2018 IEEE International Conference on Data Mining Workshops (ICDMW)

Understanding the Impact of Label Granularity on
CNN-based Image Classification

Zhuo Chen!, Ruizhou Ding!, Ting-Wu Chin, Diana Marculescu
Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, USA
{tonychen, rding, tingwuc, dianam}@cmu.edu

Abstract—In recent years, supervised learning using Convo-
lutional Neural Networks (CNNs) has achieved great success
in image classification tasks, and large scale labeled datasets
have contributed significantly to this achievement. However, the
definition of a label is often application dependent. For example,
an image of a cat can be labeled as ‘‘cat” or perhaps more
specifically “Persian cat.” We refer to this as label granularity.
In this paper, we conduct extensive experiments using various
datasets to demonstrate and analyze how and why training based
on fine-grain labeling, such as “Persian cat” can improve CNN
accuracy on classifying coarse-grain classes, in this case “cat.”

The experimental results show that training CNNs with fine-
grain labels improves both network’s optimization and general-
ization capabilities, as intuitively it encourages the network to
learn more features, and hence increases classification accuracy
on coarse-grain classes under all datasets considered. Moreover,
fine-grain labels enhance data efficiency in CNN training. For
example, a CNN trained with fine-grain labels and only 40%
of the total training data can achieve higher accuracy than a
CNN trained with the full training dataset and coarse-grain
labels. These results point to two possible applications of this
work: (i) with sufficient human resources, one can improve CNN
performance by re-labeling the dataset with fine-grain labels, and
(ii) with limited human resources, to improve CNN performance,
rather than collecting more training data, one may instead
use fine-grain labels for the dataset. We also observe that the
improvement brought by fine-grain labeling varies from dataset
to dataset, therefore we further propose a metric called Average
Confusion Ratio to characterize the effectiveness of fine-grain la-
beling, and show its use through extensive experimentation. Code
is available at https://github.com/cmu-enyac/Label-Granularity.

Index Terms—Convolutional Neural Networks, Supervised
Learning, Image Classification, Labeling

I. INTRODUCTION

We have witnessed tremendous improvement in image clas-
sification tasks in recent years thanks to the use of supervised
learning combined with the powerful model of Convolutional
Neural Networks (CNNs) [1]. At the same time, the use of
large-scale labeled datasets is one of the key elements that
has led to this breakthrough [2] [3]. However, the definition of
label varies from application to application, and there is hardly
a universal definition of what a “correct” label is for an image.
One such example is how detailed the label should be, i.e.,
label granularity (or label hierarchy), as illustrated in Figure 1.
For example, in the case of animal image classification, it may
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Fig. 1: An example of label granularity (label hierarchy).
For example, an image of a dog can be labeled ‘“animal”
or “carnivore” or “dog”, and it is the target application that
determines which label to use. This paper explores whether
one should use the targeted coarse-grain labels or finer-grain
labels for CNN training.

be sufficient to label all images of carnivores as “carnivore”,
while in an application of carnivore classification, we may
label different images as “dog”, “cat”, etc., which are fine-
grain labels of the coarse-grain label “carnivore”. Therefore,
it is equally correct to label the image of a dog as “carnivore”
or “dog”, yet deciding on which label of the two should be
used depends on the task. We denote a fine-grain (coarse-grain)
class as a class of images that are labeled with the respective
fine-grain (coarse-grain) label, and fine-grain (coarse-grain)
training as the training process of CNNs using fine-grain
(coarse-grain) labels. If the task at hand is classifying coarse-
grain classes, e.g., “carnivore” vs. “herbivore”, the following
question arises: should we directly train and test a CNN
using coarse-grain labels as it has usually been done, or
would it be beneficial if we trained a CNN with fine-grain
labels, e.g., “dog”, “cat”, “horse”, “deer”, etc. and map them
back to coarse-grain labels during testing phase? The first
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TABLE I: Training and testing accuracy of five datasets when
trained with fine-grain labeling (bottom row for each dataset)
vs. coarse-grain labeling (top row for each dataset), and tested
on coarse-grain labels.

# of # of Training Testing

Dataset training testing accuracy accuracy
classes classes (%) (%)
2 2 99.9 98.42
CIFAR-10 10 2 100.0 99.20
20 20 100.0 85.04
CIFAR-100 100 20 100.0 85.05
CIFAR-100 10 10 100.0 81.42
animals 50 10 100.0 83.44
ImageNet 2 2 94.1 92.68
dog vs. cat 10 2 95.3 94.67
ImageNet 2 2 91.8 89.65
fruit vs. vege. 17 2 95.4 93.15

approach is a method commonly used in image classification
tasks [4], however, in our experiments, we find that training
CNNs with fine-grain labels can achieve higher accuracy than
using coarse-grain labels in most of the datasets considered.
Table I shows both training and testing accuracy of coarse-
grain classification using either coarse-grain or fine-grain la-
beling. We can see that fine-grain labeling helps improve both
training accuracy (network optimization), and testing accuracy
(network generalization) across representative image datasets:
CIFAR-10 [3], CIFAR-100 [3], and ImageNet [2]. Moreover,
helped by fine-grain labeling, the training process converges
faster and requires less amount of training data to achieve
the same level of testing accuracy, i.e., becomes more data
efficient. More specifically, for the CIFAR-10 dataset and two
ImageNet subsets, a CNN trained with fine-grain labels and
only 40% of the total training data can achieve even higher
accuracy than a CNN trained with full training dataset but
coarse-grain labels.

