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Abstract— Minimization of drive test (MDT) allows coverage
to be estimated at the base station using user equipment mea-
surement reports with the objective of eliminating the need for
drive tests. In this letter, we quantify various types of errors in
MDT-based autonomous coverage estimation that stem from
inaccurate user positioning, for example, as a result of GPS
measurement uncertainties and quantization due to dividing the
coverage area into bins. By investigating the interplay between
quantization and positioning error to estimate coverage, we show
that there exists an optimal bin width for coverage estimation and
determine it as a function of positioning error and user density.
This can enable network operators to configure the bin size
for given positioning accuracy that results in the most accurate
MDT-based coverage estimation.

Index Terms— Minimization of drive test, positioning error,
optimal bin width, autonomous coverage estimation.

I. INTRODUCTION

NETWORK automation or self-organization enables the
network to detect changes, such as detection of coverage

holes, weak coverage, performance degradation problems and
then based on these detected changes, make timely decisions [1].
In conventional cellular networks, cell outage detection
mechanisms incur inevitable delay and unreliability that stems
from human error and low spatio-temporal granularity of
reports gathered via drive tests [2]. This problem is likely to
aggravate with the advent of emerging small cells, where the
probability of cell outages is expected to increase further.

To overcome the aforementioned challenges, 3GPP has stan-
dardized a self-organizing network use case, called minimiza-
tion of drive test (MDT), which exploits the measurement
reports gathered by the user equipment (UE). The UE mea-
surement reports are tagged with their geographical location
information, sent to their serving base station (BS) and ulti-
mately used to generate coverage maps [2]–[4]. While far more
efficient than drive tests, any MDT based solution for coverage
estimation has to overcome following two major errors:

1) Positioning error: The reported geographical coordinates
of the UE obtained from any positioning technique, such
as assisted global positioning system are susceptible to
errors, resulting in the reports being tagged to a wrong
location [5]. These locations can also be inaccurate for
the purpose of preserving user privacy.
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2) Quantization error: Storing all MDT reports from all
users is computationally inefficient and leads to unneces-
sary wastage of valuable memory resources. Therefore,
the coverage area is often divided into bins and the
average received power from each bin is stored and used
to build coverage maps. This results in quantization error
due to averaging.

Akbari et al. [2], Galindo-Serrano et al. [3],
Naranjo et al. [4], Akbari et al. [5], and Akbari et al. [6]
aim to address the reliability of MDT-based coverage
estimation in the presence of positioning errors. However,
these studies do not take into account the errors resulting
from quantization. Quantization error to estimate cell radius
is discussed in [7]. However, the work in [7] does not use
MDT-based approach. Sohrabi and Kuehn [8] use regression
clustering for construction of RSRP maps from a sparse set
of MDT measurements. However, this work [8] assumes
perfect user locations and a fixed bin width or grid size.
Lin [9] propose a MDT system in which UEs upload the
measurement reports periodically. Based on the collected
measurement reports, the MDT system learns the knowledge
about the communication environment and use it to forecast
signal strengths. However, in this work Lin [9] generate the
forecast of signal strength given the locations of base stations
and UEs are known. Therefore, current studies on MDT-based
coverage estimation either assume perfect user locations and
no quantization, or consider the effect of positioning and
quantization errors independent of each other.

In this letter, we analyze the interplay between the
aforementioned errors concurrently in coverage estimation
through MDT. While on one hand, decreasing bin size reduces
the quantization error, on the other hand, it increases the
error in coverage estimation due to incorrect user positioning.
This study is the first to show that there exists an optimal bin
width for given user positioning error that can minimize the
overall error in the MDT based coverage error, i.e., the com-
bined error caused by quantization (dictated by bin size) and
user positioning inaccuracy. This calls for an optimization
of bin width that would minimize the overall error under
positioning error constraints. To the best of our knowledge,
this letter is the first to analyze and quantify the interplay
between these errors simultaneously and present a framework
to determine the optimal bin width that minimizes these errors
concurrently.

II. SYSTEM MODEL

We consider a system of N base stations uniformly distrib-
uted in an area of A × A, where A is the length in meters.
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Fig. 1. A portion of the coverage area showing bin width (w) and positioning
error radius (u).

Each base station serves users located in an area of
am × am. Users are distributed according to square point
picking process, i.e., two independent sets of points x and y
are picked from a uniform distribution and placed at coordi-
nates (x, y). The area served by each base station is further
divided into m × m bins of width w. We assume that the
probability density function of the distance and direction of
the UEs actual location with respect to its reported position are
1
u and 1

2π respectively. Therefore, given a reported UE posi-
tion, its actual location is within a circular disc with radius u
which is centered at the reported UE position, as illustrated
in Fig. 1 for one user. Therefore, the actual position of
the ith UE with coordinates (xi, yi) can be modeled as
(xi + u

√
qi cos(2πvi), yi + u

√
qi sin(2πvi)), where vi and qi

are one realization of pseudo random, pseudo independent
numbers uniformly distributed in [0, 1].

