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Abstract—Logic encryption is a powerful hardware protection
technique that uses extra key inputs to lock a circuit from piracy
or unauthorized use. The recent discovery of the SAT-based
attack with Distinguishing Input Pattern (DIP) generation has
rendered all traditional logic encryptions vulnerable, and thus the
creation of new encryption methods. However, a critical question
for any new encryption method is whether security against the
DIP-generation attack means security against all other attacks.
In this paper, a new high-level SAT-based attack called SigAttack
has been discovered and thoroughly investigated. It is based
on extracting a key-revealing signature in the encryption. A
majority of all known SAT-resilient encryptions are shown to
be vulnerable to SigAttack. By formulating the condition under
which SigAttack is effective, the paper also provides guidance
for the future logic encryption design.

I. INTRODUCTION

Globalization of the integrated circuit (IC) design industry
leads to severe issues in the field of hardware security such
as overproduction, piracy, reverse engineering and counterfeit-
ing [5]. As a countermeasure, logic encryption is proposed to
add extra key inputs into the design such that even though
attackers can know the netlist, the circuit is functional only
when the key inputs are set correctly [1]. Diverse logic
encryption techniques have been proposed [1]-[4], [6], [14].
However, they are all vulnerable to a newly discovered SAT-
based attack [13], and based on such discovery, many new
encryption and decryption techniques are proposed [7]-[12],
[15]-[17]. It naturally draws us to this critical question: is
the SAT-based attack with DIP (Distinguishing Input Pattern)
generation [13] the most powerful attack, and is its measure
of attack complexity reliable?

Our answer is no. In this paper, we first define a key-
revealing signature in any logic encryption, and show that if at-
tackers know such a signature, they can easily find the correct
key. Then we introduce SigAttack, a new high-level SAT-based
attack, and show how SigAttack extracts such signatures from
some well known encryption schemes, especially the designs
proposed by Zhou [18]. The general condition under which
such a signature can be extracted will also be discussed thus
providing advice for future logic encryption designers.

II. RELATED WORKS

Zhou [18] has proposed a theory on logic encryption, which
provides a deep understanding on the design space and the
trade-off between error rate and attack complexity. It can
be proved that in any given encryption C'(X, K,Y") for any
function F'(X), if the minimal error number of a wrong key is
M, the minimal attack complexity is N, then MN < 2", where
n is the length of inputs [18]. Therefore, one ideal encryption
shown in Figure 1 is to set both the minimal attack complexity
and the minimal error number for a wrong key to 2"/2, and
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Fig. 1. A logic encryption design with both high error number for a wrong
key and high attack complexity.

Zhou has proved that such a design C'(X, K,Y’) exists for any
given F(X).

To generalize the design, Figure 2 is proposed, and
Zhou [18] has shown that every logic encryption is function-
ally equivalent to this general scheme. In this design, X and
K are primary inputs and key inputs, respectively, and K*
is the correct key value. If K is equal to K™, the flipping
signal is disabled. Otherwise, the value of the flipping signal
only depends on the output of the function H(X, K), and it
may output one under different combination of X and K. It
can be checked that all encryption techniques conform to this
scheme. For example, H (X, K') is combination of XOR gates
and a NOR gate in SARLock, as shown in Figure 3.

III. SIGATTACK: HIGH-LEVEL
SAT-BASED ATTACK

flipping signal

original circuit

Fig. 2. The general scheme that every possible logic encryption is equivalent
to.

A. Signature Definition

To develop a logic decryption technique against the gen-
eralized model in Figure 2, we first conduct the structural
analysis. We follow the same assumption in [18] that the
outputs of functions H(X, K) and F'(X) have only one bit.
We noticed that if the output of the function H (X, K') can be
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original circuit

Fig. 4. Zhou’s encryption.

fixed to one, the value of the flipping signal only depends on
the correctness of the key. Therefore, if we require different
outputs of two copies of the encrypted circuit, one of the keys
must be equal to K*. In other words, the correct key can be
revealed by a SAT query C'(X, K1, Y1)AC(X, Ko, Y2)A (Y7 #
Yo) NH(X, K1) AN H(X, K2). However, designers can further
obfuscate the encrypted circuit so that the netlist of H (X, K)
is hard to be extracted. Is an attacker able to fix the output of
H(X,K) to be one without knowing the netlist of H?

