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Detecting irregularly shaped spatial clusters within heterogeneous point processes is challenging because

the number of potential clusters with different sizes and shapes can be enormous. This research

develops a novel method, expansion-based spatial clustering for inhomogeneous point processes

(ESCIP), for detecting spatial clusters of any shape within a heterogeneous point process in the context

of analyzing spatial big data. Statistical testing is used to find core points—points with neighboring

areas that have significantly more cases than the expectation—and an expansion approach is developed

to find irregularly shaped clusters by connecting nearby core points. Instead of employing a brute-force

search for all potential clusters, as done in the spatial scan statistics, this approach only requires testing

a small neighboring area for each potential core point. Moreover, spatial indexing is leveraged to speed

up the search for nearby points and the expansion of clusters. The proposed method is implemented

with Poisson and Bernoulli models and evaluated for large spatial data sets. Experimental results show

that ESCIP can detect irregularly shaped spatial clusters from millions of points with high efficiency. It

is also demonstrated that the method outperforms the spatial scan statistics on the flexibility of cluster

shapes and computational performance. Furthermore, ESCIP ensures that every subset of a detected

cluster is statistically significant and contiguous. Key Words: cyberGIS, spatial algorithm, spatial analysis,
spatial clustering.

在异质的点过程中侦测不规则形成的空间和集群具有挑战, 因为潜在的大小和形状各异的集群可能为数
众多。本研究为不同质的点过程（ESCIP）发展一个崭新方法, 根据扩张的空间集群, 以在分析空间大数
据脉络中的异质点过程中侦测任何形状的空间集群。统计检定用来寻找核心点——邻近区域较预期显着

具有更多案例的点——并发展一个扩张方法, 通过连结附近的核心点, 发掘不规则形塑的集群。不同于像
空间扫描统计一般运用暴力法搜寻所有潜在的集群, 此一法仅需检验每个潜在核心点的小范围邻近面积。
此外, 空间指标发挥槓杆作用来加速搜寻邻近点和集群的扩张。本文提出的方法同时运用卜瓦松和伯努
利模型, 并对大型空间数据集进行评估。实验结果显示ESCIP能够以高效能侦测数百万点中不规则形塑
的空间集群。实验结果亦证实, 该方法在集群形式的弹性和演算表现上, 较空间扫描统计表现更好。此
外, ESCIP确保每一个侦测到的集群子集在统计上是显着且连续的。关键词：网络地理信息系统, 空间
演算, 空间分析, 空间集群。

Detectar aglomeraciones espaciales configuradas irregularmente dentro de procesos puntuales heterog�eneos
representa todo un reto debido a que el n�umero de aglomeraciones potenciales de diferentes tama~nos y

formas puede ser enorme. Esta investigaci�on desarrolla un nuevo m�etodo, la aglomeraci�on espacial basada en

la expansi�on para procesos puntuales no homog�eneos (ESCIP) para detectar aglomeraciones espaciales de

cualquier forma dentro de un proceso puntual heterog�eneo en el contexto de an�alisis de big data espaciales.

Se usa prueba estad�ıstica para hallar puntos medulares—puntos con �areas vecinas que significativamente

tienen m�as casos de los esperados—y se desarrolla un enfoque de expansi�on para hallar aglomeraciones

conformadas irregularmente, conectando puntos medulares cercanos. En vez de utilizar una b�usqueda de

fuerza bruta para todas las aglomeraciones potenciales, como se hace en las estad�ısticas espaciales de esc�aner,
este enfoque solo requiere poner a prueba una peque~na �area vecina por cada punto medular potencial. A�un
m�as, se apalanca la indexaci�on espacial para acelerar la b�usqueda de puntos cercanos y la expansi�on de las
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aglomeraciones. El m�etodo propuesto se implement�o con modelos Poisson y Bernoulli y se eval�ua para

conjuntos de datos espaciales grandes. Los resultados experimentales muestran que la ESCIP pueden detectar

aglomeraciones espaciales de configuraci�on irregular desde millones de puntos, con alto grado de eficiencia.

Se demuestra tambi�en que el m�etodo supera en desempe~no a la estad�ıstica espacial de esc�aner en lo que

concierne a flexibilidad de formas del aglomerado y desempe~no computacional. Todav�ıa m�as, ESCIP asegura

que cada subconjunto de una aglomeraci�on detectada es estad�ısticamente significativo y contiguo. Palabras
clave: aglomeraci�on espacial, algoritmo espacial, an�alisis espacial, c�ıberSIG.

S
patial clustering is often used to test whether

events are randomly distributed over space or

any local excesses can be detected and to test

whether such excesses can be reasonably assumed to

have occurred by chance (Kulldorff 1999). It has

been widely used in many research domains, includ-

ing spatial epidemiology (Kulldorff and Nagarwalla

1995; Gatrell et al. 1996), crime studies (Eck et al.

2005; Nakaya and Yano 2010), event detection

(Cheng and Wicks 2014), astrophysics (Tramacere

and Vecchio 2013), movement analysis (Gao, Li,

et al. 2018), ecology (Plotkin, Chave, and Ashton

2002), and spatial analysis (Anselin 1995; Rogerson

and Yamada 2008). In these areas, it is important

not only to discover clusters but also to find the

“meaningful” clusters that are not likely to have

occurred by chance (Neill and Moore 2004). For

example, a large number of disease cases in a region

might be caused by certain driving factors like pollu-

tants or simply a large population. Thus, population

density, or other underlying intensities that govern

the distribution of events if no clusters exist in the

study area (null hypothesis), should be considered

for cluster detection.
Clustering point-based events has long been a

focus of spatial clustering analysis. Many geograph-

ical phenomena can be modeled as point-based

events, such as disease cases, retail stores, species

locations, and people’s space–time footprints.

Currently, a huge amount of point-based spatial big

data, such as Global Positioning System (GPS)

tracking records, location-based social media, and

volunteered geographic information (Elwood 2008;

Flanagin and Metzger 2008), are becoming increas-

ingly available due to technological advances (Kwan

2016). For instance, New York City has been pub-

lishing taxi data containing the pickup and drop-off

locations for billions of individual trips since 2009.

