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ABSTRACT

Identifying arbitrary topologies of power networks in real
time is a computationally hard problem due to the number
of hypotheses that grows exponentially with the network
size. A “Learning-to-Infer” variational inference method is
employed for efficient inference of every line status in the
network. Optimizing the variational model is transformed
to and solved as a discriminative learning problem based on
Monte Carlo samples generated with power flow simulations.
As the labeled data used for training can be generated in an
arbitrarily large amount rapidly and at very little cost, the
power of offline training is fully exploited to learn very com-
plex classifiers for effective real-time topology identification.
The Learning-to-Infer method is extensively evaluated in the
IEEE 30, 118 and 300 bus systems. Excellent performance
and scalability of the method in identifying arbitrary power
network topologies in real time are demonstrated.

Index Terms— power grid topology identification, line
outage detection, machine learning, cascading failures

1. INTRODUCTION

Lack of situational awareness in abnormal system conditions
is a major cause of blackouts in power networks [1]. Network
component failures such as transmission line outages, if not
rapidly identified and contained, can quickly escalate to cas-
cading failures. In particular, when line failures happen, the
power network topology changes instantly, newly stressed ar-
eas can unexpectedly emerge, and subsequent failures may be
triggered that lead to increasingly complex network topology
changes. While the power system is usually protected against
the so called “N − 1” failure scenarios, as failures accumu-
late, effective automatic protection is no longer guaranteed.
Thus, when cascading failures start developing, smarter pro-
tective actions critically depend on correct and timely knowl-
edge of the network status. Indeed, without knowledge of the
network topology changes, protective control methods have
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been observed to further aggravate the failure scenarios [2].
Thus, real-time network topology identification is essential to
all network control decisions for mitigating failures. In par-
ticular, since the first few line outages may have already been
missed, the ability to identify in real time the network topol-
ogy with an arbitrary number of line outages becomes critical
to prevent system collapse.

Real-time topology identification is however a very chal-
lenging problem, especially when unknown line statuses in
the network quickly accumulate as in scenarios that cause
large-scale blackouts [1]. The number of possible topolo-
gies grows exponentially with the number of unknown line
statuses, making real time topology identification fundamen-
tally hard. Assuming a small number of line failures, ex-
haustive search methods have been developed in [3], [4], [5]
and [6] based on hypothesis testing, and in [7] based on lo-
gistic regression. To overcome the prohibitive computational
complexity of exhaustive search methods, [8] has developed
sparsity exploiting outage identification methods with over-
complete observations to identify sparse multi-line outages.
Without assuming sparsity of line outages, a graphical model
based approach has been developed for identifying arbitrary
network topologies [9]. On the other hand, non-real-time
topology identification has also been extensively studied [10,
11, 12].

In this paper, we focus on real-time identification of ar-
bitrary grid topologies based on instantly collected measure-
ments in the power system. We formulate the topology iden-
tification problem in a Bayesian inference framework, where
we aim to compute the posterior probabilities of the topolo-
gies given any instant measurements. To overcome the fun-
damental computational complexity due to the exponentially
large number of possible topologies, we employ a “Learning-
to-Infer” variational inference framework [13]. In particular,
to find effective end-to-end variational models, we transform
optimizing a variational model to a discriminative learning
problem leveraging a Monte Carlo approach: a) based on
power flow equations, data samples of network topology, net-
work states, and sensor measurements in the network can be
efficiently generated according to a generative model of these
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quantities; and b) with these simulated data, discriminative
models are learned offline, which then offer real-time predic-
tion of the network topology based on newly observed mea-
surements from the real network.

We extensively evaluate the Learning-to-Infer method in
the IEEE 30, 118, and 300 bus systems [14] for identify-
ing topologies with an arbitrary number of line outages. It
is demonstrated that, even with relatively simple variational
models and a reasonably small amount of data, the perfor-
mance is surprisingly good for this very challenging task.
Moreover, the Learning-to-Infer method is demonstrated to
scale efficiently as the size of the network increases.

