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Incorporating modeling activities into
classroom instruction requires flexibility
with pedagogical content knowledge and
the ability to understand and interpret
students’ thinking, skills that teachers often
develop through experience. One way to
support preservice mathematics teachers’
(PSMTs) proficiency with mathematical
modeling is by incorporating modeling

tasks into mathematics pedagogy courses,
allowing PSMTs to engage with mathematical
modeling as students and as future teachers.
Eight PSMTs participated in a model-eliciting
activity (MEA) in which they were asked to
develop a model that describes the strength
of the magnetic field generated by a solenoid.
By engaging in mathematical modeling as
students, these PSMTs became aware of their
own proficiency with and understanding

of mathematical modeling. By engaging in
mathematical modeling as future teachers,
these PSMTs were able to articulate the
importance of incorporating MEAs into their
own instruction.
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Using mathematics to solve real-world problems is con-
sistently identified as one of the most important applica-
tions of mathematics, and students should be regularly
provided the opportunity to experience mathematics in
context (National Council of Teachers of Mathematics
[NCTM], 2000; National Governors Association Cen-

ter for Best Practices & Council of Chief State School
Officers, 2010). Mathematical modeling requires one to
be able to move fluidly between the real world and the
mathematized world and is rooted in the “assumption that
humans interpret their experiences using internal concep-
tual systems (or constructs) whose functions are to select,

filter, organize, and transform information, or to infer pat-
terns and regularities beneath the surface of things” (Lesh
& Lehrer, 2003). To create a meaningful representation of
the given situation when modeling a real-world situation,
students must interpret and make sense of complex and
imperfect information (Daher & Shahbari, 2015).

Mathematical modeling requires facility with mathematics
beyond computational proficiency. Previous success with
routine tasks does not imply proficiency with mathemati-
cal modeling. Garofalo and Trinter (2013) found that
preservice mathematics teachers (PSMTs) who were able
to successfully complete textbook trigonometry exercises
were not as successful when generating mathematical
models to represent the projectile motion of a softball
and the periodic motion of a pendulum. Similarly, Delice
and Kertil (2015) found that preservice teachers struggled
with applying their prior knowledge related to linear and
angular speed when asked to develop a mathematical
model to describe the change in radii in a cassette tape.

Mathematical modeling also requires the ability to
critically analyze the applicability of proposed models.
Zbiek (1998) found that PSMTs who relied too heavily

on technological tools to generate mathematical models
for data had difficulty explaining the appropriateness of
models in mathematical terms. These PSMTs tended to
choose their models based on “goodness of fit” (i.e., r?
values) regardless of whether or not the model reflected
the relationship visible in the data’s scatterplot. When one
is modeling with mathematics, the situation for which the
model is being generated must remain at the forefront.
Yet, for some preservice teachers, connecting math-
ematics with real-world situations is difficult even when
solving tasks that do not require the use of mathematical
models (Verschaffel, De Corte, & Borghart, 1997).

Lesh and Lehrer (2003) argue that the use of modeling
perspectives in classroom instruction emphasizes the idea
that “expertise in teaching is reflected not only in what
teachers can ‘do,” but also what they ‘see’ in teaching,
learning, and problem-solving situations” (p. 111). Suc-
cessfully integrating modeling activities into classroom
instruction requires teachers to have facility with their
pedagogical content knowledge, the ability to understand
and interpret students’ thinking, and knowledge of the
types of contexts and situations that can be modeled.
Because of this, teachers have a tendency to avoid using
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modeling tasks in their own classrooms (Delice & Kertil,
2015). Because these skills are often developed through
experience, implementing modeling activities is particu-
larly difficult for preservice and early career teachers.

One of the indicators of a well-prepared beginning
teacher is having “solid and flexible knowledge of math-
ematical processes and practices” (Association of Math-
ematics Teacher Educators [AMTE], 2017, p. 9). Effective
mathematics teacher preparation programs provide
teacher candidates with “opportunities . . . to learn math-
ematics that enable them to engage in mathematical prac-
tices and processes that are appropriate to the content
being studied” (p. 31). In particular, mathematics teacher
preparation programs should incorporate the practice of
mathematical modeling throughout a teacher candidate’s
course of study (AMTE, 2017).

