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ABSTRACT

This paper surveys the rapid development of the Internet of Things, the massive data streams
that are only now beginning to be generated from it, and the resulting opportunities and
challenges that these data streams bring to geographic information analysis. These challenges
arise because streaming data volumes cannot be subjected to analysis using the standard
repertoire of methods that have been designed to analyze static geospatial datasets. New
approaches are needed, not to supplant, but to supplement, these existing tools. A focus is
placed on the concept of data velocity (fast data) and its effects on sampling and inference.
Innovative data ingestion strategies based on principles related to reservoir sampling and
sketching are described. Dynamic temporal data flows present significant challenges to load
balancing in distributed (e.g. cloud) parallel environments, even at exascale levels of perfor-
mance. Further advances in the exploitation of data locality based on geographical concepts, as
well as advanced processing methods based on edge and approximate computing, require
further elucidation. Concepts are illustrated using a database compiled from a distributed sensor
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network of mobile radioactivity detectors.

Introduction

We are now in the midst of a wave of transformative
change in the rate of production of geospatial data. The
purpose of this paper is describe these advances and to
address the challenges that are encountered when geos-
patial methods are applied to these emerging data
sources. A particular focus is placed on rapidly stream-
ing geospatial information generated by the Internet of
Things and its effect on geospatial sampling strategies
and analysis.

A quick look backward will help to illustrate the
magnitude of the changes that have occurred. The
“First Symposium on Geographical Information
Systems” took place in Ottawa, Ontario in late
September, 1970. The Symposium, sponsored by the
International Geographical Union Commission on
Geographical Data Sensing and Processing, drew 49
participants. The Summary of Proceedings from that
gathering comments on the quantity of “pieces” of data
(defined as recognizable elements of real world data)
that are associated with each identifier, ranging from
the first category which consists of one (a bit plane) to
the sixth and largest category (Tomlinson, 1970, p. 10,
emphasis added) that “contains a very large number of

pieces of data associated with each location identifier.”
In this case, the very large number means that there are
more than 5000 attributes (presumably an integer, real
or character string) per identifier. It is telling that no
system of that era was able to handle such miniscule,
static data volumes.

Clearly, the science and technology of geographic
information handling have advanced in ways that
were effectively unimaginable in 1970. And yet we
have now arrived at the cusp of a new paradigm of
data acquisition and analysis (NRC, 2013). This para-
digm is characterized by the collection and transmis-
sion of massive, streaming data volumes, which gives
rise to the need to develop highly efficient analysis
methods. One term that is applied to these massive
data quantities is “big data.” The National Institute of
Science and Technology (NIST, 2015, p. 4) parentheti-
cally defines some of the terms that are often used:

“Big Data refers to the inability of traditional data
architectures to efficiently handle the new datasets.
Characteristics of Big Data that force new architectures
are volume (i.e., the size of the dataset) and variety
(i.e., data from multiple repositories, domains, or types),
and the data in motion characteristics of velocity (i.e.,
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rate of flow) and variability (i.e., the change in other
characteristics).”

Volume and variety have been a concern of geogra-
phers and geographic information science for decades.
Berry (1964), for example, defined a geographic matrix
that would accommodate an enormous variety of data
types over a wide range of spatial and temporal scales.
Haggett and Chorley (1967, p. 30) address the volume
issue directly when, in discussing Berry’s paper, they
refer to “the explosion of the data matrix” and many
other authors have remarked on the rapid pace of data
developments (for roughly decadal benchmarks, see
Armstrong, 2000; Beaumont, 1989; Calkins, 1990;
Miller, 2010). During the past few years, research spe-
cifically addressing the concept of geospatial big data
has emerged (e.g., Li et al., 2016; Shekhar, Evans,
Gunturi, Yang, & Cugler, 2014; Wiener et al., 2016;
Yang, Yu, Jiang, & Li, 2017). It is only recently, how-
ever, that velocity has emerged as a dimension of
interest because most geographic information in the
past could best be characterized as “data at rest.” For
example, the decennial US Census takes a snapshot of
socio-economic conditions every ten years. Snapshots,
of course, can be animated much as a flip-book consists
of a sequence of static images. But big data streams far
exceed that which has been experienced heretofore
(see, e.g., Shekhar et al., 2014).

Several long-standing research areas overlap par-
tially with the analysis of streaming geospatial data,
yet each is somehow deficient in the current context.
Snapshots of data at rest can be situated in the research
domain of temporal GIS. Early work that sketched out
initial concepts (Armstrong, 1988; Langran, 1988;
Langran & Chrisman, 1988) has given way to subse-
quent research that elucidated further challenges and
provided suggestions for substantive improvements
(Langran, 1992; Peuquet, 1994; Peuquet & Duan,
1995; Wachowicz, 1999; Worboys, 1994; Yuan &
Stewart, 2007). Other researchers have studied humans
as they move through time and space. Hagerstrand
(1970) pioneered this “time geography” approach,
which is summarized by Thrift (1977). Several of the
main themes of Higerstrand’s work are placed in a
modern GIS research context and have been extended
by, for example, Miller (1991, 2005), Kwan (1998), and
Shaw (2006). While these analyses are significant, they
also tended to be retrospective, rather than real-time in
construction.

Additional areas of geographic research impinge on
the analysis of big data streams. Geographic data
mining has traditionally been focused on the extraction
of information and knowledge from large static

databases and data warehouses, but as noted by
Miller and Han (2009), this pattern has changed as
demonstrated in papers by, for example, Yuan (2009),
Cao, Mamoulis, and Cheung (2009), and Laube and
Duckham (2009). This change is enabled by the rapid
evolution in the capabilities of mobile devices and
wireless sensors.