2. PROBLEM FORMULATION

2.1. Power Flow and Observation Models

We consider a power system with N buses, and its baseline
topology (i.e., the network topology when there is no line out-
age) with L lines. We denote the incidence matrix of the
baseline topology by M ∈ {−1, 0, 1}N×L. We use a binary
variable sl to denote the status of a line l, with sl = 1 for a
connected line l, and 0 otherwise. The actual topology of the
network can then be represented by s = [s1, . . . , sL]T . We
employ the DC power flow model, and denote the real power
injections and the phase angles at all the buses by P ∈ RN

and θ ∈ RN , respectively. The topology s, nodal power in-
jections and voltage phase angles satisfy the following [15]:

P = MSΓMTθ, (1)

where S = diag(s1, . . . , sL), Γ = diag( 1
x1
, . . . , 1

xL
), and xl

is the reactance of line l.
To monitor the power system, we consider real time mea-

surements taken by sensors measuring nodal voltage phase
angles, and nodal real power injections. In particular, voltage
phase angles measured by phasor measurement units (PMUs)
located at a subset of the busesM can be modeled as

y = θM + v, (2)

where θM is formed by entries of θ from buses inM, and v
captures the measurement noise.

2.2. Topology Identification as Bayesian Inference

We are interested in identifying the network topology s in real
time based on instant measurements y collected in the power
system. We formulate this as a Bayesian inference problem.
Consider a joint probability distribution of s,P and y,

p(s,P ,y) = p(s,P ) · p(y|s,P ). (3)

We are interested in computing the posterior conditional
probabilities: ∀s,

p(s|y) =

∫
p(s,P )p(y|s,P )dP

p(y)
, (4)

and in particular, the posterior marginal conditional proba-
bilities p(sl|y), l = 1, . . . , L. However, computing the poste-
rior marginals p(sl|y) is fundamentally intractable: even with
p(s|y) given, summing out all sk, k 6= l, to obtain p(sl|y)
still requires exponential computational complexity [16].

3. A LEARNING-TO-INFER METHOD

To overcome the exponential computational complexity, we
employ a “Learning-to-Infer” method for approximate infer-
ence of p(sl|y), l = 1, . . . , L [13]. The general idea is to find
a variational conditional distribution q(s|y) that a) approxi-
mates the original p(s|y) very closely, and b) offers fast and
accurate topology identification results. In particular, we as-
sume that q(s|y) is modeled by some parametric form (e.g.,
neural networks), denoted by {qβ(s|y)}, where β is a vector
of model parameters. From a family of parametrized distri-
butions {qβ(s|y)}, we would like to choose a qβ(s|y) that
approximates p(s|y) as closely as possible, by minimizing
the expected Kullback-Leibler (KL) divergence as follows:

min
β

Ey [D(p‖qβ)]⇔ min
β

∑
s,y

p(s,y) log
p(s|y)

qβ(s|y)

⇔ max
β

Es,y [log qβ(s|y)] , (5)

where the expectation is taken with respect to the true distri-
bution p(s,y). To evaluate Es,y [log qβ(s|y)], we approxi-
mate the expectation by the empirical mean of log qβ(s|y)
over a large number of Monte Carlo samples, generated ac-
cording to the true joint probability p(s,P ,y) (cf. (3)). We
denote the relevant Monte Carlo samples by {st,yt; t =
1, . . . , T}. Accordingly, (5) is approximated by

max
β

1

T

T∑
t=1

log qβ(st|yt)]. (6)

(6) can be viewed as an empirical risk minimization problem
in machine learning [17], as it trains a discriminative model
qβ(s|y) with a data set {st,yt} generated from a generative
model p(s,P ,y). As a result of this offline training process
(6), an approximate posterior function qβ∗(s|y) is obtained.

