Lightening the Load with Highly Accurate Storage-
and Energy-Efficient LightNNs

RUIZHOU DING, ZEYE LIU, R. D. (SHAWN) BLANTON, and DIANA MARCULESCU,
Carnegie Mellon University, USA

Hardware implementations of deep neural networks (DNNs) have been adopted in many systems because of
their higher classification speed. However, while they may be characterized by better accuracy, larger DNNs
require significant energy and area, thereby limiting their wide adoption. The energy consumption of DNNs
is driven by both memory accesses and computation. Binarized neural networks (BNNs), as a tradeoff be-
tween accuracy and energy consumption, can achieve great energy reduction and have good accuracy for
large DNNs due to their regularization effect. However, BNNs show poor accuracy when a smaller DNN
configuration is adopted. In this article, we propose a new DNN architecture, LightNN, which replaces the
multiplications to one shift or a constrained number of shifts and adds. Our theoretical analysis for LightNNs
shows that their accuracy is maintained while dramatically reducing storage and energy requirements. For a
fixed DNN configuration, LightNNs have better accuracy at a slight energy increase than BNNs, yet are more
energy efficient with only slightly less accuracy than conventional DNNs. Therefore, LightNNs provide more
options for hardware designers to trade off accuracy and energy. Moreover, for large DNN configurations,
LightNNs have a regularization effect, making them better in accuracy than conventional DNNs. These con-
clusions are verified by experiment using the MNIST and CIFAR-10 datasets for different DNN configurations.
Our FPGA implementation for conventional DNNs and LightNNs confirms all theoretical and simulation re-
sults and shows that LightNNs reduce latency and use fewer FPGA resources compared to conventional DNN
architectures.

CCS Concepts: « Hardware — Hardware accelerators;
Additional Key Words and Phrases: FPGA, deep neural networks, low-power design

ACM Reference format:

Ruizhou Ding, Zeye Liu, R. D. (Shawn) Blanton, and Diana Marculescu. 2018. Lightening the Load with Highly
Accurate Storage- and Energy-Efficient LightNNs. ACM Trans. Reconfigurable Technol. Syst. 11, 3, Article 17
(December 2018), 24 pages.

https://doi.org/10.1145/3270689

1 INTRODUCTION

As a widely implemented machine-learning model, deep neural networks (DNNs) have shown sig-
nificant efficiency in classification due to their nonlinear characteristics, flexible configurations,
and self-adaptive features [45]. Increasingly in recent years, research has focused on DNNs im-
plemented directly in hardware for a variety of reasons stemming from design requirements or

Authors’ addresses: R. Ding, Z. Liu, R. D. (Shawn) Blanton, and D. Marculescu, Carnegie Mellon University, 5000 Forbes
Avenue, Pittsburgh, PA, 15213; emails: {rding, zeyel, rblanton, dianam}@andrew.cmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1936-7406/2018/12-ART17 $15.00

https://doi.org/10.1145/3270689

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

https://doi.org/10.1145/3270689
mailto:permissions@acm.org
https://doi.org/10.1145/3270689

17:2 R. Ding et al.

application characteristics. First, real-time classification applications (such as Siri and Google glass
[11]) have great sensitivity to latency, thereby making pure hardware implementations better can-
didates than conventional architectures based on CPUs or GPUs. Second, neural networks im-
plemented as custom Application-Specific Integrated Circuits (ASICs) or within FPGAs require
mostly logic with little complicated control, lending themselves to lower design effort. Third, het-
erogeneous architectures as a whole appear to be more suitable for DNN implementation due to
the combined benefits of CPU, GPU, FPGA, and ASIC-based hardware acceleration [7, 34, 43, 46].
In heterogeneous systems, ASICs can handle specific tasks that are required frequently, such as
classification tasks in a real-time image recognition application, while CPUs and GPUs can per-
form the online training. However, hardware implementations of neural networks face difficulties
for large-scale deployment. With the increased use of DNNs, the number of layers and neurons in-
creases significantly [5]. Google’s AlphaGo adopts a 13-layer architecture, with hundreds of filters
per layer [37]. Microsoft implements a 152-layer DNN for image classification [12]. An increas-
ing number of neurons and connections in DNNs require significant energy and power, thereby
limiting their wide adoption [5].

2 RELATED WORK

The two main factors limiting the energy efficiency of computing systems in general, and DNN
architectures in particular, are memory accesses and computation. Much of the prior research has
focused on the computation. For instance, Du et al. adopt inexact circuits for multipliers and adders
with less dynamic energy consumption [7]. Li et al. reduce energy with memristor-based approx-
imators [27], while Kim et al. propose an approximate adder using the carry prediction technique
to reduce energy [21]. Sarwar et al. use alphabet set multipliers that implement multiplication
by selection, shifts, and adds, reducing the energy of neural networks with a precomputed bank
[36]. This prior work can reduce the energy consumption of DNNs, and some [7, 21, 27] are also
compatible with the DNN architectures introduced in this article.

There has also been significant work on reducing energy of memory accesses. Gupta et al. re-
duce accesses to memory by limiting parameter precision [9]. Furthermore, Venkataramani et al.
propose an energy-efficient neural network design by reducing the bit precision of resilient neu-
rons [42], while Zhang et al. combine computation approximation and memory access reduction
to form an approximate computing framework of NNs [47]. Han et al. compressed DNNs to reduce
weight storage [10]. Hubara et al. proposed BNNs that constrain the weights and activations to bi-
nary values (+1 or —1); they achieve almost no accuracy loss for MNIST and CIFAR-10 datasets [15].
Moreover, the reported accuracy for MNIST is even better than the conventional DNN architecture,
especially when the DNN configuration is very large, with many more layers and neurons than
typical. On the other hand, BNNs have notably worse accuracy when the smaller Caffe example
configurations [20] for MNIST and CIFAR-10 are implemented. Mellempudi et al. proposed ternary
neural networks [32] that constrain weights to be a, 0, or —« and use fixed-point quantization for
activations. In terms of accuracy and storage, they sit between BinaryConnect and LightNN, both
with fixed-point activations. The accuracy of ternary networks for AlexNet is 49.04% [32], while
LightNN can achieve 58.6% accuracy, as shown later in Table 4.

In this article, we focus on both computation and memory access energy reduction. We propose a
new DNN architecture, LightNN [6], by replacing multipliers with one shift or a limited number of
shifts and adds. Marchesi et al. proposed the idea of replacing multipliers of multilayer perceptrons
(MLPs) with shifts [31]. Different from their proposed training algorithm where the weights are
constrained to be power of two after every iteration, we maintain a set of continuous weights and
only use the constrained weights in the forward pass. In addition, we test LightNNs on real datasets
and compare their accuracy, energy, and area with conventional DNNs and BNNs. LightNNs are

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

Lightening the Load with Highly Accurate Storage- and Energy-Efficient LightNNs 17:3

also different from Sarwar et al., where the weights are broken down into two parts with an equal
number of shift operations [36]. Instead, LightNNs maintain weights as a whole and only constrain
the total number of shifts. Furthermore, we explore the energy consumption of memory accesses.
To the best of our knowledge, our work makes the following contributions:

e Similar to prior work [7, 9, 10, 15, 21, 27, 32, 36, 42, 47], we consider the scenario where
DNNss are trained in software and used for classification in hardware. Different from prior
work, we propose a new neural network architecture, LightNN, which features simpler,
more energy-efficient logic. Note that LightNN is compatible with prior work [7, 9, 10]
since it can be adopted either standalone or in conjunction with other approaches.

e Compared to BNNs where all the weights are constrained to +1 or —1, we relax this con-
straint and achieve better accuracy than BNNs while still maintaining lower power and area
than conventional DNNs. The advantage of this relaxation is that hardware designers can
have more options to select the DNN architecture according to their resource constraint.
For a fixed DNN configuration, LightNNs have better accuracy at a slight energy increase
than BNNs yet are more energy efficient with only slightly less accuracy than DNNs.

e We compare the accuracy, energy, and area of conventional DNNs, BNNs, and LightNNs
via industrial-strength design simulation for the MNIST and CIFAR-10 datasets using both
an industrial-strength design flow and an FPGA implementation on a VC709 board with a
Xilinx FPGA chip Virtex7 VX690T [17]. We also provide a set of guidelines for DNN archi-
tecture selection w.r.t. accuracy and energy and implement a nonpipeline version of conven-
tional DNNs and LightNNs for datasets from the UCI machine-learning repository [2]. Our
results confirm that LightNNs are compatible with approaches that use limited bit precision
for inputs and intermediate results [9].

The rest of this article is organized as follows. In Section 3, we first introduce conventional DNNs
and BNNs and propose LightNN with its training scheme. Experimental results for the accuracy
across different DNN architectures and configurations are shown in Section 4. In Section 5, gate-
level hardware simulation results for energy and area of conventional DNNs, BNNs, and LightNNs
are compared. In Section 6, we implement the convolutional layers of conventional DNNs and
LightNNs on FPGA and compare their latency and resource usage. Finally, conclusions are drawn
in Section 7.

3 DNN ARCHITECTURE

In this section, we first describe the operation of conventional DNNs. Then, we introduce the
architecture and the training scheme of BNNs. Finally, we propose the new DNN architecture,
LightNN, and describe its associated training scheme.