These large point-based data sources offer opportuni-

ties to understand fine-scale spatial patterns

and potentially the space–time dynamics of the

underlying phenomena. At the same time, the com-

putational and data intensities of cluster detection

challenge the capability of existing methods

and algorithms.
Much effort has been expended for detecting spa-

tial clusters of arbitrary shapes and varying densities

in point data sets during the past several decades

(Ert€oz, Steinbach, and Kumar 2003; Kriegel et al.

2011), including DBSCAN (Ester et al. 1996),

DENCLUE (Hinneburg and Keim 1998), OPTICS

(Ankerst et al. 1999), DECODE (Pei et al. 2009),

CURE (Guha, Rastogi, and Shim 1998),

CHAMELEON (Karypis, Han, and Kumar 1999),

and MST-DBSCAN (Kuo, Wen, and Sabel 2018).

These methods, however, can only identify areas

where events are closely packed together but cannot

distinguish between clusters that are statistically sig-

nificant and those that are likely to have occurred

by chance in a heterogeneous point process. When

the intensity of the underlying point process has a

known inhomogeneity under the null hypothesis of

no clusters, detecting spatial clusters can be chal-

lenging because of the lack of efficient methods to

find irregularly shaped clusters that are statistically

significant. The spatial scan statistics (Naus 1965;

Kulldorff 1997) are commonly used for cluster detec-

tion in heterogeneous point processes. They have

limited capability, though, for dealing with large

data sets and detecting irregularly shaped clusters.

There are approaches to identifying irregularly

shaped spatial clusters by connecting neighboring

regions, using genetic algorithms or other optimiza-

tion methods (Duczmal and Assunç~ao 2004; Tango

and Takahashi 2005; Aldstadt and Getis 2006;

Duczmal et al. 2007; Pei et al. 2011; Izakian and

Pedrycz 2012; Murray, Grubesic, and Wei 2014; Yin

and Mu 2017). These approaches assume, however,

that input data are aggregated into a small set of poly-

gons and detect clusters by connecting nearby poly-

gons. Therefore, these methods are not useful for

data-intensive point clustering analyses.

2 Li et al.



This article describes a novel spatial clustering

method, expansion-based spatial clustering for

inhomogeneous point process (ESCIP), for the fol-

lowing interrelated purposes: first, to detect spatial

clusters in a point process with a known heteroge-

neous intensity; second, to detect clusters with

irregular shapes; and third, to handle large spatial

data sets with high computational efficiency. The

method first identifies points with significant local

excess of events as core points and then uses an

expansion approach to find irregularly shaped clus-

ters by connecting nearby core points. Instead of a

brute-force search for all potential clusters, as done

by Kulldorff’s (1997) spatial scan statistics, this

approach only checks a limited number of search

windows to find core points for expansion. Spatial

heterogeneity is treated in this method by using an

inhomogeneous background to generate the expected

spatial distribution of events under the null hypoth-

esis of no clustering. Employing two popular baseline

processes (Poisson and Bernoulli), statistical testing

is used to find significant core points by taking the

background intensity into consideration, rather than

purely based on the absolute density of events.

Spatial indexing is also leveraged to speed up the

search for nearby points and the expansion

of clusters.
ESCIP was applied to simulated geolocated

households in Chittagong Division, Bangladesh.

Experimental results showed that this method can

effectively detect irregularly shaped spatial clusters

over an inhomogeneous background in large data

sets. Compared with spatial scan statistics, this

method can detect clusters with more flexible shapes

and higher computational performance. Moreover,

ESCIP ensures that each detected cluster is self-con-

tiguous and every subset of the cluster is statistically

significant.

Related Work

Spatial point clustering has long been an impor-

tant task in spatial analysis and spatial data mining

(Han, Kamber, and Tung 2001). In geographic

space, a spatial cluster is usually defined as an excess

of events or values in an area (Jacquez 2007). The

existence of a cluster can be considered a sign that

certain driving factors for events, other than random

chance or noise, exist in the area. For instance, clus-

ters with exceptionally high rates of a certain disease

might provide clues to the etiology of the disease

and could also indicate areas where health care or

disease prevention and control measures should be

improved (Kulldorff 1999).
Many standard (aspatial) clustering approaches,

such as k-means (MacQueen 1967) and k-medoid

(Kaufman and Rousseeuw 1990), are designed to

maximize intercluster similarities and minimize intra-

cluster similarities without considering the spatial

configuration and distribution of points. Therefore,

they should be modified before they are used to

assess spatial point clustering to capture important

spatial relationships and patterns (Grubesic, Wei,

and Murray 2014). For instance, the distance func-

tion used in the k-means method might distort prox-

imity relationships if spatial outliers exist in the

study area (Murray and Estivill-Castro 1998).

Density-based clustering methods, such as

DBSCAN (Ester et al. 1996), DENCLUE

(Hinneburg and Keim 1998), OPTICS (Ankerst

et al. 1999), and DECODE (Pei et al. 2009), assume

that the density of points inside a cluster is consider-

ably higher than the density of points outside a clus-

ter (i.e., outliers). In these methods, clusters are

defined as dense regions of events in space, usually

separated by low-density regions (noise). Density-

based clustering methods can find spatial clusters of

different sizes and shapes and also filter out noises

(Han et al. 2001). DBSCAN (Ester et al. 1996) is

one of the most widely used density-based clustering

methods. DBSCAN searches for clusters based on

the concepts of density connectedness and density

reachability. All of the points within the same clus-

ter should be mutually density connected and all of

the points not density reachable from any other

point should be considered noise (Ester et al. 1996).

DBSCAN assumes the underlying intensity that gen-

erates events is homogeneous—clusters are areas

with spatial density above a uniform threshold.

