
Weakly Secure Symmetric Multilevel Diversity
Coding

Tao Guo, Chao Tian, Tie Liu
Dept. of Electrical and Computer Engineering

Texas A&M University
{guotao,chao.tian,tieliu}@tamu.edu

Raymond W. Yeung
Dept. of Information Engineering

The Chinese University of Hong Kong
whyeung@ie.cuhk.edu.hk

Abstract—Multilevel diversity coding is a classical coding
model where multiple mutually independent information mes-
sages are encoded, such that different reliability requirements
can be afforded to different messages. It is well known that
superposition coding, namely separately encoding the independent
messages, is optimal for symmetric multilevel diversity coding
(SMDC) (Yeung-Zhang 1999). In the current paper, we consider
weakly secure SMDC where secrecy constraints are injected on
each individual message, and provide a complete characterization
of the conditions under which superposition coding is sum-
rate optimal. Two joint coding strategies, which lead to rate
savings compared to superposition coding, are proposed, where
some coding components for one message can be used as the
encryption key for another. By applying different variants of
Han’s inequality, we show that the lack of opportunities to apply
these two coding strategies directly implies the optimality of
superposition coding. It is further shown that under a particular
security configuration, one of the proposed joint coding strategies
can be used to achieve the optimal sum rate.

I. INTRODUCTION

Symmetric multilevel diversity coding (SMDC) was in-
troduced by Roche et al. [1] and Albanese et al. [2] for
applications in distributed data storage and robust network
communication. In a symmetric L-level diversity coding sys-
tem, there are L independent messages (M1,M2, . . . ,ML),
where the importance of messages decreases with the subscript
l. The messages are encoded by L encoders. There are totally
2L − 1 decoders, each of which has access to the outputs
of a distinct subset of the encoders. A decoder which can
access any α encoders, called a Level-α decoder, is required
to reconstruct the first α messages. The system is symmetric
in the sense that the reconstruction requirements depend on
the set of encoders only via its cardinality. It was shown that
separately encoding these independent messages, referred to as
superposition coding, is optimal in the sense that it can achieve
not only the minimum sum rate [1], [2] but in fact the entire
rate region [1], [3]. Later efforts extending and generalizing
this result can be found in, for example, [4]–[8].

In this paper we consider a weakly secure setting of the
classical SMDC problem, where the security level of each
message is specified by a separate security parameter Nα.
More specifically, for any α = 1, 2, . . . , L, we require the
message Mα to be kept perfectly secure if the outputs of no
more than Nα encoders are accessible by an eavesdropper.

The work of C. Tian was supported in part by the National Science
Foundation under Grants CCF-18-32309 and CCF-18-16546.

Such a security requirement is “weak” in the sense that the
eavesdropper is only prevented from obtaining any information
about the individual messages. By comparison, the security
requirement of [5], [6] is strong in that it prevents the
eavesdropper to obtain any information about the entire set of
messages. The notion of weak security has been considered
in various network coding settings [9]–[12] and multi-access
wiretap channel settings [13] in the literature and is generally
considered to be more practical for protecting individual
messages regardless of their relations.

Note that on the one hand, the notion of weak security has
significantly enriched the collection of secure SMDC prob-
lems: Unlike the strongly secure setting where it is necessary
to consider a single security parameter for all messages, for
the weakly secure setting each message can be associated with
a different security parameter. On the other hand, the notion
of weak security has also cast the optimality of superposition
coding in much greater doubt, as asking the messages only to
be protected marginally (instead of jointly) also significantly
opens up the set of feasible coding strategies. Our main goal
for this paper is: 1) to understand under what configurations
of the security parameters (N1, N2, . . . , NL) superposition
coding remains to be optimal; and 2) to identify optimal coding
strategies when superposition coding is suboptimal.

The main result of this paper is a precise classification of
the cases, in terms of the parameter (N1, N2, . . . , NL), where
superposition is sum-rate optimal, i.e., a set of necessary and
sufficient conditions on (N1, N2, . . . , NL) for superposition
to be sum-rate optimal. Two joint coding strategies, which are
built on utilizing some coding components for one message as
the encryption key for another and lead to rate savings com-
pared to superposition coding, are proposed. Then we show
that lacking the opportunity to utilize either of the two joint
coding strategies implies that superposition coding is in fact
optimal. We further provide a special security configuration
where the proposed joint coding strategies directly lead to the
optimal sum-rate. The essential proofs can be found in [14].

