Bridging Local Cyberinfrastructure and XSEDE with CyberGIS-

Anand Padmanabhan
Department of Geography and
Geographic Information Science
University of Illinois of Urbana-
Champaign
apadmana@illinois.edu

Jupyter
[Extended Abstract]

Dandong Yin
Department of Geography and
Geographic Information Science
University of Illinois of Urbana-
Champaign
dyin4@illinois.edu

Shaowen Wang
Department of Geography and
Geographic Information Science
University of Illinois of Urbana-
Champaign
shaowen@illinois.edu

Fangzheng Lyu
Department of Geography and
Geographic Information Science
University of Illinois of Urbana-
Champaign
flu8@illinois.edu

INTRODUCTION

The fabric of national and international cyberinfrastructure
ecosystems for scientific discovery and innovation can be viewed
as distributed computing environments composed of powerful
supercomputers, various cloud computing resources, and numerous
local cyberinfrastructure (including both cloud and HPC)
resources. However, extensive computational work conducted by
academic researchers are often siloed in one of these environments.
Science Gateways [5, 6], by simplifying access to advanced
cyberinfrastructure resources, have made significant progress on
connecting these silos by enabling researchers in many fields to
access advanced cyberinfrastructure through web browsers. In this
context, this research bridges between national and local
cyberinfrastructure resources through: (a) horizontal scaling of
CyberGIS-Jupyter between the cloud resources provided by
JetStream on the Extreme Science and Engineering Discovery
Environment (XSEDE) and a VMWare-based cloud environment
on Virtual ROGER, a local cyberinfrastructure resource hosted by
the CyberGIS Center for Advanced Digital and Spatial Studies at
the University of Illinois at Urbana-Champaign campus; and (b)
enabling the submission of computationally intensive models to the
batch systems of both Virtual ROGER and Comet (an XSEDE
resource).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PEARC '19, July 28-August 1, 2019, Chicago, IL, USA

© 2019 Copyright is held by the owner/author(s).
https://doi.org/10.1145/3332186.3333257

ACM ISBN 978-1-4503-7227-5/19/07.

Specifically, we have developed a mechanism to provide access to
a scalable JupyterHub platform together with cutting-edge
cyberGIS software and hardware [4], called CyberGIS-Jupyter [7],
which allows seamless access to high-performance computing
(HPC) resources while shielding the complexity of managing
cyberinfrastructure access from wusers. The user-friendly
environment provided by CyberGIS-Jupyter along with
computational scalability achieved through this research provides a
powerful environment for conducting collaborative and
reproducible research at scale with seamless access to advanced
cyberinfrastructure at both local and national levels. The rest of this
paper describes the architecture of our solution and articulates the
corresponding implementation.

ARCHITECTURE AND IMPLEMENTATION

The architecture consists of four major layers: (a) user layer; (b)
application layer; (c) cloud resources; and (d) HPC resources. The
components of each of these layers and the interactions between
them can be depicted in Figure 1. There are two levels at which
users interact with cyberinfrastructure resources: (1) logging into
JupyterHub and accessing their single user Jupyter Notebook server
as an interactive session which runs transparently on local and
national resources, and (2) submitting computationally intensive
jobs that leverage HPC resources locally and on XSEDE.

PEARC '19, July 28-August 1, 2019, Chicago, IL, USA

User Layer
User 1 User 2 Usern
(Browser) e @ ®
/ A
-] e

ApplicatiorjLayer
Let’s Encrypt
User
works or]
Noteboo

Nginx
(container)

OAuth External
Authentication

(GitHub)
(container)

Notebook n
(container) | DockerHub

A 4 A 4

loud computing resources HPC resources

Shared file system (NFS)
Virtual ROGER SDSC Comet

VM 1 M2 i 3
| virtual ROGER H etstream
HPC jobs to be submitted from the Jupyter
Notebook to the batch systems of Virtual
ROGER and XSEDE Comet using cyberGIS
libraries

JupyterHub
(container)

Instantiates
Notebook server
on demand

Notebook 1
(container)

Notebook 2

Containers might run on any of the VMs.
Shared file system allows data to be persisted
between sessions.