In this paper, we design and conduct extensive experiments
on various datasets to investigate this interesting phenomenon,
and analyze and shed some light on how and why fine-
grain label helps enhance coarse-grain image classification.
We further propose a metric called Average Confusion Ratio
(ACR) to characterize the accuracy improvement of fine-
grain training, and verify its effectiveness through extensive
experiments under different datasets. Our results show two
potential practical use of this work: (i) when human resources
are abundant, we can increase CNN accuracy by re-labeling
the dataset with fine-grain labels and train the CNN using these
new labels, and (ii) when human resources are limited and
training data is hard to obtain, rather than relying on collecting
more training data to improve CNN accuracy, we may instead
re-label the dataset with fine-grain labels.

II. RELATED WORK

To the best of our knowledge, this is the first work to analyze
the use of finer-gain labeling for improving accuracy and
training data efficiency for CNN-based image classification
tasks. Though there has been significant prior work looking
into the hierarchy of classes/categories [5]-[16], our work
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has a distinct objective compared to prior art. Some of the
prior work [6], [11], [13] aim to utilize the hierarchical label
information to improve classification accuracy for the finest
categories. On the theory side, Dekel et al. [6] propose a
learning framework using large margin kernel methods and
Bayesian analysis to deal with the classification problem with
hierarchical label structures. Cesa-Bianchi et al. [13] propose
a new loss function and use Support Vector Machine (SVM) as
well as a probabilistic data model so that higher accuracy can
be achieved with exponentially fast convergence speed. From a
more practical viewpoint, Zhao et al. [11] leverage hierarchical
information of the class structure and select different feature
subsets for super-classes. Other work [14] [7] [10] aim to
predict either coarse- or fine-grain labels conditioning on
the confidence level. Deng et al. [14] optimize the trade-
off between specificity (how fine-grain the predicted label is)
and accuracy, while Bi et al. [7] develop a Bayes-optimal
classifier to minimize the Bayesian risk. More recently, Wang
et al. propose to stop the prediction process for a coarse-
grain label so as to avoid an incorrect prediction. In addition,
other prior work [8] [15] [9] focuses on the understanding of
hierarchical labels. For example, Song et al. [8] study dataless
hierarchical text classification with unsupervised methods.
Hoyoux et al. [15] show some counter-examples where using
hierarchical methods degrades the accuracy, and explore the
reasons for such results. Oh [9] studies the combination of
hierarchical classification and top-k accuracy.

However, all these studies aim to increase the classification
accuracy of fine-grain classes. Instead, we focus on the case of
coarse-grain classes being the target of classification task, and
we explore whether directly training with finer-grain labels can
achieve higher classification accuracy on coarse-grain classes
than training with coarse-grain labels.

A work close to ours is done by Mo et al. [17], who propose
active over-labeling to generate finer-grain labels than the
target coarse-grain labels, and demonstrate that fine-grained
label data can improve precision of a classifier for the coarse-
grained concept. Similar ideas were also studied by other prior
work [18]-[22]. However, none of them explores deep learning
models which are very different from conventional machine
learning models, e.g., Support Vector Machine (SVM), logistic
regression, etc. Fradkin [20] performs experiments on linear
and non-linear SVM, and finds that fine-grain training can
improve accuracy for linear SVM since fine-grain labeling
can learn a piece-wise linear decision boundary that better
approximate the true non-linear boundary. However, fine-grain
training does not help non-linear (RBF-kernel) SVM due
to their inherent non-linearity. CNNs are highly non-linear
models and relatively more difficult to optimize [23]. No
results of CNNs has yet been shown on this topic.

The remainder of this paper is organized as follows. Section
IIT demonstrates in detail the effects of fine-grain labeling
improving CNN-based image classification and its capability
of enhancing training data efficiency. Section IV analyzes why
fine-grain labeling helps in terms of both network optimiza-
tion and generalization via extensive experiments on various



datasets. In Section V, we propose a metric called Average
Confusion Ratio to characterize the accuracy gain of fine-grain
training, and verify its effectiveness under different datasets.
In Section VI, we further discuss how (i) customized coarse-
grain classes for diverse applications, (ii) noisy fine-grain
labels obtained via automatic clustering methods, and (iii) the
number of coarse-grain classes may impact effectiveness of
fine-grain training. We conclude our work in Section VII.

III. LABEL GRANULARITY AND TRAINING DATA

In this section, we demonstrate the effects of fine-grain
labels on improving image classification accuracy and further
show its capability of enhancing training efficiency.

We define A& and A as the training and testing
accuracy of a CNN trained on fine-grain labels and evaluated
on coarse-grain labels, respectively. In detail, we first train a
network with fine-grain labels and output the predicted fine-
grain labels of all input images. Then we map the predicted
fine-grain labels to their respective coarse-grain labels via the
predefined mapping as shown in table II. Finally, the accuracy
is computed by comparing the predicted coarse-grain labels
with the ground-truth labels. Similarly, we define A% and
Alest as the training and testing accuracy of a CNN trained
on coarse-grain labels and evaluated on the same labels. To do
this, we directly train a network with coarse-grain labels and
compute accuracy by comparing the predicted labels, which
are already coarse-grain labels, of the input images with their
ground-truth labels.

