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Abstract

The Denali Fault is an active strike-slip fault system responsible for the highest topography in North America, 

yet there are conflicting constraints on the fault’s Cenozoic slip history. The long-term slip rate constraint of 

the eastern Denali Fault is ~400 km since 57 Ma. In apparent conflict, the long-term slip rate of the western 

Denali Fault is 38 km since 38 Ma based on the reconstruction of the Foraker and McGonagall plutons. Tests 

of the genetic relationship of the plutons with bulk rock geochemical and paired U-Pb and Hf zircon analysis 

suggest a disparate origin. The McGonagall pluton, despite having a lower SiO2, has lower εHf values 

inconsistent with chemical and isotopic variations between the two being the result of contamination. The 

Denali Fault is a highly strain partitioned system, but the amount of Cenozoic slip dispersed west to east is 

likely significantly less than the previous ~360 km constraint.A
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INTRODUCTION

Strike-slip faults across the globe take up a significant portion of plate convergence (Molnar and 

Dayem, 2010) and can translate crustal blocks 100’s of kms over 10’s of millions of years. Hence, constraining 

the amount of offset on major strike-slip faults is fundamental to both understanding near fault process and the 

transfer of strain inboard from plate boundaries. However, establishing robust piercing points across 

lithospheric-scale strike slip faults is often fraught with conflicting results (Umhoefer, 2000) as different 

geologic features yield disparate reconstructions. Commonly utilized features include Large Igneous Provinces 

(Mahan and Williams, 2005; Ernst and Bleeker, 2010), dismembered plutons (Frizzell et al., 1986; James, 

1992; Darin and Dorsey, 2013), general lithologic correlation (Sutherland et al., 2013), basin reconstruction, 

and paleomagnetism (Umhoefer, 2000; Hildebrand, 2015). 

Chief among these constraints is the use of tectonically fragmented plutons, though they have fueled 

much debate in some of the classic strike slip faults around the world including the San Andreas (Frizzell et al., 

1986; Powell, 1993) and the Karakorum (Phillips et al., 2013). Application of the commonly used ”same-

pluton” method for fault reconstruction is complicated by our understanding of fault zones facilitating the 

transport of igneous material through the crust (Tikoff and Teyssier, 1992; Roman-Berdiel et al., 1997; 

Rosenberg, 2004), and requires distinguishing distinct plutons of similar age and character emplaced along a 

fault from a true tectonically fragmented pluton. Consequently, a rigorous petrographic, geochemical, and 

isotopic approach evaluating the genetic relationship of fault-bound plutons is central to efforts aimed at 

constraining fault offset.

THE DENALI FAULT AND THE ALASKA RANGE

The >2000 km long intracontinental Denali Fault in the northern Cordillera is a lithospheric-scale 

strike-slip fault demonstrated by a >10 km Moho offset (Allam et al., 2017). The modern Denali Fault is a 

highly strain partitioned system, with thrust fault splays on both sides of the Fault (Bemis et al., 2015; Burkett 

et al., 2016; e.g. Waldien et al., 2018) and takes up to ~20% of the convergence rate of the Pacific-Yakutat 

plates with North America (Elliot et al., 2013). As such, the Denali Fault poses one of the greatest seismic 

hazards in North America exemplified by the 2002 Mw 7.9 Denali earthquake, which catalyzed a surface 

rupture exceeding 340 km in length (Hreinsdottir et al., 2003). Cenozoic motion along and adjacent to the 

Denali Fault system has resulted in the dramatic topography of the Alaska Range (>6 km relief), focused arc 

magmatism (Berkelhammer et al., 2019; Brueseke et al., 2019), and caused a transient but extreme exhumation 
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history for rocks proximal to the fault zone (Fitzgerald et al., 1995; Riccio et al., 2014; e.g. Waldien et al., 

2018; Benowitz et al., 2019). 