Theoretical Framework

The documented challenges of PSMTs applying their prior
mathematical knowledge to modeling situations clearly
indicate that this is a skill that does not develop naturally
and must be developed and supported in teacher prepa-
ration courses. Furthermore, modeling with mathematics
is something that can be taught through the use of appro-
priate tasks that encourage multiple solutions (Blum &
Ferri, 2009). Incorporating modeling tasks into mathemat-
ics teacher preparation courses provides preservice teach-
ers with the opportunity to engage with mathematical
modeling, both as student and as teacher, and to become
proficient. Anhalt and Cortez (2016) found that preservice
teachers who participated in a mathematical modeling
module that was integrated into their content pedagogy
course developed a deeper conceptual understanding of
mathematical modeling, better preparing them to inte-
grate mathematical modeling into their future classroom
instruction. Our approach to mathematical modeling is
related but different as we incorporated a STEM-related
modeling activity that we developed using the design
principles of the Model-Eliciting Activity (MEA) theory
into a pedagogy course for PSMTs.

Model-Eliciting Activities

The underlying assumption of the models and modeling
perspective is that people use conceptual systems as a
way to interpret mathematical experiences (Lesh, Doerr,
Carmona, & Hjalmarson, 2003). From this perspective,
problem-solving tasks are those that emphasize interpret-
ing meaningful situations. The process of generating these
complex models is the primary product of such tasks.

Delice and Kertil (2015) propose a five-phase cyclical
process to describe the steps involved in developing a

77

mathematical model (Figure 1). According to this pro-
cess, one needs to first decide how a real-world prob-
lem should be mathematized and then interpret what
information given in the real-world problem is relevant
and which mathematical techniques are appropriate

in developing the model (Crouch & Haines, 2004). As
mathematical models are developed, they are tested and
revised, and the initial real-world problem itself is revis-
ited and reinterpreted as the model is amended (Delice
& Kertil, 2015).

[Malhematizing ] \m

’t Generalizing

[ Interpreting 1 Revising )
e |

Figure 1. Mathematical modeling cycle.

A MEA is “a problem-solving activity constructed using
specific principles of instructional design in which stu-
dents make sense of meaningful situations, and invent,
extend, and refine their own mathematical constructs”
(Kaiser & Sriraman, 2006, p. 306). By emphasizing the
modeling process rather than merely applying known
procedures, MEAs encourage students to think mathemat-
ically and provide them with the opportunity to showcase
their mathematical understanding and capabilities (Daher
& Shahbari, 2015). MEAs also provide students with mul-
tiple entry points to a problem because they encourage
authentic problem solving, defined as “engaging in a task
for which the solution method is not known in advance”
(NCTM, 2000, p. 52). Because there is no prescribed
procedure for MEAs, mathematical modeling tasks are
open-ended, and the final models themselves can vary
(Bliss & Libertini, 2016). When meaningfully incorporated
into classroom instruction, MEAs can support students’
ability to transition between abstract representations in
mathematics and applications of mathematical reasoning
to real-world problems.

The models and modeling perspective also informs

the rationale for incorporating MEAs into mathemat-

ics teacher preparation coursework. According to this
perspective, professional development of teachers should
emphasize “designing effective and sophisticated ways of
helping teachers see and interpret children’s thinking and
support the development of that thinking” (Lesh et al.,
2003, p. 228). Teachers need to be able to develop tasks
that encourage children to develop models. Thus, provid-
ing PSMTs with authentic modeling experiences during
their teacher preparation program can help uncover their

Vol. 8, No. 1, September 2019 e Mathematics Teacher Educator



W20/ 7)
78

own proficiency with and attitudes toward incorporating
modeling activities into their future classroom instruc-
tion. By incorporating MEAs into pedagogy courses,
mathematics teacher educators can support PSMTs’
development of their own conceptual understandings of
mathematical modeling and the knowledge required to
incorporate such tasks into their future teaching.

The MEA on which this study is based was designed

to provide students with the opportunity to develop a
mathematical model to describe a scientific phenomenon
(Ampere’s law). Preservice mathematics teachers were
asked to relate the magnetic field strength generated by

a solenoid to its different attributes (explained below).
The research questions we explored in this study were

(@) What strategies do preservice secondary mathemat-
ics teachers use when experimentally deriving Ampere’s
law? and (b) What are preservice secondary mathemat-
ics teachers’ thoughts about incorporating mathematical
modeling tasks in classroom instruction after participating
in this model-eliciting activity? The intent of the first ques-
tion was to explore preservice teachers’ engagement with
mathematical modeling as students, whereas the intent
of the second question was to explore their engagement
with modeling as future teachers.