We design and conduct experiments on well-known image
classification datasets: CIFAR-10 [3], CIFAR-100 [3] and
ImageNet [2], and we list their coarse- and fine-grain classes
in Table II. CIFAR-10 dataset is a great fit for applications
similar to the one shown in Figure 1, i.e., classifying whether
an image contains an animal or a vehicle. CIFAR-10 has six
animals: “bird”, “cat”, “deer”, “dog”, “frog”, “horse”, and four
vehicles: “plane”,“car”, “ship”, “truck”. CIFAR-100 provides
20 coarse-grain classes and five fine-grain classes per coarse-
grain class, resulting in 100 fine-grain classes in total. We
also select all ten animal coarse-grain classes from CIFAR-
100 to form another dataset serving applications like animal
classification, and we call this dataset: CIFAR-100 animals.
ImageNet dataset is collected and organized according to
the WordNet hierarchy [2], [24] and therefore it naturally
follows the coarse-to-fine-grain label hierarchy. We use subsets
of ImageNet dataset to better visualize and demonstrate the
benefits of training CNN with fine-grain labels. The first
ImageNet subset task is to classify dog vs. cat, with a total of
ten fine-grain classes of random breeds of dogs and cats. The
second task is classifying fruit vs. vegetable with a total of 17
fine-grain classes.

Table III shows the network configurations used for dif-
ferent datasets. For CIFAR-10, we use the full pre-activation
residual network with 512 filters for the widest layer similar
to the one in [25]. We use wide residual network [26] for
CIFAR-100 dataset, which achieves 81.15% accuracy on 100
classes. We use “thinner” networks for ImageNet subsets
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TABLE II: Coarse-grain and fine-grain classes of five datasets.

Dataset Cog;c;gam Fine-grain classes
CIFAR-10 animal bird, cat, deer, dog, frog, horse
vehicle plane, car, ship, truck
aquatic beaver, dolphin, otter, seal,
mammals* whale
fish* aquarium fish, flatfish, ray,
shark, trout
flowers orchid, poppy, rose, sunflower,
tulip
food containers bottle, bowl, can, cup, plate
fruit and apple, mushroom, orange, pear,
vegetables sweet pepper
household clock, keyboard, lamp,
electrical devices telephone, television
household bed, chair, couch, table,
furniture wardrobe
insects™ bee, beetle, butterfly, caterpillar,
cockroach
CIFAR-100 large carnivores* bear, leopard, lion, tiger, wolf
large man-made bridge, castle, house, road,
outdoor things skyscraper
large natural cloud, forest, mountain, plain,
outdoor scenes sea
large omnivores camel, cattle, chimpanzee,
and herbivores* elephant, kangaroo
medium fox, porcupine, possum,
mammals* raccoon, skunk
inr\jzlr‘]t_ell?::t(;ts* crab, lobster, snail, spider, worm
people* baby, boy, girl, man, woman
reptiles* crocodile, dinosaur, lizard,
snake, turtle
small mammals® hamster, mouse, rabbit, shrew,
squirrel
trecs maple .tree, oak tree, palm tree,
pine tree, willow tree
. bicycle, bus, motorcycle, pickup
vehicles 1 truck, train
vehicles 2 lawn mower, rocket, streetcar,
tank, tractor
CIFAR-100 (lc?a:::S:t-‘%rvzzn (50 corresponding fine-grain
animals marked with *) classes)
dog basset, chihuahua, maltese,
ImageNet papillon, pekinese,
dog vs. cat cat tabby, tiger cat, Persian,
Siamese, Egyptian
strawberry, orange, lemon, fig,
fruit pineapple, banana, jackfruit,
custard apple
frlll?:a\‘,gse_l\j]ztge }}ead cabbage, 'bFoccoli,
vege cauliflower, zucchini, bptternut
squash, cucumber, artichoke,
pepper, mushroom

to avoid overfitting because ImageNet subsets have fewer
training images (22K images for fruit vs. vegetable, and
13K images for dog vs. cat) than CIFAR-10 (50K images)
and CIFAR-100 (50K images). The network configuration for
ImageNet subsets is similar to CIFAR-10, but with 75% fewer
filters per convolution layer. We use random cropping and
random flipping data augmentation [27] for all datasets. For
the training configuration, we use momentum 0.9 and weight
decay Se-4. The learning rate starts at 0.1 for CIFAR-10 and
CIFAR-100, and 0.01 for ImageNet subsets, and decays when
the loss plateaus. We train CIFAR-10 and CIFAR-100 for 200



TABLE III: Configuration of CNNs used in the experiments.

Dataset # of layers # (.)f filters in # of
widest layer parameters
CIFAR-10 18 512 11.1M
CIFAR-100
CIFAR-100 26 640 36.5M
animals
ImageNet 18 128 0.7M
subsets
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Fig. 2: Training (dotted) and testing (solid) accuracy curves
with increasing amount of training data. CNNs trained with
fine-grain labels are shown in red and those trained with
coarse-grain labels are shown in blue. Experiments are con-
ducted using five datasets: (a) CIFAR-10, (b) CIFAR-100, (c)
CIFAR-100-animal, and two subsets of ImageNet datasets (d)
dog vs. cat, (e) fruit vs. vegetable.

