both these cases of local
and remote execution with two networks, we employ grid search
and we plot the obtained error-energy pairs in Figures 2a and 2b, re-
spectively. We highlight this trade-off between accuracy and energy
by drawing the Pareto front (green line).2

This illustration is insightful and allows us to make three impor-
tant observations. First, we note how far to the left the Pareto front
is compared to the configurations obtained by existing works that
optimize only the decision function (orange squares). This fully
captures the motivation and novelty behind our work, i.e., to treat

1The ranges are selected around the original CaffeNet hyper-parameters [14]. Each
network is trained using its original learning hyper-parameters (e.g., learning rate),
but these can be also treated as variables to solve for using Algorithm 1, as in [27].
2This visualization is insightful since the constrained optimization problem under
consideration can be equivalently viewed as a multi-objective function, by writing the
constraint term as the Lagrangian (e.g., such formulation is used in [1]).

5

(a) Embedded (local) execution for both networks. (b) An edge-server energy-minimization design paradigm.

Figure 2: Energy minimization under maximum error constraint. Bayesian optimization considers configurations (red circles)
around the near-optimal region, while significantly outperforming static-design systems (orange squares).

(a) Sequence of configurations selection (b) Best solution against the number of function evaluations.

Figure 3: Bayesian optimization for minimum energy under error constraints in the edge-server design. The method progres-
sively evaluates designs closer to the Pareto front. The near-optimal region is reached within 22 function evaluations.

the design of adaptive CNN systems as a hyper-parameter problem
and globally optimize for the architecture of the CNNs.

Second, it is important to observe that the configurations consid-
ered by Bayesian optimization (red circles) lie to the left of both
the static optimization designs (orange squares), as well as the
monolithic AlexNet and VGG-19 networks (black markers), hence
showing that our methodology allows for significant reduction in
energy consumption (as discussed in detail next). Third, we note
how close to the Pareto-front the Bayesian optimization points are,
showing the effectiveness of the method at eventually identifying
the feasible, near-optimal region.

Evaluating the effectiveness of BO: To fully assess the effec-
tiveness at reaching the near-optimal region in few tens of function
evaluations, we visualize the progress of BO for the case of edge-
server adaptive neural networks in Figure 3, which corresponds to
the edge-server design of Figure 2b. First, we show the sequence of
configurations selected in Figure 3a, where we enumerate the first
30 function evaluations. We observe that the near-optimal region
is reached with 22 Bayesian optimization steps.

Next, we assess the advantage that the κ-based fine-tuning step
offers. In Figure 3b, we show the minimum constraint-satisfying
energy achieved during Bayesian optimization without (red line)
and with (blue line) this step employed during the optimization.
In the remainder of the results, we denote these methods as BO
and BO+, respectively. We also show the optimal solution (dashed
line), as obtained by grid search. As motivated in our methodology

section, we indeed observe that the fine-tuning step allows the op-
timization to select configurations around the near-optimal region
in less function evaluations. As we discuss in detail next, this is
beneficial, especially in over-constrained optimization cases.

Comprehensive adaptiveCNNs evaluation: To enable a com-
prehensive analysis, we employ Bayesian optimization on all three
design practices, i.e., local, Ethernet, and wireless. For each design,
we solve both a constrained and an over-constrained case for both
the error-constrained energy minimization (Equation 3) and the
energy-constrained error minimization (Equation 6) problems. We
plot the error on the validation set and energy per-image in Fig-
ure 4a and 4b, respectively, for both BO and BO+. In addition,
we compare the optimal result obtained by grid search, the best
result by previously published work that treats the CNNs as black-
boxes [20] (denoted as static), and the energy and error by solely
using either N1 (CaffeNet) or N2 (VGG-19) on their own. We report
the constraints per case in the parentheses on the x axis.

We note that the error percentage value corresponds to the max-
imum accuracy degradation allowed compared to always using
VGG-19 (i.e., the B value in Equation 3). Last, in Figure 4 we report
the validation error since this metric is the standard way of assess-
ing the result of Bayesian optimization. We also report the test error
of the optimal, feasible solutions obtained in Table 1. Based on the
results, we can make several observations:

(i) Suboptimality of prior work: As discussed in the intro-
duction, the energy consumption of CaffeNet and VGG-19 shows

6

(a) Energy minimization under maximum error constraints. (b) Error minimization under maximum energy constraints.