Methodology

A solenoid is a coil of conductive wire; when electric cur-
rent flows through the wire, the coil generates a magnetic
field (see Figure 2). Ampere’s law (B = ,uLM I) relates the
strength of the magnetic field produced by a solenoid

(B) to the number of coils of wire (N), the length of the
solenoid (L), and the current passing through the wire

(). Solenoids can be found in a number of modern-day
technologies, including telephones, speakers, and electric
guitar pickups.

Ampere’s law can be derived experimentally by system-
atically varying the different attributes of a solenoid. The

Figure 2. Example of a solenoid.

Deriving Ampere’s Law

number of wraps of wire and the current are directly
related to magnetic field strength, whereas the length of
the solenoid is inversely related to magnetic field strength.

Setting

The setting for this study was a major public university
located in central Virginia. Within this university is a self-
contained college of education that offers both graduate
and undergraduate programs of study, including a dual-
degree teacher preparation program and a postgraduate
teacher preparation program. The Deriving Ampere’s Law
activity took place at this university during the 2016-2017
academic year.

Participants

Eight preservice secondary mathematics teacher educa-
tion students (PSMTs) completed the Deriving Ampere’s
Law activity in two phases. These students were selected
because they were enrolled in the yearlong secondary
mathematics pedagogy course at the time of the study. Of
the eight PSMTs who completed the activity, two PSMTs
volunteered to complete the activity in the fall 2016
semester outside of the mathematics pedagogy course
(Phase 1), and the remaining six PSMTs completed the
activity in the spring 2017 semester during one session of
the mathematics pedagogy course (Phase 2).

Activity Development

With support from the National Science Foundation, the
University of Virginia’s Make to Learn Lab partnered with
the Smithsonian Institution to develop a series of inven-
tion kits: Middle school students reconstruct historical
inventions (e.g., solenoid, motor, speaker) using modern
technology (e.g., computer-aided design software, three-
dimensional [3D] printing, laser cutting). These inven-
tion kits were created as a way to meaningfully integrate
science, technology, engineering, and mathematics. The
Deriving Ampere’s Law activity was developed to further
extend the mathematics connections within the Solenoid
Invention Kit.

When working with solenoids, many students shared
qualitative observations that indicated an intuitive
understanding of the relationship between the different
attributes of a solenoid and the strength of the resulting
magnetic field. For example, one might correctly con-
clude that a solenoid with fewer wraps of wire would
produce a weaker magnetic field than a solenoid that is
more densely wrapped. These qualitative observations
inspired us to explore whether a mathematical model
existed that was accessible to middle school students and
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that would describe the magnetic field strength generated
by a solenoid. When developing the Deriving Ampere’s
Law activity, we engaged in the MEA design process of
expressing, testing, and revising our own understand-

ing of what it would mean for students to understand

the underlying mathematics of Ampere’s law (Lesh,
Middleton, Caylor, & Gupta, 2008). Through this process,
we realized that because the relationships between the
independent variables and the dependent variable were
either proportional or inversely proportional, this model
could be derived experimentally.

Unlike other MEAs, the Deriving Ampere’s Law activ-

ity challenges students to develop a model of an exist-
ing law. Because of this, it has been suggested that this
activity might be better described as a “function-eliciting
activity” (R. Zbiek, personal communication, February 7,
2019) rather than a model-eliciting activity. However, the
participants who completed the Deriving Ampere’s Law
activity did not know that they were deriving an existing
model; not until after the participants derived their own
model was it revealed that the model they generated was,
in fact, Ampere’s law. Although the nature of the Deriving
Ampere’s Law activity may not appear to be completely
consistent with published literature related to MEAs,

this activity nevertheless preserves the underlying goals
of MEAs. The Deriving Ampere’s Law activity provides
students with the opportunity to “develop powerful, shar-
able, and reusable models . . . for accomplishing specific
goals in mathematically interesting situations” (Lesh et al.,
2008, p. 118).

Activity Description
To complete the Deriving Ampere’s Law activity, the

PSMTs were provided with a set of solenoids that varied

Table 1
Solenoid Data Collected During Activity Development
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in both the number of wraps of wire and the solenoid
length. They were also provided with a variable DC
power supply and a magnetic field sensor. To generate
magnetic field measurements that would allow a wide
range of participants to be successful with this activity,
the solenoids were calibrated during activity develop-
ment (Table 1). The power supply used for this activity
consistently and reliably held 3.16 A, which is why the
solenoids were calibrated using this current value.