In short, geospatial research has long been con-
cerned about the general concept of big data (and its
temporal aspects), even though its definition continues
to evolve. However, the technological milieu has shifted
the data acquisition ground toward decentralized
devices that are streaming massive amounts of data.
Current geospatial analysis methods, which have their
roots in the previous century, are unable to cope with
this emerging flood. New approaches are required to
help data scientists gain insight from these increasingly
prominent sources of information.

The emerging information infrastructure of the
Internet of Things

The widespread availability of mobile computing and
inexpensive sensors with radios has created a new data
ecosystem, the Internet of Things (IoT), which refers to
the incorporation of digital components into a vast
array of “things,” both large and small. This change
has now placed data velocity in the spotlight: real-time
geographic information that is streamed from sensors
has brought us into an era of fast data. Consider an
example reported by Jarr (2015, p. 20) that consists of
53 million electric meters streaming usage information
several times each second in order to monitor changes
in demand and provide feedback to “smart” systems
about variable charges that can, in turn, have an envir-
onmental impact by holding down demand peaks.

In addition to being in widespread use, the IoT has
become institutionalized in different contexts, not the
least of which is the US Senate in the form of Senate
Resolution 110 of the 1** Session of the 114th Congress
(http://thomas.loc.gov/cgi-bin/query/z?c114:S.RES.110.
ATS:/).As further evidence of its broad acceptance, the
IoT now plays an endorsed role in the operations of a
certain large, well-known software firm (headquartered
in the Pacific Northwest) which has built IoT support
into the latest version of its operating system, where it
is referred to as “IoT Core.” This software is designed
specifically to run on lightweight devices with a mini-
mum overhead footprint.

This increase in the deployment of devices and
sensors has been continuously fueled by rapid, steady
declines in the cost of electronic components. These
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decreases have taken place in accordance with a “law”
(Denning & Lewis, 2017; Moore, 1965) as related to the
density of transistors on an integrated circuit, and are
paralleled by improvements in storage capacity and
network speed, among other factors. WiFi speeds now
often enter into the 1 Gbs range, meaning that sensors
are able to stream high resolution data at very high
sampling rates. While WiFi and cellular coverage is
clearly not universally available, problems with com-
munication coverage gaps are being filled by large
satellite constellations. For example, Eutelsat’s geosta-
tionary satellite constellation provides Ka-band broad-
band services to European and North American
markets (de Selding, 2015) and has recently expanded
coverage into14 sub-Saharan nations. Other companies
are either coming online or are planning services
(OneWeb, LeoSat, SpaceX) using large constellations
(100s) of low-earth-orbit satellites (Henry, 2018).
Capabilities provided by such constellations support
global sensor network communication needs. While
these trends may smack of Whigish technological
determinism, these changes are undeniable and
persistent.

Though advances in communication and sensing are
its key enablers, the IoT is about much more than
connectivity. Porter and Heppelmann (2014, p. 66)
assert that we are on the brink of a third wave of
competition and innovation that is driven by informa-
tion technologies. The first, was the transformation
from analog to digital. The second transformation
took place as a consequence of Internet connectivity
which supported integration of business functions and
supply chains. In each of these two cases, however,
objects themselves were untransformed. The IoT
changes that with embedded sensors, computers, and
network links fundamentally changing the nature of
products and what they can do. The following sections
briefly outline changes occurring in three areas with
geographical implications: vehicle telematics, distribu-
ted sensor networks, and advances in remote sensing.

Vehicle telematics

New automobiles have a multitude of data acquisition
systems that feed real-time data processing capabilities.
Sensors monitor vehicle dynamics and include various
types of streaming remote sensing systems that operate
in visible (cameras and LiDAR), infrared (night vision),
and radar (vehicle sensing) frequencies. This informa-
tion is transported via a VANET (vehicular ad hoc
network) (Lochert, Scheuermann, & Mauve, 2010;
Wang, 2018). Functions typically supported by tele-
matics systems include routing, enhanced visualization,
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lane departure and automated parking. Systems that
are under development enable autonomous vehicles
to communicate with other vehicles (and the transpor-
tation infrastructure) in order to reduce congestion and
accident likelihood; these functions also depend on the
acquisition and real-time processing of massive
amounts of data (see, e.g., Wang & Wets, 2013). At
present there is a wide difference of opinion about the
practical feasibility of autonomous vehicles operation
(Calo, 2018; Eckhoff & Sommer, 2014; GAO
(Government Accountability Office), 2013;
Kirkpatrick, 2015).

Sensor networks

Applications of sensor networks are growing at a very
rapid pace. Paralleling other electronic devices, GNSS
(global navigation satellite system) receivers have
decreased rapidly in size, cost, and power consump-
tion. This technology is critical for monitoring a wide
variety of sensor inputs, and a variety of small form-
factor and ultra-low-power products provide high-
accuracy locations and often include barometer, hygro-
meter, and compass options (Malkos, del Castillo and
Mole, 2104). Many sensors are locationally fixed and
comprise an essential element of “smart city” applica-
tions. There is considerable interest by large technology
companies, including AT&T and Microsoft, in this
arena. In some cases, urban sensors monitor particu-
lates (Rajasegarar et al., 2014) and temperatures
(Mohring, Myers, Atkinson, VanDerWal, & van der
Valk, 2015; Mone, 2015, p. 20) in situ. In other cases,
fixed sensors are positioned in nonurban environments
to achieve a sampling objective. One example is the
Jefferson Project at Lake George, NY that monitors,
literally, streaming watershed characteristics (Romero,
2015). In yet other cases, the sensors are mobile, loca-
tionally aware, and transported by vehicles or worn by
people (Gupta, Holloway, Heravi, & Hailes, 2015; Ilyas,
Alwakeel, Alwakeel, & Aggoune, 2014). Though most
sensor networks are concerned primarily with moni-
toring, others close the loop with feedback control over
some system and perform actions on themselves or the
environment (Nayak & Stojmenovic, 2010; Serpanos,
2018).