Total offset and average slip rates across the Denali Fault have remained a contentious topic owing to 

multi-disciplinary datasets pointing to different east to west modern and ancient slip rates (Lowey, 1998; 

Haeussler et al., 2017). Net slip estimates to the east include 370 km of post-Cretaceous slip based on 

correlation of carbonate megaboulders to their source (Lowry, 1998) and >400 km of post 57 Ma slip based on 

terrane correlation (Fig. 1)(e.g. Nokleberg et al., 1985; Ricco et al., 2014). These eastern Denali Fault estimates 

yield an average slip rate of 7 mm/yr since ~57 Ma. In contrast, the reconstruction of the ca. 38 Ma Foraker and 

McGonagall plutons to the west (Figs. 1 and 2) suggest 38 km of net slip (Fig. 2; Reed and Lanphere, 1974). 

Reconstruction of these two plutons establishes an average slip-rate of 1 mm/yr.

Cosmogenic exposure dating of offset glacial features constrains Pleistocene right-lateral motion on the 

Denali Fault to  ~14 mm/yr within the eastern Alaska Range and 5 mm/yr along the western edge of the 

assumed Foraker pluton (Fig. 1) (Haeussler et al., 2017), consistent with decreasing slip from east to west 

along the Denali Fault. In addition, rigorously-scaled analogue modelling (Toenenboehn et al., 2018) paired 

with high-resolution thermochronology (Fitzgerald et al., 1995, Lease et al., 2016; Burkett et al., 2016) studies 

demonstrates that the current restraining bend geometry and resultant localized uplift of Mount Denali could be 

accommodated almost entirely within the last six million years indicating significant strike-slip motion during 

this time period. As new studies employing a wide variety of analytical approaches through space and time 

converge on higher slip rates for the western Denali Fault, the validity of the oft-cited Foraker-McGonagall 1 

mm/yr piercing point comes into question (Fig. 3). 

TESTING THE FORAKER-MCGONAGALL PIERCING POINT

To evaluate the validity of the Foraker-McGonagall piercing point, we present a combined dataset 

(DR1) of U-Pb zircon geochronology, Hf-isotope analysis, and bulk rock geochemistry. We present detrital 

zircon U-Pb geochronologic data from catchments that drain the Foraker and McGonagall plutons. The 

combined bedrock-detrital approach provides unmatched insight into the age and petrogenesis of each pluton.

Petrographic analyses of each pluton display intrapluton consistency, but differences between the two 

plutons. As noted by Reed and Lanphere (1974), the Foraker pluton contains greater modal K-feldspar 

(perthitic) and reddish biotite (Fig. 4), whereas the McGonagall pluton is composed mostly of well-zoned 

plagioclase feldspar, quartz, matrix K-feldspar, biotite, and local hornblende. The two plutons have limited 

overlap with respect to major element composition (for geochemical data see DR2), with samples from the 

Foraker pluton ranging from 68.4 – 73.7 wt % SiO2, with only one sample below 70.0 wt% while the 

McGonagall ranges from 66.0 – 70.3 wt %SiO2 (Fig. 5a,b). REE patterns normalized to primitive mantle for A
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the McGonagall pluton have steep LREE and MREE slopes with flat HREE concentrations (Fig. 4c) and high 

Sr and low Y and Yb concentrations (Fig. 5d), similar to crustal-derived adakitic rocks from the Lhasa Terrane 

in India (Shui et al., 2018). In contrast, the Foraker pluton has steep LREE patterns with large negative Eu 

anomalies, and relatively flat HREE. 