epochs, and ImageNet subsets for 225 epochs. The above CNN
architectures and training schemes are derived from existing
works, which are usually near-optimal via extensive hyper-
parameter tuning. To keep the comparison fair, when we train
on fine-grain labels, we keep everything unchanged, except for
the last layer which will need to output more classes. Note that
without fine-tuning on our fine-grain training, we are still able
to outperform the hand-tuned models.
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Table I shows the results. The second column gives the
number of classes CNN is trained on and the third column
shows the number of classes the CNN is tested on. If these
two numbers are the same, it means training and testing are
both using the same coarse-grain labels. If they are different,
it means that CNN is trained first with fine-grain labels
and then tested on the coarse-grain labels. We can see that
training using fine-grain labels almost always improves testing
accuracy compared to training using coarse-grain labels. In
the case of CIFAR-100, fine-grain training provides negligible
improvement on testing accuracy. We conjecture that this is
due to the diminishing return when there are more coarse-grain
labels, and we verify this hypothesis in Section VI-C. For the
CIFAR-10 dataset, although the absolute value of improvement
is 0.78%, considering the original testing accuracy is already
near perfect, this further improvement is non-trivial. We also
observe that CNN training accuracy gets better when using
fine-grain labels. Above results indicate that fine-grain labels
help improve both network optimization and generalization,
and we will analyze the reasons in Sections IV-A and IV-B,
respectively.

We further investigate how fine-grain labels affect training
data efficiency. High training data efficiency means that (i)
with the same amount of data, CNNs are able to learn and
perform better, i.e., achieve higher testing accuracy, and (ii)
to achieve the same testing accuracy, CNNs require fewer
training data. To this end, we randomly chose 20%, 40%,
60% or 80% of the entire training dataset to form four new
training sets with increasing data amount (same proportion in
each class so that the number of images within each class
is still balanced), use the full testing dataset for testing, and
compare the accuracy of fine-grain and coarse-grain training.
Since we find that keeping the same number of epochs for
reduced data amounts leads to fewer weight updates, we use
proportionally more training epochs for less training data to
keep the number of weight updates the same. In other words,
when 20% of training data is used, we train for 5X epochs.

The results are depicted in Fig 2, where we show training
and testing accuracy for both fine-grain and coarse-grain
training, i.e., A&, Alest, Alrain and AlSEE. We observe that
training with fine-grain labels almost always improves testing
accuracy. Especially in the case of (a), (d) and (e) of Figure
2 (CIFAR-10, ImageNet dog vs. cat, and ImageNet fruit vs.
vegetable, respectively), we observe a significant improvement
from the use of fine-grain labels: with less than 40% of
the total training data, training with fine-grain labels is able
to achieve even higher accuracy than using the full training
dataset with coarse-grain labels. For CIFAR-100 animals (c),
with only 80% of the total data amount, training with fine-
grain labels is able to achieve comparable accuracy as using
coarse-grain labels and full training dataset. Although fine-
grain training has negligible improvement on testing accuracy
with full dataset in case of CIFAR-100, when using fewer
than 40% of the full dataset, fine-grain training still exhibits a
clear advantage. This indicates that when availability of data
is limited, having fine-grain labels can be helpful.
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Fig. 3: Training (dotted) and testing (solid) accuracy curves for
five datasets. CNNs trained with fine-grain labels are shown
in red and those trained with coarse-grain labels are shown
in blue. Experiments are conducted using five datasets: (a)
CIFAR-10, (b) CIFAR-100, (c) CIFAR-100 animals, and two
subsets of ImageNet datasets (d) dog vs. cat and (e) fruit vs.
vegetable.

These experimental results show that training with fine-grain
labels can help CNNs better utilize the available training data
and can almost always improve CNN accuracy. One may think
this counter-intuitive, as how could training on more classes
require fewer training samples? The reasons are that i) fine-
grain labels encourage the CNN to learn more features which
helps with generalization, and ii) the test accuracy is eventually
evaluated based on coarse-grain labels rather than fine-grain
labels. We will discuss in detail on how fine-grain labels
improve CNN performance in the following section. These
results indicate two potential practical usage of this work: 1)
if we have sufficient human resources, we can improve CNN
performance by re-labeling data with fine-grain labels, and
ii) if we have limited human resources, in order to improve
CNN performance, it can be more advantageous to re-labeling
images with fine-grain labels rather than collecting more data.
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IV. OPTIMIZATION AND GENERALIZATION

As we have discussed in Section III, training with fine-grain
labels can improve not only testing but also training accuracy.
This means that fine-grain labels help with both network
optimization and generalization. In this section, we design and
conduct extensive experiments on all datasets showing how
both optimization and generalization are improved.

A. Optimization

In Figure 3, the dotted curves show the training accuracy
of both fine-grain training, Ai%i”, and coarse-grain training,
Alrain for all datasets. The training accuracy is evaluated at
the end of every epoch during the training phase by using the
training dataset. We can see that training with fine-grain labels
not only achieves higher training accuracy, but also converges
faster as the red curve is always above the blue curve. The
accuracy jumps are the results of reduced learning rate and
are common phenomena in training neural networks [27].

Prior art investigating fine-grain labels on simple linear
classifiers argues that the reason fine-grain labeling helps is the
ability to learn piece-wise linear decision boundaries that can
better approximate the true non-linear decision boundary [18].
That is, fine-grain training can have higher non-linearity
compared to coarse-grain training due to increased parameters
in the model. However, a further study [20] shows that in
the case of non-linear classifiers, e.g., RBF-kernel Support
Vector Machine (SVM), fine-grain training no longer improves
accuracy compared to using coarse-grain labels because the
network itself has sufficient non-linearity to learn the non-
linear decision boundary without the help of fine-grain labels.
In the case of CNNs, we ask the question: is this piece-wise
linear nature the reason for better training accuracy for fine-
grain labels compared to coarse-grain training?