The answer is positive. Intuitively, a signature of an en-
cryption in Figure 2 is a function Sig(X, K) that implies
H(X, K). We formally define the key-revealing signature of
an encrypted circuit, Sig(X, K), as follows:

Definition 1III.1. For any given encryption circuit
C(X,K,Y), a signature Sig(X,K) is defined as any
Boolean expression such that:
) VX, K, K # K*: Sig(X,K) = C(X,K,Y)A(Y #
F(X));
2) 3X,K, K # K*: Sig(X, K*) A Sig(X, K).

Intuitively, condition 1 ensures that Sig(X, K) captures a
subset of (X, K) pairs that will always produce wrong outputs
when K # K* in C(X,K,Y). In the general encryption
shown in Figure 2, it means that Sig(X, K) must be an
implicant of H(X, K). However, any (X,K) combination
giving a wrong output can form such an implicant. Therefore,
condition 2 requests that Sig(X, K') must contain at least two
pairs (X, K*) and (X, K). It excludes any simple instance
(X, K) as Sig(X, K). The vulnerability of a logic encryption
with known Sig(X, K) is shown in the following theorem.

Theorem IIL1. If artackers can extract the Sig(X,K)
for a given encryption circuit C(X,K,Y), the correct key
value K* can be revealed by a SAT query C(X,K;1,Y1) A
C(X, K2, Y2) A Sig(X, K1) A Sig(X, K2) A (Y1 # Ya).

B. SigAttack on Zhou’s Encryption

Based on the design in Figure 2, a general encryption
scheme in Figure 4 has been proposed by Zhou [18], which
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achieves linear-size encryption by using XOR gates to pair
bits between primary inputs X and key inputs K. We called
it Zhou’s encryption in this paper. It is easy to check Figure 1
and 3 conform to Zhou’s encryption.

Could we attack Zhou’s encryption without knowing the
specific design pattern of the function H(V')? Similar to the
discussion in Section III-A, if the output of H (V') equals one,
the flipping signal only depends on the correctness of K, thus
K can be revealed by the SAT solver. Therefore, the question
further becomes how we could fix the output of H (V). It turns
out we do not need to fix any value of X and K since each
bit of X and K is XORed first, fixing the equivalent relation
of each bit between X and K is enough to provide the same
input V' to H(V'). However, we should assume attackers do
not know how bits are paired between X and K. In other
words, we should explore for each bit « in X, which key bit
k in K is connected to the same XOR gate. If we know the
connection for all bits of X and K, we can add clause either
(v; = k;) or (w; # k;) for each bit of X and K to a SAT
solver so that V' is determined.

To find the bits pairing, we propose the following SAT-based
technique: for each bit k in K, we query the SAT formula

C(X, K1, Y1) NC(X, K2,Y2) A (Y1 # Y2)A
(k1 # k2) A ((K1\k1) = (K2\k2)),

which indicates if exists two key values K7 and Ko with
hamming distance equal to one, such that H(V') = 1 for one
circuit and H (V') = 0 for the other. As a result, their outputs
are different since one of them is flipped. Here we assume that
both K; and K are unlikely to be assigned to the correct key
K™ by a SAT solver. Otherwise, K* is already revealed.

If the output is not flipped because H(V) = 0, we know
after flipping the corresponding primary input bit x that
connects to the same XOR gate with k, H(V) is equal to
one again, so the flipping signal is enabled for both circuits.
Thus, to find such z, we flip each bit of X and observe if the
output Y is flipped again.

What could go wrong here? Since we do not know the
function of H(V'), we cannot guarantee that Y is flipped only
when we flip the corresponding primary input bit 2. Flipping
other primary input bits can produce a different V', which
may also lead to H(V) = 1. Thus, we may not find the
correct pairing. Inspired by this discovery, we can conclude
that Zhou’s encryption is vulnerable if it has the following

property:

Property 1. 3 at most one V' such that H(V') = 1if H(V') =
0 and hamming_distance(V,V') = 1.

However, what if such V’ does not even exist? In other
words, the SAT solver is not able to find an assignment of
the proposed query for some key input bits. As a result, we
miss pairings for some bits in X and K, and the doubt is if
these missing pairings lead to the result that H(V) = 1 for
two copies is not guaranteed. Fortunately, we can prove the
Theorem II1.2.

Theorem IIL.2. For the key bits that cannot satisfy the
proposed SAT query, the value of these key bits cannot affect
the output of the function H(V).