In previous iterations of the Deriving Ampere’s Law
activity, the activity was divided into four separate
investigations for use with several groups of middle
school students, who successfully derived the final model
(see Corum & Garofalo, 2018). Given the nature of the
research questions for this project, a less scaffolded ver-
sion of the Deriving Ampere’s Law activity was presented
to the PSMTs. They received all of the solenoids up front
and were asked to develop a model that related number
of wraps of wire, solenoid length, and electric current to
magnetic field strength.

Data Collection

Because of the nature of the research questions for this
study, data collection was separated into two phases. The
goal of Phase 1 was to understand the PSMTs’ engage-
ment with mathematical modeling as students; the goal of
Phase 2 was to understand the PSMTs’ engagement with
mathematical modeling as future teachers. During Phase
1, only two PSMTs participated in the Deriving Ampere’s
Law activity to allow for fine-grained data collection.
Collected data included video recordings, audio tran-
scriptions, the PSMTs’ written work, and observational
field notes. On completing the activity, these two PSMTs
participated in a debriefing interview to further explore

Number of Wraps (N) Solenoid Length (1)

Electric Current (/)

Field Strength (B) Constant ()

50 2 in 3.16 A 3597 G 0.455
100 2in 3.16 A 71.87 G 0.455
150 2 in 3.16 A 107.8 G 0.455
50 1in 3.16 A 71.87 G 0.455
50 2 in 3.16 A 35.97 G 0.455
50 3in 3.16 A 2420 G 0.459
50 4 in 3.16 A 18.10 G 0.458
50 2 in 0.79 A 9.0G 0.456
50 2 in 1.58 A 1797 G 0.455
50 2in 3.16 A 3597 G 0.455
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their opinions about the activity and how this activ-

ity compared to their previous classroom experiences.
During Phase 2, the six remaining PSTMs completed the
Deriving Ampere’s Law activity in a classroom setting
and were given a postactivity questionnaire to report their
experiences with the activity.

Data Analysis

The primary goals of this project were to understand
how PSTMs’ prior experiences influenced their approach
to completing a MEA, which strategies they used when
developing their models, and their thoughts about
incorporating mathematical modeling tasks after partici-
pating in a MEA. Data analysis for Phase 1 began after
the first two PSMTs completed the Deriving Ampere’s
Law activity.

During preliminary data analysis, the first author
attempted to code the transcripts on the basis of the
PSMTs" application of prior knowledge (e.g., slope,
variables, direct variation, linear equations). However,
differentiating among applications of prior knowledge

is difficult when mathematical concepts are intercon-
nected (e.g., slope and linear equations), and coding
efforts resulted in the data becoming disjointed. The first
author then analyzed the data more holistically by read-
ing through the transcript multiple times and aligning the
PSMTs’ progression through the task with the different
phases of the mathematical modeling framework: math-
ematizing, interpreting, verifying, revising, and general-
izing (see Figure 1). In particular, the first author focused
on the PSMTs’ interpretation of the activity, strategies for
data collection and model development, applications of
prior knowledge, use of technology, and beliefs about
the nature of mathematics and mathematical tasks. The
first author prepared narrative descriptions of the PSMTs'’
solution strategies. After completing the initial round of
data analysis, the second author reviewed the narrative
descriptions separately from the first author.

The two authors then met to confirm the first author’s
interpretation. They reread parts of the transcript,
reanalyzed the PSMTs’ written work, and reviewed
their separately collected field notes. During this meet-
ing, both authors regularly revisited their multiple data
sources to ensure that their analysis and interpretations
were warranted. The two authors triangulated the nar-
rative descriptions with the observational field notes,
audio transcripts, and the PSMTs’ written work, and they
agreed that the narrative accurately captured what the
PSMTs had done to complete the Deriving Ampere’s
Law activity.

Deriving Ampere’s Law

Data analysis for Phase 2 began once the remaining
PSMTs had completed the postactivity debriefing survey,
which was administered electronically several weeks
after the in-class activity implementation. The second
author reviewed the survey responses and identified
several common themes. He then shared the original
survey responses with the first author, who analyzed

the survey responses separately from the second author.
The two authors then met to confirm the second
author’s interpretations.