Figure 4: Assessing the effectiveness of the proposed methodology across different design paradigms and both constrained
and over-constrained cases (the constraint values per case are given in the parentheses on the x-axis labels). We observe that
our methodology BO+ (blue) successfully approaches the grid-search solution (gray), while always outperforming the best
solution achieved by existing static-design methods (orange).

Table 1: Hyper-parameter optimization results on the test set. Our methodology does not overfit on the validation set.

Minimum energy (mJ) achieved under allowed accuracy degradation constraint (given in parenthesis).
Method Local (3%) Ethernet (3%) Wireless (3%) Local (1%) Ethernet (1%) Wireless (1%)

Static [1, 20] 256.09 230.05 231.15 292.25 233.50 235.97
BO 114.43 38.28 41.49 163.15 41.85 45.54
BO+ 99.35 38.00 40.50 148.26 41.68 45.54
Grid 93.43 38.00 40.50 123.57 41.68 45.49

Minimum error (%) achieved under energy constraint (given in parenthesis).
Method Local (240mJ) Ethernet (120mJ) Wireless (120mJ) Local (120mJ) Ethernet (45mJ) Wireless (45mJ)

Static [1, 20] 17.30 18.44 18.44 18.44 18.44 18.44
BO 12.67 12.77 12.74 20.69 12.83 14.42
BO+ 12.66 12.70 12.74 16.30 12.83 13.98
Grid 12.58 12.58 12.58 14.14 12.82 13.98

a small headroom for energy savings, thereby significantly limit-
ing the effectiveness of the static method. In fact, for local energy
minimization with 1% maximum accuracy degradation allowed
(similar constraint as in [20]), statically designed adaptive CNNs
will be forced to always use VGG-19 for the final prediction, while
wastefully evaluating CaffeNet first. This results in larger energy
consumption than using VGG-19 by itself, as seen in Figure 4a.

(ii) Effectiveness proposedmethod: We observe that in all the
considered cases the proposed BO+ method closely matches the re-
sult identified by grid search. For instance, in the over-constrained
local (1%) case discussed before, Bayesian optimization successfully
considers a larger N1 configuration that trades-off energy consump-
tion of N1, yet improves the overall accuracy such that the error
constraint is satisfied.

In general, our methodology identifies designs that outperform
static methods [20] by up to 6× in terms of minimum energy under
accuracy constraints and by up to 31.13% in terms of error min-
imization under energy constraints. Moreover, from Table 1, we
confirm the generalization of the methodology, i.e., that the adap-
tive designs are near-optimal with respect to the test error and that
the method does not overfit on the validation set.

(iii) Enhanced performance viaκ-based fine-tuning: As mo-
tivated in the methodology section, the fine-tuning step that we
incorporate in Bayesian optimization is beneficial especially in the
over-constrained cases, allowing the optimization to identify near-
optimal regions faster. In particular, BO+ leads to further energy
minimization under accuracy constraints by 13.18% and to error
minimization under energy constraints by 21.22%, compared to the
result of BO without fine-tuning.

(iv) Local versus remote execution: As an interesting finding
in terms of design space exploration, we observe that executing
some of CNNs comprising the adaptive neural network remotely
allows for more energy-efficient image classification, compared to
executing everything locally at the same level of accuracy. Such
observations have been also supported by recent design trends
which ensure that, due to privacy issues, mobile machine learning
services maintain both on-device and cloud components [15, 16, 31].

We observe this headroom from the Pareto front being further
to the left in Figure 2b compared to Figure 2a. That is, using an
edge-server design, where only the smallest CNN executes locally,
allows for energy reduction of 2.96× compared to executing all
networks locally and for the same error constraint. We postulate

7

Table 2: Three-network case: Hyper-parameter optimiza-
tion results on the test set.

Minimum energy (mJ) under Minimum error (%)
Method accuracy degradation under energy constraint:

constraint: Local (3%) Local (120mJ)
Static [1, 20] 268.43 41.25

BO 137.36 17.94
BO+ 113.59 15.06
Grid 108.45 14.98

that this is an interesting finding in terms of computation versus
communication trade-offs and an interesting direction to delve into.

Interestingly, we observe that the three-network case is less
energy-efficient than using two networks. This is to be expected,
since adaptive designs with more networks are better fit for more
computationally expensive applications, such as object recogni-
tion [1]. Exploring the sensitivity of performance metrics to the
number of networks is an interesting problem itself. Having shown
that our approach can reach near-optimal results compared to ex-
haustive grid search, we leave this direction for future work.