Figure 1: Architecture of Scalable CyberGIS-Jupyter
Deployment

Considering the first level interaction, our key innovation here is
the horizontal scaling between a local cyberinfrastructure resource
(Virtual ROGER) and XSEDE (Jetstream), which was achieved
using Docker Swarm [3]. From a user’s perspective, the workflow
is specified as follows: they first login to the JupyterHub
environment through browser, which redirects to GitHub for
authentication; if successful, a Jupyter environment is spawned in
which they can develop notebooks and write codes. However, the
backend implementation to enable this seamless interaction is
complex. First, we install docker on all the virtual machines (VMs)
to enable Docker Swarm. One or more of the VMs will serves as
the swarm manager and the rest of the VMs will join as workers.
Then we start a docker service to instantiate JupyterHub. The
container image used for this JupyterHub installation comes from
our own repository on Docker Hub and contains customization to
automatically create user directories and configurations for
authentication, network, and storage systems needed to start up a
working JupyterHub instance. When a user initiates a login attempt
with JupyterHub he/she is redirected to GitHub for authentication
using OAuth, on successful completion of which authorization is
checked. The load balancing and the certificate for securing https
connections are provided by nginx and letsencrypt respectively,
which are also run as docker containers. The authorization is based
on a white list maintained in our confirmation. Once a user is
authorized, a single Jupyter server instance is started up for the user
on one of the nodes of the swarm (either on Virtual ROGER or
JetStream in our case) and the user begins interaction with the
notebook. The container image of the Jupyter Notebook server is
automatically downloaded from our Docker Hub repository.
Additionally, we need data to be persisted and shared on all the
VMs that are part of the Docker Swarm, so that users can see the
same version of their data and notebooks between sessions
regardless of which cyberinfrastructure resources their notebooks
run on. To enable this, we installed and enabled a Network File

A. Padmanabhan et al.

System (NFS) that is accessible from all the VMs. Before
conducting the scaling experiments, we were anticipating a number
of problems with networking and firewall issues that would limit
our horizontal scaling tests. However, in practice, we had to open
up only a single port between the VMs that are part of the Docker
Swarm nodes. This port is used for broadcasting communication
between the nodes.

The second level of interaction that allows computing jobs to be
run on batch systems is enabled by a cyberGIS library that is
installed in the Jupyter environment. One of the models we have
experimented with is the SUMMA (Structure for Unifying Multiple
Modeling Alternative) [2], a hydrological modeling tool built on a
common set of conservation equations and a common numerical
solver, which together constitute the structural modeling core for
enabling a controlled and systematic analysis of alternative
modeling options. Using the interface provided by the cyberGIS
library, the SUMMA model along with necessary parameters are
made available on the worker nodes running computation, and the
model itself is run as a Singularity container. Our tests running the
model on both Virtual ROGER and Comet through the batch
systems were successful.

HORIZONTAL SCALING RESULTS

:~$ hostname
f js-16-93.]etstream-cloud org
:~$ docker node ls
HOSTNAME STATUS AVAILABILITY
ER STATUS ENGINE VERSION
pget]vqf713ﬂquzrp99k165d * js-16-93.jetstream-cloud.org Ready Active

5cucMhyblhqﬂnlasGs?Steq jststl Ready Active

1]btgeuﬁwleaﬂdvanfwaums;u jstst2 Ready Active
18.09.5

p 3:-$ docker ps

C IMAGE COMMAND CREATED STA

TUS ORTS NAMES

511c1decfdad jupyter/datascience-notebook: latest “tini -g — /us

3 days 8888/tcp jupyter— f1cae335easbsaslfb73a4a73c191c18 1. 1 %

f 1a5yhd2ujijcfebtkpbt3edv

9ca0898417a9 Linuxserver/letsencrypt /init" 9 days ago up
0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp nginx

padnanab/jupyterhub-docker: latest “jupyterhub" 9 day up

Eﬂﬂbitcp, 8081/tcp jupyterhubserver.1. uancQDecykSw?anaemth]c
31§

apadnanag) ststiin$ docker ps
CONTAINER ID THAGE oD CREATED STATUS PORTS

aesedaeescts jupyter/datascience-notebook: latest "tini g — /usr/loc." 3 days ago Up 3 days 8888/tcp
Jupyter-da54762e47eecacal6d169306358071-1 Btyns-mlgalrrckchgnspawfs

54652a99cb71 jupyter/datascience-notebook: latest “tini -g — /usr/loc." 3 days ago Up 3 days 8888/tcp
jupyter-5284100200cd5f15eb7 b73d052d42b5-1., 1. tdbjvcfzmyidnel iqwedd29yv

apadmana@jststi:~$

‘apaGNana@]Stst2:~s hostnane 1

jstst2.cigi. illinois.edu

‘apadnanagjstst2:~$ docker ps

AT HAGE COMMAND. CREATED STATUS PORTS

se2a208ecas jupyter/datascience-notebook: latest "tini -g — /usr/loc." 3 days ago Up 3 days 8888/tcp
Jupyter-32067e534d79454e182929529b974e8e-1. 1. q3kr38n1t7hkcjyndmey719vx
dnanag