CNNs are already highly non-linear, so we conjecture that
the answer is no. To evaluate this, we insert another fully-
connected layer to a coarse-grain trained network right after
the global pooling layer, so that compared to the original
network, it can also achieve a piece-wise linear boundary on
the high-level features. We train the new network end to end
from scratch instead of pre-loading and freezing the weights of
the preceeding layers, such that it fully utilizes all the degrees
of freedoms of the model, possibly achieving higher training
accuracy. We train this new network structure with coarse-
grain labels, and compare the results with the baseline network
trained with coarse- or fine-grain labels. We keep the training
scheme for the slightly deeper network the same as that of
the baseline network for a fair comparison with coarse- and
fine-grain training.

Table IV shows our results. In the "CNN Arch” column,
’Extra layer’ means that we add the fully-connected layer to
the baseline CNN as described above. In the "Train Label” col-
umn, ”F” and ”C” indicate fine-grain and coarse-grain labels,
respectively. The values in parentheses following each training
and testing accuracy value are the improvement/degradation
with respect to the training and testing accuracy of a baseline
CNN trained with coarse-grain labels, respectively.



TABLE IV: Experiments on increasing CNN non-linearity and
capacity under coarse-grain training. In "CNN Arch”: ’Extra
layer’ means that we add the fully-connected layer to the
baseline CNN to increase network non-linearity and capacity
as described in Section IV-A. In "Train Label”: ”F” and ”C”
indicate fine-grain and coarse-grain labels, respectively. In the
training and testing accuracy columns, the values indicated in
the parentheses are the improvement/degradation with respect
to the training and testing accuracy of a baseline CNN trained
with coarse-grain labels, respectively.

Train Training Testing
Dataset CNN Arch Lablel accuracy accuracy
(%) (%)
Baseline F 100.0 99.20
CIFAR-10 CNN (+0.1) (+0.78)
99.9 98.50
Extra layer C (+0.0) (+0.08)
Baseline F 100.0 85.05
CIFAR-100 CNN (+0.0) (+0.01)
100.0 86.33
Extra layer C (+0.0) (+1.29)
Baseline 100.0 83.44
CIFAR 100 CNN F (+0.0) (+2.02)
e Extra layer C 100.0 80.73
Y (+0.0) (-0.69)
Baseline 95.3 94.87
ImageNet CNN F (+1.2) (+2.19)
dog vs. cat
Extra layer C 38 922
(-0.3) (-0.48)
Baseline 95.4 93.15
omagellet CNN F (+3.6) (+3.5)
ruit vs. vege
Extra layer C L7 89.67
Y (-0.1) (+0.02)

We can see that, compared to the baseline CNN trained with
coarse-grain labels, adding one extra layer does not bring sig-
nificant improvement in either optimization or generalization.
In certain cases, the testing accuracy is degraded, in CIFAR-
100 animals and ImageNet subset dog vs. cat, possibly due to
the difficulty in optimizing a larger network.

This means that simply adding non-linearity to coarse-grain
training cannot match the training accuracy brought by fine-
grain training. That is, the slightly higher non-linearity brought
by fine-grain training is not the only reason for achieving
higher training accuracy. Rather, it is more likely that fine-
grain labels give more hints to the network about which
features to learn. This is also supported by the experimental
results in Section VI-B, where we randomly generate fine-
grain labels for each coarse-grain class, and find out that
fine-grain training does not optimize better than coarse-grain
training.

B. Generalization

As shown in both Table I and Figure 3, training with fine-
grain labels (vs. coarse-grain) achieves higher testing accuracy.
This may partially be due to better network optimization,
because under ImageNet subsets, fine-grain training improves
both training and testing accuracy. However, in the cases
of CIFAR-10, CIFAR-100 animals and CIFAR-100, even for
the same training accuracy, testing accuracy for fine-grain
trained CNNG is still higher than coarse-grain training. This
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indicates that fine-grain training delivers higher generalization
capability.

Our intuition is that with fine-grain labels, the CNN is able
to learn more features than training with coarse-grain labels.
For example, suppose that all cat images in the training set
have whiskers, while none of the dogs has whiskers. Then, as
long as the network trained with coarse-grain labels learns this
feature, it can produce 100% training accuracy with no need to
learn any other features. This is a well known phenomenon in
weakly-supervised learning, in which the network only learns
the most discriminative features [28]. Then, in the testing set,
if a cat image does not include whiskers, the network will
make an incorrect prediction. However, with fine-grain labels,
the network needs to learn more features (e.g., ears, tails, etc.)
to distinguish among different breeds of dogs and cats. These
extra features learned through fine-grain labeling may help the
network’s performance on coarse-grain class classification on
the testing set, e.g., it now can tell if it is a cat through ears,
tails, etc, even though it does not have whiskers.

Figure 4 shows the t-distributed Stochastic Neighbor Em-
bedding (t-SNE) visualization [29] of all CIFAR-10 testing
images with coarse-grain (a) and fine-grain training (b).

T v 7

(a) t-SNE visualization of two
coarse-grain classes in CIFAR-10
trained with two coarse-grain la-
bels

(b) t-SNE visualization of two
coarse-grain classes in CIFAR-10
trained with ten fine-grain labels

Fig. 4: t-SNE visualization of CIFAR-10 test set trained with
coarse-grain labels vs. fine-grain labels. Data points shown in
the same color belong to the same coarse-grain class.