We consider a small cell environment where propagation
conditions are mostly dominated by line of sight. Since MDT
measurement reports are based on long term averaged received
power [5], fast fading can be considered to be averaged out.
Therefore, only the shadowing and path loss effects are taken
into consideration in our analysis. The signal propagation
model we employ for obtaining the received power measure-
ment is as follows:

S [dBm] = T + K − 10 n log10

(
d

do

)
+ X (1)

where T is the transmit power in dBm, K is a con-
stant in dB that depends on the antenna characteristics and
the average channel attenuation and can be quantified as
−20 log10 (4πdo/λ). n refers to the path loss exponent, do is
the reference distance and d is the distance between the user
and serving BS. The shadowing effect is modeled by the
random variable, X which follows a zero mean Gaussian
distribution with standard deviation φ in dB. A bin or user is
considered to be in coverage when its received signal strength
is greater than a predefined threshold, γ.

III. AUTONOMOUS COVERAGE ESTIMATION FRAMEWORK

IN THE PRESENCE OF ERRORS

A. Quantifying User Positioning and Quantization Errors

In this section, we first present insights and methods to
quantify the individual effects of user positioning and quanti-
zation errors in coverage estimation, followed by quantification
of the concurrent effect of these errors in order to determine
the optimal bin width.

Fig. 2. Probability of misclassification of a user with varying bin width and
positioning error radius.

1) User Positioning Error in the Presence of Bins: Consider
the scenario in which the predicted coverage area is divided
into m × m bins. Gathered coverage data from different bins
can be represented in a matrix R of dimensions m×m. Thus,
the coverage area forms a square matrix, R ∈ R

(m×m), where
each entry of this matrix, ri contains the averaged received
power in that bin, where i = 1, ...m2. Therefore, RP,Q is a
matrix containing measured average received power of users
due to positioning uncertainty and RP ′,Q contains the average
received power of users with no positioning uncertainty.

To understand the impact of user positioning error as a
function of bin width, consider a user located at the bin center,
with coordinates (12.5,12.5) as shown in Fig.1. In the presence
of no positioning uncertainty, the user is actually present at this
location. However, due to positioning uncertainty, the actual
location of the user lies within a circular radius u. Depending
on the radius u and bin width, w, the probability of user
being actually located in adjacent bins would vary, which
would impact coverage estimation. We define this probability
of misclassification, Pm as the probability that user’s actual
position lies in bin j, given that its reported position lies in
bin i, where i �= j. Using geometry from Fig.1, three cases
of Pm can be distinguished depending on u. By expressing
θ = 2 cos−1(w/2u) and calculating the fraction of area of
circle with radius u that lies outside the square with side w,
or equivalently, calculating the fraction of user’s all possible
actual locations that lie outside bin i, Pm when a user is located
at the i-th bin center can be derived as follows:

Pm(w, u)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, 0 < u ≤ w/2
4u2 cos−1

(
w
2u

) − 2u2 sin
(
2 cos−1

(
w
2u

))
πu2

,

w/2 < u < w/
√

2
πu2 − w2

πu2
, u ≥ w/

√
2

(2)

Pm as a function of u and w is illustrated in Fig. 2. Note that
the case when a user is located at the bin center is a lower
bound on Pm as Pm will increase as the user moves away
from the bin center. Therefore, for any arbitrary user location,
the error in coverage estimation due to positioning error in
the presence of bins is likely to increase with larger u for the
same w or with smaller w for the same u, as the probability
of misclassification would increase in these scenarios. It is
observed from Fig. 2 that a zero probability of user location
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being misclassified occurs at the combination of large bin
width and small positioning error radius. Note that the RSRP
perceived by the users is affected by positioning error since
the measured RSRP reports are tagged to wrong locations due
to positioning error. This results into error (caused by tagging
to wrong location) in the RSRP-location duo reported as part
of the MDT reports. This leads to error in the coverage being
investigated here. Therefore, the error in coverage estimation
due to positioning uncertainty is expected to be the least
when bin width is large and positioning error radius is small.
In order to capture this effect, we quantify the impact of user
positioning error in the presence of bins as follows:

EP =
1

m2

m2∑
i=1

|P[rP,Q
i > γ] − P[rP ′,Q

i > γ]| (3)

where the operator P represents probability, rP,Q and rP ′,Q

are vectorized forms of matrices RP,Q and RP ′,Q respectively.
The i-th element of the vector rP,Q, rP,Q

i represents the
measured average received power of users in i-th bin in
presence of positioning uncertainty and rP ′,Q

i is the average
received power of users in the same bin with no uncertainty.