Figure 2: Screenshots showing a small test Docker Swarm
environment running across Virtual ROGER and JetStream.
It also shows the execution of JupyterHub, nginx, letsencrypt,

and associated notebooks of various nodes of Docker Swarm

Figure 2 illustrates a small test installation with 3 virtual machines,
one on JetStream and two on Virtual ROGER. Putting them
together using Docker Swarm, we were able to seamlessly run
Jupyter Notebooks and scale horizontally. We started with two
VMs, as more users started notebook servers, the existing resources
on these two VMs failed to spawn containers for new users due to
the lack of resources. To alleviate this, we started a third server and
added it to the Docker Swarm. After the operation, new users'
Jupyter servers were immediately deployed. This represents a
powerful capability we plan to make available to CyberGIS-Jupyter
users and will help with community training events. For example,
we will deploy this solution for a national summer school on

Bridging Local Cyberinfrastructure and XSEDE with CyberGIS-
Jupyter

cyberGIS and geospatial data science [1], so we can easily serve
around 40-50 active users using CyberGIS-Jupyter for learning.

CONCLUDING DISCUSSION

We successfully demonstrated the capability to bridge a local high-
performance computing environment with national
cyberinfrastructure in two cases (a) horizontal scaling of
JupyterHub between Virtual ROGER and JetStream, and (b)
successful HPC job submission to batch systems on Virtual
ROGER and XSEDE Comet. This represents a significant step
forward for supporting cyberGIS users with their research and
education activities. As a next step, we plan to investigate ways to
automatically scale the resource usage based on system needs
without any intervention from users. Solutions leveraging
Kubernetes are available but need to be investigated about their
applicability to our approach.

ACKNOWLEDGMENTS

This research is supported in part by the National Science
Foundation (NSF) under grant numbers 1443080, 1664119, and
1743184. This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by National
Science Foundation under grant number ACI-1548562. We greatly
appreciate the XSEDE allocation support through two awards:
SES170023 and EAR190007 and the support provided by the
XSEDE Extended Collaborative Support Service (ECSS) program.
Our computational work also used Virtual ROGER, which is a
cyberGIS supercomputer supported by the CyberGIS Center for
Advanced Digital and Spatial Studies and the School of Earth,
Society and Environment at the University of Illinois. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of NSF.

REFERENCES
[1] AAG-UCGIS Summer School 2019. (2019, March 20).
Retrieved May 21, 2019, from

http://cybergis.illinois.edu/event/aag-ucgis-summer-school-
2019/

[2] Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp,
D. E., Woods, R. A., ... Others. (2015). The structure for
unifying multiple modeling alternatives (SUMMA), Version
1.0: Technical description. NCAR Tech. Note NCAR/TN-
5141STR. Retrieved from
http://opensky.ucar.edu/islandora/object/technotes%3A526/d
atastream/PDF/download/citation.pdf

[3] Naik, N. (2016). Building a virtual system of systems using
docker swarm in multiple clouds. In 2016 IEEE International
Symposium on Systems Engineering (ISSE) (pp. 1-3).

[4] Wang, S. (2010). A CyberGIS Framework for the Synthesis of
Cyberinfrastructure, GIS, and Spatial Analysis. Annals of the
Association of American Geographers. Association of
American Geographers, 100(3), 535-557.

PEARC '19, July 28-August 1, 2019, Chicago, IL, USA

[5] Wang, S., Liu, Y., Wilkins-Diehr, N., & Martin, S. (2009).
SimpleGrid toolkit: Enabling geosciences gateways to
cyberinfrastructure. Computers & Geosciences, 35(12), 2283—
2294.

[6] Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S., &
Pamidighantam, S. (2008). TeraGrid Science Gateways and
Their Impact on Science. Computer, 41(11), 32—41.

[71 Yin, D., Liu, Y., Hu, H., Terstriep, J., Hong, X,
Padmanabhan, A., & Wang, S. (2018). CyberGIS-Jupyter for
reproducible and scalable geospatial analytics. Concurrency
and Computation: Practice & Experience, 308, €5040.