Although many variations of DBSCAN and new

approaches such as DECODE have been developed

to detect spatial clusters with different densities

(Liu, Zhou, and Wu 2007; Pei et al. 2009), these

methods still find clusters purely based on the distri-

bution of events, without using any information

about underlying intensities that govern the spatial

distribution of the events. Therefore, these methods

are not suitable for spatially explicit cluster detection

in heterogeneous point processes (Murray, Grubesic,

and Wei 2014).
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Scan-based methods are commonly used for

detecting spatial point clusters when such spatial

heterogeneity exists (Pei et al. 2011). Examples of

these methods include the Geographical Analysis

Machine (Openshaw et al. 1987), spatial scan statis-

tics (Naus 1965; Kulldorff and Nagarwalla 1995;

Kulldorff 1997), and the methods proposed by Besag

and Newell (1991) and by Fotheringham and Zhan

(1996). Predefined geographical scanning windows

are used to identify areas with elevated or deflated

rates of events in scan-based methods (Grubesic,

Wei, and Murray 2014). Among all of these meth-

ods, the spatial scan statistic by Kulldorff (1997,

1999), along with the software tool SaTScan, stands

out for its capability of finding the most likely clus-

ters through likelihood comparison and eliminating

intersecting clusters.
Naus (1965) first proposed scan statistics to detect

clusters in point processes, which was further

extended by Kulldorff (1997) into spatial scan statis-

tics. Using scan windows with varying sizes, spatial

scan statistics search for the most likely clusters that

cannot be explained by the baseline process under

the null hypothesis of complete randomness. The

baseline processes include heterogeneous Poisson and

Bernoulli processes with known intensity (Kulldorff

1997). The Poisson model handles the number of

events with varying intensity such as a known under-

lying population. The Bernoulli model is usually used

to compare the spatial distribution of two types of

events (e.g., cases or controls). There are two major

limitations of spatial scan statistics. First, computa-

tional intensity increases dramatically as a data set

grows due to the brute-force search strategy (Pei et al.

2011). Second, the shapes of scanning windows used

in spatial scan statistics are fixed (circular or elliptic;

Kulldorff et al. 2006), which makes it hard to identify

irregularly shaped clusters such as clusters along roads

or rivers (Izakian and Pedrycz 2012; Murray,

Grubesic, and Wei 2014). Many approaches have

been developed to improve the computational per-

formance of scan statistics through approximations

(Agarwal et al. 2006) or sampling (Matheny et al.

2016). Although these methods can generate results

similar to scan statistics much faster, they are still

unable to detect irregularly shaped clusters.
To find irregularly shaped clusters, Tango and

Takahashi (2005) proposed FleXScan, a flexibly

shaped spatial scan statistic, but FleXScan is more

computationally intensive. Duczmal and Assunç~ao

(2004) used a simulated annealing strategy to find

irregularly shaped clusters, but this method is sensi-

tive to a parameter named fraction value (Pei et al.

2011). Recently, different optimization strategies,

such as linear optimization (Murray, Grubesic, and

Wei 2014), genetic optimization algorithm (Duczmal

et al. 2007), ant colony optimization (Pei et al.

2011), particle swarm optimization (Izakian and

Pedrycz 2012), multidirectional optimum ecotope-

based algorithm (Aldstadt and Getis 2006), and a

hybrid method (Yin and Mu 2017), were also used

to find clusters of arbitrary shapes. These methods

all assume that input events are aggregated into a

small number of polygons and that output clusters

are detected by connecting such polygons. Hence,

the shape of an output cluster is still limited to com-

binations of those polygons. Moreover, these meth-

ods, which only work for a limited number of

polygons, are too complicated and not efficient

enough for large point data. Therefore, this article

focuses on solving the aforementioned problems of

both computational efficiency and limited cluster

shapes in spatial point clustering analysis.

Method

Background and the Null Hypothesis

To find clusters of events, it is necessary to define

the spatial distribution of events under the null

hypothesis of no spatial clusters. Such a distribution

can be derived from a point process with a certain

underlying intensity. Because the underlying inten-

sity is usually unevenly distributed, the distribution

of events should typically also be heterogeneous

across space under the null hypothesis. For instance,

when detecting disease clusters, it is natural to

assume that there is no cluster when the number of

disease cases in each area is proportional to the

population at risk. Population density usually varies

across regions, and the expected number of disease

cases should also change accordingly. For instance,

10 disease cases out of a population of 100 are more

likely to be a cluster than 10 disease cases out of a

population of 10,000.
In addition to a point event data set, another data

set is used by ESCIP to provide the underlying inten-

sity that governs the spatial distribution of events if

no spatial clusters exist. This data set is referred to as

the background. A background can be specified in

4 Li et al.



multiple ways to provide the underlying intensity for

the point events. Under the null hypothesis of no
clustering, the distribution of events should follow a
purely random baseline point process with a known
intensity from such a background. Any local excess of

events that cannot be explained by the baseline pro-
cess is identified as a spatial cluster.

One way to account for the background is to di-

rectly provide the expected intensity or estimate it
from other related phenomena. For instance, in a
disease clustering scenario, the expected spatial

density of disease cases can be estimated as the prod-
uct of the overall disease rate and the spatial density
of the population at risk. A Poisson model can be

used in this situation. For simplicity, when referring
to Poisson models, the terms event and case will be
used interchangeably in this article. Another way to
model the background is to provide events from

another group (controls) as background observa-
tions and compare the distribution of the original
events (cases) to these controls. For instance, the

spatial distribution of people with a certain disease
can be compared to the spatial distribution of peo-
ple without that disease to detect spatial clusters.

A Bernoulli model is often used in this situation.

Poisson and Bernoulli Models

To detect statistically significant clusters that are
unlikely to have occurred by chance in a point pro-

cess, it is important to first define the baseline pro-
cess under the null hypothesis. Theoretically, many
point process models can be used for core point

detection, including but not limited to Poisson mod-
els and Bernoulli models, which are the most popu-
lar in spatial point pattern analysis (Kulldorff 1997).

This article focuses on these two models.

Poisson Model. In a heterogeneous Poisson model,
the number of events ni in an area i follows

a Poisson distribution with an expected value of ki;
that is, ni � Poisson kið Þ: Under the null hypothesis
of no clustering, ni should follow a Poisson distribu-
tion with an expected value of ki0; that is, ni �
Poisson ki0ð Þ; where ki0 is the intensity in the area i:
A common way to define ki0 is to set it proportional
to the number of background observations; that is,

ki0 ¼ number of background observations in area i
total number of background observations

� total number of cases:

Then, a statistical hypothesis test can be used to

decide whether area i is a cluster at significance level

a; with H0: ki � ki0 (not a cluster) and Ha: ki > ki0
(a cluster).

Using the cumulative distribution function (CDF)

of a Poisson distribution, the probability of getting ci
or more cases within area i under the null hypothesis

can be estimated as

P ni � cið Þ ¼ 1�
Xci�1

j¼0

ki0
je�ki0

j!
: (1)

If the probability is below the significance level a;
the area i contains a high concentration of cases and

is defined as a cluster.