Detrital zircon U-Pb geochronology from modern river sediments provides a spatially representative 

sampling of each pluton (see DR3). Detrital zircon from an isolated catchment draining the McGonagall pluton 

(n = 68; Muldrow glacier) were analyzed via LA-ICP-MS and compared with existing and new detrital U-Pb 

data from Yenta and Kahiltna catchments presented in Lease et al. (2016) (n = 94; Foraker pluton) in an 

attempt estimate the range of ages present in each pluton. Catchments receiving detritus from the Foraker 

pluton yield a weighted Eocene average of 36.5 ± 0.3 Ma (33.88 – 39.96 Ma), in comparison to detrital zircon 

from the Muldrow catchment sourced from the McGonagall pluton, which is older (39.2 ± 0.4 Ma; range: 

36.50 – 45.67 Ma) (Fig. 2b). Detrital zircon U/Th ratios are also systematically different between the two 

datasets where zircon from Yentna and Kahiltna catchments yielded average U/Th ratios of 4.1 (2σ=3.2) 

relative to Eocene zircon detritus from the Muldrow catchment (average U/Th = 2.8; 2σ=1.4). 

Paired U-Pb and Hf-isotope analysis on zircon (see DR4) was performed on four samples from along 

each pluton to establish upper and lower bounds on crystallization, to assess gradients that may help decipher 

pluton zonation, and to evaluate the role of contamination that may have modified bulk compositions. All 

zircon analyzed in this study are relatively homogeneous, often displaying oscillatory zoned doubly-terminated 

prismatic morphologies (Fig. 6a). One existing SHRIMP dataset presented in Hung (2008) from the Foraker 

pluton yielded a 206Pb/238U weighted mean of 37.2 ± 0.3 (MSWD: 1.8; Fig. 2 for location). Four additional 

samples were analyzed and presented herein. Two samples yielded tightly clustered 206Pb/238U weighted 

averages consistent with results in Hung (2008; 37.93 ± 0.42 Ma and 37.59 ± 0.36 Ma; Fig. 6b,c), which young 

from east to west. The other two samples from the western portion of the Foraker pluton yielded Paleocene 

ages (206Pb/238U weighted averages: 58.45 ± 0.72 and 58.86 ± 0.60 Ma; Fig. 6b) and indicate that some portions 

of the western Foraker pluton belong to the older McKinley sequence of granitoids (Lanphere and Reed, 1985; 

Hung, 2008). Samples from the McGonagall pluton have 206Pb/238U weighted average ranging from 42.39 ± 

0.34 Ma in the west to 38.78 ± 0.23 Ma in the east, with all samples consistently decreasing in age from the 

western end of the pluton to the east (Fig. 6d). Data from the two plutons indicate no overlap in crystallization 

ages, opposing younging trajectories, and suggest that portions of the western Foraker pluton are not Eocene, 

but rather belong to an older and more widespread magmatic event in the Alaska Range.  

Hf-isotope analyses indicate that both the Foraker and McGonagall plutons have εHf(t) values slightly 

below contemporaneous depleted mantle, and well above CHUR (Fig. 7). However, the McGonagall pluton has A
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somewhat lower ɛHf(t) values (+5.5 to+10.3) than the Foraker pluton samples (+9.7 to+14.0). These results are 

consistent with intrusion of the McGonagall pluton on the North America side of the Denali Fault, where North 

American lithosphere is more isotopically evolved, but are inconsistent with the Foraker-McGonagall 

reconstruction. If compositional variations were the result of contamination distribution in a once coherent 

pluton, lower ɛHf(t) values would be predicted in the more compositionally evolved (higher SiO2, K2O, and less 

Al2O3) pluton. However, our geochemical data indicate that the Foraker pluton is more compositionally 

evolved than the McGonagall pluton. Therefore, the dataset generated by our combined approach make the 

Foraker-McGonagall pluton correlation untenable. 