Environmental remote sensing

The resolution of remote sensing technology continues
to increase across spatial, spectral, radiometric, and
temporal dimensions. Two trends are important:
LiDAR and new satellite constellations that provide
streaming video data.
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LiDAR information is now widely available for dis-
play and analysis. Current LiDAR systems collect mas-
sive amounts of data in the form of point clouds, with
some systems capable of generating > 200,000 3D
coordinates each second. As a consequence of this
data volume, researchers are turning to the use of
high performance computers to extract information
from the generated point clouds (Hegeman,
Sardeshmukh, Sugumaran, & Armstrong, 2014).
Satellite remote sensing is also experiencing a major
transformation. Monolithic systems, such as Landsat,
are being supplemented by new form factors such as
cubesats with a 10 x 10 x 10 cm nominal unit size (1U)
representing one liter and an approximate weight of
one kilogram. These small-form-factor satellites are
being placed into orbit by several private-sector entities
though ownership of these constellations is in a state of
flux. For example, Skybox became Terra Bella, which
was acquired by Google in 2014, and was later sold to
Planet Labs, which had its own constellation of SkySat
satellites. The original Skybox configuration uses a
mini-fridge satellite form factor (weight is approxi-
mately 100 kg) to acquire submeter imagery that can
be streamed as video (Butler, 2014); each one generates
more than a terabyte of data each day in the form of
sub-meter images and 1.1 m resolution video streaming
at a rate of 30 frames each second. Planet now has
more than 175 satellites providing medium and high
resolution images (SkySat has a 0.8 m resolution with
subweekly revisit capabilities). It is not clear whether
these ventures are sustainable given current market
demand for imagery. In addition, there are important
questions about the density of the proposed constella-
tions and the possibility of collision cascades that could
turn orbits into junkyards. Foust (2015) reports that
some disparage these orbiting platforms as “debris sats”
despite international and US government guidelines
that require satellites to be deorbited after 25 years
(Honda, Perkins, & Sun, 2013).

In sum, the increasingly inexpensive devices with
shrinking form factors that comprise the IoT have a
variety of sensor types, communicate wirelessly, and
are locatable. This evolving information ecosystem is
generating massive amounts of streamed sensor data
that has important implications for the way that geos-
patial data are managed and analyzed.

The effect of data volume and velocity on research
paradigms

Connected streaming devices are contributing to what
is now called the fourth paradigm of scientific research
(Hey, Tansley, & Tolle, 2009). The four paradigms,

however, are not crisply demarcated, and research
activities often flow among them. Since the first three
paradigms are already well-defined in the geographical
literature, in this section, a particular focus is placed on
the fourth paradigm.

Paradigm one: observational and experimental

Scientific perspectives evolved independently in multi-
ple places, but advanced most coherently in Greece
(Weinberg, 2015). Early scientific practices were based
on empirical observations of natural phenomena. Later,
controlled experiments based on the scientific method
were designed to evaluate hypotheses and show how
experimental inputs affected outputs. This approach
remains central to current era scientific advances.

Paradigm two: theory and models

Theoretical science has its roots in the work of Newton
in the 1600s, though some of Newton’s work was based
on the precise measurements (Paradigm One) of plane-
tary motion made by Tycho Brahe. Experiments are
usually designed to confirm or falsify theoretical models
and there is often a feedback loop between theory and
observational practice. Theoretical models have played
an important role in geographic investigations for at least
half a century (Chorley & Haggett, 1967). Models con-
sistently, but imperfectly, explain the world around us,
which gave rise to a quote attributed to the statistician
George Box: “All models are wrong, but some are useful”
(c.f., Box, 1976, p. 792). He was simply observing that
models are simplified abstractions and that any such
abstraction will contain errors (Lowry, 1968).

Paradigm three: simulation and computation

Computation, a key enabler of scientific progress, now
complements empiricism and theory. An important
focus of computational methods in geography has
been placed on the development of simulation models,
which, in geography were enabled by the increased
availability of general purpose digital computers in
the late 1960s (e.g. Higerstrand, 1967; Marble, 2015;
Marble & Anderson, 1972). Simulation and other com-
putational approaches to science cohered into what is
now called computational science with a direct exten-
sion to geographical problems that is sometimes
referred to as computational geography (Armstrong,
2000; Openshaw, 1998; Torrens, 2010).



Paradigm four: data-intensive discovery

The Moore’s Law-like advances in data collection
noted earlier have led to the creation of data
streams that exceed our ability to validate, analyze,
visualize, and curate them. Indeed much of the data
generated by current systems is not intended for
human evaluation. Rather, it is data of, by and for
machines, and its volume is reportedly more than
doubling every eighteen months (NIST, 2015, p. 4).
Given the increased volume and pace of data acqui-
sition, a new interdisciplinary data science is emer-
ging. In geography, this view was anticipated more
than two decades ago by Openshaw (1995) who
advanced an argument for data-driven analysis, a
perspective that has been significantly reinforced
since then. Data-driven discovery permits a differ-
ent way of envisioning the relationship between
theory and observation, effectively turning it on its
head, for if we ask what pattern of observations
yields a desired effect, we can discover new relation-
ships that can then lead to theoretical insight. It is
important, however, not to forget about the direc-
tional effects of correlation and causation, and also
to remain mindful that a Popperian view of falsifi-
cation can play an important role in strengthening
or demolishing discovered relations. This is where
predictive power becomes important, for if a rela-
tion can be shown to be a robust predictor, where
robustness refers to persistence, it gains credence
and becomes worthy of further investigation and
theorizing (Dhar, 2013).