In this article, the same likelihood ratio function

as used by Kulldorff’s (1997) spatial scan statistics is

used to evaluate results and compare detected clus-

ters. The likelihood function of a cluster is defined

as LC=L0; where LC is the maximum likelihood of

each scanning window to be a cluster and L0 is the

maximum likelihood when there is no cluster. In a

Poisson model, the maximum likelihood ratio func-

tion of one cluster with an expected number of

cases ki0 and observed number of cases ci is propor-
tional to Equation 2 as described by Kulldorff

(2015):

ci
ki0

� �ci C�ci
C� ki0

� �C�ci

; (2)

where C is the total number of cases in the entire

study area, C� ci is the number of observed cases

outside the cluster, and C� ki0 is the expected num-

ber of cases outside the cluster.

Bernoulli Model. In a Bernoulli model, each indi-

vidual point can be in one of two states; for

example, people with or without a certain disease,

young or old people, or daytime or nighttime

events. Individuals in one of the two states are

defined as cases and the others as controls.

Controls can be considered as a specific type of

background observations in this article. In a

Bernoulli model, the probability that any individ-

ual point is a case is independent of its location

and the existence of any other points. Each point

in an area i follows a Bernoulli distribution with

probability pi of being a case and probability 1� pi
of being a control. Therefore, the number of

cases ni in an area i with Ni total points

should follow a binomial distribution that is the

An Expansion-Based Spatial Clustering Method 5



sum of Ni Bernoulli trials with the same probabil-

ity pi; that is, ni � Binomial Ni; pið Þ; where Ni ¼
number of casesþ number of controls in area i
and the expectation of ni is Nipi: Under the null

hypothesis of no clustering, each individual should

have the same probability of being a case regard-

less of its geographical location and thus pi should
be the same for all areas; that is, pi ¼ p0: Similar to

a Poisson model, clusters in a Bernoulli model can be

detected through a statistical hypothesis test with H0:

pi � p0 (not a cluster) and Ha: pi > p0 (a cluster),

where p0 ¼ total number of cases
total number of cases þ total number of controls

¼ C
N

in the entire region. Using the CDF of a binomial

distribution, the probability of getting ci or more

cases within area i under the null hypothesis can

be estimated as

P ni � cið Þ ¼ 1�
Xci�1

j¼0

Ni

j

� �
p0j 1�p0ð ÞNi�j: (3)

In a Bernoulli model, the maximum likelihood func-

tion LC of one cluster with an observed number of

cases ci can be derived as (Kulldorff 2015)

ci
Ni

� �ci Ni�ci
Ni

� �Ni�ci C�ci
N�Ni

� �C�ci N�Nið Þ� C�cið Þ
N�Ni

� � N�Nið Þ� C�cið Þ
:

(4)

where C is the total number of cases, Ni is the com-

bined number of cases and controls within the clus-

ter, and N is the combined number of cases and

controls in the entire study area. Because the max-

imum likelihood if there is no cluster L0 is constant

for any cluster in a Bernoulli model, LC can be di-

rectly used to find the most likely clusters.

Finding Clusters over an
Inhomogeneous Background

Core Points and Spatial Clusters. Assuming there

are some true clusters in the study area, the principle

of ESCIP is first to identify all the point events

(including both cases and background observations)

in these clusters as core points. To detect core points

in any of these clusters, this article uses a small cir-

cular search window with radius e near each point

event. A point event is defined as a core point if

the number of cases ci within distance e is unlikely

to be generated by chance under the null hypothesis

of no clustering: The probability of having an equal

number of or more cases is less than the given

significance level a in the baseline process.

Specifically, a core point should satisfy P ni � cið Þ �
a; with the ki0 in Equation 1 or the Ni in Equation

3 calculated from the number of background obser-

vations (or controls) in the area within radius e.
Modified from DBSCAN (Ester et al. 1996), add-

itional concepts and definitions are used in this ar-

ticle and an illustration is shown in Figure 1.

� Directly reachable: Two core points are directly reach-

able from each other if they are within distance e
from each other.

� Reachable: A core point q is said to be reachable from

p if there is a path of core points p1, p2, … , pn, with
p1 ¼ p and pn ¼ q, where pi and piþ1 are directly

reachable from each other.

� Cluster: A cluster consists of a core point and all core

points reachable from it. All core points in a cluster

are reachable from each other and it does not matter

which core point is chosen as the starting point for

expansion. Furthermore, these clusters are only poten-

tial because their statistical significance is not guaran-

teed. Only the clusters that passed statistical

significance testing are considered as final clusters,

which are described later in this section.

Cluster Detection Procedure. ESCIP has three major

phases: identifying core points, detecting clusters by

expanding core points, and statistical inferences

through Monte Carlo simulation. In the first

phase, the number of cases and background obser-

vations are counted separately in a small circular

search window with radius e from each input

Figure 1. Illustration of reachability. Points o, p, and q are three

core points that have passed the statistical hypothesis testing

using an intensity derived from the background. Points n and m
are not core points, although n is in p’s search window and

contributes to the testing of p for a core point. Points p and q are

directly reachable from point o. Point p and q are reachable from

each other. Points o, p, and q are in the same cluster.
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observation. Then, statistical testing is used to

decide whether this point is a core point at signifi-

cance level a using either Equation (1) or

Equation (3) based on the selected point process

model. For each point i in the data set, if the prob-

ability of getting ci or more cases in the window

under the null hypothesis is less than a given sig-

nificance level a—that is, P ni � cið Þ � a—then

point i is identified as a core point.
In the second phase, an expansion-based approach

is used to detect clusters by connecting the core

points identified in the first phase. This phase con-

tinuously selects an unvisited core point (starting

point) and expands it to form a new cluster. During

this process, once a core point c is visited, it is added
to the current cluster; the algorithm then visits all

of the core points that are unvisited and directly

reachable from c; the process continues until all core

points reachable from the starting point are visited

and then moves on to the next starting point to

form the next cluster. At the end of this phase, each

core point should belong to one and only one clus-

ter, and no noncore points should belong to any

cluster. For instance, point n in Figure 1 will not be

counted in the cluster containing point o, p, and q.
None of these clusters intersect with each other and

any two of them are at least distance e apart. This

expansion process is deterministic, and the input

and processing orders have no influence on the clus-

tering results. Once a cluster is detected from the

expansion procedure, the numbers of cases and back-

ground observations in the entire cluster are

counted and its likelihood function (e.g., Equation 2

or Equation 4) is calculated. A cluster with a higher

likelihood is considered as more significant and

important in this article. Clusters with the top N
highest likelihood are identified as the top