Image features used for t-SNE visualization are the out-
puts of the second-to-last fully-connected layer, which is a
technique commonly used to extract compact semantic repre-
sentation of the raw input images [29]. These feature vectors
are then transformed by the t-SNE technique [29] to a two-
dimensional space for visualization. All data points are colored
according to their ground-truth coarse-grain labels. We also
show the position of means of each coarse-grain class as red
triangles in the figures. We can see that, for both coarse-grain
training, Figure 4a, and fine-grain training, Figure 4b, there
is a noticeable margin between coarse-grain classes, and a
decision boundary can be drawn to separate them. However,
the network has to learn extra features to further separate
the fine-grain classes within each coarse-grain class when
trained with fine-grain labels (as shown in Figure 4b), while
when trained with only coarse-grain labels, the data points are
merged together as there is no need to separate them (as being
visualized in Figure 4a).



An orthogonal method used for enhancing the variety of
learned features and thereby increasing generalization ability
is dropout [30]. Dropout randomly drops some of the features
to encourage CNN to learn more various features. A possible
question arises: by adding dropout to the network, will coarse-
grain training reach the same testing accuracy as fine-grain
training?

In cases of CIFAR-100 and CIFAR-100 animals, the original
network already has dropout layers within each residual block
with the optimal dropout rate 0.3 determined by experi-
ments [26]. However, as shown in Table I, fine-grain training
still outperforms coarse-grain training, under optimal dropout
rate, which indicates that fine-grain training delivers benefits
that dropout alone may not. We further conduct experiments
on CIFAR-10 and ImageNet subsets, by adding a dropout layer
between the global pooling layer and the fully-connected layer.
The dropout rate is set as 0.3 in our following experiments.

Table V shows the experimental results of using the dropout
technique. We observe that adding the dropout layer provides
limited improvement in testing accuracy for coarse-grain train-
ing, and dropout for coarse-grain training still generates a
noticeable margin when compared to the fine-grain training
with or without dropout. This indicates that fine-grain labels
can further improve CNN learning beyond what the traditional
dropout technique can do. Actually, since fine-grain training
and dropout are two orthogonal techniques, one can use both to
further improve CNN performance. For example, in ImageNet
subsets dog vs.cat and fruit vs. vegetable, combining the two
techniques can able to push the testing accuracy to 95% and
93.86% from 92.68% and 89.65%, respectively.

TABLE V: Experiments on increasing CNN dropout rate.
Values in “Dropout” column indicates dropout rates used. In
“Train Label” column: “F” and “C” indicate fine-grain and
coarse-grain labels, respectively.

Train Training Testing

Dataset Dropout Label accuracy accuracy
(%) (%)
0.3 F 100.0 99.10
CIFAR-10 0.3 C 99.9 98.48
0 F 100.0 99.20
0 C 99.9 98.42
0.3 F 94.8 95.00
ImageNet 0.3 C 94.3 92.80
dog vs. cat 0 F 95.3 94.87
0 C 94.1 92.68
0.3 F 95.0 93.86
ImageNet 0.3 C 91.7 89.93
fruit vs. vege 0 F 95.4 93.15
0 C 91.8 89.65

V. CHARACTERIZING THE EFFECTIVENESS OF FINE-GRAIN
LABELS: AVERAGE CONFUSION RATIO

Fine-grain labels can improve both CNN optimization and
generalization as shown by the experiments in the previous
sections. However, we also note the varying benefit from fine-
grain label usage under different datasets: fine-grain training
sometimes improves testing accuracy by a considerably large
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margin, e.g., 3.5% improvement in ImageNet fruit vs. veg-
etable, while sometimes the improvement is rather limited,
e.g., 0.01% improvement in CIFAR-100. Similar to the inter-
and intra-cluster variance used in unsupervised clustering
algorithms, e.g., k-means [31], the benefit from fine-grain
training may come from the relative difficulty of distinguishing
between coarse-grain classes (inter-class confusion) vs. fine-
grain classes (intra-class confusion). To quantify this, we
propose the Average Confusion Ratio (ACR) metric to char-
acterize the disparity within the coarse-grain and fine-grain
classes, respectively, by using the confusion matrix shown
in Fig 5. We denote the confusion matrix as C, where C,; ;
indicates the number of occurrences of confusing class ¢ with
class j and it can be obtained via counting those occurrences
through the test dataset [32]. From the confusion matrix C
for the fine-grain classes as in Figure 5, we can compute the

ACR: -
B Z(i,j)ex(ci,j/‘M
Z(i,j)eA Cii /1A ’

where A = {(4,7)[B;; = 1}, A = {(¢,5)|B;; = 0}, and
B is an indicator matrix with B; ; indicating whether class %
and j belong to the same coarse-grain class. Intuitively, ACR
is the average inter-class confusion divided by average intra-
class confusion, where inter- and intra-classes are considered
from the perspective of coarse-grain classes.

ACR is correlated to the improvement produced by fine-
grain training. We define the improvement from fine-grain
training as the difference between the testing accuracy of a
CNN trained with fine-grain labels and the testing accuracy
of a CNN trained with coarse-grain labels, i.e., AAtSt =
Atest — Alest Lower ACR means lower relative confusion
across coarse-grain classes and hence higher distance between
coarse-grain classes. This is a similar concept to high inter-
cluster distance in clustering algorithms [20] [33], and those
clusters are less prone to be mixed or confused. As a result,
coarse-grain classes in this case are relatively easier to be
separated even without the help of fine-grain labels, which
leads to a low AA*®st value, and vice versa.