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Let L , {1, 2, · · · , L}, where L ≥ 2. Let M1,M2, · · · ,ML

be a collection of L mutually independent messages uniformly
distributed over the direct product of certain finite sets. For
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Fig. 1: The Weakly Secure SMDC Model

simplicity, we assume the message set to be Fpm1 × Fpm2 ×
· · ·×FpmL , where Fpm1 is a finite field of order pm1 and p is
an integer power of some prime number. We may also regard
Mα (α ∈ L) as Mα = (M1

α,M
2
α, · · · ,Mmα

α ) where M i
α ∈ Fp

for i = 1, 2, · · · ,mα.

The weakly secure SMDC problem is depicted in Fig. 1.
There are L encoders, indexed by L, each of which can access
all the L information messages. There are also 2L−1 decoders.
For each U ⊆ L such that U 6= ∅, Decoder-U can access the
outputs of the subset of encoders indexed by U . For α ∈ L and
any U such that |U| = α, Decoder-U can completely recover
the first α messages M1,M2, · · · ,Mα. In addition, there is
an eavesdropper who has access to the outputs of a subsets A
of encoders. Let N = (N1, N2, · · · , NL) be L non-negative
integers, where Nα < α for α ∈ L. Weak security requires that
each individual message Mα should be kept perfectly secure
from the eavesdropper if |A| ≤ Nα.

Formally, an (m1,m2, · · · ,mL, R1, R2, · · · , RL) code is
defined by the encoding functions

El :
L∏
i=1

Fpmi ×K → FpRl , for l ∈ L (1)

and decoding functions

DU :
∏
l∈U

FpRl →
|U|∏
i=1

Fpmi , for U ⊆ L and U 6= ∅. (2)

Denote the shared key as K (accessible to all the encoders),
which is uniformly distributed in the key space K. Let
Wl = El(M1,M2, · · · ,ML,K) be the output of Encoder-
l and WU = (Wi : i ∈ U) for U ⊆ L. Define the
normalized message rates ml , ml/

∑L
l=1ml, from which it

follows that
∑
lml = 1. A normalized non-negative rate tuple

(R1,R2, · · · ,RL) is achievable for the normalized message
rates (m1, . . . ,mL), if for any ε > 0, there exist an integer a
and an (am1, am2, · · · , amL, R1, R2, · · · , RL) code such that

perfect reconstruction: DU (WU ) = (M1,M2, · · · ,Mα),

∀α ∈ L and U ⊆ L s.t. U 6= ∅, (3)
perfect secure: H(Mα|WA) = H(Mα),

∀α ∈ L and A ⊆ L s.t. |A| ≤ Nα, (4)

and

coding rate: Rl + ε ≥ a−1Rl, l ∈ L. (5)

Remark 1. Here each message Mα can essentially be repre-
sented in mα log p bits, and each codeword Wl can be repre-
sented in Rl log p bits. Thus Rl can be viewed as the coding
rate of encoder El when the definition of the entropy function
uses logarithm in the base p, which will be assumed hereafter.
The quantity Rl is then essentially the normalized Rl.

In this work we focus on the minimum achievable normal-
ized sum rate R∗sum , min

∑L
i=1 Ri, and our main result is a

necessary and sufficient condition for superposition coding to
be sum-rate optimal.

B. An Achievable Sum Rate via Superposition Coding

Let M be a message encoded by n encoders. For any
0 ≤ c < k ≤ n, the (c, k, n) ramp secret sharing problem [15],
also known as the secure symmetrical single-level diversity
coding (S-SSDC) problem in [5], requires that the outputs
from any subset of no more than c encoders provide no
information about the message, and the outputs from any
subset of k encoders can completely recover the message. The
minimum sum rate for this problem can be found in [5], [16],
as stated in the following lemma.

Lemma 1. The minimum sum rate of the (c, k, n) ramp secret
sharing is n

k−cH(M).

In light of this result, a natural coding scheme (i.e., su-
perposition coding) for the weakly secure SMDC problem
formulated above is to separately encode each message Mα

using an (Nα, α, L) ramp secret sharing code. The sum rate
induced by superposition coding provides an upper bound R̄sum
for R∗sum, and by Lemma 1, it can be written simply as,

R̄sum ,
L∑
α=1

Lmα

α−Nα
. (6)

C. Properties of MDS Code for Secret Sharing

In this section, we describe in some details two (n, k)
maximum distance separable (MDS) codes for ramp secret
sharing that achieve the minimum sum rate in Lemma 1, and
provide important properties that are instrumental to the joint
coding strategy we later propose.