3.1 Conventional DNNs

An artificial neural network (ANN) is called a DNN when there are more than four layers, including
the input and output layers. In the training phase with a back-propagation algorithm [25], the
loss function, such as the l;-norm [8], cross-entropy loss [8], or hinge loss [8], is computed using
output values and data labels to update the weights used for the linear combination described
above. In the deployment (testing) phase, the output neuron with the largest value indicates the
prediction result. During deployment, the vast majority of computation resources are used for the
multiplication within DNNs [7]. Therefore, prior research has focused on replacing multiplication
with other types of logic operations that are more energy efficient. One successful example is BNN
[3, 15].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

17:4 R. Ding et al.

3.2 BNNs

Two types of binarized neural networks (BNNs) have been proposed by Courbariaux et al. Bina-
ryConnect [3], a type of BNN, only constrains the weights to +1 or —1 but leaves the inputs and
intermediate results as floating-point values. On the other hand, a second BNN, known as Bina-
ryNet [15], constrains both weights and intermediate results (activations) to +1 or —1 and only
keeps the input values as floating point.

To train a BinaryConnect or BinaryNet, the classic back-propagation algorithm is adopted. The
only change is that during each forward pass, the weights are copied and binarized. Then, the
binarized weights are used to compute the gradients. Note that the updated weights are always
stored as floating-point values, and only in the forward pass of the training phase and during the
testing phase, the weights are binarized [3].

During the testing, BinaryNet is different from BinaryConnect only in that it uses a binarized
activation function, thereby having binarized intermediate results. In the testing phase, a sign
function f(x) = sign(x) is used as the activation function. In the training phase, the hard tanh
function, defined as Htanh(x) = clip(x,—1, 1), is used as a substitute for the sign function [15].
The benefit of BinaryNet is that it can use an XNOR operation to replace multiplications in a
hardware implementation.

3.3 LightNNs

Replacing multiplications with a shift or a limited number of shifts and adds can serve as a way to
build more energy-efficient DNNSs, thereby producing better accuracy. The detailed architecture
and training algorithm are described next.

3.3.1 Model Architecture. In binary representations, any parameter w can be written as a sum
of powers of two w = sign(w) - (2™ + 2™ + - .. 4+ 2"K), where K is the number of 1s in w’s binary
representation. A multiplication of two values w and x is equal to several shifts and additions:

w-x = sign(w) - (2" + 2" + ... +2"K) . x

=sign(w) - (x << np+x << ny+---+x << ng),)
where “x << n;” indicates left shifting x by n; bits. For negative values of ny, right shifts are used
instead. Assuming n; > ny > --- > ng, smaller n values correspond to a less significant part of the
result w - x. Furthermore, logical shift units are more energy efficient than multipliers. Therefore,
the computation energy consumption can be reduced by converting multiplications to approximate
versions using a limited number of shifts (and adds). LightNNs change the computation logic of
each neuron. A k-ones approximation drops the least significant powers of two in Equation (1)
such that the resulting value has at most k ones in its binary representation. Figure 1 illustrates a
basic example that utilizes a neuron with two inputs. Two weights w; and w, are both converted
to a 2-ones approximation: wy ~ 2™ + 2™2, w, ~ 2™ + 222 Therefore, a multiplication w - x is
changed to two shifts and one addition. Moreover, when k = 1, the approximate multiplier unit is
only a shift.
Furthermore, we use a stochastic rounding scheme [9]. As opposed to a rounding-to-nearest
scheme, the stochastic rounding scheme finds both the nearest higher value wy and the nearest
lower value w; and stochastically rounds w to either wy, or w; based on the following:

_ | wp, with prob p
W= wy, with prob 1 —p,

where p = x::,_—vx,' Intuitively, stochastic rounding ensures that the expected error introduced by

the rounding scheme is zero.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

Lightening the Load with Highly Accurate Storage- and Energy-Efficient LightNNs 17:5

0= f((r1<< nyq) + (r K nyp) + (x2
K npp) + (X2 K n))

0 = f(wixy + wpxz)

e

wy &
X1 X2
Conventional neuron LightNN neuron (k=2)
(a) (b)

Fig. 1. (a) A conventional neuron and (b) LightNN neuron implemented using a 2-ones approximation.

3.3.2 LightNN Training. We adopt a training algorithm similar to that of BNNs. As shown in
Algorithm 1, during each training epoch, the training data x and y are randomly split into mini-
batches. For each mini-batch, the forward pass constrains the weights and provides intermediate
results and the value of the loss function. Then, the backward pass computes the derivatives of
the loss function over the parameters. The parameters are then updated based on the derivatives.
It is worth noting that constraining the weights occurs only in the forward pass. When updating
the weights, we use w;_; — ryﬁa—i instead of w, — ’laaTFc’ where w;_; is the real-value weights after
(t — 1)-th iterations, w, is the constrained w;_1, 17 is the learning rate, and F is the loss function.
Therefore, the weights are always accumulated in a floating-point form. As stated by Courbariaux
et al. [3], the reason to maintain high resolution for the weights is that the noise needs to be aver-
aged out by the stochastic gradient contributions accumulated for each weight. After a LightNN is
trained, the last step is to perform the k-ones approximation for all weights. Then, the constrained
weights are used for testing.

ALGORITHM 1: LightNN Training Epoch

Input: Training dataset (x, y), where x is input and y is label; parameters after the (¢ — 1)-th iteration: w;_1
(weights) and b;—; (biases); DNN forward computation function g(x, w, b); k value used for k-ones
approximation approx; (-); learning rate 7.
Output: Updated weights w; and biases b;.
for each mini-batch of x, y do
1. Constrain weights: w. = approx; (w;_1)
2. Forward: compute intermediate results and loss function F with g(-), we, b;—1, and mini-batch of x
3. Backward: compute derivatives aa—vfc and 6(19:_ -
JF

dw,

4. Update parameters: w; = w;_1 — 1

end

3.3.3 LightNN with Binarized Activations. LightNN can also use a binarized activation function,
as described in Section 3.2. The advantage of doing so is that the multiplication of a weight and an
input of a neuron will be limited to +1 multiplied by a power of two if the weights are constrained
to k-ones approximations where k = 1. This leads to an increased likelihood of achieving energy
reduction within a hardware implementation.

3.4 LightNN Accuracy Analysis

To give a theoretical analysis to the convergence of LightNN, we use a similar methodology
to Li et al. [28]. Let m be the number of mini-batches used for back-propagation. Let F(w) be

the loss function. Then, F(w) = % ™, fi(w), where f;(w) is the loss function for the ith mini-

batch. Assume that both Vf(-) and F(-) are L-Lipschitz smooth, ie., Vx,y € [-1,1]%, |Vf(x) -
Vf(y)| < Li|lx —y|, and |F(x) — F(y)| < Ly|x — y|. Let w’ be the weight vector after ¢ iterations

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

17:6 R. Ding et al.

(t €{1,2,...,T}, where T is the total number of iterations). Then, at each iteration the stochastic
gradient descent algorithm updates the weights as follows:

wt+1 — wt —/ltV]E(Q(Wt)) — wt _ﬂtvf(wt) + rt’ (2)

where r! = i,V f(w') — 11, V.f(Q(w?)) is the error introduced by quantization, Q(-) is the quan-
tization function using stochastic rounding, and y; is the learning rate at the tth iteration. The
quantization function can be described by k and ¢, where k indicates that the LightNN uses k-ones
approximation (also denoted as LightNN-k), and 2% is the highest resolution for the quantiza-
tion, i.e., the smallest positive quantized value. In addition, we assume that the gradient norm is
bounded by a constant G?: E||V f (wh)||? < G?. Let D be the diameter of the weight domain. Then,
the Euclidean distance between any two weights is bounded by D?. Assume that Vi € {1,2,...,d},
where d is the dimension of w’; the probability density function (PDF) of the ith element of w’
monotonically decreases with its absolute value, i.e., Pwt (a) < Pwt (b) if |a| > |b].

Next, we first bound E[||r!||?] and then bound the expected distance between the loss function
of LightNN and conventional DNN.

3.4.1 Bounding E[||r'||?]. To bound E[||r!||?], we first consider the case where c is very large,
so we can show the rate of E[||r||?] in terms of k. Then, we add the constraint from c.

Let the quantization error for weights be denoted as y’ = Q(w’) — w’. Therefore, E[||r||*] <
H2L2E[||y"11?]. Then, we can bound E[||r’||*] by bounding E[||y"||*].

LEMMA 3.1. Assume thatc — co. LetE[||y"||*] for LightNN-k be denoted as E(k). Then, E(k + 1) <
1E(k), Yk > 1.

Proor. For LightNN-k, consider any two adjacent quantized levels a and b. Without losing
generality, let us assume 0 < a < b. Then, if a < w! < b, the quantization error for w! follows:
yi = Q(w!) — wi < b — a. Therefore,

E[(v!) la < wi <] < (b-a)’. 3)

For LightNN-(k + 1), a and b are still used as quantization levels. Furthermore, the legal quantized
values between a and b also include a + 271 (b — @), a + 27%(b — a), Let f§; denote the jth quan-
tized value, ie., f; =a+ 27/(b—a), where j=1,2,.... Then, b > p1 > P2 > --- > a. Therefore,

oL

I
—

E[(y!)%la < w! < bl =) E[(¥})%IBjs1 < wh < Bi1P(Bjs1 < w! < Bjla < w! < b)

J

27%(b - a)’P(Bjs1 < wi < Bjla < wi < b) (4)

~.
Il
—

(b -a)?
—

<Y 27%(b-a)?27 =

T

Il
—-

J

Note that P(fj.1 < w! < fjla < w! < b) < 27/ holds since the PDF of the weight is monotonically
decreasing with its absolute value. This means that when we increase the number of shifts used
for the k-approximation from k to k + 1, E[(yf)2|a < w! < b] will decrease by a factor less than
% for any interval [a, b], where a and b are two adjacent quantization levels. Let all the quantized

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

Lightening the Load with Highly Accurate Storage- and Energy-Efficient LightNNs 17:7

values for LightNN-k be denoted as {a;};j=12,..., where 1 > a; > a;;; > 0. Therefore,

AN

8

d
E(k+1) ZZE(% |aJ+1<w <aj;k+1]P (aj+1<wf<aj)

i=1 j=1

>

i=1 j

®)

1
E[(|a]+1 <wi <a;k]P(aj <wi <aj) = ;E(k) O

IA
e
N =

I
—

LEMMA 3.2. Assume thatc — co. Let o} £ max; E[(wﬁ)z]. LightNN-k quantization error satisfies
o?d

E[lly*1I?] < Ry

ProOF. We first bound E[||y’||?] for LightNN-1. Since the PDF for w! is assumed to be sym-

metric w.r.t. wi = 0, E[||y’|1*] = E[|ly"[|*|w! > 0]. Therefore, we only need to consider w! > 0.