IMPLICATIONS FOR LONG TERM SLIP ON THE DENALI FAULT

The three-dimensional structure and corresponding Moho offset of the Denali Fault are inconsistent 

with suggested primarily vertical-motion to explain relatively minor (<40 km) apparent strike-slip separation 

since the late Eocene  (Csejtey et al., 1982; Mezger et al., 1997), as normal and reverse faults generally shallow 

with increasing depth. Structural analysis and sedimentology of early Cenozoic basins indicate deposition 

synchronous with right-lateral motion beginning after final collision of the Wrangellia Composite Terrane at 

ca. 60 Ma (Cole et al., 1999; Ridgeway et al., 2002). Eocene – Oligocene basin development is preserved on 

both sides of the Denali Fault and corresponding stratigraphic relationships are consistent with predominately 

strike-slip motion along the Denali Fault since the Eocene (Trop et al., 2004, 2019). Fabric analysis paired with 

piercing point reconstructions, syn-kinematic dike swarms, thermochronologic data, and offset glacial features 

require continual dextral motion from ~30 Ma to present (Benowitz et al., 2011;2012a,2014, 2019; Riccio et 

al., 2014; Burkett et a.., 2016; Lease et al., 2016; Tait, 2017; Haeussler et al., 2017; Waldien et al., 2018; Trop 

et al., 2019). These interdisciplinary data in totality are consistent with predominately right-lateral strike slip 

motion along the Denali Fault throughout the Cenozoic to the present.

Total Cenozoic displacement along the Denali Fault remains a critically unresolved question in North 

American Cordilleran tectonics. Establishing robust piercing points and questioning long-standing slip limiting 

constraints with modern tools adds insight to our understanding of strain partitioning along strike-slip faults 

(Burkett et al., 2016), Baja-Alaska models of large-scale translation of geologic features (Garver and Davidson, 

2015), and the transfer of slip from the plate margin interface inboard (Elliot et al., 2013). The long-held 

Foraker-McGonagall pluton reconstruction has limited the amount of allowable Cenozoic offset across the 

Denali Fault to no more than 38 km since ~38 Ma (Reed and Lanphere, 1974) calling into question the role a 

~2000 km long lithospheric-scale structural feature has played in the Cenozoic history of North American 

Cordilleran tectonics. However, new U-Pb and Hf-isotope data, and bulk-rock major and trace element 
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chemistry confirm that this oft-cited piercing point is no longer tenable. Rather, the Foraker and McGonagall 

plutons have disparate origins, emplaced as two separate plutonic bodies along the Denali Fault.

Removing this long-held constraint reinforces the viability of continuous strike-slip motion on the 

Denali Fault since ~57 Ma (Nokleberg et al., 1985; Riccio et al., 2014; Burkett et al., 2016; Haeussler et al., 

2017; Trop et al., 2019). Based on the now invalidated Foraker-McGonagall piercing point, the amount of 

Cenozoic net slip decrease east to west is likely significantly less than the previous assumed ~360 km of 

missing slip. It has been suggested that slip rates on the Denali Fault, based on thermochronology analysis, 

have been consistent since ~25 Ma (Benowitz et al., 2014) which correlates with a newly defined change in 

Pacific plate motion (Jicha et al., 2018). Pleistocene rates to the east (~14 mm/yr) lead to ~350 km of offset 

extrapolated since ~25 Ma and Pleistocene rates to the west (~5 mm/yr) lead to ~125 km of offset since ~25 

Ma. The east to west Denali Fault offset difference since ~25 Ma is ~225 km. These time averaged rates are 

remarkably similar to those obtained from other suggested geologic piercing points (Fig. 1) (West: ~150 km 

since ~29 Ma, Trop et al., 2019; East: ~300 km since ~25 Ma, Benowitz et al., 2012b; East: ~80 km since ~6 

Ma; Waldien et al., 2018). The structures responsible for and the mechanics of the ~225 km of missing 

Neogene Denali Fault slip remains an open question, but thrust splays off the south side of the fault (Riccio et 

al., 2014; Haeussler et al., 2017) and dip-slip motion along the master Denali Fault strand (Benowitz et al., 

2011) clearly play a significant role.