Exploringhierarchy: Finally, we evaluate the proposedmethod
on a three-network case. We summarize the results in Table 2. Once
again, we observe that, compared to static methods, our methodol-
ogy closely matches the results obtained by grid search. More specif-
ically, in the case of energy minimization, the solution reached by
BO+ is only 4.74% away from the optimal grid search-based design,
while outperforming best previously published static methods [20]
by 2.47× in terms of energy minimization.

7 CONCLUSION
In this paper, we introduced an efficient hyper-parameter optimiza-
tion methodology to design hardware-constrained adaptive CNNs.
The key novelty in our work is that both the architecture settings of
the CNNs and the network selection problem are treated as hyper-
parameters to be globally (jointly) optimized. To efficiently solve
this problem, we enhanced Bayesian optimization to the underlying
properties of the design space. Our methodology, denoted as BO+,
reached the near-optimal region faster compared to a hardware-
unaware BO, and the optimal designs identified by grid search.

We exploited the effectiveness of the proposed methodology to
consider different adaptive CNN designs with respect to energy,
accuracy, and communication trade-offs and constraints imposed
by mobile devices. Our methodology identified designs that out-
perform previously published methods which use CNNs as black-
boxes [20] by up to 6× in terms of minimum energy per image
under accuracy constraints and by up to 31.13% in terms of error
minimization under energy constraints. Finally, we studied two im-
age classification practices, i.e., classifying all images locally versus
over the cloud under energy and communication constraints.

ACKNOWLEDGMENTS
This research was supported in part by NSF CNS Grant No. 1564022
and by Pittsburgh Supercomputing Center via NSF CCR Grant No.
180004P.

REFERENCES
[1] Tolga Bolukbasi, JosephWang, Ofer Dekel, and Venkatesh Saligrama. 2017. Adap-

tive Neural Networks for Efficient Inference. In International Conference on Ma-
chine Learning. 527–536.

[2] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. 2017.
Neuralpower: Predict and deploy energy-efficient convolutional neural networks.
arXiv preprint arXiv:1710.05420 (2017).

[3] Ermao Cai, Dimitrios Stamoulis, and Diana Marculescu. 2016. Exploring aging
deceleration in FinFET-based multi-core systems. In Computer-Aided Design
(ICCAD), 2016 IEEE/ACM International Conference on. IEEE, 1–8.

[4] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127–138.

[5] Zhuo Chen, Dimitrios Stamoulis, and Diana Marculescu. 2017. Profit: priority
and power/performance optimization for many-core systems. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2017).

[6] Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. 2017. NeST: A Neural Network Syn-
thesis Tool Based on a Grow-and-Prune Paradigm. arXiv preprint arXiv:1711.02017
(2017).

[7] Ruizhou Ding, Zeye Liu, RD Shawn Blanton, and Diana Marculescu. 2018. Quan-
tized deep neural networks for energy efficient hardware-based inference. In
Design Automation Conference (ASP-DAC), 2018 23rd Asia and South Pacific. IEEE,
1–8.

[8] Michael A Gelbart, Jasper Snoek, and Ryan P Adams. 2014. Bayesian optimization
with unknown constraints. arXiv preprint arXiv:1403.5607 (2014).

[9] Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet.
2013. Multi-digit number recognition from street view imagery using deep
convolutional neural networks. arXiv preprint arXiv:1312.6082 (2013).

[10] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and
Edward Choi. 2018. Morphnet: Fast & simple resource-constrained structure
learning of deep networks. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[11] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In NIPS. 1135–1143.

[12] José Miguel Hernández-Lobato, Michael A Gelbart, Ryan P Adams, Matthew W
Hoffman, and Zoubin Ghahramani. 2016. A general framework for constrained
Bayesian optimization using information-based search. The Journal of Machine
Learning Research 17, 1 (2016), 5549–5601.

[13] José Miguel Hernández-Lobato, Michael A Gelbart, Brandon Reagen, Robert
Adolf, Daniel Hernández-Lobato, Paul N Whatmough, David Brooks, Gu-Yeon
Wei, and Ryan P Adams. 2016. Designing neural network hardware accelerators
with decoupled objective evaluations. In NIPS workshop on Bayesian Optimization.
l0.

[14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093.