Then, wf is rounded to 2l1°g Wil or 2Mog, Wﬂ, where | -] is the floor operation and [-] is the ceiling
operation. Therefore,

olog, wil _ wt wt — gllog, wi]
[AVIP A S t_ ollog, wi]\2 | i Mog, wi1 _ e, i
El(yi) Iwi] = (w; — 275) o llog, wi | (@ wi) o llog, wi] ©)
Llog, wi1y2 £y2
— (W: _ ollog, w?J)(zﬂogzwﬂ _ Wf) < (2 1) < (W41)
Therefore,
d d w?) 2 o2d
B[lIy" ZE(y) = VB v <) B |~ |- =,)
i=1 i=1
Extending the bound to LightNN-k with Lemma 3.1, we have
2
/ oyd
BlIy'IP) < (®)
O

Now we add the constraint from c; that is, the smallest positive quantized value is zic For ex-

ample, if k = 1 and ¢ = 3, then the legal quantized levels include +1, +2, +1, +1

s — 2 b} + 4 >—8"
THEOREM 3.3. For LightNN-k, the error introduced by quantization is characterized by

272 2 272
piLiord pslid
BlIFIM < S + S)

PrOOF. Again, we consider the case w; > 0. First, let us check the way c influences the rounding
error. Without constraining c (i.e, ¢ — o0), the quantized levels cut the range of [0, 1] into infinite
nonoverlapping intervals Define A C [0, 1] as the set of values that fall into an interval whose
length is smaller than -+ 3¢ Then, with the constraint of the smallest possible interval - c.any wi € A
will have a larger expected rounding error, while any w’ ¢ A will not be influenced. Now suppose

! € [a,b], where a,b € [0, 1] are two adjacent quantized levels, and b —a = zlc The expected
rounding error for w} is bounded by

r— b—w!
B} w] € [0 bl) = S - (b= wi)P 4 = (wl -)’
—a (b -)2 . (10)
—a
=(wi-a)(b-w)) < 4 gzcez”

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

17:8 R. Ding et al.

Note that this is larger than the bound in Equation (4) due to the constraint from c. Then, the
quantization error bound for the weights in A will increase to 22%2 Therefore, the overall bound
is changed to

M=~

El(y;)*lw; € AIP(A) + E[(y)*Iw; ¢ Al(1 = P(A))

i=1

E[lly"1I°] =Zj:
<

] y (11)
o
E[(y))*Iw; € AL +El(y)*Iw; ¢ Al < 7 +4.;k_1.
i=1
Therefore,
piliofd pilid
E[Ir*112] < 2L2E[|ly!117] < 4‘.7,(1 2t26+2 (12)
O

3.4.2 Convergence Analysis.

LEMMA 3.4. Vie {1,2,...,d},Vt € {1,2,...,T}; if applying stochastic rounding on wf leads to
error yt, then E[yiw!] = 0.

Proo¥. Since stochastic rounding has the property: E[y|w!] = 0, we have

Elyiwi] = B[E[y;w;Iw;]] = E[w;E[y;|w;]] = 0. (13)
In other words, the expected bounding error is zero.]

We now give the bound for the expected distance between the loss function of LightNNs and
corresponding conventional DNNs. The optimal solution in the continuous domain is defined as

= argmin,, e[y, 1 aF(w). The quantized weights averaged by T training iterations are defined
asw' £ Iy w

THEOREM 3.5. Assume that the loss function F(w) is convex within domain [-1,1]¢ and the learn-
ing rate follows j1; = f/l_ Leto? = max,{c?} < 1. Then, the expected distance between the loss function

of the LightNN and the corresponding DNN vanishes for a large number of iterations T :

- D?*(NT +1 VT +1 (1 Lic?*d L% 1
E[F(w") — F(w")] < (VT +1) g -Gt + 2 +——|~0|l—=]. (9
2Ty T 2 4. 7k-1 22¢c+2 \/T
Proor. From Equation (2), we have
Ellw”l—w*IIZ=E||wt—/1tVf(wt)+rt—w*||2 ()
15

= E||w! — w*||? +E||,utV];(wt) —rl)2-2BE < w' - w*,ytVf(w') —rt>.
Due to Lemma 3.4 and E[f(wt)] = E[F(w')], we have
Ellw'™ — w*||? = E||w’ — w*||? +,utE||Vf(HIZ +Elr'||? - 2E[< w’' — w*, 1, VF(w") >]. (16)

Analyzing the right-hand side, we have that E||V f (w!)||? < G% E||r!||? is bounded by 3.3, and E[<
w! — w*, 11, VF(w') >] > 1, E[F(w") — F(w*)], due to the convexity of function F(.). Therefore, we
have

,uthcftzd peLid

t+1 12 t ®12 L —_
Ellw'™ — w*||* < Ellw' — w'||* + 2G* + Tkt T e

-2, B[F(w') — F(w")]. (17)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

Lightening the Load with Highly Accurate Storage- and Energy-Efficient LightNNs 17:9

This leads to

Ht opd ppLid

% 1 * *
E[F(wf)—F(w)]sa(lanwf—w||Z—E||wf“—w||2+u?GZ o g

t

b).

Summing up for t from 1 to T, we have

ZE - F(w)] < ii Bllw' —w I~ Bllw* - w4 G2 A% il
w 2414 w w w w He 4 . 7k-1 22c+2

t=1

T 2 2 2

1 1 Liojd Lid

_ 2 b2 12 1% 1
—E[lw' - w*||* + E (Zﬂt 2#:—1)“w wi|" + é yt(zG +4.7k_1 +—22C+2). (19)

Since p1; = ‘/_ Wehavezt VHe < NT + 1, VE - Vi—1= = \/_ <

of function F(.), E[F(Zt W) —F(w")] < }thl E[F(w') — F(w*)].In addition, || w! — w*||? <
D?. Therefore,

< 1. Also, due to the convexity

(20)

B[F(#) - F(w')] < D*(VT+1) pNT+1 (162 , Liotd 11)
2

2T T 4. 7k-1 22¢+2
[}

When T goes to infinity, the expected distance between F(w) and F(w™) converges to zero at
the rate of \/l_ This indicates that at each iteration, although the gradients are computed in an
approximate way w.r.t. a close quantized point instead of the full-precision weights, the final
trained solution will still converge to the optimal point.

Since we still need a one-step quantization for the weights at the end of the training process,
there will be an extra error that remains positive as T goes to infinity. Using Equation (11), this
can be obtained by

E[F(Q(w)) — F(w")] = E[F(Q(w)) — F(w) + F(w) — F(w")]
o’d
22c+2 4. 7k 1

(21)

< L,—— +O(

¥
4 TRAINING AND TESTING EXPERIMENTS

We adopt the pattern of software training and hardware inference for DNNs. In this section, we
describe our experiment setup and compare conventional DNNs, LightNNs, and BNNs in terms of
accuracy and storage. Hardware implementation results are described in subsequent sections.

4.1 Accuracy

We first introduce the experiment setup, including the DNN architectures, datasets, DNN configu-
rations, and training approaches. Then, the accuracy results of different architectures are reported
and compared.

4.1.1 Setup. Different DNN architectures, configurations, and training settings are described as
follows. Our goal is to involve (1) both Multi-Layer Perceptrons (MLPs) and Convolutional Neural
Networks (CNNs) and (2) both large and small network configurations, to make the results more
representative.

DNN architectures. Seven DNN architectures are considered: conventional DNN, LightNN-2,
LightNN-1, BinaryConnect, LightNN-2-bin, LightNN-1-bin, and BinaryNet. Table 1 describes their
main characteristics. The ReLU activation function is adopted in the first four architectures, while
the last three architectures use the hard tanh function for training and the sign function for testing.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

17:10 R. Ding et al.

Table 1. Architecture Characteristics for the Experiments

. . Activation | Intermediate
Architecture Weights Function Results Inputs
Conventional DNN 32-bit floating point ReLU floating | floating
LightNN-2 +(27™ +27™2) my,my =0,1,...7 ReLU floating floating
LightNN-1 +2 ™ m=0,1,...7 ReLU floating floating
BinaryConnect +1 ReLU floating | floating
LightNN-2-bin +(27™ +27™2) my,my =0,1,...7 Sign +1 floating
LightNN-1-bin +2"™ m=0,1,...7 Sign +1 floating
BinaryNet +1 Sign +1 floating

Table 2. The Five Architecture Configurations for the MNIST and CIFAR-10 Experiments

Dataset | Configuration | Detail
1-hidden One hidden layer with 100 neurons
MNIST 2-conv Two convolutional layers and two fully connected layers
3-hidden Three hidden layers each with 4,096 neurons
3-conv Three convolutional layers and one fully connected layer
CIFAR-10 - -
6-conv Six convolutional layers and three fully connected layers

Datasets. We test the seven architectures on two datasets: MNIST [26] and CIFAR-10 [23]. The
MNIST dataset contains 70,000 gray-scale hand-written images, while CIFAR-10 contains 60,000
colored images for animals and vehicles.