Dhar (2013, p. 70) goes on to describe the need for
fluidity in model creation during data-driven explora-
tion, and suggests that, particularly for nonstationary
problems, models are but rough predictive approxima-
tions that can be periodically adjusted to compensate
for changes observed in data streams. This perspective
is most relevant in application domains that are char-
acterized less by highly deterministic physical pro-
cesses, and more by those that must incorporate
behavioral variability, such as much of human geogra-
phy. A failure to make appropriate adjustments in such
cases will lead to errors that tend to come from three
main sources:

(1) Misspecification. A simple example is fitting a
linear model to a nonlinear process, which
would introduce bias.

(2) Sampling. Sample size affects parameter estima-
tion; small samples may be biased.
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(3) Randomness. Random errors are prominent in
most models of human behavior.

Large volumes of data and abundant computational
power can reduce the effects of the first two types of
errors. Small samples become a thing of the past and
model fitting can be done in a large number of ways to
improve predictive performance. With large numbers
of observations, the effects of random errors also may
be reduced considerably. Indeed, Dhar (2013, p. 72)
asserts that social scientists have never had a better
ability to observe human behaviors and that massive
quantities of data “makes induction not only feasible
but productive.” The view is particularly promising
because there is a distinct adaptive approach to analysis
that undergirds it. This adaptive computation para-
digm is designed explicitly to work in novel, open-
ended, dynamic environments (Forrest & Mitchell,
2016).

Induction can be usefully applied to fast data
streams to gain insights into processes. While different
definitions can be found, Holland, Holyoak, Nisbett,
and Thagard (1986, p. 1) suggest that induction
encompasses all inferential processes that expand
knowledge in the face of uncertainty. During an induc-
tive analysis of a data stream, evidence in the form of
new observations is accumulated in order to arrive at a
conclusion. Inductive methodologies may best be
thought of as truth estimation techniques designed to
yield the best possible answer given the information
available. The process of inductive pattern evaluation
can be made operational using a classifier system
(Holland et al., 1986) to process the data stream.
Classifiers, often implemented using bit-map pattern
matching, can be applied to temporal and spatial series
(Bennett & Armstrong, 1989, 1996) and since they are
relatively lightweight processes, and can operate in
parallel, they hold promise in data stream analysis.
This approach is consistent with the use of inductive
tools to classify geospatial information in other con-
texts as argued by Gahegan (2000a, 2000b, 2003)).

Clearly, however, inductive inference is not fool-
proof; as we move from the specific to the general it
is possible to draw incorrect conclusions. An illustra-
tive syllogism often involves (birds, feathers, flight, and
penguins). It then follows that induction is context
dependent and must have some feedback mechanism
in place so that current knowledge can be corrected or
enhanced. In addition, the correctness or robustness of
an induced relation can be tested by evaluating predic-
tions made about future states of the system under
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investigation. Predictions are important pursuits in
scientific inquiry and may be made on the basis of
formal theories arrived at through deduction, or
based on inductive processes. If our theories and mod-
els are correct, we should be able to make predictions
about future system states. If the prediction proves to
be incorrect, that will require a revision to the theory
or model that gave rise to the prediction.

With the ability to specify inductive models, it has
become possible to generate interesting questions, ones
that a human might not have considered. These ques-
tions can then provide the basis for models that can be
stress-tested by means of their ability to make predic-
tions about new information gleaned from a data
stream.

Implications of data velocity for geographic
information analysis

When current methods of spatial analysis are used to
analyze static data sources, and when such data con-
form to expectations about distributional characteris-
tics, traditional frequentist methods may be applied. In
other cases, Bayesian methods are sometimes adopted.

FaST Analytics

Q& Fast Data

Such approaches, however, suffer from very high levels
of computational complexity (e.g. Yan, Cowles, Wang,
& Armstrong, 2007). New methods of spatial analysis
are required to preprocess and analyze large quantities
of fast data. Such data have unknown stationarity and
error signatures, and as a result spatial data stream
methods must be able to accommodate variability in
streamed inputs. This poses enormous problems to
analysis.

Figure 1 shows how data streams are ingested and
immediately subjected to fast space-time analytics
(FaST) that require real-time (or near-real-time)
response. Such computations are performed during
the actual time that an external process occurs, in
order that the computation results can be used to
control, monitor, or respond in a timely manner to
the external process (IEEE, 1990, p. 61). This requires
high performance computing as well as new analytical
methods that have lightweight computational complex-
ity. The observations are then exported to a big data
store where traditional methods of analysis can be
applied. An examination of a simplified data value
chain can help to develop this conceptualization a bit
more (Figure 2).

Big Data
(e.g. Hadoop)

GIS

Spatial Analysis
Visualization

Conventional
Approaches

Figure 1. Fast space-time analytics (FaST) operate on fast data immediately upon ingestion and pass them to a data repository for

conventional analyses (modified from Jarr, 2015).

Generats s (Stre o (R (3

Figure 2. A simple data value chain.



A conventional chain would be formed, for example,
when observations about households are submitted as a
part of the decennial census. In such cases, observa-
tions are sent to a centralized store, where the results
are aggregated and analyzed, and then sent back to
users who can use the processed information. It is
here where data currency becomes important. A reim-
agined data value chain differentiates each data element
according to its “age” and also whether it is a singleton
value or has been aggregated (Figure 3). Though fresh
data has its greatest value when it is an individual item,
its value as an individual item declines over time as it is
replaced by new observations in the data stream.
However, observations regain value and strength as
they age and are then aggregated with other values to
yield additional synoptic insights.