N clusters.
The third phase evaluates the statistical signifi-

cance of detected clusters through Monte Carlo

simulation. This phase estimates the p value of

each detected spatial cluster by comparing its like-

lihood with the maximum likelihood from simu-

lated data sets, which is a standard procedure for

the scan statistics (Kulldorff 1997). In each simu-

lated replication, a new point data set is generated

from the null hypothesis that there are no spatial

clusters. Then the ESCIP cluster detection proce-

dure is applied to the simulated data set, and the

maximum likelihood of all detected clusters is

recorded. After all replications, the p value of each

original cluster is calculated as Equation 5, where

NHigher is the number of replications with a higher

maximum likelihood and NReplication is the total

number of replications. Clusters with a high esti-

mated p value are considered to be insignificant

because a cluster with a higher likelihood is pos-

sible if the data set is completely random and

hence are filtered out.

p ¼ NHigher þ 1

NReplication þ 1
: (5)

The random point generation ensures that the total

numbers of cases and background observations are

kept constant across replications. The processes for

generating random points are different for Poisson

models and Bernoulli models. In a Poisson model,

background observations are kept the same. In each

replication, cases are randomly sampled from back-

ground observations such that each background

observation is equally likely to be selected as a case.

In a Bernoulli model, random point data sets are

generated through random labeling. In each replica-

tion, the point locations of the case and background

combined data set are fixed, and a fixed number of

case labels the same as the original data set are

randomly assigned to points in the combined

data set.

ESCIP requires two primary input parameters:

search radius e and significance level a: The choice

of these parameters needs to ensure that statistical

testing can be effectively conducted in most search

windows to identify core points. It is difficult to test

whether a point is a core point or not with only five

observations in its search window. With a larger

data volume and denser observations, a smaller

search radius is enough to ensure that enough obser-

vations exist in any search window and, as a result,

finer scale spatial clustering patterns can be revealed.

The influence of significance level is limited, espe-

cially when the number of observations in a search

window is large and the ratios in and outside clusters

are noticeably different. In our experiments, com-

monly used significance levels such as 0.05, 0.01,

and 0.005 tend to generate similar clusters with only

minor differences. The search radius e also defines

the maximum reachable distance in the expansion

phase. With a larger search radius, resulting clusters

will have more smoothed boundaries and nearby

smaller clusters are more likely to be merged into
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larger ones, which might be preferred if a user only

needs an overview of the general spatial patterns. A

smaller search radius, assuming that it is still suffi-

cient to check for core points, will reveal fine-scale

spatial patterns by detecting highly irregularly shaped

clusters. Because both the spatial distribution of

observations and users’ analysis requirements vary,

having a single way to decide the best search radius

is impossible. Users are suggested to explore different

search radii to compare resulting spatial patterns.

Although it is technically possible for a subset of

an expanded cluster to have a higher likelihood ratio

and higher statistical significance than the entire

cluster, it is unlikely to miss important clusters for

the following reasons. First, a larger cluster tends to

have a higher likelihood than its subset and, as a

result, methods based on likelihood tend to overesti-

mate the spatial extents of clusters (Assuncao et al.

2006; Tango and Takahashi 2012). Second, even if

the entire cluster has a lower likelihood than a sub-

set of it, the entire cluster is not likely to be insig-

nificant. This is because each core point constituting

the entire cluster needs to be significant based on

Equation 1 or Equation 3, and the combination of

these significant parts should have a higher signifi-

cance. Third, although exceptions might happen

because significance testing based on Equation 1 or

Equation 3 is weaker than significance testing based

on simulation, realistically it is likely impossible for

clusters with thousands or even millions of points

that ESCIP is intended to detect.

Computation and Implementation

With the aforementioned expansion approach,

ESCIP only needs to check one small search window

at each location. Without any optimization or spatial

indexing, the computational complexity for finding

all of the points within a search window is O nð Þ;
where n is the total number of input points. As a

result, the total time complexity of ESCIP without

Monte Carlo simulation is O n2ð Þ; as such searching

is necessary for each input point to test for core

points and to expand clusters. Spatial indexing can

be leveraged, however, to greatly speed up the search

of nearby points and the expansion of clusters, as

the search radius is usually much smaller than the

extent of a study area. In this article, grid-based

indexing is used. Square blocks of the same size as

the search radius e are used to cover the entire study

area, and each point is indexed based on the block

in which it falls. With this spatial indexing, all

potential reachable points from a point p are either

in p’s block or its eight directly neighboring blocks

(nine blocks in total). The complexity is hence

reduced to O nsð Þ; where s is the average number of

points in the nine blocks, and s is significantly

smaller than n.
In comparison, spatial scan statistics require a

brute-force search of all potential clusters—scanning

windows with different radii need to be tested at

each location. Hence, the complexity of spatial scan

statistics is much higher. Suppose there are n input

points, m potential cluster centers (m ¼ n; if input

points are also used as cluster centers), and l scan-
ning windows with different radii at each center; its

total time complexity without Monte Carlo simula-

tion is O nmlð Þ: Because the maximum radius of scan-

ning windows is usually comparable to the extent of

a study area, the effect of spatial indexing to

improve performance is limited. No matter how

points are spatially indexed, spatial scan statistics

need to calculate the distances between each cluster

center to a large proportion of all input points. As a

consequence, ESCIP has a significant computational

performance advantage over spatial scan statistics.

ESCIP with spatial indexing support is implemented

using C for both Bernoulli and Poisson models and

will be published as open-source software.

Case Study

To evaluate the effectiveness of ESCIP for

detecting significant spatial clusters with any shape

in large point data sets, a case study using both

baseline processes is carried out in this article. The

data set used in this study was generated by

Ehlschlaeger et al. (2016), and it contains simulated

individual households in Chittagong Division,

Bangladesh. There are 5,984,314 individual house-

holds in the data set. Each household is geolocated

and has socioeconomic and infrastructural attributes

including electricity availability and the number

of people.