DNN configurations. Both MLPs and CNNs are adopted for MNIST and CIFAR-10. We selected
five configurations as shown in Table 2. The basic idea is to include both small and large DNN
configurations to determine how different architectures perform under varying configurations: 3-
hidden for MNIST and 6-conv for CIFAR-10 are two large configurations used by Courbariaux et al.
[3, 15]; 2-conv for MNIST and 3-conv for CIFAR-10 are two smaller configurations borrowed from
Caffe examples [20]; 1-hidden for MNSIT is a simple configuration adopted by prior research [36].

Training approach. The training algorithm is described in Section 3.3.2. Batch normalization
[19] and dropout [40] techniques are adopted to accelerate training and avoid overfitting,
respectively. The dataset is divided into a training set, validation set, and test set. The validation
set is used for selecting the best epoch. The same number of total training epochs is applied to all
architectures and the test error of the epoch with the lowest validation error is reported. These
architectures are trained on the Theano platform [41]. We use existing open-source models [14]
to train the conventional DNN, BinaryConnect, and BinaryNet. Finally, the hinge loss function
[8] and ADAM learning rule [22] are used to train all seven architectures [22].

4.1.2 Results. Results for different DNN architectures and configurations are presented in
Table 3.

Comparison. For most configurations (except a few), the accuracy decreases from conven-
tional, LightNN-2, LightNN-1, LightNN-2-bin, LightNN-1-bin, BinaryConnect, BinaryNet. This
is because when we constrain the weights and activations, the architecture suffers from varying
levels of accuracy loss.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

Lightening the Load with Highly Accurate Storage- and Energy-Efficient LightNNs 17:11

Table 3. Test Error and Number of Parameters for All DNN Architectures

MNIST CIFAR-10
1-hidden | 2-conv | 3-hidden | 3-conv 6-conv
Number of parameters 79,510 431,080 | 36,818,954 | 82,208 | 39,191,690

Conventional 1.72% 0.86% 0.75% 21.16% 8.86%

LightNN-Z 1.86% 1.29% 0.83% 24.62% 8.84%

LightNN-1 2.09% 2.31% 0.89% 26.11% 8.79%

Test error | BinaryConnect 4.10% 4.63% 1.29% 43.22% 9.90%

LightNN-2-bin 2.94% 1.67% 0.89% 32.58% 10.12%

LightNN-l-bin 3.10% 1.86% 0.94% 36.56% 9.05%

BinaryNet 6.79% 3.16% 0.96% 73.82% 11.40%

10° -Conver;tional 102 A105

. [ELightNN-2(-bin) = €
@108 F[ILightNN-1(-bin) 2 =
<, [IBinaryConnect/BinaryNet o) £
[} = s
g 107F = o}
s g g
%105* é E
205t g g
o 2

‘(@6‘3“ ,5,00‘\“ V-\\éde(\ (5,00‘\\‘ ‘6,00«l
X o §

A < S
WS W (T s

Fig. 2. Storage (for weights) required by Fig. 3. Area and energy of an approximate

different DNN architectures under varying multiply unit across all DNN architectures.

datasets and configurations.

4.2 Storage Requirements

The weight storage requirements for different DNN architectures are compared in Figure 2. Since
the constraint on activations does not affect weight storage, we only show four DNN architec-
tures. While it has been shown that limited-bit precision can also lead to sufficient accuracy [9],
we retain the 32-bit representation for the conventional DNN as baseline. Therefore, a weight
in conventional DNNs has 4 bytes, while BinaryConnect and BinaryNet only require 1 bit. To
store a weight w = 27, LightNN-1 and LightNN-1-bin need 4 bits: 1 bit for sign(w) and another
3 bits for [m|. LightNN-2 and LightNN-2-bin need 7 bits for a weight w = £(27™ + 272): 1 bit
for sign(w), 3 bits for [m4|, and 3 bits for |my|. For easier hardware implementation, 1 byte is used
for LightNN-2 or LightNN-2-bin weights. Storage affects the number of memory accesses and is
therefore essential to energy consumption, which is investigated in Section 5.

4.3 ImageNet Results

To see if LightNNs can perform well on large-scale datasets and large networks, we conduct
experiments on the ImageNet dataset [4] with AlexNet [24] and VGG-16 [38]. The training set-
tings for LightNN are the same as conventional DNNs, except for the customized learning rates.
For AlexNet, we train LightNN from scratch, while for VGG-16, we train from pretrained full-
precision weights due to time constraints. LightNN-1 is used for experiment, where each weight
is constrained to be {+2° +271, ... +277}. The results are shown in Table 4. The test error for

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

17:12 R. Ding et al.

Table 4. Test Error for Conventional DNNs, LightNN-1 and
BinaryConnect on ImageNet

Model AlexNet VGG-16
Top-1 err. | Top-5 err. | Top-1 err. | Top-5 err.
Conventional 43.4% 19.8% 27.0% 8.8%
LightNN-1 41.4% 19.7% 28.2% 9.4%
BinaryConnect 64.6% 39.0% N/A N/A

The Accuracy for BinaryConnect is Borrowed from Rastegari et al. [35] Where Only
AlexNet Results are Available.

Table 5. Comparison of LightNN and Fixed-Point Weights in Terms of Weight Storage and Test Error

Network size
Model 1,536 512 128 64
Storage | Error | Storage | Error | Storage | Error | Storage | Error
Conventional 165MB | 6.45% | 19MB | 7.12% 1MB 10.59% | 313KB | 14.02%
Fixed-pointswsa | 41IMB | 6.46% 5MB 7.33% | 0.3MB | 10.68% | 78KB | 14.58%
Fixed-pointswsa | 20MB | 6.57% 2MB 7.35% | 0.IMB | 10.91% | 39KB | 16.50%
LightNN-141y54 20MB 6.49% 2MB 7.14% | 0.1IMB | 10.69% 39KB 15.40%
BinaryConnect 5MB 6.89% | 0.6MB | 8.77% | 0.04MB | 15.28% 10KB 23.14%

Network size indicates the number of filters for the largest convolutional layer in the network. “xW” means x bits for
weights, and “yA” means y bits for activations.

conventional DNNs is directly borrowed from prior work [24, 38]. LightNN-1 can achieve slightly
better accuracy than conventional DNNs for AlexNet and has competitive accuracy for VGG-16.

4.4 Comparison with Fixed-Point Weights

Fixed-point quantization [9, 48] for weights and activations has also been used to reduce storage
and energy for DNNs. LightNN, as a variant of quantized DNNSs, is compatible with fixed-point
activation quantization. We compare the fixed-point weights and LightNN, both with 8-bit fixed-
point activations, in Table 5. We start from the network configuration by Hubara [13], which is
a VGG-like network whose “widest” convolutional layer has 1,536 filters, and then reduce the
number of filters per layer to see the model accuracy at different network sizes. We have also
changed the activation function from ReLU to leaky ReLU [29] since the latter achieves higher
accuracy for all the models. From Table 5, LightNN-141/54 can achieve slightly higher accuracy
than fixed-pointsyysa, while they have the same weight storage. Further comparison regarding
their FPGA resources is shown in Table 12.

4.5 Varying Number of Shifts

Since the number of shift-and-add operators, k, determines the approximation accuracy per
weight, it is worthwhile to analyze how accuracy changes when k changes. We conduct the ex-
periment on a customized small convolutional network with only 19,738 parameters, so the gap
between k = 1 and k = 32 is large. We constrain the maximum bits per shift to be 7, which is the
same setting used for LightNNs in Table 1. The results are shown in Table 6. As expected, larger
k has higher accuracy, yet in this case the accuracy for k = 3 is close to k = 32. The per-weight
bit storage (PWBS) for k = 32 is 32 (not 128) because it can record which bits to shift as the 32-bit
fixed-point weight usually does.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

Lightening the Load with Highly Accurate Storage- and Energy-Efficient LightNNs 17:13

Table 6. Per-Weight Bit Storage (PWBS) and Test ~ Table 7. Per-Weight Bit Storage (PWBS) and Test
Error at Varied k (Number of Shift-and-Add Error of LightNN-1 at Varied ¢ (Maximum Number

Operators for an Equivalent Multiplier) of Bits to Shift)
k 1 2 3 5 32 c 1 2 3 7 15
PWBS 4 8 12 20 32 PWBS 2 3 3 4 5

Error 26.01% | 22.01% | 21.19% | 20.97% | 20.89% Error 38.51% | 33.04% | 26.32% | 26.01% | 25.88%

4.6 Varying Number of Shifting Bits

It is also interesting to see how the maximum number of shifting bits, ¢, affects the accuracy. We
gradually increase ¢ for LightNN-1 from 1 to 15, and show the results in Table 7. The small network
used by Table 6 is also adopted here. For this case, the accuracy for ¢ = 7 is close to ¢ = 15 but can
use 4 bits per weight instead of 5 bits.

5 HARDWARE EVALUATION

In this section, we show the gate-level circuit simulation results for energy and area across different
DNN architectures and configurations. We also present a guideline for selecting DNN architectures
for hardware implementations to satisfy the varying requirements of different applications.