An individual geospatial observation normally
will not, by itself, wield much analytical power. In
the business world, however, a single transaction
(e.g. a stock “sell” order) or data item (from a
click-stream) can be important, and as a conse-
quence, there is often a high premium placed on
real-time response. In contrast, most spatial analysis
methods have not pursued a goal of real-time
response (cf. Xiong & Marble, 1996). In fact, some
GIS-based analyses and spatial modeling applica-
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reducing their effectiveness in decision support con-
texts, and motivating research conducted to
improve the performance of compute-intensive
methods of geospatial analysis.

Computing services are now providing low level
tools that can be used to construct application-specific
solutions to geospatial data streaming problems.
Google, for example, has released its Cloud Data Flow
service for streaming data on the Google Compute
Engine. In a similar vein, Apache Kafka has been
designed as a platform that enables users to handle
real-time streams (Narkhede, Shapira, & Palino,
2017). These general purpose tools can be used to
provide front-end (ingestion) support for the develop-
ment of geospatial applications.

Streaming analytical task types

With streaming data comes new perspectives on what
is possible to contemplate with spatial analytical tools.
The four main types of capabilities supported by the
IoT in business and industrial applications (Porter &
Heppelmann, 2014) have parallels in spatial analysis:

Monitoring
These are the simplest and least costly applications,

tions may require hours to produce results, thus  with sensors measuring and reporting on
A
Value of Individual Aggregate
o Data Item Data Value
=2
©
>
©
-
©
()
Age of Data
Real-time Record GIS Exploratory
Analytics Access Analysis Analytics
Milliseconds Hundredths Seconds Minutes Hours

of seconds

* Aggregate Retrieve Buffer

¢ Count attribute

Figure 3. Changes in the form of a data value chain that incorporates fast data streams (modified from Jarr, 2015).
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environmental conditions and system performance.
The simplest problem is one of detection. However,
streams may contain nonzero values below detection
limits, and must be carefully evaluated (Helsel, 2005).
In other cases, a measured value is reported. For exam-
ple, a sensor might report on the temperature (and
location) of a refrigerated cargo unit. Methods as sim-
ple as setting a simple threshold value (e.g. 0°C), would
involve one logical operation for each data stream
element.

Control

Information obtained by sensors may also be used to
effectuate change in some characteristic of a system. For
example, a detector designed to monitor toxic aerosols
could trigger an alarm long before a human would sense
a problem. In the geographical realm, a “geofence”
defines a zone that will trigger an action if a mobile
device enters (or leaves) it. Other more complex methods
continuously evaluate streams to determine when a shift
in stream values has occurred in the temporal or spatial
domains and form a feedback loop to change inputs in a
way analogous to that of a thermostat. Another
approach, derived from the field of process control deter-
mines whether a process is in control or out of control
(Jarpe, 2002; Rogerson, 2009) and triggers an alarm
when an out of control state is reached (e.g. a shift in
the mean). This is an area of active research in health
(syndromic surveillance) and crime analysis (e.g. Eck,
Chainey, Cameron, Leitner, & Wilson, 2005; Mandl
et al., 2004; Struchen, Vial, & Andersson, 2017).

Optimization

Geographical optimization problems are computation-
ally complex and heuristic methods are sometimes
used to address such problems and to support solution
space exploration (e.g. Bennett, Xiao, & Armstrong,
2004). The feedback loop that exists between monitor-
ing and control systems in the previous section can be
changed to minimize or maximize one or more objec-
tives, such as reduced cost. And smart city applications
monitor the human and physical environment in an
attempt to optimize urban systems (see, e.g. Deakin,
2013; Vilajosana et al., 2013). Optimization of data
streams is a tricky business, however, since any optimal
solution would likely get pushed into a suboptimal
state with the arrival of new observations.

Autonomy. At this highest level, a system performs
all three lower-level functions and interacts with other
aspects of the environment to operate independently
and either halts or provides notification to a responsi-
ble human if the system moves outside some prede-
fined performance envelope.

In each of these cases, the age of each data element
is important, as is system response time in the face of
massive data volumes. These characteristics raise sig-
nificant challenges that remain to be addressed in the
design and implementation of geospatial methods that
can be used to analyze streaming data.

Approaches to improvement of geospatial
analytical practices

The following sections are meant to provide an over-
view of selected areas that may be useful for further
exploration as fast data applications are developed. The
topics fall into two general categories that are meant to
be illustrative rather than exhaustive: (1) data-reduc-
tion strategies that do not introduce bias and (2) algo-
rithmic approaches that are intended to reduce the
amount of computation needed to produce a useful
result.

Data-reduction strategies

Reservoir sampling

Evaluation and analysis of stream data is a one-pass
operation that by definition cannot be global, since
the full extent of the stream is unknowable. As a
consequence, normal sampling procedures cannot be
used. In some cases, load shedding, discarding obser-
vations randomly or by design, can be used to reduce
processing requirements, though this can introduce
bias. Reservoir sampling (Vitter, 1985) may be
applied to data streams to reduce the magnitude of
load shedding bias. In this approach, the first n
stream elements comprise the original reservoir,
though some implementations sample randomly to
get an initial pool. As subsequent elements are
streamed each becomes a candidate for inclusion in
the reservoir based on an evaluation of its location
(temporal index) in the stream. Vitter’s approach cuts
the evaluation phase by calculating how many
records can be skipped before another should be
evaluated for inclusion in the reservoir. A modified
approach increases the likelihood that more recently
added observations are retained in the reservoir sam-
ple (Ellis, 2014, p. 327); new data has greater salience
than older observations.

Sketching

Sketching has been developed to create synopses and
reduce the dimensionality of streaming data. For each
new streamed element, a sketch can be developed to
determine set membership (has this element appeared
before or is it a member of a predefined set?),



cardinality (how many different types have appeared in
the stream?) and frequency. Put another way, if we
have a set § it would be useful to be able to add
additional elements to it, to test whether a new element
is already a member of the set, and if true, increment a
counter. Ellis (2014, p. 331) states that sketch algo-
rithms have three desirable features:

(1) Data updates are performed in constant time;

(2) Storage space is independent of stream size; and

(3) Queries are performed in linear time for the
worst case.