Clustering Households with Electricity

The first experiment detects spatial clusters of

households with electricity in Chittagong Division,

Bangladesh. This experiment provides an example of
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how to use a Bernoulli model to detect clusters from

a point process in a case–control study, where each

point can be either a case (household with electri-

city) or a control (household without electricity).

Among the 5,984,314 simulated individual house-

holds in Chittagong Division, 3,802,479 are cases

and 2,165,437 are controls with respect to electricity

availability. The remaining 16,398 households have

unknown electricity availability and are not included

in this analysis. A search radius of 500m and a sig-

nificance level of 0.01 are used in the experiment.

The search radius of 500m is a valid choice because

it is much smaller than the extent of Chittagong

Division (roughly 220 km by 380 km), and there are

at least hundreds of households within most search

windows. The top twenty clusters in terms of highest

likelihood are shown in Figure 2B. Households in

different clusters are colored and households not in

any of the twenty clusters are shown in gray. The

summary statistics of each cluster are shown in

Table 1, including the number of cases and controls,

the expected number of cases and controls, and the

log-likelihood. The p values of these twenty clusters

estimated from Monte Carlo simulation with ninety-

nine replications are all 0.01.
The most likely cluster is around Chittagong City,

the largest city in the study area and the major

coastal seaport city in Bangladesh. There are more

than 1 million households in this cluster, and 92.6

percent of them have access to electricity. This clus-

ter covers the most developed areas in Chittagong

Division with good infrastructure. The second cluster

expands from Brahmanbaria to Feni and includes

Comilla, which is the second largest city in the

study area. These regions are connected into this

cluster by relatively more developed areas near high-

ways. Many remaining clusters are in the western

part of the study area, and none of them are in the

less developed mountainous regions in the east.
Furthermore, the clustering results using a 500-m

search radius (Figure 2B) are compared with the

results using a 250-m search radius (Figure 2A) and

a 1,000-m search radius (Figure 2C). The top twenty

clusters are shown in these figures. High similarities

exist in these three clustering results—cluster regions

such as Chittagong City, Comilla, Feni, and

Figure 2. Clusters of households with electricity in Chittagong Division: (A) 250-m search radius; (B) 500-m search radius; (C): 1,000-

m search radius.
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Brahmanbaria are consistent on all three maps.

There are two major differences between the results.

First, the shapes of clusters are more smoothed and

have fewer holes as a result of a larger search radius.

Nearby clusters that are separated when the search

radius is small are sometimes combined into larger

clusters when the search radius is larger. The second

major difference is that more points are identified as

core points, and the sizes of clustering areas are

larger when the search window increases. A major

reason for the difference is the spatial distribution of

observations. Because urban areas with higher popu-

lation density tend to have higher electricity accessi-

bility, spatial clusters of households with electricity

are usually in areas with a higher point density.

With a larger search window radius, the influence of

the high-density areas will be extended farther into

low-density areas, and more observations near the

cluster boundaries will be identified as core points. If

the phenomena being studied are more likely to be

in less populous regions, we can expect that fewer

core points can be identified and clusters shrink

slightly when a larger search radius is used.

To validate the efficiency and effectiveness of

ESCIP, its result is compared with the spatial scan

statistics. Because the scale of the example problem

is beyond the capability of a single-desktop

environment, existing software toolkits, such as

SaTScan, cannot be used. Thus, in this article, an

efficient spatial scan statistic is implemented in C

using a cyberGIS approach (Wang and Armstrong

2009; Wang 2010; Wang, Liu, and Padmanabhan

2016). There is a trade-off between the complexity

of the scanning windows and the computational

intensity in spatial scan statistics. Although having

more flexible scanning windows can potentially

detect clusters better, it dramatically increases the

total number of scanning windows and consequently

the computing time. For instance, circular scanning

windows with the same center can only vary by size,

whereas elliptical ones need to cover any combin-

ation of eccentricities, angles, and sizes (Kulldorff

et al. 2006). Hence, clustering results and computing

times need to be evaluated simultaneously. The spa-

tial scan statistics implementation in this article uses

circular scanning windows that are centered at input

data points. Numbers of a regular interval (1 km,

2 km, … , 50 km) are used as scanning window radii,

which requires much fewer scanning windows than

using distances between circle centers to every other

point. Further, this implementation is parallelized

using OpenMP to improve performance and ensure

that it can be finished within a reasonable amount of

time. The result of the spatial scan statistics and a

Table 1. Summary statistics of the top twenty clusters of households with electricity

Cluster ID # Cases # Controls Exp. cases Exp. controls Log-likelihood

1 1,031,258 82,392 709,566 404,084 �3,609,583.084

2 861,968 126,496 629,803 358,661 �3,747,524.134

3 179,871 36,506 137,865 78,512 �3,888,668.637

4 77,889 22,079 63,695 36,273 �3,904,431.174

5 15,212 1,823 10,854 6,181 �3,906,297.989

6 35,402 9,032 28,311 16,123 �3,906,516.601

7 22,180 4,288 16,864 9,604 �3,906,583.941

8 23,917 5,168 18,532 10,553 �3,906,791.628

9 24,443 5,682 19,194 10,931 �3,907,012.823

10 16,931 4,363 13,568 7,726 �3,907,953.600

11 11,407 2,401 8,798 5,010 �3,908,014.941

12 9,503 2,294 7,517 4,280 �3,908,414.919

13 8,035 1,815 6,276 3,574 �3,908,457.387

14 2,908 211 1,987 1,132 �3,908,460.962

15 12,425 3,527 10,164 5,788 �3,908,463.395

16 3,304 394 2,356 1,342 �3,908,579.389

17 6,781 1,597 5,338 3,040 �3,908,618.758

18 6,517 1,648 5,202 2,963 �3,908,711.598

19 1,461 83 984 560 �3,908,794.533

20 2,664 421 1,966 1,119 �3,908,815.541
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comparison between the two methods can be found

in Figure 3. A comparison of the running times is

also shown in Table 2, where subsets (from 5 percent

to 100 percent) of the original data are used as the

input. The tests were conducted using a computing

node with two Intel Xeon E5-2660 processors with

ten cores (a total of twenty cores) and 256GB

of RAM.