Let M = (U1, U2, · · · , Uk−c) be a length-(k − c) message
where each symbol is chosen uniformly and independently
from the finite field Fp. Let Z1, Z2, · · · , Zc be independent
random keys chosen uniformly from the same finite field Fp.
For i = 1, 2, · · · , k, define the following length-k vectors:

fi = [0 · · · 0︸ ︷︷ ︸
i−1

1 0 · · · 0]T . (7)

Let g1, g2, · · · , gn be length-k vectors such that any
k vectors {hj1 , hj2 , · · · , hjk} chosen from the set
{f1, f2, · · · , fk, g1, g2, · · · , gn} satisfy the full rank condition

rank [hj1 hj2 · · · hjk ] = k. (8)

It can be shown that as long as p ≥ n + k, there exist such
vectors g1, g2, · · · , gn, e.g., it can be chosen as the columns
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from a Cauchy matrix. The generator matrices of the two MDS
codes of interest are given, respectively, as

G(1) = [fk−c+1 · · · fk g1 g2 · · · gn−c] , (9)

G(2) = [g1 g2 · · · gn] . (10)

Then the codewords of two MDS codes are, respectively,

[Y1, Y2, · · · , Yn] =
[
M1 · · · Mk−c Z1 · · · Zc

]
G(1), (11)

[Y1, Y2, · · · , Yn] =
[
M1 · · · Mk−c Z1 · · · Zc

]
G(2). (12)

We shall refer these two codes as MDS-A and MDS-B,
respectively. By the definition of fk−c+1, · · · , fk in (7), MDS-
A has the random keys explicitly as part of the coded message,

[Y1, Y2, · · · , Yc] =
[
Z1 Z2 · · · Zc

]
. (13)

It is obvious that for both codes, M and Z1, Z2, · · · , Zc can
be perfectly recovered from any k coded symbols.

Since all the coded symbols are linear combinations of the
messages and the random keys that are uniformly distributed,
we have the following lemma.

Lemma 2. Any k coded symbols of MDS-A and MDS-B are
uniformly distributed over Fpk .

The main difference between the two codes, which is the
most relevant to this work, is given in the following two
lemmas. The proofs follow directly from (8) and the proofs
are omitted due to space constraint.

Lemma 3. For any integer t such that c ≤ t ≤ k, let E ⊆
{1, 2, · · · , n} where |E| = t, and A ⊆ {1, 2, · · · , k−c} where
|A| = k − t. The codewords of MDS-A have the following
property:

I(YE ;MA) = 0, (14)

where YE , {Yi : i ∈ E} and MA , {Mi : i ∈ A}.
Remark 2. For t = c, Lemma 3 reduces to the stated security
constraint of parameter c; on the other hand, for t > c (but
t ≤ k), any t coded symbols reveal no information about any
subset of k − t message symbols.

Lemma 4. For any integer t such that 0 ≤ t ≤ k, let E ⊆
{1, 2, · · · , n} where |E| = t, and A1 ⊆ {1, 2, · · · , k− c}, and
A2 ⊆ {1, 2, · · · , c} where |A1|+ |A2| = k−t. The codewords
of MDS-B have the following property:

I(YE ;MA1 , ZA2) = 0, (15)

where YE , {Yi : i ∈ E}, MA1 , {Mi : i ∈ A1}, and
ZA2 , {Zi : i ∈ A2}.

In contrast to MDS-A, MDS-B has the additional advantage
that part of the keys can also be made secure against some
t eavesdroppers, at the expense of exposing some message
symbols. This property becomes important to us in the sequel.

III. MAIN RESULTS

The main question we seek to answer here is under what
condition the equality R∗sum = R̄sum will hold, and the follow-
ing theorem provides the exact answer to this question.

Theorem 1. R∗sum = R̄sum, if and only if for any α < β ∈ L
where mα > 0 and mβ > 0, we have

either Nα < α ≤ Nβ < β, or Nα = Nβ = 0. (16)

Remark 3. If the security constraints are given as

Nα = 0, for all α ∈ L, (17)

then the problem reduces to the classical SMDC problem
without security constraints, where superposition is known to
be optimal [3], and Theorem 1 reduces correctly for this case.

Theorem 1 can be alternatively written in the following
form, by taking the complement of the conditions in (16).