A Bloom filter is one widely adopted approach to
sketching (Bloom, 1970) that enables the efficient
determination of “heavy hitters” or most frequent
values in  the streem  (Cormode, Korn,
Muthukrishnan, & Srivastava, 2008). Useful surveys of
sketching approaches are provided by Aggarwal and Yu
(2007) and Cormode, Garofalakis, Haas, and Jermaine
(2012).

Incremental Clustering. Other approaches to stream
characterization are based on incremental clustering.
As described by Silva et al. (2013), ancillary data about
clusters (microclusters or cluster features) can be
stored in the form of a triple CF = (N, S, SS), where:

N is the number of data points;

S is a vector that stores the sum of the N points; and

SS is a vector that stores the square sum of the N
points.

Microclusters are incremental; for microcluster A, if
a streamed element x is added to it:

SA<—SA +x
SSy — SS4 + x*
Ny +— Ny+1

This incrementality allows subclusters to be merged.

Sc + S4+Sp
SSC — SSA +SSB
N¢ «— Ny + Ng

Aggarwal, Han, Wang, and Yu (2007) describe an
algorithm that uses a modified k-means approach in
which each new element is evaluated (based on root
mean square distance deviation) with respect to exist-
ing clusters to determine membership in an existing
closest cluster or whether a new cluster should be
formed.

Progressive analysis

An approach that is focused on latency reduction and
is similar to incremental clustering is progressive ana-
lysis. The approach has been developed to analyze data
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sets that are unbounded, providing partial or approx-
imate results at different points during the input
stream. Progressive analyses, therefore, are able to pro-
vide results that comply with the cognitive constraints
of interactive computing, which is usually set at under
ten seconds (Fekete & Primet, 2016, p. 1; see also
Turkay, Kaya, Balcisoy, & Hauser, 2017).

Computation reduction

Approximate computing

Approximate computing is increasing in importance as
a means to improve energy efficiency: shortcuts reduce
energy-consuming cycles. The premise is that some
applications do not require absolute correctness
(Kugler, 2015). This is not a particularly new idea, as
“lossy” algorithms are used to encode pictures and
music, and location is a variable that is often subjected
to approximation (e.g. aggregation). According to
Moreau, Sampson, and Ceze (Moreau, Sampson, &
Ceze, 2015, p. 12) approximate computing is particu-
larly relevant in mobile environments that involve sen-
sor data collection and summarization.

Sublinear Time Algorithms

Algorithms that execute in linear time represent a
“holy grail” of efficiency, though polynomial time is
usually considered acceptable. However, if the goal of
spatial analysis is to move from low expectations about
real time response, a different view will have to be
adopted, when data streams on the order of terabytes
per second are encountered. Sublinear time algorithms
that make assumptions about data distributions to yield
answers that are imprecise. While this may be anath-
ema to some, Rubinfeld and Shapira (Rubinfeld &
Shapira, 2011, p. 1562) suggest that “there are many
situations in which a fast approximate solution is more
useful than a slower exact solution.” Geographic theory
about expected values and locations may prove useful
in this regard. Tobler’s First Law seems particularly
useful here, as does central place theory.

Implementation considerations

Considerable challenges must be overcome in order to
assimilate fast data streams and subject them to ana-
lyses with real-time responses. Cloud computing has
been touted as a solution to such computational needs,
as the approach is elastic and designed to be responsive
to changing demands (NAS, 2016, p. 111). Geographic
researchers have begun to investigate the use of cloud
computing in several application domains such as
remote sensing (Hegeman et al, 2014; Yang, Xu, &
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Nebert, 2013). Yet with enormous numbers of con-
nected devices, each generating massive quantities of
data, cloud services may become inefficient, particu-
larly if latency concerns are important. As a conse-
quence, researchers are turning to alternative
relationships between devices and the cloud, advocat-
ing that processing be pushed from the cloud to the
sensor array (fog or edge computing). In the edge
paradigm, spatially distributed sensors produce data
streams that are preprocessed locally before being
transferred to the cloud for more substantial computa-
tion and archival storage. Researchers have reported
decreases in both latency and power consumption
with the edge approach (Shi & Dustdar, 2016).

Many of the sensors that comprise the IoT are
limited in their ability to sense and process. daCosta
(2013) describes a three-tiered system in which end
nodes, akin to a leaf, pass data (“chirps”) to propa-
gator nodes that use limited built-in processing to
pass the data to integrators that perform higher
levels of analysis and control. Chirps are light-
weight, disposable, noncritical (possibly redundant),
and do not require the end sensor to run the soft-
ware necessary to support the IP communication
stack. Collected chirps are passed to propagator
nodes that prune (eliminate redundancy), bundle,
summarize, and provide additional context informa-
tion, such as location. Despite this progress, there
are several open issues that require additional
research (Shi & Dustdar, 2016, p. 80; Bertino,
Nepal, & Ranjan, 2015):

o Sensor Deployment and Management: Challenges
include placement techniques, duty cycle manage-
ment and error monitoring.

o Provenance: Information about the source of
information is important to evaluating its quality.

e Programmability: Concerns what data gets pro-
cessed on the edge before being sent to the
cloud. Choices have implications for scalability,
though programming frameworks have yet to be
developed.

e Naming: Edge nodes must be identified. One
approach is to use an IP address, though other
naming conventions that more robustly support
mobile topology reconfiguration may prove
superior.

e Privacy and Security: Cloud services and data
transfers travel over the Internet and are subject
to security breaches. Distributed devices also pose
security risks since they can be hacked on the edge
(Agarwal & Dey, 2016; Noor, Sheng, Maamar, &
Zeadally, 2016).