[15] Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal Mukhopadhyay.
2018. Edge-Host Partitioning of Deep Neural Networks with Feature Space
Encoding for Resource-Constrained Internet-of-Things Platforms. arXiv preprint
arXiv:1802.03835 (2018).

[16] Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck,
Pieter Simoens, and Bart Dhoedt. 2017. The cascading neural network: building
the Internet of Smart Things. Knowledge and Information Systems 52, 3 (2017),
791–814.

[17] Priyadarshini Panda, Aayush Ankit, Parami Wijesinghe, and Kaushik Roy. 2017.
FALCON: Feature driven selective classification for energy-efficient image recog-
nition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 36, 12 (2017).

[18] Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. 2016. Conditional
deep learning for energy-efficient and enhanced pattern recognition. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2016. IEEE, 475–480.

[19] Priyadarshini Panda, Swagath Venkataramani, Abhronil Sengupta, Anand Raghu-
nathan, and Kaushik Roy. 2017. Energy-efficient object detection using semantic
decomposition. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
25, 9 (2017), 2673–2677.

[20] Eunhyeok Park, Dongyoung Kim, Soobeom Kim, Yong-Deok Kim, Gunhee Kim,
Sungroh Yoon, and Sungjoo Yoo. 2015. Big/little deep neural network for ul-
tra low power inference. In Proceedings of the 10th International Conference on
Hardware/Software Codesign and System Synthesis. IEEE Press, 124–132.

[21] Brandon Reagen, José Miguel Hernández-Lobato, Robert Adolf, Michael Gelbart,
Paul Whatmough, Gu-Yeon Wei, and David Brooks. 2017. A case for efficient
accelerator design space exploration via Bayesian optimization. In Low Power
Electronics and Design (ISLPED, 2017 IEEE/ACM International Symposium on. IEEE,
1–6.

[22] Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar. 2016. Delight:
Adding energy dimension to deep neural networks. In Proceedings of the 2016
International Symposium on Low Power Electronics and Design. ACM, 112–117.

8

[23] Deboleena Roy, Priyadarshini Panda, and Kaushik Roy. 2018. Tree-CNN: A
Deep Convolutional Neural Network for Lifelong Learning. arXiv preprint
arXiv:1802.05800 (2018).

[24] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252.

[25] Sean C Smithson, Guang Yang, Warren J Gross, and Brett H Meyer. 2016. Neural
networks designing neural networks: multi-objective hyper-parameter optimiza-
tion. In Proceedings of the 35th International Conference on Computer-Aided Design.
ACM, 104.

[26] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information
processing systems. 2951–2959.

[27] Dimitrios Stamoulis, Ermao Cai, Da-Cheng Juan, and Diana Marculescu. 2018.
HyperPower: Power-and memory-constrained hyper-parameter optimization for
neural networks. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2018. IEEE, 19–24.

[28] Dimitrios Stamoulis and Diana Marculescu. 2016. Can we guarantee performance
requirements under workload and process variations?. In Proceedings of the 2016
International Symposium on Low Power Electronics and Design. ACM, 308–313.

[29] Dimitrios Stamoulis, Dimitrios Rodopoulos, Brett H. Meyer, Dimitrios Soudris,
Francky Catthoor, and Zeljko Zilic. 2015. Efficient Reliability Analysis of Proces-
sor Datapath Using Atomistic BTI Variability Models. In Proceedings of the 25th
Edition on Great Lakes Symposium on VLSI (GLSVLSI ’15). ACM, 57–62.

[30] Zafar Takhirov, JosephWang, Venkatesh Saligrama, and Ajay Joshi. 2016. Energy-
efficient adaptive classifier design for mobile systems. In Proceedings of the 2016
International Symposium on Low Power Electronics and Design. ACM, 52–57.

[31] Surat Teerapittayanon, Bradley McDanel, and HT Kung. 2017. Distributed deep
neural networks over the cloud, the edge and end devices. In Distributed Comput-
ing Systems (ICDCS), 2017 IEEE 37th International Conference on. IEEE, 328–339.

[32] Swagath Venkataramani, Anand Raghunathan, Jie Liu, and Mohammed Shoaib.
2015. Scalable-effort classifiers for energy-efficient machine learning. In Proceed-
ings of the 52nd Annual Design Automation Conference. ACM, 67.

[33] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017. Designing energy-efficient
convolutional neural networks using energy-aware pruning. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

9