 Our overall workflow involving a spatially representative geochemical, geochronologic, and isotopic 

dataset is a robust method to distinguish discrete plutons of similar age and character from a once coherent 

pluton that was tectonically dismembered. In particular, the combination of a modern river catchment zircon U-

Pb zircon detrital approach to better capture a large pluton’s construction history with higher precision zircon 

U-Pb dating of bedrock samples allows for a more complete testing of the genetic relationship between  pluton 

emplaced along a strike-slip fault.
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DATA AVAILABILITY STATEMENT

We present a combined dataset in the supplementary material.
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FIGURE CAPTIONS

Figure 1: Simplified tectonic map of southern Alaska on a shaded relief base with existing Denali Fault 

geologic constraints of offset and slip rate calculations (modified from Fitzgerald et al. (2014). Pleistocene slip 

rates from Haeussler et al. (2017)). HCf: Hines Creek Fault; Tf: Totschunda Fault; Taf: Talkeetna Fault; WVf: 

Wrangell Volcanic field; CMf: Castle Mountain fault; BRf: Border Ranges fault; Ff: Fairweather fault

Figure 2: Simplified geologic map of the Denali Fault modified after Reed and Lanphere (1974) showing 

interpreted offset between Foraker and McGonagall plutons and drainage divides for the modern river detrital 

samples. Sample locales are shown, and available in DR1. Inset in upper left shows location in relation to the A
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northern Cordillera. Inset in lower right shows detrital zircon U-Pb geochronologic results from modern river 

sediments draining both the Foraker and McGonagall plutons given as probability density plots. 

Figure 3:  Field photograph of the McGonagall pluton adjacent to the north side of glaciated Denali Fault. 

Denali Fault covered by the Muldrow Glacier. Field photo location is Gunsight pass and noted on Fig. 2.

Figure 4: Representative photomicrographs from Foraker (upper photo) and McGonagall (lower) plutons. 

Notice coarse K-feldspar in Foraker sample where the McGonagall is dominated by plagioclase, often 

preserving oscillatory zonation. Scale bar in both photographs is 1 mm.

Figure 5: Summary of geochemical results. A-B) Fe-index (A)  and modified alkali lime index (B) plots (after 

Frost and Frost (2008)) showing new data from Foraker and McGonagall plutons as well as original data 

presented by Reed and Lanphere (1974) – note the magnesian and calcic nature of both plutons consistent with 

an oxidized and high temperature origin; C) Chondrite-normalized REE diagram (Sun and McDonough, 1989) 

for the McGonagall and Foraker plutons (note slope differences and Eu anomaly present in Foraker samples); 

D) incompatible element diagram (Sun and McDonough, 1989) showing similar patterns in both Foraker and 

McGonagall plutons consistent with an arc origin, but the McGonagall pluton has a strong positive Sr anomaly 

and contains other attributes similar to adakitic rocks derived from lower-crustal sources.

Figure 6: A) False-colored cathodoluminescence image of representative zircon from the Foraker pluton 

showing oscillatory zonation and doubly terminated geometry consistent with an igneous origin; B) Tera-

Wasserburg plots from four samples from the Foraker pluton (see Figure 2). Note that the two samples of the 

western Foraker pluton from adjacent to the Denali Fault are significantly older than the remainder of the 

pluton, and likely correlative with a more widespread intrusive event (McKinley sequence; Lanphere and Reed, 

1985); C) 206U/238Pb results from two easternmost samples in the Foraker pluton that yielded Eocene results; D) 

Tera-Wasserburg plots from four samples over 206Pb/238U results from all samples from the McGonagall pluton 

arranged from west to east (note the eastward younging direction). Note that there is no overlap in 

crystallization age of the two plutonic systems.

Figure 7: Paired U-Pb and Hf isotopic results from Eocene samples from this study and from Hung (2008) with 

1 σ error bars shown (error bars for Hung (2008) ɛHf(T) approximated at 1 epsilon unit) comparing 

crystallization ages and range in Hf isotopic composition. Note no overlap between the two plutonic rocks, A
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with consistently lower ɛHf(T) values and older crystallization ages from the McGonagall pluton. These data, in 

conjunction with detrital zircon and bulk rock geochemical analyses, disprove the long-held Foraker-

McGonagall piercing point. 
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