To demonstrate how ACR can be an indicator of how much
improvement fine-grain labels deliver in different datasets, we
compute the ACR metric for all datasets in Table I and plot
the relationship between ACR and A A’ in Figure 6. In
general the data points in Figure 6 show higher ACR leading to
higher A A5, as expected. Other than the five datasets used
throughout the paper, we also introduce two extra datasets:
CIFAR-100-5 and CIFAR-100-15 with 5 and 15 coarse-grain
classes, respectively. In the next section, we will detail these
two datasets and the corresponding ACR metric under different
settings of coarse- and fine-grain classes.

ACR ey

VI. DISCUSSION

In this section, we further explore several scenarios in
which the setting of coarse-grain and fine-grain labels change.
More specifically, coarse-grain classes may vary due to the
requirement of the application and the fine-grain labels may be



TABLE VI: Testing accuracy, trained with coarse-grain vs. fine-grain labels, of customized coarse-grain classes of CIFAR-10
dataset. Zero and one indicates which coarse-grain class each fine-grain class belongs to.

q Classes test test test
D Ratio plane | car | bird | cat | deer | dog [ frog | horse | ship [ truck Age (B | Apg ()| AA (%) |
(1) 0 0 1 1 1 1 1 1 0 0 98.42 99.20 +0.78
2) 1 0 1 1 1 1 0 1 0 0 97.68 98.64 +0.96
3) 6:4 0 0 0 1 1 1 1 1 1 0 96.95 98.02 +1.07
4) 0 0 1 0 1 0 1 1 1 1 95.26 97.20 +1.94
(@) 0 0 1 0 0 1 1 1 1 1 93.44 96.22 +2.78
(6) 0 0 0 1 1 1 1 1 0 0 97.60 98.51 +0.91
(7) 0 0 1 0 1 1 1 1 0 0 95.90 97.59 +1.69
(8) 5:5 0 1 0 1 0 1 1 1 0 0 96.17 97.54 +1.37
9) 0 0 1 0 0 1 0 1 1 1 94.15 96.28 +2.13
(10) 1 0 0 0 0 1 1 1 0 1 94.19 96.16 +1.97
TABLE VII: Testing accuracy trained with noisy fine-grain

o 5 ’s labels of CIFAR-10 dataset.

[

i 20 Randomness factor | A%SF (%) | AA™S (%)

8 0 99.20 0.78

g ” . 0.0 98.94 0.52

5 0.03 98.55 0.13

" 1 0.1 98.12 -0.30

S 0.3 97.72 0.70

45

classes

truck ship horse frog dog deer

30
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20

5 24 2

plane car bird cat deer dog frog horse ship truck

Fig. 5: Confusion matrix for ten classes of CIFAR-10 dataset.
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Fig. 6: AAtst vs. Average Confusion Ratio across different
datasets.

noisy if it is generated via automatic unsupervised clustering
algorithms. Again, we show that ACR is able to capture these
characteristics and correctly reflect the effect of fine-grain
training. We also investigate how increasing the number of
coarse-grain classes impacts the improvement from using fine-
grain labels, i.e., AA5t,
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In the following experiments, we use CIFAR-10 as an
example to show how ACR can be used to characterize the
effectiveness of fine-grain labels via the relationship between
ACR and AA?est under different settings of coarse-grain and
fine-grain labels. We use CIFAR-100 for the experiments on
varying number of coarse-grain classes as it provides as many
as 20 coarse-grain classes.

A. Customized Coarse-grain Classes

As mentioned, coarse-grain classes are the classification
target, and as a result, the definition of coarse-grain classes is
application dependent. For example, given an animal dataset,
a task can be identifying cat vs. dog. vs horse, while another
task can be separating standing animals from sitting and/or
lying animals. Because of the diversity of applications, this
mapping from fine-grain classes to coarse-grain classes can be
drastically different. In this section, we conduct experiments
to see how these customized coarse-grain classes affect the
effectiveness of fine-grain labels and use ACR to characterize
it.

A natural partition of CIFAR-10 dataset is the “animal”
coarse-grain class vs. the “vehicle” coarse-grain class, where
“animal” has six fine-grain classes and “vehicle” has four
as depicted in Table II. To simulate various applications,
we keep the 6:4 ratio of the two coarse-grain classes and
randomly switch their fine-grain classes to create new coarse-
grain classes. Rows (1) through (5) in Table VI show five
experiments with different coarse-grain class definitions. We
use two coarse-grain classes in this case (denoted by 0 and
1), and values in the table indicate which coarse-grain class
(0 vs. 1) each fine-grain class (plane, car, etc.) belongs to.
The last three columns of Table VI give the testing accuracy
of the CNN trained with coarse-grain and fine-grain labels,
respectively as well as the relative improvement of fine-
grain training. We observe that fine-grain training achieves up



to 2.78% improvement and always outperforms coarse-grain
training under various customized coarse-grain classes.

We further experiment with balanced coarse-grain classes.
In the previous experiments, we have a 6:4 ratio for the number
of fine-grain classes within each coarse-grain class. Now, we
balance it to a 5:5 ratio, and similarly, we randomly switch
fine-grain classes across the two coarse-grain classes. Rows (6)
through (10) in Table VI show five experiments with different
coarse-grain class definitions and a 5:5 ratio. Again, we can
see that fine-grain training always produces higher testing
accuracy than coarse-grain training.