Ingestion

Though spatial data stream methods must be opti-
mized for high rates of ingestion, I/O performance
remains a generic problem for computer systems
because of fundamental architectural issues
(VonNeumann bottleneck). With the current shift
toward in-memory analyses and databases, this pro-
blem may become diminished though it will never be
eliminated (Hegeman et al., 2014; Zhang, Chen, Ooi,
Tan, & Zhang, 2015). Even when parallelism is used to
increase performance, Amdahl’s law (program speedup
is limited by the time required to execute its sequential
fraction) may rear its ugly head (Amdahl, 1967). Other
I/O problems arise when data are streamed from multi-
ple sources, possibly with different provenances and
sampling characteristics (e.g. quantization levels). For
example, incoming data streams will remain at a con-
stant rate when time-based sampling is used (e.g. 0.1 s).
In other cases, event driven sampling may occur and
steam rate ingestion will possibly be highly variable.

Processing requirements

Performance is critical when processing data streams. If
analytical methods execute more slowly than the
incoming data stream, latency will be an increasing
function of time. This leads to a consideration of alter-
native architectural arrangements. If analyses do not
require data communication among sensors, then each
sensor could be assigned its own processor, a naturally
coarse-grained approach (see Figure 4). With spatial
data analytics, however, it is likely that local (neighbor-
hood-based) processing will be required and this will
introduce communication overhead. In cases where
sensors are fixed in place, establishing a neighborhood
is relatively straightforward. When they are mobile, the
establishment of dynamic neighborhoods becomes pro-
blematic. One approach is to define a deformable tri-
angulation with sensor locations forming mobile
vertices. There are many triangulation algorithms that
tend to fall into general families. The serial algorithm
that seems to be most promising is the incremental
insertion approach (Tsai, 1993), though it still has a
time complexity of O (n log n). Wu, Guan, and Gong
(2011) and Hegeman et al. (2014) report on parallel
implementations, but computational performance
remains an open issue. Nevertheless, parallelism should
hold a prominent place in future work on streaming
spatial data, for it is clear that US science policy will
continue to press forward with high-performance (par-
allel) computing as a national strategic priority
(Obama, 2015).
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Figure 4. A staged stream processing architecture.

Partly in response to such directives, researchers are
intently focused on making advances in the application
of high performance computing to key problems. Reed
and Dongarra (2015) address specific Strategic
Computing objectives and point to advances in the
rapidly developing big data analytics computing eco-
system. Big data analytics has emerged out of different
business data processing traditions, such as online
analytical processing to now include capabilities that
employ distributed file systems and parallelism, the
most notable being Hadoop (which implements
MapReduce). It is expected that computing innovations
will continue and that the next milestone of 10'® opera-
tions (exascale) is approaching rapidly.

Efficiently reaching exascale goals will be difficult,
however. Problem areas include power consumption,
interprocessor communication latency and big data
management as well as the development of a program-
ming model that enables application scalability while
being failure and locality aware. As Reed and Dongarra
emphasize (2015, p. 65), future systems are expected to
have billion-way concurrency where load balancing
will become critical. They also point out that arithmetic
operations, which are traditional bottlenecks, will
become less problematic than memory movement,
which will become relatively more expensive. Data
locality considerations will reduce communication
needs and can be based on an abstract partitioning of
geographic space (see Armstrong & Densham, 1992;
Wang & Armstrong, 2003).

At the present time, there is a wide gap between
powerful supercomputers and the streaming ultralight-
weight devices that constitute the IoT. Bridging this
gap will require work to connect the leaves to the trunk
in a sustainable way. One way to accomplish this task is
to integrate parallel infrastructure with the IoT using
Cyberinfrastructure (CI). CI is a flexibly configured
collection of heterogeneous networked devices (sen-
sors, data repositories, and processing nodes), software,
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and human resources that are used to address compu-
tational and data intensive problems (Wang, 2013,
2016, 2017). The development of CI middleware that
coordinates and schedules resources for large geogra-
phical problems is challenging because improved per-
formance comes from concurrently executing processes
that do not suffer from data starvation and commu-
nication latency. Mapping between memory hierarchies
and geographic relationships can minimize these diffi-
culties. Wang and Armstrong (2009) suggest that pro-
blems be transformed by abstracting them into compu-
bands that are composed of computing “effort” cells
that form a tiling that exhausts space, and considers
three types of latency and effort: computing time,
memory, and I/O. These effort cells are used to guide
the allocation of resources to portions of geographi-
cally-distributed tasks.

Updates

(Slide Show)

Case study: detecting radiation risk based on
cyberGIS and streaming data

We have developed a proof-of-concept to illustrate the
challenges of detecting anomalous radioactive sources
based on streaming data and to elucidate links between
the case study and the four research paradigms dis-
cussed earlier. Concepts are illustrated using a
cyberGIS workflow designed to detect anomalous
radioactivity levels in streaming data anonymized
from Safecast (https://blog.safecast.org), a global volun-
teer-centered citizen science project.

With respect to the first research paradigm (obser-
vation and experiment), challenges arise from the per-
spective of increasing data volume and velocity during
the process of radiation data collection. In this case
study, the radiation data was collected using a radiation
detector (bGeigie Nano) that records incident radiation
in counts per second; as the detector approaches a
source, the counts increase. Volunteers carry detectors
while they are walking or driving, thus forming a
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dynamic radiation sensor network. More than 3000
volunteers have contributed data, and the size of the
Safecast dataset had grown beyond 70 million measure-
ments in June 2017, adding over 2 million measure-
ments monthly (Brown, Franken, Moross, Dolezal, &
Bonner, 2017). In addition, 45 Pointcast detectors
(fixed real-time detectors) have been installed globally.
Each data stream observation includes the following
attributes: detector ID, time stamp, location (latitude,
longitude), and the measurement strength in counts
per second.