One great advantage of this Learning-to-Infer method is
that we can generate labeled data very efficiently. As a result,
we can obtain an arbitrarily large set of data at very little
cost to train the discriminative model. This is quite different
from the typical situations encountered in machine learning
problems, where obtaining a large amount of labeled data is
usually expensive as it requires extensive human annotation
effort. Furthermore, once the approximate posterior distribu-
tion qβ(s|y) is learned, it can be deployed to infer the power
grid topology in real-time as the computational complexity of
qβ(sl|y) is very low by design.
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Table 1: Data set size vs. the entire search space

The (reduced) IEEE 30 bus system with 38 lines
Number of all topologies 238 = 2.75× 1011

Number of topologies with (
38
8

)
= 4.89× 107

8 disconnected lines
The generated data set 3× 105

The (reduced) IEEE 118 bus system with 170 lines
Number of all topologies 2170 = 1.50× 1051

Number of topologies with (
170
13

)
= 9.94× 1018

13 disconnected lines
The generated data set 8× 105

The (reduced) IEEE 300 bus system with 322 lines
Number of all topologies 2322 = 8.54× 1096

Number of topologies with (
322
12

)
= 2.11× 1021

12 disconnected lines
The generated data set 2.2× 106

4. NUMERICAL EXPERIMENTS

We evaluate the Learning-to-Infer method for real-time grid
topology identification with three benchmark systems of in-
creasing sizes, the IEEE 30, 118, and 300 bus systems, as the
baseline topologies. As opposed to considering just a small
number of simultaneous line outages as in existing works, we
allow any number of line outages, and investigate whether the
learned classifiers can successfully recover the topologies.

4.1. Data Set Generation

In our experiments, we employ the DC power flow model (1)
to generate the data sets. To generate a data set {st,P t,yt, t =
1, . . . , T}, we assume the prior distribution p(s,P ) factors
as p(s)p(P ). As such, we generate the network topologies s
and the power injections P independently:

• We generate the line statuses {sl} using independent
and identically distributed (IID) Bernoulli random vari-
ables, with P(sl = 1) = 0.6, 0.9 and 0.96 for the IEEE
30, 118, and 300 bus systems, respectively. We do
not consider disconnected networks in this study, and
exclude the line status samples if they lead to discon-
nected networks. As such, after some network reduc-
tion, the equivalent networks for the IEEE 30, 118, and
300 bus systems have 38, 170, and 322 lines that can
possibly be in outage, respectively.

• We would like our predictor to be able to identify the
topology for arbitrary values of power injections as op-
posed to fixed ones. Accordingly, we generate P using
the following procedure: For each data sample, we first
generate bus voltage phase angles θ as IID uniformly
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Fig. 1: Progressions of training and validation losses, IEEE
30, 118 and 300 bus systems.
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Fig. 2: Progressions of average numbers of misidentified
line statuses, IEEE 30, 118 and 300 bus systems.

distributed random variables in [0, 0.2π], and then com-
pute P according to (1) under the baseline topologies.

With each pair of generated st and P t, we consider two types
of measurements that constitute y: a) voltage phase angle
measurements corrupted by IID Gaussian noises with a stan-
dard deviation of 0.01 degree, the state-of-the-art PMU accu-
racy [18], and b) power injections measured accurately.

In this study, we generate 300K, 800K, and 2.2M
data samples for the IEEE 30, 118, and 300 bus systems,
respectively. These 300K/800K/2.2M data are further
divided into 200K/600K/1.8M , 50K/100K/200K, and
50K/100K/200K samples for training, validation, and test-
ing, respectively. We note that over 99% of the generated
300K 30-bus topologies are distinct from each other, so are
those of the generated 800K 118 bus topologies and those
of the 2.2M 300 bus topologies. As a result, these generated
data sets can very well evaluate the generalizability of the
trained classifiers, as (almost) all data samples in the test sets
have topologies unseen in the training sets.

Moreover, in the generated data sets, the average num-
bers of disconnected lines relative to the baseline topology
are 7.8, 13.4 and 11.6 for the IEEE 30, 118 and 300 bus sys-
tems, respectively. These numbers of simultaneous line out-
ages are significantly higher than those typically assumed in
sparse line outage studies. Furthermore, we would like to
compare the size of the generated data set to the total num-

217



ber of possible topology hypotheses, as highlighted in Table
1. Clearly, a) it is computationally prohibitive to perform line
status inference based on exhaustive search, and b) the gener-
ated 300K, 800K and 2.2M data sets are only a tiny fraction
of the entire space of all topologies. Yet, we will show that
the classifiers trained with the generated data sets exhibit ex-
cellent inference performance and generalizability.