5.1 Setup

For all seven DNN architectures under consideration, we designed pipelined implementations with
one stage per neuron, where the computation unit is reused for each neuron. The weights and in-
puts are initially stored in the memory and fetched into the pipeline stage to compute the output
for all neurons in that layer; intermediate results are written back. A 65nm commercial standard
library is adopted. The logic computations circuit of one neuron is constructed using Synopsys De-
signware commercial IP [39] (e.g., floating-point multiplication and addition). The Synopsys De-
sign Compiler [30] is used to generate the gate-level netlist and measure the circuit area. The power
consumption of one neuron circuit is calculated using Synopsys Primetime [16]. Cacti [33] is used
to obtain the energy of memory accesses and registers. While prior work describes approaches
(such as data reuse) to optimize the CNN hardware implementation [1], we keep all the DNN ar-
chitectures implemented in an unoptimized fashion because our main objective is to compare how
constraining weights impact both computation and memory access energy. The size of the register
files is chosen to accommodate the data size required for the computation of the largest neuron.

5.2 Multipliers versus Approximate Multiply Units

Energy and area of each multiplier or approximate multiply unit in all DNN architectures under
consideration are explored first. For BinaryConnect and BinaryNet, a multiply unit is simply an
XNOR gate [15]. For LightNN-1 and LightNN-1-bin, it is a shift unit. Since operands (e.g., unbina-
rized weights, activations, and inputs) are represented as single-precision floating point, the shift
operation is equivalent to an integer addition for the exponent. LightNN-2 and LightNN-2-bin both
rely on two shifts and an add operation. The adder required by LightNN-2 is floating point, while
LightNN-2-bin only needs an integer adder to perform fixed-point addition. The area and energy
consumption are reported in Figure 3.

5.3 Energy Consumption

Figure 4 shows the comparison of energy consumption for all seven DNN architectures considered.
Under the same DNN configuration, conventional DNNs and BinaryNet are always the most and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

17:14

o
o

Il Conventional

[LightNN-2

ILightNN-1

£ [[EBinaryConnect

[CILightNN-2-bin

[CILightNN-1-bin
[IBinaryNet

o
S

N
T

Energy consumption (nJ)
5 3

10"

o o
<,\~“‘©6 S > <
\J\\A\% Q\V\\ \}\V\\% 0\? &

o

Fig. 4. Comparison of energy consump-
tion of different DNN architectures un-
der varying datasets/configurations. Energy

R. Ding et al.

Ml Logic BIMemory [C]Clock [_JRegister

o
©

Energy composition
I e
S =2

e
[N

0

A o © @ S
N e N

@ 2
RO A\
NN
N\

N “\\\\\A '\g‘\,&w\’ o
>

o
Fig. 5. Energy breakdown for all DNN archi-
tectures, averaged across different datasets
and configurations.

consumption is measured for inferring a sin-
gle image.

least energy-consuming architecture, respectively. Furthermore, LightNN-2 is more energy con-
suming than LightNN-1 and LightNN-2-bin, both of which consume more energy than LightNN-
1-bin. When comparing LightNN-1 and LightNN-2-bin, the former has fewer bits for each weight,
and therefore consumes less energy for each memory access, while the latter has more energy-
efficient logic. The results in Figure 4 show that LightNN-1 has higher energy consumption than
LightNN-2-bin in all configurations except MNIST 1-hidden. The same comparison holds for the
BinaryConnect and LightNN-1-bin, where BinaryConnect has more energy-consuming logic cir-
cuitry (e.g., floating point adder), while LightNN-1-bin has larger weight storage.

Although BinaryNet always has the lowest energy consumption under the same configuration,
its high accuracy only occurs when the configuration is very large. For example, a conventional
DNN with 2-conv configuration can surpass BinaryNet with 3-hidden configuration in terms of
both accuracy and energy consumption for the MNIST dataset.

To explore the energy composition for each DNN architecture, we report the results in Figure 5.
Specifically, the various components of energy are averaged across different configurations and
datasets. For the conventional DNNs with floating-point circuitry, the most energy-consuming
part is the computational portions, while the majority of energy in LightNN-2-bin, LightNN-1-
bin, and BinaryNet is consumed by memory accesses, though the absolute values are still smaller
than that of conventional DNNs. We also break down the logic energy into leakage, switch, and
internal energy, where the switch energy is caused by switched load capacitance, and the internal
energy is due to internal device switching. The leakage, switch, and internal energy take 31.6%,
35.2%, and 33.2% respectively, averaged on all DNN architectures and configurations.

5.4 Area Comparison

We also compare the area of the seven DNN architectures under varying configurations in
Figure 6. Note that the reported area includes both logic circuits and register files. Also note
that the DNN inference is implemented in a pipeline fashion, and the logic is set to handle
the largest neuron count in each configuration. Since more computation modules indicate a
larger area but fewer memory fetches, the absolute values for the area encompass the energy
consumption reported in Figure 4. However, the comparison of different DNN architectures
within a configuration is still meaningful since they use the same (largest) neuron count. The
DNN architectures follow a consistent order (from larger area to smaller): Conventional DNNs,
LightNN-2, LightNN-1, BinaryConnect, LightNN-2-bin, LightNN-1-bin, and BinaryNet.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

Lightening the Load with Highly Accurate Storage- and Energy-Efficient LightNNs 17:15

[BinaryConnect|
f |LightNN-2-bin
[CILightNN-1-bin
[1BinaryNet

Area (um X pm)
=
2

10° o o " "
Q0% N 3 N\ o
A W o 0,0 e . \Qﬁ,oo o S
2 & ‘
Ne K\ e G\QP?‘ G\?P?\
Fig. 6. Comparison of area of different DNN architectures under varying datasets and configurations.
10° a3 I-hidden | 2-conv | 3-hidden 10° é 3-conv_ | 6-conv
Conventional DNN 1 2 3 Conventional DNN 1 2
A6 LightNN-2 a4 5 6 LightNN-2 3 4
'3;51 2 LightNN-1 7 8 9 é LightNN-1 5 6
B & BinaryConnect 10 11 12 = ' BinaryConnect 7 8
® 10—1 LightNN-2-bin 13 14 15 o 10'1 LightNN-2-bin 9 10
% 2 LightNN-1-bin 16 17 18 5 LightNN-1-bin 1 12
g BinaryNet 19 20 21 -8 JD BinaryNet 13 14
p N 12 Pl
© 45 & . e
A
E o2 A7 ol o2
z " S0
A g 2 5 J
a4 o3 2
&7 A6 410 9 a1
. : 13
10 31 L 10 3 A
1 2 3 4 5 6 7 0 10 20 30 40 50 60 70 80
Test error (%) Test error (%)
(a) (b)

Fig. 7. Normalized energy and test error of varying DNN architectures and configurations for (a) MNIST
and (b) Cifar-10. Red triangles are Pareto optimal.

5.5 Guidelines for Architecture Selection

An interesting question is whether there is a DNN architecture that always surpasses another in
terms of both accuracy and energy, under varying configurations and datasets. The answer is no.
However, with constraints on accuracy or energy, some DNN architectures are more preferable
than others. Suppose one will implement DNN for MNIST on hardware with the constraint that
energy consumption per inference is below 200n]. In this case, the LightNN-2 architecture with
the 2-conv configuration is the best, since it has the highest accuracy.

Does higher accuracy always require higher energy? Again, the answer is no. A comparison of
different architectures and configurations is presented in Figure 7. Only the red triangles are the
Pareto-optimal ones in terms of accuracy and energy.

5.6 Non-Pipeline Implementation

To further explore how LightNNs perform in a nonpipeline implementation, we implement the
ANNGs for five benchmarks from the UCI machine-learning repository [2]: abalone, banknote-
authentication, transfusion, sinknonsink, and balance-scale. They are chosen because of their
small ANN configurations, making direct implementations of whole ANNs possible. The size of
the datasets varies from 600 (balance) to 200,000 (sinknonsink), so a greater coverage is ensured.
Instead of computing each neuron at one stage, the nonpipeline implementation builds the whole
ANN for each dataset. Moreover, to confirm that LightNNs are compatible with the use of limited

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

17:16 R. Ding et al.

Table 8. Test Error of Conventional DNNs and LightNNs with 32-Bit and 12-Bit Implementation

Model Benchmark
sinknonsink | transfusion | banknote | balance | abalone | Average
32-Bit Conventional 1.44% 14.87% 1.00% 2.40% 17.20% 7.18%
32-Bit LightNN 1.44% 15.54% 1.00% 2.40% 19.80% 7.84%
12-Bit Conventional 1.44% 16.22% 1.00% 2.40% 18.00% 7.61%
12-Bit LightNN 1.44% 16.22% 1.00% 2.40% 20.00% 8.01%
Conventional DNN 6 x10°
Bleakage _ @inemalenergy _ swicheneroy — et
sl
0.015 E
— Sat
€ £
§ 0.010 §3,
o <
LLI 0.005 2+
0.000 = = ! N o =] &
é\(*‘\o‘\é\‘* \‘a‘\é\\@o“ ba“\““o‘e v@\a‘\ga qp'b\o‘\e w‘e‘age 9‘\(*‘\0(\9\0‘;@(\%\05\0“0&*‘\0\ » %\a(\oe ?pa\d\ a\\e(oge
Fig. 8. Energy of 12-bit conventional DNNs Fig. 9. Area of 12-bit conventional
and LightNNs. DNNs and LightNNs.

bit precision for inputs and intermediate results [9], we use both 32-bit and 12-implementations.
Similar to Section 5, the ANNs are implemented using Synopsys Designware commercial IP [39].