As shown in Figure 3, there is a significant over-

lap between the results generated by the two meth-

ods. Most clusters of ESCIP fall into spatial scan

statistics’ clusters but cover much less area with

more accurate and flexible shapes. One problem of

spatial scan statistics is that all of the points within

the scan window are assigned to the same cluster. It

is often found that some parts in large clusters have

a lower than expected case intensity, even though

the overall likelihood of the cluster is high. It shows

that the spatial contiguity of a cluster could be vio-

lated in spatial scan statistics. For example, cluster 2

of spatial scan statistics contains both large areas

with low electricity availability to the west of

Figure 3. (A) Result of the spatial scan statistics. The dashed circles are the extents of clusters and households in different clusters are

colored differently. (B) Comparison between ESCIP clusters (in colors) and scan statistics clusters (extent in dashed circles). ESCIP ¼
expansion-based spatial clustering for inhomogeneous point process.

Table 2. Performance comparison between ESCIP and spatial scan statistics

Running time

Percentage of the original

data used Number of input points ESCIP Spatial scan

Parallel spatial scan

(OpenMP 20 cores)

5.00 299,216 2.714 s 4,570.785 s 349.11 s

10.00 598,432 4.545 s 18,650.286 s 1,356.64 s

20.00 1,196,863 12.415 s 72,811.625 s (>20 hr) 5,343.87 s

50.00 2,992,157 54.044 s N/A 33,254.154 s

100.00 5,984,314 227.861 s (<4min) N/A 136,184.257 s (>37 hr)

Note: ESCIP ¼ expansion-based spatial clustering for inhomogeneous point process.

An Expansion-Based Spatial Clustering Method 11



Comilla and areas outside of the study areas without

data. This problem can be resolved through our

method as each small part of a final cluster must

pass a local statistical test. With the expansion-based

approach only connecting those areas that have

passed the test, every part of a detected cluster is sig-

nificant and contiguous. As a result, the low-inten-

sity parts can be eliminated effectively. Another

problem of spatial scan statistics is that the shape of

the scanning window is fixed, which limits the shape

of output clusters. Some important parts outside the

scan window might be excluded because of the lim-

ited window shapes. For instance, cluster 1 of

ESCIP represents a connected region with high elec-

tricity availability near Chittagong City. Spatial scan

statistics detect it as multiple clusters (clusters 1, 4,

6, 12, 13, and 17), however, due to the limitation of

the circular shape. Moreover, the maximum of log-

likelihood values in our approach (�3,609,583.084)

is larger than that in the spatial scan statistics

approach (�3,628,583.79), although our method

does not expand clusters to maximize likelihood val-

ues. It demonstrated that even using the criteria of

scan statistics, ESCIP detects clusters in a more

effective way than the scan statistics approach.
ESCIP is also much more computationally effi-

cient than spatial scan statistics. Table 2 shows that

ESCIP is thousands of times faster than spatial scan

statistics. When more than half of the original data

set is used, the spatial scan statistics cannot finish

within two days (the running time is marked as N/A

in Table 2). A parallel spatial scan statistic with

twenty cores (forty threads) barely finishes the

experiments in two days, and ESCIP is still hundreds

of times faster. Monte Carlo simulation was not con-

ducted for spatial scan statistics because it was too

slow for spatial scan statistics to finish the hundreds

of simulations.

The result from FleXScan, a well-known irregu-

larly shaped spatial scan statistic, by Tango and

Takahashi (2005), is also shown in Figure 4 for com-

parison. As mentioned in the related work, existing

Figure 4. (A) Clusters detected by FleXScan; (B) Comparison between ESCIP and FleXScan. ESCIP ¼ expansion-based spatial

clustering for inhomogeneous point process.
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approaches to irregularly shaped spatial scan statistics

can only work with a limited number of aggregated

polygons. Thus, the individual-level households are

aggregated into case and control counts at the upa-
zila (subdistrict) level before using FleXScan.

FlexScan identified most upazilas that intersect with

clusters detected by ESCIP, but it cannot accurately

depict the fine spatial details of these clusters due to

aggregation. By aggregating data into finer spatial

units, FleXScan might potentially detect more flex-

ibly shaped clusters, but it is difficult because of the

computational complexity. In our experiment,

FlexScan could not finish within a week if aggrega-

tion scales finer than upazila were used.

Clustering Single-Person Households

The second experiment detects spatial clusters of

single-person households in Chittagong Division,

Bangladesh. This experiment provides an example of

how to use a Poisson model to detect clusters with a

spatially varying population density. There are

269,871 single-person households in the data set,

which is roughly 4.5 percent of all households. The

experiment was also conducted using a search radius

of 500m and a significance level of 0.01.
Figure 5 shows the top twenty clusters of single-

person households. Table 3 shows the number of

cases, the expected number of cases, and the log-

likelihood ratio (Equation 2) of each cluster. The p
values of these twenty clusters estimated from Monte

Carlo simulation with ninety-nine replications are

all 0.01. The two most noticeable clusters are in the

two largest urban areas (Chittagong and Comilla) in

this region. Many other smaller clusters are either in

or around towns such as Feni, Chandpur,

Brahmanbaria, and Bandarban. None of the clusters

expand to large areas connecting different regions.

This pattern is different from that of households

with electricity, which has many large interregion

clusters with hundreds of thousands of households.

Households usually have electricity if they are in

regions with electrical infrastructure. As a result,

households with electricity are often distributed

around big cities and wealthy areas and have a

strong clustering pattern. It is uncommon for a

household to not have electricity if all of its neigh-

bors have electricity. Single-person households usu-

ally do not have such a strong clustering pattern

Figure 5. Clusters of single-person households in

Chittagong Division.

Table 3. Summary statistics of the top twenty clusters of
single-person households

Cluster ID # Cases # Exp. cases Log-likelihood ratio

1 65,207 27,656.7 21,451.689

2 7,300 4,184.8 964.994

3 1,315 718.7 198.814

4 872 464.1 142.342

5 284 102.2 108.542

6 750 431.8 96.072

7 392 201.3 70.612

8 499 309.9 48.667

9 215 104.2 44.934

10 146 60.2 43.491

11 172 83.4 35.934

12 355 219.5 35.188

13 70 24.4 28.099

14 364 250.6 22.524

15 84 36.7 22.307

16 49 16.2 21.365

17 39 11.8 19.493

18 17 2.3 19.306

19 59 24.4 17.501

20 169 104.2 16.951
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because it is more common for a single-person house-

hold to be surrounded by multiperson households.