Theorem 1’. R∗sum < R̄sum, if and only if there exist α < β ∈ L
where mα > 0 and mβ > 0 such that

either (Nα < Nβ < α), or (Nβ ≤ Nα & Nα > 0). (18)

We prove Theorem 1 in two parts. In Section IV, we show
that superposition is suboptimal under the security constraints
in (18), by providing joint coding strategies that can reduce
the coding rates. In Section V, the optimality of superposition
coding is established by a matching sum rate lower bound.

When superposition is not optimal, the characterization of
the minimum sum rate remains open in general. Our next
result is that for a special security configuration, a joint coding
strategy proposed in Section IV can be used to build an optimal
coding scheme. Consider the case where N is given by

Nα =

{
α− 1, for 1 ≤ α ≤ r
0, for r + 1 ≤ α ≤ L,

(19)

for certain parameters (L, r). We refer to this system as
the (L, r) differential-constant secure SMDC (DS-SMDC),
where the more important messages (i.e., small α values) are
maximally protected (Nα = α − 1) and the less important
messages are not protected at all (Nα = 0). For r = 1, the
problem reduces to the classical SMDC.

Let ML+1 be an independent message uniformly distributed
over FpmL+1 with

mL+1 =

[
r∑

α=1

(α− 1)mα −
L∑

α=r+1

mα

]+
, (20)

where for any x ∈ R, [x]+ , max(0, x). Let η∗ ∈ {r+ 1, r+
2, · · · , L+ 1} be the unique integer such that

η∗−1∑
α=r+1

mα <
r∑

α=1

(α− 1)mα ≤
η∗∑

α=r+1

mα. (21)

Our main result on DS-SMDC is the following theorem, the
proof of which is omitted due to space constraint.

Theorem 2. The minimum sum rate of DS-SMDC is

R∗sum =
r∑

α=1

(
1− α− 1

η∗

)
Lmα+

η∗∑
α=r+1

Lmα

η∗
+

L∑
α=η∗+1

Lmα

α
.

(22)

IV. ACHIEVABILITY OF THEOREM 1: JOINT CODING
STRATEGIES

In order to prove the necessity direction of Theorem 1, we
instead prove the sufficiency direction of Theorem 1’, in the
two separate cases given in (18).
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A. Low Security Level at Higher Diversity Level

In this section, we provide a joint coding strategy for the
case Nα < Nβ < α which provides rate saving, compared to
superposition coding. We first discuss a motivating example to
illustrate the key insight on how such rate saving is obtained.

Example 1. Let L = 3, (α, β) = (2, 3), (m2,m3) =
(2, 2), (N2, N3) = (0, 1), and p = 5. Let Z3 be an independent
random key uniformly chosen from Fp. Let the two messages
be encoded with generator matrices constructed using MDS-
A, which induce the coded symbols as shown in Table I(a)
through superposition. The important insight is that the coded
message of M2 can be used as the secret key to encode M3,
which reduces the coding rate. More precisely, we replace
Z3 by Y 1

2 = Z1
2 + Z2

2 to serve as the key for M3, where
Y 1
2 denotes the code symbol for Mα and Encoder-1 under the

superposition strategy. The coded symbols for this joint coding
strategy are shown in Table I(b). By comparing the two tables,
it is seen that the sum rate is reduced since the coded symbol
Z3 is eliminated.

TABLE I: Coding strategy for Example 1

W1 W2 W3

α = 2 Y 1
2 =M1

2 +M2
2 2M1

2 +M2
2 M1

2 + 2M2
2

β = 3 Z3 M1
3 + 2M2

3 + Z3 2M1
3 +M2

3 + Z3

(a) Superposition coding strategy

W1 W2 W3

α = 2
Y 1
2 =M1

2 +M2
2

2M1
2 +M2

2 M1
2 + 2M2

2
β = 3 M1

3 + 2M2
3 + Y 1

2 2M1
3 +M2

3 + Y 1
2

(b) Joint coding strategy

The reconstruction requirements of both M2 and M3 are
straightforward. There is no security requirement on M2. For
M3, it is seen that any one coded symbol Wl reveals no
information about M3. For instance, eavesdropping W2 gives

H(M3|M1
3 + 2M2

3 + Y 1
2 ,M

1
2 + Y 1

2 ) = H(M3). (23)

Coding strategy for general parameters:

First encode separately Mα and Mβ with generator matrices
Gα and Gβ using MDS-A in Section II-C. The coded symbols
for superposition coding strategy are as given in Table II(a).
The joint coding strategy we propose is then to replace
the first θ = min{Nβ , α − Nβ} encryption key symbols
(Z1

β Z
2
β · · · Zθβ) using the coded symbols (Y 1

α , Y
2
α , · · · , Y θα ).