Theorem III.2 guarantees that if the SAT query cannot be
satisfied for a key bit, we can simply skip it and check the
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next bit. If Property 1 holds, after iterating all key bits, we are
able to collect all constraints of the relation between X and
K to guarantee H (V') = 1. Therefore, the SAT solver can be
utilized to directly find K*.

However, the algorithm is still not perfect. There may be
a case that the SAT query is satisfied for all key bits, and
it leads to the SAT solver returns UNSAT (unsatisfiability)
while finding the K*. The reason is that the SAT solver finds
the same primary inputs for both copies of circuits, and if
H (V') =1 requires all key bits to be constrained, K; and Ko
have to be assigned the same value. As a result, the SAT solver
cannot find an assignment to satisfy the clause (Y7 # Y3) in
the SAT query.

To overcome this issue, the SAT solver is asked to find two
distinct assignment Vi, Vs such that H(Vy) = H(V2) = 1,
which allows us to add constraints between X and K; based
on Vi, and X and K5 based on V5. Therefore, the SAT solver
has the flexibility to find different assignments to K7 and K.
If the SAT solver cannot find the second assignment, it simply
indicates that there is only one possible V' such that H (V') =
1, and any wrong key has exponential low error rate. Hence,
we could simply consider a random key to be correct and fix
a wrong output by bypass attack [16].

The algorithm of SigAttack on Zhou’s encryption is as
follows. First, the pairing between each bit of X and K is
found, and we add constraints to a SAT solver to guarantee
that outputs of H (V') for both circuits, H(V;) = H(V3), are
equal to one. Such V; and V5 with different values can be
found by SAT queries and comparing SAT assignments of bits
in each found pair. Therefore, the correct key value can be
found by one SAT query. If the second assignment V5 cannot
be found, we conduct bypass attack. As a result, we can prove
the following theorem:

Theorem I11.3. Zhou's encryption shown in Figure 4 can be
attacked by SigAttack if Property 1 holds.

C. SigAttack on SARLock

The analysis from Section III-B indicates that SigAttack can
attack SARLock [17]. We have developed Figure 3, which
is equivalent to SARLock. H (V) is simply a NOR gate; if
primary input X and key input K have the same value, the
flipping signal is enabled as long as K is not equal to the
correct key K*.

Let us run SigAttack on this design. We can pair each bit
x; and k; for ¢ from 0 to n — 1. However, we can not find two
different inputs V7 and V5 such that H(Vy) = H(V2) = 1;
the output of NOR gate can be one only if its inputs are all
zeros. It is reasonable since there is only one wrong input-
output pair for the SARLock design when the key value is
incorrect. Since we cannot find the second assignment of V,
we immediately know that any wrong key has exponentially
low error rate. Therefore, we select a random key and fix a
wrong input-output pair by bypass attack [16].

D. SigAttack on Anti-SAT

We model an Anti-SAT design [15] to Zhou’s encryption
as shown in Figure 5, and H (V') is the original Anti-SAT
blocks. The design is similar to Zhou’s encryption, but with a
little modification: The original Anti-SAT design does not fix
a correct key value; instead, the key value is correct as long
as koky...k,—1 are equal to kyky,41...k2,—1. Therefore, there
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Fig. 5. Model Anti-SAT in Zhou’s encryption.

are 2" correct key values. Meanwhile, the primary input X is
compared twice, with koky...k,—1 and kpkpiq...kon—1.

Since Figure 5 is not exactly fit for the model of Zhou’s
encryption, could we still attack it by SigAttack? The answer
is yes. The first step is to find pairings between each bit of
primary inputs X and key inputs K. If the key input bit
k; that we flipped is in koky...k,—1, we can only flip the
corresponding primary input bit z; to restore the output of
H (V') from zero to one. Therefore, we are able to find pairings
between z; and k; when 0 <¢ <n — 1.

However, when n < i < 2n —1, flipping any z; can restore
the output of H (V) from zero to one, since the output of
NAND gate is zero if and only if its inputs are all one. As
a result, we may not find the correct pairing between x; and
k; when n < ¢ < 2n — 1. Fortunately, SigAttack can find
the correct key without knowing these pairings. After we add
constraints between x; and k; for 0 < ¢ < n — 1, we can
directly find a correct key by a SAT query. It is because if the
output of the NAND gate is zero, x; # ky; for all 0 <7 <
n — 1. Since the output of the AND gate (indicated as Sig in
Figure 5) is fixed to be one, x; # k; forall 0 < i <n — 1.
Thus, koky...kp—1 = knkn41...k2n—1, which indicates the key
is correct. Since Y7 # Ya, either K or K is the correct key,
which can be easily identified by comparing Y; and Y, with
the correct output.