The second paradigm represents the theory and
models used to analyze radiation streaming data. In
this case, two challenges are encountered when detect-
ing anomalous radiation sources using Safecast data.
First, nonzero radiation levels may be detected without
an anomalous source present, since ionizing radiation
occurs naturally (cosmic rays), and is emitted by rocks,
soil, and building materials. The challenge is to detect a
source with a low signal-to-noise ratio, where the
source is the signal, and the background radiation is
the ambient noise, in the presence of confounding
factors (GPS accuracy, detector motion, shielding, and
weather conditions). The second challenge comes from
the temporal aspect of the Safecast data. When a radia-
tion source (e.g. nuclear waste) exists in an area as a
moving object, the data becomes obsolete quickly if not
harnessed to produce a near real-time alarm.
Furthermore, Safecast data is voluminous, with high-
dimensionality and fast streaming speed, which pose
challenges related to the third and fourth research

Research Paradigm 1

of the selected KNN points

paradigms in the respects of computation- and data-
intensive analytics.

To address these challenges, we developed a
cyberGIS-enabled analytics framework. Figure 5 illus-
trates the workflow in the framework where the
Safecast data is collected using mobile and fixed sensor
networks and transferred to the Safecast central data-
base (paradigm 1). The cyberGIS framework commu-
nicates with the Safecast database through Safecast
APIs, and the filtered data is stored for analysis in the
ROGER supercomputer (paradigm 3 and 4). The
CyberGIS-Jupyter environment consists of a Jupyter
notebook, Docker containers, cloud-based infrastruc-
ture provisioning, and high-performance computing
resources, which enables scalable spatiotemporal data
query and visualization (Yin et al., 2017). Finally, an
algorithm is designed to generate an alarm if an anom-
alous radioactive source is found (paradigm 2).

The radiation detection algorithm considers two
radiation source types: naturally occurring background,
and anomalous sources that may come from nuclear
weapons, dirty bombs, radioactive waste, or any pre-
cursors to such threats. Therefore, we define two types
of radiation level estimates (Figure 5). The first esti-
mate is the current radiation level (CRL) that was
simulated by randomly selecting one data point in a
stream. The second radiation level estimate is the back-
ground radiation level (BRL) that is calculated from
previous observations in the data stream. To mitigate
uncertainties in the radiation data, the BRL at a loca-
tion should be estimated based on a collection of

Research Paradigm 3 and 4

(KNN algorithm)
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Figure 5. CyberGIS workflow for radiation detection.



proximal data points instead of using a single measure-
ment value at a nearby location. Therefore, a k-nearest
neighbor (KNN: Keller, Gray, & Givens, 1985) algo-
rithm was implemented and used to estimate the BRL.
We first select k-nearest neighbor history data points
around the CRL, and those data points are used to
calculate the BRL for that particular area as defined
by the mean neighborhood radiation value. An alarm
will be triggered if the observed CRL exceeds the com-
puted BRL, meaning an anomalous radioactive source
is detected.

The implementation of the user interface is shown
in Figure 6, where the current sensor location is repre-
sented as a red circle, and blue circles represent its four
nearest neighbors. Since the current sensor radiation
level is higher than the mean radiation level of the
nearest neighbors, an alarm notification was generated.

Concluding discussion

The proliferation of wirelessly-connected, location-aware
devices in the IoT has led to the creation of massive
sources of streaming data. These fast data pose a host
of challenges to the provision of real-time geographical
analysis. These same data also present interesting oppor-
tunities to develop new theories and methods of geospa-
tial analysis and knowledge discovery. In particular, as
geospatial data collected from mobile sensors are accu-
mulated in a streaming fashion, cyberGIS analytics need

Get CRL Location

Get Nearest Neighbors

P, ey S

&

A radiation source is found!

Figure 6. User interface for anomalous radiation source detection.
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to be flexibly adapted to dynamic changes in the volume,
pace and spatiotemporal characteristics of data streams.
Otherwise, observations will become obsolete, thus
diminishing their use in time-sensitive decision-making
and knowledge discovery (Wang et al, 2013). The
cyberGIS workflow developed in this research is required
to resolve the computational intensity associated with
KNN search through the use of a high-performance,
distributed computing environment. Without cyberGIS
and its underlying spatial cyberinfrastructure, this type of
scientific workflow would not be possible.

The cyberGIS workflow represents a simple, yet
powerful example of geospatial analytics that motivates
a rethinking of spatial algorithms and cyberGIS in the
context of IoT data streams. Though the KNN algo-
rithm has limitations, advanced alternatives can better
resolve data-related fuzziness and uncertainties (Zhang,
Demsa, Rantala, & Virrantaus, 2014; Zhang, Demsa,
Wang, & Virrantaus, 2018), and also exploit advanced
machine learning capabilities (Derrac, Garcfa, &
Herrera, 2014). CyberGIS analytics for IoT applications
will remain challenging for many reasons, with some
that can be framed as open challenges and questions
that require further research.

o Are their general approaches to achieving real-
time performance of computationally intensive
spatial algorithms and cyberGIS analytics in
data-streaming environments?
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e How are imperfect but “good enough” analytics
assessed and reproduced?

e Are there best practices for presenting and com-
municating imperfect and uncertain outcomes of
fast data analytics?

There is no doubt that impactful opportunities for
knowledge discovery and geospatial innovation will
drive progress on resolving these and other open chal-
lenges and questions. Given that most IoT applications
have location-based components, it is important to
exploit their spatial characteristics in pursuit of scien-
tific advances and benefits to society.
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