Denote the corresponding codewords for Mβ thus obtained
as (Y 1∗

β , Y 2∗
β , · · · , Y L∗β ). The joint coding strategy of Mα

and Mβ is illustrated in Table II(b) and can be described as
follows:

Wi =

{
Y iα, for 1 ≤ i ≤ θ
[Y iα, Y

i∗
β ], for θ < i ≤ L.

(24)

By comparing Table II(a) and Table II(b), it can be seen that
the coding rate is reduced compared to superposition coding
because (Y 1

β , Y
2
β , · · · , Y θβ ) are removed from the codeword,

while the rates for all the others are kept the same as before.
Next, we verify the reconstruction and security constraints for
the two messages.

TABLE II: Coding strategy to replace encryption keys for Mβ

W1 W2 · · · Wθ Wθ+1 · · · WL

α Y 1
α Y 2

α · · · Y θα Y θ+1
α · · · Y Lα

β Y 1
β Y 2

β · · · Y θβ Y θ+1
β · · · Y Lβ

(a) Superposition coding strategy

W1 W2 · · · Wθ Wθ+1 · · · WL

α
Y 1
α Y 2

α · · · Y θα
Y θ+1
α · · · Y Lα

β Y
(θ+1)∗
β · · · Y L∗

β

(b) Joint coding strategy

Reconstruction: The reconstruction requirements of both Mα

and Mβ are straightforward.

Security: We consider the security requirements for the two
levels separately.

1) Assume we can access Nα coded symbols WB, |B| =
Nα. Partition B into B1 and B2 such that B1 ⊆
{1, 2, · · · , θ} and B2 ⊆ {θ + 1, · · · , L}. Notice

H(Y ∗B2

β |Mα, Y
B1
α Y B2

α ) = H(Y ∗B2

β |Mα, Y
1:θ
α , Y B2

α )

= H(Y ∗B2

β |Y 1:θ
α ) = H(Y ∗B2

β ), (25)

where the second equality follows from the Markov chain
Y ∗B2

β ↔ Y 1:θ
α ↔ (Mα, Y

B2
α ), and the last equality

follows from Lemma 2 because

|B2|+ θ ≤ Nα + θ (26)
= Nα + min{α−Nβ , Nβ} ≤ α < β, (27)

where the second inequality follows from Nβ < Nα. It
follows that

I(WB;Mα) = I(WB1
WB2

;Mα)

= I(Y B1
α Y B2

α Y ∗B2

β ;Mα) (28)

= I(Y B1
α Y B2

α ;Mα) + I(Y ∗B2

β ;Mα|Y B1
α Y B2

α ) (29)

= I(Y ∗B2

β ;Mα|Y B1
α Y B2

α ) = 0, (30)

where the last but one equality follows from Lemma 3
and the fact that |B1|+ |B2| = Nα, and (30) follows from
(25). Thus indeed WB reveals nothing about Mα.

2) Assume we can access Nβ coded symbols WB, |B| = Nβ .
Partition B into B1 and B2 such that B1 ⊆ {1, 2, · · · , θ}
and B2 ⊆ {θ + 1, · · · , L}. We first consider

H(Y B2
α |Y B1

α Y ∗B2

β )

≥ H(Y B2
α |Y B1

α Y ∗B2

β Mβ) (31)

≥ H(Y B2
α |Y 1

α · · ·Y θα , Zθ+1
β · · ·ZNββ ,MβY

∗B2

β ) (32)

= H(Y B2
α |Y 1

α · · ·Y θα , Zθ+1
β · · ·ZNββ ,Mβ) (33)

= H(Y B2
α , Y 1

α · · ·Y θα |Zθ+1
β · · ·ZNββ ,Mβ)

−H(Y 1
α · · ·Y θα |Zθ+1

β · · ·ZNββ ,Mβ) (34)

= H(Y B2
α , Y 1

α · · ·Y θα )−H(Y 1
α · · ·Y θα ) (35)

= H(Y B2
α ), (36)

where both (31) and (32) follow from the fact that condi-
tioning does not increase entropy, (33) follows from that
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Y ∗B2