2) Quantization Error in the Presence of Positioning
Uncertainty: In order to quantify the effect of quantization
error as a function of positioning error radius, u, it is necessary
to analyze the coverage values at the user level for benchmark
to investigate the effect of binning. Let rP,Q be the measured
received power vector of U users within a cell in the presence
of quantization and positioning error and rP,Q′

be measured
received power vector of those U users without any quanti-
zation but the same positioning error. Then the error due to
quantization in the presence of a certain positioning error can
be quantified as:

EQ =
1
U

U∑
i=1

|P[rP,Q
i > γ] − P[rP,Q′

i > γ]| (4)

3) Combined Effect of Quantization and Positioning Error:
Finally, to quantify the effect of both positioning error and
quantization error on coverage estimation, we consider the
benchmark to be the received power vector at the user level
without any positioning uncertainty (i.e., the user reporting
RSRP value from a particular location is actually present
at that location), rP ′,Q′

. Then the combined effect of both
positioning and quantization errors on coverage estimation can
be quantified as:

EP,Q =
1
U

U∑
i=1

|P[rP,Q
i > γ] − P[rP ′,Q′

i > γ]| (5)

B. Determining Optimal Bin Width

In order to determine the optimal bin width, we want to
minimize the total quantization and positioning error. The
optimization problem can then be formulated as:

w∗ = arg min
w

EP,Q

subject to wmin ≤ w ≤ wmax

GPS error radius = u (6)

Fig. 3. Errors in coverage estimation for different positioning error radius
and γ = −80dBm.

where the expectation is taken over random variables, x, y, v, q
and X . Owing to the small search space, we can solve (6)-(6)
via brute force as shown in the next section.

IV. SIMULATION RESULTS AND ANALYSIS

In our simulations, we distribute U users/cell in a system
of 9 cells according to square point picking process. The actual
position of the ith UE with coordinates (xi, yi) is generated
as (xi + r

√
qi cos(2πvi), yi + r

√
qi sin(2πvi)), where vi and

qi are drawn from a uniform random distribution, U [0, 1].
We consider three different user densities, U = 3000, 5000
and 7000. Other simulations parameters are set as follows:
n = 3.5, do = 1m, T = 40 dBm, φ = 4dB, N = 9,
A = 1200m, a = 400m, wmin = 10m, wmax = 55m and
u is varied from 0m to 70m. Monte-carlo simulations are done
over the random variables, x, y, v, q and X .

The error in coverage estimation due to quantization error
and incorrect user positioning is shown in Fig. 3 (a), (c), (e) for
u = 5m, 40m and 70m respectively. On one hand, the coverage
estimation error due to quantization increases with increase
in bin width owing to greater averaging of user reported
measurements as bin width increases. On the contrary, error
due to incorrect user positioning decreases with increase in bin
with attributing to the fact that for a given positioning error
radius, a larger bin width would mean a lesser probability
that a particular user is in fact present in adjacent bins as
previously illustrated by Fig.2. This trade-off leads to the
curves in Fig. 3 (b), (d) and (f). Note that the coverage
estimation error due to positioning error is very small in case
of u = 5m as compared to the quantization error, therefore,
the total error in Fig. 3(b) for u = 5m is dominated by the
quantization error. However, as positioning error increases,
it acts as an opposing factor to the increasing quantization
error with increasing bin width, yielding an optimal bin width
as shown in Fig. 3 (d) and (f).
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Fig. 4. Total error with varying bin width and positioning error radius.

Fig. 5. Total coverage estimation error with varying user densities for
u = 70m, γ = −80dBm.

Fig. 6. Optimal bin width with varying positioning error radius.

A 3D graph showing the effect of both errors simultaneously
as a function of positioning error radius and bin width is
shown is Fig. 4. It is observed that the optimal bin width
that minimizes this error increases as positioning error radius
increases. The analysis is extended to different user densities.
Fig. 5 shows the total error in coverage estimation with varying
user densities for u = 70m. It can be seen that as the user
density increases, the optimal bin width decreases attributing
to the decrease in effect of coverage estimation error caused
by positioning inaccuracy. This is because the average of users
in any bin is likely to differentiate by a small margin when
number of users in that bin are more as compared to the
scenario with less number of users.

The resulting optimal bin width as a function of posi-
tioning error radius is shown in Fig. 6 for different user
densities. It is observed that the optimal bin width increases
as positioning error radius increases in a non-linear manner.
Note that although the overall coverage estimation error
increases with increase in positioning error radius, the optimal
bin width may be same for certain ranges of positioning error
radii. This is because despite increase in EP,Q with increase
in u, the bin width which results in minimum EP,Q is same

for those positioning error radii. These findings can be used
by a network operator to determine the optimal bin width
for a given positioning accuracy and user density, that would
result in minimum error in MDT-based coverage estimation.
This would lead to more accurate coverage estimation, which
can then be utilized to design and optimize several aspects of
the network, such as minimize total cost of ownership, boost
network capacity, detect coverage holes, maximize coverage,
minimize power consumption and even optimize handover
zones [10].

V. CONCLUSION

By quantifying the errors in MDT-based coverage estima-
tion that stem from quantization and inaccurate user posi-
tioning, we show that there exists an optimal bin width
that can be determined to minimize the combined effect of
these errors in MDT based coverage estimation. Optimal bin
width that minimizes the effect of these errors concurrently is
determined as a function of positioning error radius and user
density. Thus, for given positioning accuracy and user density,
the findings from this study can be directly used by network
operators to configure the bin size that results in most accurate
MDT based coverage estimation. Depending on the scenario
under consideration, framework presented in this study can be
extended to varying base station distributions and shadowing
standard deviations. Such investigations will be focus of our
future work.
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