5.6.1 Accuracy. Table 8 shows the accuracy for the testing phase for the five benchmarks. All
of them are trained with 2-ones stochastic approximation. For each benchmark, the accuracy of
the 12-bit and 32-bit configurations are shown for both the conventional DNNs and LightNNs.
From an accuracy standpoint, LightNNs lose only 0.66% and 0.40% accuracy when compared to
conventional DNNs for 32- and 12-bit implementations, respectively, on average across the five
benchmarks. Furthermore, the accuracy results for 32- and 12-bit data confirm that the additional
error incurred by limiting numerical precision is quite small [9]. Finally, the small accuracy differ-
ences between 32-bit and 12-bit LightNNs prove that they have high tolerance for limited precision,
thereby showing their compatibility with prior work [9, 42, 47].

5.6.2 Energy and Area. Twelve-bit conventional DNNs and LightNNs for the five benchmarks
are implemented and all three types of energy consumption are measured: leakage, internal, and
switch energy, all shown in Figure 8. The area is also compared in Figure 9. Note that the energy
and area are reported only for the logic. The use of LightNNs reduces total energy by 38.8% on
average. Both leakage and dynamic energy are reduced, benefiting from the more energy-efficient
logic implementation. More precisely, the area of a 12-bit multiplier is reduced by 61.6% by the use
of the LightNN multiplier. As a result, fewer transistors are required by LightNNs, leading to less
leakage and dynamic energy consumption.

6 FPGA IMPLEMENTATION

In this section, the FPGA implementations of conventional DNNs and LightNN are compared. Our
goal is to demonstrate that the quantization method provided by LightNN leads to a resource-
efficient and low-latency FPGA implementation. There are no detailed analytic models of FPGA
architectures and circuitry, so we must evaluate architectures with actual mapped hardware.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

Lightening the Load with Highly Accurate Storage- and Energy-Efficient LightNNs 17:17

However, for any DNN implementation, there are many potential solutions that result in a large
design space. Work by Zhang et al. [44] finds that there could be as much as a 90% performance
difference between two different solutions with the same FPGA logic utilization. It is nontrivial to
determine the optimal solution, especially when limitations on computation resources and mem-
ory bandwidth of the FPGA platform are considered. Therefore, in this experiment, to evaluate
the efficacy, we will use the same design optimization solution for both conventional DNNs and
LightNN.

6.1 HLS Accelerator Implementation

The Vivado high-level synthesis (HLS) [18] is used to describe the functionality for each layer
within a conventional DNN and a LightNN. A primary capability of Vivado HLS lies in the rapid
assessment of resources, throughput, and performance tradeoffs. The FPGA implementation is
produced according to pragma and directives inserted into the C code (or into a separate directive
file) that instruct the HLS compiler how to synthesize the algorithm. Therefore, the same pragma
and directives are used for both the conventional DNNs and the LightNN.

In addition, a previous study [44] proved that convolution operations typically take over 90% of
the computation time. Therefore, in this work, we will focus on the comparison of convolutional
layer implementation in conventional DNN and LightNN. A more specific design optimization
solution for LightNN will be studied in future work.

The pseudo code shown in Algorithm 2 illustrates the detailed design optimization solution
for a convolutional layer. The convolutional layer transforms a 3D input volume to a 3D output
volume of neuron activations. For example, the depth of the 3D input volume shown in Algorithm 2
is N. In other words, there are N input channels. Similarly, the depth of the 3D output volume
shown in Algorithm 2 is M, which means that there are M output channels. The parameters of
the convolutional layer consist of a set of trainable weight kernels. Every weight kernel is small
spatially (along width and height) but extends through the full depth of the input volume. For
example, a weight kernel of the convolutional layer shown in Algorithm 2 has dimensions N X
K X K (i.e., K pixels width and height and N input channels because input volume has depth N).
Although the convolutional layer significantly reduces data volumes by weight sharing, loop tiling
is still mandatory to fit a small portion of data on-chip for FPGA implementation. Therefore, we
begin by applying loop tiling for the 3D input volume. To be specific, the depth of the input volume
is tiled by T,, the height of the input volume is tiled by T, and the width of the input volume is
tiled by T, (shown in lines 3 to 4 in Algorithm 2). Therefore, the input volume is tiled into small
blocks with dimensions T, X T, X T,. The depth of the 3D output volume is tiled by T, as well
(shown in line 1 in Algorithm 2). Then, the tiled inputs, weights, and biases (which we did not
show in Algorithm 2 for simplicity) are loaded on-chip. However, an improper tiling may degrade
the efficiency of data reuse and parallelism of data processing. Thus, different tiling settings (such
as different values of T,,, Ty, T,, and T;) are exercised to identify the optimal solution in terms of
the timing latency and resource usage.

Second, the computation engine is optimized as well for the tiled data. In Algorithm 2, the
objective of computation optimization is to enable efficient loop unrolling (shown in lines 13 and
15) and pipelining (shown in line 11) while fully utilizing all computation resources provided by
the FPGA hardware platform. Loop unrolling can be used to increase the utilization of massive
computation resources in FPGA devices. Unrolling along different loop dimensions will generate
different implementation variants. Whether and to what extent two unrolling execution instances
share data will affect the complexity of generated hardware and eventually affect the number of
unrolled copies and the hardware operation frequency.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

17:18

Table 9. Data-Sharing Relations of Convolutional Operations

Loop Iterator | Tiled Inputs | Tiled Weights | Tiled Outputs

rowg dependent independent irrelevant

coly. dependent independent irrelevant

row dependent irrelevant independent
col dependent irrelevant independent
tt, irrelevant independent independent
tt; independent independent irrelevant

R. Ding et al.

ALGORITHM 2: Pseudo code of a convolutional layer implementation using Vivado HLS

Input: weights W, inputs for layer I, tiling size for output channels T}, tiling size for input channels
T, tiling size for the width of input volume T¢, tiling size for the height of input volume T;.

Output: outputs for layer O.
1 for (to=0; to< M; to+=Tp) {
2 for (tj= 0; tji< N; tj+=Ty) {

3 for (rowy= 0; rows< R; rows+=T;) {

4 for (coly= 0; coly< C; coly+=T, {

5 I = I[t; : tj + Ty][rows : rowy + Ty][coly : coly + T¢] // load tiled inputs

6 Wi = Wlto : to + Tn][ti : ti + T,][0 : K][0 : K] // load tiled weights

7 for (rowg= 0; row<K; rowg+=1) {

8 for (colg= 0; col<K; colp+=1) {

9 for (row= row; row<row;+Ty; row+=1) {

10 for (col= coly; col<coly+T¢; col+=1) {

1 #pragma HLS pipeline

12 for (tto= to; tto<to+Tpm; tto+=1) {

13 #pragma HLS UNROLL

14 for (tt;=t; tti<ti+Tp; tti+=1){

15 #pragma HLS UNROLL

16 O¢[tto][row][col] += Wy [tto][tti] [rowy [coli 1% I [tt;][S X row + rowy][S X
col + coli];

17 BB

18 // write back tiled outputs O; to O
W

Table 9 shows the data-sharing relation of convolutional computation. The data-sharing rela-
tions between different loop iterations of a loop dimension on a given array can be classified into
three categories: irrelevant, independent, and dependent [44]:

e Irrelevant. If loop iterator i does not appear in any access function of an array A, the cor-

responding loop dimension i is irrelevant to array A. For example, loop iterator row does
not appear in any access of the tiled weight W; shown in Algorithm 2. Therefore, the cor-
responding loop of loop iterator row is irrelevant to the tiled weight W;.
o Independent. If the data space accessed on an array A is totally separable along a certain
loop dimension i, the loop dimension i is independent of array A. For example, the first two
dimensions accessed on the tiled weight W; are totally separable along the certain loops
whose iterators are tt, and tt;, respectively. Therefore, the corresponding loop of iterators
tt, and tt; is independent of the tiled weight W;.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

Lightening the Load with Highly Accurate Storage- and Energy-Efficient LightNNs 17:19

Table 10. DNN Configuration for CIFAR-10

Layer | Input Channel | Output Channel | Output Dim

Convl 3 128 32
Conv2 128 128 32
Conv3 128 256 16
Conv4 256 256 16
Conv5 256 512 8
Convé6 512 512 8
FC1 8192 1024 1
FC2 1024 10 1
FC3 1024 10 1

e Dependent. If the data space accessed on an array is not separable along a certain loop di-
mension i, the loop dimension i is dependent on A. For example, the last two dimensions
accessed on the tiled input I; cannot be separable along the certain loops whose loop itera-
tors are row, col, rowy, and coli. Therefore, the corresponding loop of the iterator row, col,
rowy, and coly is dependent on the tiled input I;.

An independent data-sharing relation generates direct connections between buffers and compu-
tation engines. An irrelevant data-sharing relation generates broadcast connections. A dependent
data-sharing relation generates interconnections with complex topology. The data-sharing rela-
tions of the pseudo code are shown in Table 9. Loop dimensions tt, and tt; are selected to be
unrolled to avoid complex connection topologies for all arrays. tt, and tt; are permuted to the
innermost loop levels to simplify HLS code generation.

On the other hand, loop pipelining is another key optimization technique in HLS to improve
system throughput by overlapping the execution of operations from different loop iterations. The
throughput achieved is limited both by resource constraints and data dependencies in the appli-
cation. Loop-carried dependence will prevent loops from being fully pipelined. According to the
analysis by Zhang et al. [44], the loop col can be fully pipelined for achieving better performance.