As discussed before, higher ACR leads to higher AAfest
and vice versa. We compute the ACR metric of all ten ex-
periments and plot the relationship between ACR and A Aest
in Figure 7a. Numbers on the data points are experiment IDs.
We can see the trend of increasing benefit from fine-grain
labeling, i.e., increasing A A5, when ACR gets larger. This
demonstrate that ACR is a good indicator of how effective
fine-grain labels are.

B. Noisy Fine-grain Classes

By using fine-grain labels, we are able to improve CNN
performance. To obtain fine-grain labels, we can either ask
human to label the images, or by automatically clustering
every coarse-grain class into multiple fine-grain classes. The
first approach is human-labor intensive but it is usually defined
as the ground-truth, while the second approach is relatively
cheap, but error-prone. In this part, we investigate how a
noisy fine-grain label, e.g., generated from a coarse-grain
class by using unsupervised clustering methods, may affect
effectiveness of training with fine-grain labels.

To this end, we keep the coarse-grain labels fixed and
randomly change the fine-grain labels within each coarse-
grain class to simulate the effect of noisy labeling. We
tune the probability of randomizing the fine-grain labels, i.e.,
randomness factor, to control the amount of noise in the
experiments. Table VII shows the results under different ran-
domness factors for CIFAR-10 dataset. We can see that with
increased randomness factor, both A’}ﬁg and the improvement
brought by fine-grain training, AA™st = Ales! — Atest | keep
dropping. This means that training with highly incorrect fine-
grain labels may actually hurt CNN performance. Therefore,
how to automatically cluster each coarse-grain class into less-
noisy fine-grain classes is an important direction to explore.
We leave it for future work.

Again, we compute their ACR values and plot AA5¢ vs,
ACR in Figure 7b. Numbers on the data points are randomness
factors. With decreased randomness factor, confusion between
fine-grain classes becomes less and ACR value increases. As
expected, increased ACR value leads to increased AA*s! as
we can see in the figure.

C. Varying number of coarse-grain classes

We further investigate how the number of coarse-grain
classes affects the effectiveness of fine-grain labels. As we
have discussed in Section IV.B, with fine-grain labels, the
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Fig. 7: (a): AA*st vs. Average Confusion Ratio computed
from experiments of customized coarse-grain classes in Table
VI . Number next to the data points is experiment ID. (b):
AA?est vs. Average Confusion Ratio computed from experi-
ments of noisy fine-grain classes in Table VII. Number next
to the data points is randomness factor.

network is encouraged to learn more features than it needs
when trained with only coarse-grain labels, and these extra
features help in network generalization, i.e., improving the
testing accuracy. We conjecture that, to achieve high testing
accuracy, a certain number of features needs to be learned
by the network. Fine-grain labels help learn more features,
however, with more coarse-grain classes, more features will
be learned from only coarse-grain labels and hence it may
be sufficient for classifying the test set, even without fine-
grain labels. In other words, fine-grain labels bring diminishing
returns when the number of coarse-grain classes increases.
To verify this, we experiment by varying the number of
coarse-grain classes in the CIFAR-100 dataset and the results
are shown in Table VIII. We can see that with increasing
number of coarse-grain classes, i.e., from 5, 10, 15 to 20, the
benefit from fine-grain training, i.e., AAtest decreases, which
is consistent with our expectation. We also compute their ACR
values and show the relationship with A A5 in Figure 6. In
the case of CIFAR-100 dataset, when the number of coarse-
grain classes goes beyond 15, the improvement brought by
fine-grain labeling is negligible. However, this threshold is



TABLE VIII: Testing accuracy, trained with coarse-grain vs. fine-grain labels, when varying number of coarse-grain classes in
CIFAR-100 dataset. The coarse-grain class index follows the same order as in Table II. The values inside the parenthesis in

test
column A%

is AAest the calculated improvement of fine-grain training over coarse-grain training.

Coarse-grain class index
0 1 2 3 4 5 6 7 8 9g 1011 [ 12 [ 13|14 | 1516 | 17 | 18 | 19 Total Atéié} (%) A%eét (%)
v v v v v 5 80.53 83.22 (+2.69)
v |V v |V v v v v v v 10 81.42 83.44 (+2.02)
v vV v v |V v v v v v v v v v 15 85.14 85.30 (+0.16)
Vi ivivI|ivI|iVviIiVvI|IvI Vv v I|VvI|V v v v v v v v v v 20 85.04 85.05 (+0.01)

application and dataset dependent and should be determined
by experiments in a case-by-case manner.

VII. CONCLUSION

In this paper, we investigate the intriguing problem of
how label granularity impacts CNN-based image classification.
Our extensive experimentation shows that using fine-grain
labels, rather than the target coarse-grain labels, can lead to
higher accuracy and training data efficiency by improving both
network optimization and generalization. Our results further
suggest two practical applications: (i) with sufficient human
resources, one can improve CNN accuracy by re-labeling the
dataset with fine-grain labels, and (ii) with limited human
resources, to improve CNN performance, rather than collecting
more training data, one may instead collect fine-grain labels
for the existing data. Furthermore, we propose a metric called
Average Confusion Ratio (ACR) to quantify the accuracy
gain from fine-grain labels, and demonstrate its effectiveness
through experiments on various datasets and label settings.
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