IV. EXPERIMENTAL RESULTS

We evaluate SigAttack on Zhou’s encryption, SARLock and
Anti-SAT. Our experiment is conducted on a machine with
Intel core i5 clocked at 2.4 GHz and memory 5.8 GB. The
original benchmarks are from the ISCAS’85 and the Micro-
electronics Center of North Carolina. We build benchmarks
of Zhou’s encryption shown in Figure 1, and various input
lengths are tested to comprehensively show the effectiveness
of SigAttack. We also build Zhou’s version of SARLock and
Anti-SAT shown in Figure 3 and Figure 5, respectively. For
comparison, we choose the SAT-based attack [13] and Double
DIP [12] as the representative of exact and approximate
attacks, and compare the correctness and accuracy.

We perform SigAttack, the SAT-based attack, and Double
DIP on Zhou’s encryption. The experimental result indicates
that the correct key K* of all benchmarks can be successfully
decrypted by SigAttack within a few seconds. Since Double
DIP is an approximate attack, out of 9 benchmarks that
Double DIP can finish within our time limit (5 hours), only
5 benchmarks are decrypted with the correct key. Figure 6
demonstrates the relation between the execution time and
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Execution Time (s) vs. Input Length
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Fig. 6. Execution time of performing SigAttack on Zhou’s Encryption
compared with the SAT-based attack and Double DIP.
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the input length. We can see that SigAttack takes much less
execution time while keeping the accuracy compared with the
SAT-based attack and Double DIP. With the increasing of the
input length, the execution time of the SAT-based attack and
Double DIP dramatically increases, and most of benchmarks
cannot be decrypted within 5 hours.
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Fig. 7. Execution time of performing SigAttack on Anti-SAT compared with
the SAT-based attack and Double DIP.
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We perform sigAttack on SARLock and Anti-SAT shown
in Figure 3 and Figure 5. As we analyzed in Section III-C,
for SARLock, SigAttack reports it cannot find two different
inputs V4 and V5 to H(V) such that H(Vy) = H(V,) = 1.
Therefore, bypass attack is conducted, and [16] already shows
that bypass attack can efficiently decrypt SARLock. However,
the SAT-based attack cannot finish most of benchmarks within
our time limit (5 hours), and even though Double DIP can
finish running quickly, the solved keys for all of benchmarks
are incorrect. On the other hand, Figure 7 indicates SigAttack
can successfully decrypt all benchmarks encrypted with Anti-
SAT within at most a few minutes. In contrast, SAT-based
attack and Double DIP cannot decrypt most of benchmarks
within 5 hours. For benchmarks apex4, ex1010 and ex5 that
Double DIP can finish on time, correct keys are found.

V. DISCUSSION

The development of SigAttack raises such a question: to
decrypt an encryption, do we need to know its exact design
pattern? As we have shown, SigAttack does not depend on
knowledge of functions H (X, K) in Figure 2 and H(V) in
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Figure 4. Therefore, from the perspective of attackers, instead
of exploring the exact design pattern, it is more important
to extract the signature Sig(X, K) of an encryption circuit
C(X,K,Y). Section III provides examples of extracting sig-
natures of different encryption techniques.

Another discovery is that we may reconsider the robustness
and reliability of XOR encryption in digital designs. From
Section III-B to Section III-D, XOR operations between
primary inputs X and key inputs /K become a vulnerability
explored by SigAttack, since it provides the flexibility for a
SAT solver to assign specific values while maintaining desired
outputs. Designers should carefully analyze if their encryption
can be modeled to the vulnerable model, Zhou’s encryption,
by resynthesis. If yes, Property 1 should be avoided.

VI. CONCLUSION

In this paper, we have developed a new high-level SAT-
based attack called SigAttack. SigAttack extracts the signa-
ture of an encryption design and explores the vulnerability.
It successfully decrypts many existing encryption schemes
such as Zhou’s encryption, SARLock and Anti-SAT. We
have compared the performance of SigAttack with exact and
approximate attacks to demonstrate its efficiency and accuracy.
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