6.2 Experiment Setup

As described previously, conventional DNNs and LightNN are implemented with Vivado HLS [18].
The C code of DNN designs is parallelized by adding HLS-defined pragma and the parallel ver-
sion is validated with the Vivado HLS timing analysis tool. This tool enables fast presynthesis
simulation for the implemented design. Presynthesis resource reports are used for design space
exploration and performance estimation. Our implementation is built on the VC709 board, which
has a Xilinx FPGA chip Virtex7 485t. Its working frequency is 100MHz. Presynthesis is executed
on an Intel i7-4790 CPU (3.6GHz) with 16GB RAM.

Table 10 summarizes the detailed DNN configuration used in this experiment. This configuration
is the 6-conv for CIFAR-10 dataset from Section 4.1.1, which contains sixty thousand 32x32 three-
channel images. The configuration consists of six convolutional layers followed by three fully
connected layers. All convolutional layers use 3x3 filters and edge padding,.

6.3 Experimental Results

In this subsection, we first compare design space exploration results between conventional DNNs
and LightNN. Then, the resource usage comparison among different design solutions is reported.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

17:20 R. Ding et al.

Table 11. Timing Performance Comparison between Conventional DNN,
Fixed-Point DNN, and LightNN

Layer Tiling Size Execution Cycles Speedup’
Tm | Tn | Tr | TC Conventional| FP4W8A | LN'14W8A FP4W8A | LN'14W8A
Convl |128| 3 [32]32 727,852 596,135 596,132 22% 22%
Conv2 1281283232 1,016,853 862,944 861,977 18% 18%
Conv3 256|128| 16| 16 697,364 582,907 582,905 20% 20%
12812816 |16 1,034,279 879,364 879,359
Convd 256 256|16| 16 1,034,262 879,355 879,353 18% 18%
128|128 16|16 3,182,669 2,921,362 | 2,921,361
512|256| 8 | 8 N/A* 2,532,367 | 2,532,429
Conv5 [256(256|16|16| 2,592,811 2,206,110 | 2,206,088 35% 35%
128|128|16|16| 9,871,513 9,033,054 | 9,032,871
512|512 8 | 8 N/A* 4,516,331 | 4,516,286
Conv6 |256(256| 8 | 8 9,871,437 9,033,141 | 9,033,050 119% 119%
128 (128| 8 | 8 38,584,609 |36,692,238 36,691,500

FP4wsA is short for fixed-pointyysa, i.e., fixed-point network with 4-bit weights and 8-bit activations. LN-
14wsga refers to LightNN-14y54, i.e., LightNN-1 with 4-bit weights and 8-bit activations. Both LN-141/54
and FP4yg4 can achieve higher speed without running out of FPGA resources.

*NJ/A indicates that FPGA runs out of its resource for achieving the corresponding tiled setting.

TSpeedup describes the speed increase for the FP4y34 and the LN-141y84 compared to conventional DNN
under their best tiling size for each layer, respectively.

Table 11 shows different tile size tuples <T,,, T,, T, T.> and their corresponding execution
cycles for the DNN configuration shown in Table 10. The execution cycles are reported by Vivado
presynthesis simulation for three different quantization methods: (1) Conventional, which encodes
the weight and output of a neuron as 32-bit floating-point numbers; (2) FP4154, which uses the 4-
bit fixed-point representation for weights and the 8-bit fixed-point representation for intermediate
results; and (3) LN-14yy54, which uses the 4-bit predefined format to represent weights and the
8-bit fixed-point representation for the intermediate results. The N/A entries in Table 11 show
that FPGA resources are exhausted for the corresponding tiled setting. The first observation from
Table 11 shows that with a large tiling size, DNN can achieve a significant advantage in timing
latency. Another observation is that for the same tiling size, the FP4y54 and the LN-14334 have an
advantage in execution cycles, which leads to smaller latency. However, the latency improvement
achieved for the same tiling size between the conventional DNN and the LN-14yy54 is not as large
as expected. A possible explanation may be that latency improves for the optimized design of the
conventional DNN but not LN-14154. Therefore, a more specific design optimization solution for
the LN-1454 should be sought for latency improvement.

Table 11 also shows the speedup for the FP4yy54 and the LN-14yy54 compared to the conventional
DNN, where the best tiling size for each DNN is used. Since the conventional DNN requires many
more resources than the FP4y54 and the LN-14yy54 with the same tiling size (more detail shown
in Table 12), the conventional DNN runs out of FPGA resources when increasing the tiling size to
512 % 512 X 8 X 8 for the largest two layers (Conv5 and Conv6). Therefore, the FP4yy54 and the LN-
14wsa, which reduce the resource requirement, allow larger tiling sizes, and therefore reduce the
latency. In addition, we notice that FP4yyg4 and the LN-14yy54 have similar speedups, which might
also be explained by the fact that optimized design for the conventional DNN doesn’t benefit from
the significant reduction in FPGA resources that LN-14yy54 has.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

Lightening the Load with Highly Accurate Storage- and Energy-Efficient LightNNs 17:21

Table 12. FPGA Resource Usage Comparison between Conventional DNN,
Fixed-Point DNN, and LightNN

Layer Tiling Size DNN FPGA Resource
Tw | T, | T, | T. | Architecture | BRAM DSP FF LUT
Conventional 40 32 3,455 3,522
Convl | 128| 3 | 32 | 32 FPiwsa 13 8 461 1,112
LN-14wsa 13 1 401 1,120
Conventional 1,040 1,281 120,788 96,350
Conv2 128 | 128 | 32 32 FP4wsa 448 257 2,627 7,798
LN-T4v84 443 1 701 9,711
Conventional 1,280 1,281 120,759 96,340
256 | 128 | 16 16 FPywsa 416 257 2,611 7,774
Conv3 LN-14W3A 416 1 687 9,686
Conventional 768 1,281 120,748 96,035
128 | 128 16 | 16 FPiwsa 416 257 2,605 7,483
LN-14w34 416 1 681 9,396
Conventional 2,432 2,561 240,838 191,380
256 | 256 | 16 16 FP4ywsa 800 513 4,746 14,524
LN-14w384 800 1 902 18,388
Convd Conventional | 768 1281 | 120,747 | 96,125
128 | 128 | 16 16 FP4wsa 416 257 2,613 7,493
LN-14w84 416 1 689 9,406
Conventional N/A* N/A* N/A* N/A*
512 | 256 | 8 8 FP4wsa 1,040 513 8,817 17,832
LN-14ws84 1,040 1 4,976 21,695
Conventional 2,368 2,561 240,782 190,637
Conv5 256 | 256 8 8 FP4wsa 528 513 8,811 17,283
LN-14ws4 528 1 4,970 21,147
Conventional 704 1,281 120,698 95,622
128 | 128 | 8 8 FP4wsa 272 257 4,638 8,856
LN-T4vs4 272 1 2,715 10,769
Conventional | N/A* N/A* N/A* N/A*
512 | 512 8 8 FP4wsa 1,040 1,025 17,161 34,565
LN-14w34 1,040 1 9,405 42,364
Conventional 2,368 2,561 240,800 190,642
Convé6 256 | 256 8 8 FP4wsa 528 513 8,820 17,292
LN-14ws4 528 1 4,979 21,156
Conventional 704 1,281 120,722 95,636
128 | 128 8 8 FP4wsa 272 257 4,646 8,876
LN-14ws4 272 1 2,723 10,789
Available resource 2,940 3,600 866,400 433,200

FP4wsa is short for fixed-pointyysa, ie., fixed-point network with 4-bit weights and 8-bit activations. LN-14y/54
refers to LightNN-141y54, 1.e., LightNN-1 with 4-bit weights and 8-bit activations. With the same tiling size, LightNN-
1 requires fewer resources than conventional DNN and fixed-point DNN.

*N/A indicates that FPGA runs out of its resource for achieving the corresponding tiled setting.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

17:22 R. Ding et al.

Table 13. FPGA Resource Utilization, Latency, and Test Error Comparison

DNN Maximum Resource Utilization | Normalized Test Error
Architecture | BRAM | DSP | FF | LUT Latency™
Conventional 80.5% | 71.1% | 27.8% 44.0% 100% 8.86%
FP4wsa 35.3% 28.4% | 1.98% 7.98% 18.0% 8.98%
LN-14wsa 35.3% | 0.03% | 1.09% 9.78% 18.0% 8.79%

*Latency is computed by summing up the lowest latency for six convolutional layers under FPGA resource
constraint, and normalized by the latency of conventional DNN.

To be specific, Table 12 illustrates the FPGA resource usage comparison between the con-
ventional DNN, the FP4yys4, and the LN-14yy84. In more detail, the BRAM, DSP, flip-flop, and
LUT usage are reported by the Vivado tool for different tiling settings. The last row of Table 12
shows the available resources for the Virtex7-VC709 FPGA board used in this experiment. Similar
to Table 11, an N/A entry means that the FPGA resources are exhausted for the corresponding
tiling size. The first observation from Table 12 shows that with the same tiling size, the FP4ys4
and the LN-14y54 require fewer FPGA resources than the conventional DNN. These reductions
can be explained by the fact that the quantization methods provided by the FP4y54 and the
LN-14ws4 simplify the computation of DNN. Another observation is that with the same tiling
size, the LN-14y54 requires fewer DSPs and FFs but more LUTs than the FP4yy54. This is due to
the fact that the LN-14yy54 utilizes the LUT to implement the described multiplier replacement
(shift operation) instead of the standard DSP unit. Overall, Table 12 indicates that LightNN-1 can
reduce latency by using a larger tiling size while requiring fewer FPGA resources.