Evaluation Based on a Simulated Data Set with
Known Clusters

To further evaluate the performance of ESCIP,

another data set with known spatial clusters is ran-

domly generated. This data set contains 1,000,000

individual points that are unevenly distributed in a

square region with side length 100—point density

increases gradually from the bottom-left corner to

the top-right corner. Five clusters are created with

the shapes of the letters E, S, C, I, and P, respect-

ively. The density of points and the shapes of the

clusters are shown in Figure 6. Points within any

cluster have a probability of 0.5 to be a case; points

outside have a probability of 0.1.
Figure 7 shows the clustering result of the three

methods on this simulated data set. The result of

ESCIP (Figure 7A) was generated using a search

window of radius 1 and a significance level of 0.01.

Figure 6. Simulated point density and the shapes of five clusters. ESCIP ¼ expansion-based spatial clustering for inhomogeneous

point process.

Figure 7. Clustering results of the simulated clusters: (A) result of ESCIP; (B) result of spatial scan statistic; (C) result of FleXScan

using fishnet cells. ESCIP ¼ expansion-based spatial clustering for inhomogeneous point process.
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ESCIP found five clusters in total, each of which

corresponds to one letter. All of these five clusters

have a p value of 0.01 based on Monte Carlo simula-

tion with ninety-nine replications. For spatial scan

statistics, circular scanning windows centered at data

points are used with radii 0.5, 1.0, 1.5, … , 25.0.

Figure 7B shows the clusters detected by the spatial

scan statistic. As the cluster shape of the spatial

scan statistic is limited by circular windows, it fails

to capture the shape of the true clusters. Each clus-

ter, except cluster C, is separated into several large

circular clusters along with many small ones that are

hardly visible on the map. For FleXScan, individual

input points are aggregated into the case and popula-

tion counts using a 5� 5 fishnet grid, which results

in 400 square regions. Twenty-two significant clusters

are found using FleXScan, as shown in Figure 7C.

Although these clusters depict the rough shapes of

the five simulated clusters, their shapes are limited by

the fishnet grids and thus the results cannot accu-

rately reflect the extents of the five letters. In add-

ition, each of the five simulated clusters is partitioned

into multiple ones in FleXScan’s result. Finally, it is

not realistic to further improve the spatial granularity

when using FleXScan, as the computation cannot fin-

ish within weeks with a finer fishnet grid.
Table 4 compares the clustering performance of

ESCIP, spatial scan statistic, and FleXScan. The TP,

FP, TN, and FN in Table 4 stand for true positive,

false positive, true negative, and false negative,

respectively. The top ninety-nine clusters are used

for spatial scan statistics result because the overall

accuracy is maximized with ninety-nine clusters.

ESCIP achieves the best accuracy, precision, and

recall among all methods. The errors mostly occur

along the edge of the simulated cluster. The result of

spatial scan statistics includes a large number of non-

cluster points and thus has a higher false positive rate

than other methods. As a result, the precision of spa-

tial scan statistics is low. Compared with spatial scan

statistics, FleXScan’s result has better shapes and there-

fore higher precision, yet is still inferior to ESCIP.

Discussion and Conclusion

This article describes ESCIP, an expansion-based

spatial clustering method for efficiently detecting spa-

tial clusters of flexible shapes within heterogeneous

point processes. ESCIP is established on two baseline

process models: Poisson and Bernoulli. A case study

with two experiments was conducted to evaluate

ESCIP using large individual-level geospatial data.

Spatial clusters of single-person households and

households with electricity were detected from simu-

lated geolocated households in Chittagong Division,

Bangladesh. Experimental results showed that ESCIP

can efficiently detect clusters of flexible shapes in

point processes with known heterogeneous intensity.

Compared to spatial scan statistics, ESCIP has

three primary advantages. First, ESCIP can detect

clusters with more accurate and flexible shapes.

Second, the computational performance of ESCIP is

high. Third, each cluster detected by ESCIP is con-

tiguous and every part of it is statistically significant.

The experimental results also showed that ESCIP

can efficiently detect spatial patterns from large geo-

spatial data sets. Spatial clustering results can be gen-

erated within several minutes given a data set with

nearly 6 million individual households, each having a

different location. With such high efficiency, this ar-

ticle demonstrated that it is possible to directly analyze

large-scale geographic phenomena using individual-

level records, without having to aggregate them into

predefined areal units. The increasing availability of

large spatial data sets provides tremendous opportuni-

ties for the ESCIP approach. For instance, ESCIP may

potentially be applied to detect abnormal high con-

centrations of massive geolocated social media posts

for event detections (Gao, Wang, et al. 2018).

ESCIP can be further improved in multiple

aspects. One aspect is to better assess the influence of

parameters, specifically significance level and search

radius, and to provide methods or guidelines for opti-

mal parameter choices. Systematic evaluation needs

to be conducted based on application-specific charac-

teristics for developing generalizable methods and

Table 4. Clustering performance of three methods using a simulated data set with known clusters

# Clusters TP (%) FP (%) TN (%) FN (%) Accuracy (%) Precision (%) Recall (%)

ESCIP 5 21.24 1.89 76.86 0.01 98.10 91.83 99.96

Spatial scan statistics 99 20.38 14.23 64.52 0.87 84.90 58.88 95.89

FleXScan (fishnet) 22 19.71 9.43 69.32 1.54 89.02 67.63 92.74

Notes: TP ¼ true positive; FP ¼ false positive; TN ¼ true negative; FN ¼ false negative.
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desirable guidelines. Another future research direction

is to expand from spatial to spatiotemporal clustering

analysis. Finding clusters with flexible spatiotemporal

shapes requires innovative approaches to expanding

clusters in both space and time, which is challenging

and thus requires exciting research. Finally, it is

important to incorporate more spatial or spatiotempo-

ral point process models beyond Poisson and Bernoulli

for detecting clusters with different null hypotheses.

New models such as space–time permutation (Kulldorff

et al. 2005) might be considered to evaluate whether

and how spatial patterns change over time.
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