4.2. Performance Evaluation

For the parametric model qβ(s|y), in this study, we employ
two-layer (i.e., one hidden layer) fully connected neural net-
works. Rectified Linear Units (ReLUs) are employed as the
activation functions in the hidden layer. In the output layer we
employ hinge loss as the loss function. In training the classi-
fiers, we use stochastic gradient descent (SGD) with momen-
tum update and Nesterov’s acceleration [19].

4.2.1. Performance of the Learning-to-Infer Method

We begin with 300, 1000 and 3000 neurons in the hidden layer
for the IEEE 30, 118 and 300 bus systems, respectively. For
all the three systems, we plot in Figure 1 the achieved training
and testing losses for every epoch. It is clear that the training
and testing losses stay very close to each other for all the three
systems, and thus no overfitting is observed. We observe very
high testing accuracies, 0.989, 0.990 and 0.997 achieved for
the IEEE 30, 118 and 300 bus systems, respectively. These
can be equivalently understood by the average numbers of
misidentified line statuses, plotted in Figure 2. We observe
that, at the beginning of the training procedures, the average
numbers of misidentified line statuses are 7.8, 13.4 and 11.6
for the IEEE 30, 118 and 300 bus systems, which are exactly
the average numbers of disconnected lines in the respective
generated data sets (cf. Section 4.1). Indeed, this coincides
with the result from a naive identification decision rule of al-
ways claiming all the lines as connected (i.e., a trivial majority
rule). As the training procedures progress, the average num-
bers of misidentified line statuses are drastically reduced to
eventually 0.4, 1.7 and 1.0.

4.2.2. Model Size, Sample Complexity, and Scalability

In the proposed Learning-to-Infer method, obtaining labeled
data is not an issue since data can be generated in an arbitrar-
ily large amount using Monte Carlo simulations. This leads
to two questions that are of particular interest: to learn a good
classifier, a) what size of a neural network is needed? and
b) how much data needs to be generated? To answer these
questions, we vary the sizes of the hidden layer of the neural
networks as well as the training data size, and evaluate the
learned classifiers for the three benchmark systems. We plot
the testing results for the IEEE 30, 118 and 300 bus systems
in Figure 3(a), 3(b) and 3(c), respectively.
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Fig. 4: Scalability of the Learning-to-Infer method, from
the IEEE 30 bus system to the IEEE 300 bus system.

Based on all these experiments, we now examine the scal-
ability of the proposed Learning-to-Infer method as the prob-
lem size increases. We observe that training data sizes of
200K, 600K and 1.8M and neural network models of sizes
300, 1000 and 3000 ensure very high and comparable per-
formance with no overfitting for the IEEE 30, 118 and 300
bus systems, respectively. When these data sizes are reduced
by a half, some levels of overfitting then appeared for these
models in all the three systems. We plot the training data
sizes compared to the problem sizes for the three systems in
Figure 4. We observe that the required training data size in-
creases approximately linearly with the problem size. This
linear scaling behavior implies that the proposed Learning-to-
Infer method can be effectively implemented for large-scale
systems with reasonable computation resources.

5. CONCLUSION

We have employed a Learning-to-Infer variational inference
method for real-time topology identification of power grids.
The computational complexity due to the exponentially large
number of topology hypotheses is overcome by efficient
marginal inference with optimized variational models. Op-
timization of the variational model is transformed to and
solved as a discriminative learning problem, based on Monte
Carlo samples efficiently generated with power flow models.
With the classifiers learned offline, their actual use is in real
time, and topology identification decisions are made under
a millisecond. We have extensively evaluated the Learning-
to-Infer method with the IEEE 30, 118 and 300 bus systems.
It has been demonstrated that arbitrary network topologies
can be identified in real time with excellent performance
using classifiers trained with a reasonably small amount of
generated data. The method has been demonstrated to scale
efficiently as the network size increases.
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