β is a function of (Y 1
α · · ·Y θα , Zθ+1

β · · ·ZNββ ,Mβ),
(35) follows from that (Zθ+1

β · · ·ZNββ ,Mβ) are indepen-
dent of (Y B2

α , Y 1
α · · ·Y θα ), and the last equality follows

from Lemma 2, because |B2| + θ ≤ α which is induced
from θ ≤ α −Nβ . Since conditioning does not increase
entropy, in light of (36), we obtain

H(Y B2
α |Y B1

α Y ∗B2

β Mβ)

= H(Y B2
α |Y B1

α Y ∗B2

β ) = H(Y B2
α ). (37)

Then we have

I(WB;Mβ) = I(WB1
WB2

;Mβ) (38)

= I(Y B1
α Y B2

α Y ∗B2

β ;Mβ) (39)

= I(Y B1
α Y ∗B2

β ;Mβ) + I(Y B2
α ;Mβ |Y B1

α Y ∗B2

β ) (40)

= I(Y B2
α ;Mβ |Y B1

α Y ∗B2

β ) (41)

= H(Y B2
α |Y B1

α Y ∗B2

β )−H(Y B2
α |Y B1

α Y ∗B2

β Mβ) (42)

= H(Y B2
α )−H(Y B2

α ) (43)
= 0, (44)

where (41) follows from Lemma 3 and the fact that |B1|+
|B2| = Nβ , and (43) follows from (37). Now we obtain
that WB reveals nothing about Mβ .

B. Reversed Security Level

We next provide a joint coding strategy for the case Nβ ≤
Nα & Nα > 0.

Let Gα be a generator matrix generated using MDS-B in
Section II-C, which can be used to encode Mα separately
with encryption keys (Z1, Z2, . . . , ZNα). The joint coding
strategy is simply to use η = min{Nα, α − Nβ} symbols
of the message Mβ (i.e., M1

β ,M
2
β , · · · ,M

η
β ) to replace the

encryption keys (Z1 Z2 · · · Zη) to encrypt Mα. Denote the
corresponding coded symbols for Mα after this replacement as
(Y 1∗
α , Y 2∗

α , · · · , Y L∗α ). Since the η message symbols of Mβ do
not need to be separately encoded, rate saving is thus obtained.
Next, we verify the reconstruction and security constraints.

Reconstruction: By the code construction in Section II-C, both
the message Mα and the keys Mβ can be losslessly recovered
from any α coded symbols. Since α < β, the reconstruction
requirements of both Mα and Mβ are satisfied immediately.

Security: The security constraint of Mα is straightforward,
and thus let us consider Mβ . For any B ⊆ L such that |B| =
Nβ , let Y ∗Bα = (Y i∗α : i ∈ B). By Lemma 4, we have

I(Y ∗Bα ;M1
β ,M

2
β , · · · ,M

η
β ) = 0, (45)

since η ≤ α−Nβ .

V. OPTIMALITY PROOF OF THEOREM 1

To show the optimality in Theorem 1, we only need to prove
the sum rate bound in (6), which is

L∑
l=1

Rl ≥
L∑
α=1

Lmα

α−Nα
. (46)

For any α ∈ L, let Bα be the set of disjoint subset pairs
(B1α,B2α) such that B1α,B2α ⊆ L,

|B1α| = α−Nα and |B2α| = Nα. (47)

For α ∈ L, let M1:α , (M1,M2, · · · ,Mα). Define µα by

µα =
L

α−Nα
1(

L
Nα

)(
L−Nα
α−Nα

)
·

∑
(B1
α,B2

α)∈Bα

H(WB1
α
|WB2

α
M1:α). (48)

We need the following lemma to proceed.

Lemma 5. For any α ∈ L, we have
L∑
l=1

H(Wl) ≥
α∑
j=1

Lmj

j −Nj
+ µα. (49)

For α = L, in light of (49), we can continue bounding as
L∑
l=1

Rl =
L∑
l=1

H(Wl) ≥
L∑
α=1

Lmα

α−Nα
+ µL ≥

L∑
α=1

Lmα

α−Nα
,

(50)
from which we can obtain, by normalization, the sum rate
bound (46).

REFERENCES

[1] J. R. Roche, R. W. Yeung, and K. P. Hau, “Symmetrical multilevel
diversity coding,” IEEE Trans. Inf. Theory, vol. 43, pp. 1059–1064, May
1997. (conference version: ISIT 1995).
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