Table 13 compares three DNNs w.r.t. the maximum resource utilization, latency, and test er-
ror. The maximum resource utilization and normalized latency are computed with the tiling
size that (1) does not exhaust FPGA resources and (2) minimizes the latency. Therefore, the
LightNN-1 can significantly reduce both the FPGA resource usage and latency while maintaining
accuracy.

7 CONCLUSION

The increasing demand of deep neural networks for real-time classification and the trend of
heterogeneous systems leveraging the high speed of ASICs and FPGAs accelerate the pace of
hardware implementations for DNNs. Due to the increasing size of DNNs, energy and area re-
quirements have become a very challenging problem. LightNNs modify the computation logic of
conventional DNNs by making reasonable approximations and replace the multipliers with more
energy-efficient operators involving only one shift or limited shift-and-add operations. In addition,
LightNNs also reduce weight storage, thereby decreasing the memory access energy. Experimental
results of gate-level hardware simulation show that LightNNs fill the gap between conventional
DNNs and BNNs in terms of accuracy, storage, energy, and area and provide more options for
hardware designers to select DNN architectures based on their accuracy and resource constraints.
We also show that the FPGA implementation for LightNN requires fewer resources and reduces
the latency compared to the conventional DNNs.

ACKNOWLEDGMENTS

This research was supported in part by NSF CCF Grant No. 1331804, NSF CCF Grant No. 1564022,
and NSF CCF Grant No. 1314876.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

Lightening the Load with Highly Accurate Storage- and Energy-Efficient LightNNs 17:23

REFERENCES

(1]

(2]
(3]
(4]
(5]

(6]

(7]

(8]
(9]
[10]

(11]

Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. 2016. YodaNN: An ultra-low power convolutional neural
network accelerator based on binary weights. In 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI'16).
IEEE, 236-241.

D. Dua and E. Karra Taniskidou. 2017. UCI Machine Learning Repository. University of California, School of Infor-
mation and Computer Science. http://archive.ics.uci.edu/ml.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binaryconnect: Training deep neural networks
with binary weights during propagations. In Advances in Neural Information Processing Systems. 3123-3131.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image
database. In IEEE Conference on Computer Vision and Pattern Recognition, 2009 (CVPR’09). IEEE, 248-255.

Li Deng, Geoffrey Hinton, and Brian Kingsbury. 2013. New types of deep neural network learning for speech recog-
nition and related applications: An overview. In 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP’13). IEEE, 8599-8603.

Ruizhou Ding, Zeye Liu, Rongye Shi, Diana Marculescu, and R. D. Blanton. 2017. LightNN: Filling the gap between
conventional deep neural networks and binarized networks. In Proceedings of the Great Lakes Symposium on VLSI
2017. ACM, 35-40.

Zidong Du, Avinash Lingamneni, Yunji Chen, Krishna Palem, Olivier Temam, and Chengyong Wu. 2014. Leveraging
the error resilience of machine-learning applications for designing highly energy efficient accelerators. In 2014 19th
Asia and South Pacific Design Automation Conference (ASP-DAC’14). IEEE, 201-206.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press. Retrieved from http://www.
deeplearningbook.org.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. 2015. Deep learning with limited
numerical precision. In Proceedings of the 32nd International Conference on Machine Learning (ICML’15). 1737-1746.
Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights and connections for efficient neural
network. In Advances in Neural Information Processing Systems. 1135-1143.

Johann Hauswald, Yiping Kang, Michael A. Laurenzano, Quan Chen, Cheng Li, Trevor Mudge, Ronald G. Dreslinski,
Jason Mars, and Lingjia Tang. 2015. Djinn and tonic: DNN as a service and its implications for future warehouse scale
computers. In ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 27-40.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770-778.

Itay Hubara. 2017. BinaryNet PyTorch code. Retrieved from https://github.com/itayhubara/BinaryNet.pytorch/blob/
master/models/vgg_cifar10.py.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. BinaryNet Theano code.
Retrieved from https://github.com/MatthieuCourbariaux/BinaryNet.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized neural net-
works. In Advances in Neural Information Processing Systems. 4107-4115.

Synopsys Inc. 2016. Synopsys Design Compiler. Retrieved from https://www.synopsys.com/implementation-and-
signoff/signoff/primetime.html.

Xilinx Inc. 2017a. Xilinx FPGA. Retrieved from https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html.
Xilinx Inc. 2017b. Xilinx Vivado. Retrieved from https://www.xilinx.com/products/design-tools/vivado/integration/
esl-design.html.

Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing in-
ternal covariate shift. In International Conference on Machine Learning. 448—456.

Yangging Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and
Trevor Darrell. 2014. Caffe model examples. Retrieved from https://github.com/BVLC/caffe/tree/master/examples.
Yongtae Kim, Yong Zhang, and Peng Li. 2013. An energy efficient approximate adder with carry skip for error resilient
neuromorphic VLSI systems. In Proceedings of the International Conference on Computer-Aided Design. IEEE Press,
130-137.

Diederik P. Kingma and Jimmy Lei Ba. 2015. A method for stochastic optimization. In International Conference on
Learning Representations (ICLR’15).

Alex Krizhevsky and Geoffrey Hinton. 2012. Learning multiple layers of features from tiny images. University of
Toronto.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems. 1097-1105.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436—444.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86, 11 (1998), 2278-2324.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

http://archive.ics.uci.edu/ml
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/itayhubara/BinaryNet.pytorch/blob/master/models/vgg_cifar10.py
https://github.com/itayhubara/BinaryNet.pytorch/blob/master/models/vgg_cifar10.py
https://github.com/MatthieuCourbariaux/BinaryNet
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://github.com/BVLC/caffe/tree/master/examples

17:24 R. Ding et al.

(27]
(28]
[29]

(30]
(31]

(32]
(33]

[34]

(35]

(36]

(37]

(38]
(39]
(40]
(41]

(42]

(43]

[45]

[46]

(47]

(48]

Boxun Li, Yi Shan, Miao Hu, Yu Wang, Yiran Chen, and Huazhong Yang. 2013. Memristor-based approximated com-
putation. In Proceedings of the 2013 International Symposium on Low Power Electronics and Design. IEEE Press, 242-247.
Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and Tom Goldstein. 2017. Training quantized nets: A
deeper understanding. arXiv Preprint arXiv:1706.02379 (2017).

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. 2013. Rectifier nonlinearities improve neural network acoustic
models. In Proceedings of International Conference of Machine Learning (ICML’13), Vol. 30. 3.

Synopsys. 2010. Synopsys MEDICI User’s Manual. Synopsys, Mountain View, CA.

Michele Marchesi, Gianni Orlandi, Francesco Piazza, and Aurelio Uncini. 1993. Fast neural networks without multi-
pliers. IEEE Transactions on Neural Networks 4, 1 (1993), 53-62.

Naveen Mellempudi, Abhisek Kundu, Dheevatsa Mudigere, Dipankar Das, Bharat Kaul, and Pradeep Dubey. 2017.
Ternary neural networks with fine-grained quantization. arXiv Preprint arXiv:1705.01462 (2017).

Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi. 2009. CACTI 6.0: A tool to model large
caches. HP Laboratories, 22-31.

Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song,
and Yu Wang. 2016. Going deeper with embedded FPGA platform for convolutional neural network. In Proceedings
of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM, 26-35.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. Xnor-net: Imagenet classification
using binary convolutional neural networks. In European Conference on Computer Vision. Springer, 525-542.

Syed Shakib Sarwar, Swagath Venkataramani, Anand Raghunathan, and Kaushik Roy. 2016. Multiplier-less artificial
neurons exploiting error resiliency for energy-efficient neural computing. In 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE’16). IEEE, 145-150.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529, 7587
(2016), 484-489.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.
arXiv Preprint arXiv:1409.1556 (2014).

Douglas R. Smith. 1999. Design ware: Software Development by Refinement. Electronic Notes in Theoretical Computer
Science 29 (1999), 275-287.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15,1 (2014), 1929-1958.
Theano Development Team. 2016. Theano: A Python framework for fast computation of mathematical expressions.
arXiv e-prints abs/1605.02688 (May 2016). Retrieved from http://arxiv.org/abs/1605.02688.

Swagath Venkataramani, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan. 2014. AxXNN: Energy-efficient neu-
romorphic systems using approximate computing. In Proceedings of the 2014 International Symposium on Low Power
Electronics and Design. ACM, 27-32.

Amir Yazdanbakhsh, Jongse Park, Hardik Sharma, Pejman Lotfi-Kamran, and Hadi Esmaeilzadeh. 2015. Neural accel-
eration for gpu throughput processors. In 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’15). IEEE, 482-493.

Chen Zhang, Peng Li, Guanyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing FPGA-based acceler-
ator design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. ACM, 161-170.

Guogiang Peter Zhang. 2000. Neural networks for classification: A survey. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 30, 4 (2000), 451-462.

Jialiang Zhang and Jing Li. 2017. Improving the performance of OpenCL-based FPGA accelerator for convolutional
neural network. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
ACM, 25-34.

Qian Zhang, Ting Wang, Ye Tian, Feng Yuan, and Qiang Xu. 2015. ApproxANN: An approximate computing frame-
work for artificial neural network. In Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhi-
bition. EDA Consortium, 701-706.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. 2016. DoReFa-Net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv Preprint arXiv:1606.06160 (2016).

Received December 2017; revised June 2018; accepted August 2018

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 17. Pub. date: December 2018.

http://arxiv.org/abs/1605.02688