Findings

Overall, in both phases of the activity, the PSMTs had lit-
tle difficulty recognizing the structure of their final model.
By identifying the relationships between the independent
variables and dependent variables separately (i.e., direct
or inverse variation), the PSMTs hypothesized how the
variables should be organized in the final model and
then confirmed this using their collected data. Modeling
strategies identified during Phase 1 included establishing
a strategy prior to beginning data collection, being sys-
tematic in their data collection and analysis, and regularly
testing and revising their model using their collected data.
These are illustrated in Figure 3 and described through
the work of Emily and Anna below. We then report on
the Phase 2 findings focused on PSMTs’ beliefs related to
incorporating mathematical modeling tasks in their future
mathematics teaching.

Phase 1. Emily and Anna

Anna and Emily’s progression through the Deriving
Ampere’s Law activity can be summarized in four parts:
collecting and analyzing solenoid data, structuring the
model, recognizing the need for a constant, and testing
and revising the model. Each of these parts aligned with
the different phases of the mathematical modeling cycle
(see Figure 3). Given the nature of this task, the processes
of mathematizing and interpreting were intertwined and
are reported as such.

—_—
Mathematizing

: Generalizing
Interpreting

T —

Revising
™

Figure 3. Anna and Emily’s task progression.
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Collecting and analyzing data (Mathematizing and
Interpreting). To begin the activity, Emily suggested that
they isolate the independent variables as they collected
their data to better understand the relationships between
the independent and dependent variables. They first
measured the 2-inch solenoids at 3.16 A and 3.0 A. Emily
noticed that at 3.16 A, the rate of change in the number
of wraps equaled the rate of change in the magnetic field
strength (Figure 4) and that this relationship also held true
at 3.0 A.

Emily summarized this relationship: “As the number

of wraps increases by a factor of x, so does the mag-

net strength,” to which Anna responded, “We have a
direct variation.” Emily noted that because the relation-
ship between number of wraps of wire and magnetic
field strength was a direct variation, the formula should
be in the form “wraps over magnet is some factor,”

and she hypothesized that the relationship might be
wraps/gauss = 1/2 - amps. Anna suggested that they
measure the 2-inch solenoids at 2.0 A to see whether the
relationship still held true. Although the data collected at
2.0 A did not fit Emily’s hypothesized relationship, both
Emily and Anna noticed that the direct variation they
observed previously also held true at 2.0 A. At this point,
Emily abandoned her initial model but confirmed the
direct variation between number of wraps of wire and
magnetic field strength. She then suggested, “If we find
out all the different ways they [the independent variables]
vary, we can just kind of put it together.”
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Anna and Emily then collected data for solenoids of
varying lengths (see Figure 5). They noticed that at 1.0 A,
the T-inch, 50-wrap solenoid generated a magnetic field
strength of 23 G, which was a field strength they had
previously observed with other solenoids. Anna com-
mented that the magnetic field strength was increasing by
approximately 10 G as the current increased by 1.0 A.

Emily analyzed the data they had collected so far and
summarized the relationship between current and
magnetic field strength. She explained, “There’s direct
variation again. . . . Current over Gauss equals x, so both
the number of wraps and the current vary directly with
the strength.” Emily also observed, “The length increases,
the strength decreases. That makes sense because it’s
[wraps of wire] not as close together.” Once Emily had
articulated the relationship between electric current

and magnetic field strength in this way, she immediately
recognized the relationship as inverse variation. She then
confirmed this relationship by looking at the relation-
ship across different levels of current to see whether the
relationship still held true. Emily recalled that the inverse
relationship is represented by the equation xy = k, and
Anna recalled that in an inverse relationship, “as one goes
up, the other goes down.” They decided to check the
relationship using their collected data.

Looking at their data, Emily and Anna multiplied the
length of the solenoid by the magnetic field strength to
determine whether this resulted in a constant. They did
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Figure 5. Anna’s (L) and Emily’s (R) data for solenoids of varying length.
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this for the data they collected at each of the different
current values (see Figure 6). Emily questioned how they
were verifying whether the relationship between electric

current and magnetic field strength was inverse variation.

She suggested that they review all the relationships they
had identified with the three independent variables.

Ao lengrtr dosbie) | Sirengtls  decresies

|enaih = 5hrengh - 24

i
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Figure 6. Anna’s attempt to verify xy = k for data collected at
different current values.

Structuring their model (Mathematizing and Interpret-
ing). The relationships Emily and Anna observed were as
follows: (a) as length increases, strength decreases; (b) as
current increases, strength increases; and (c) as wraps
increase, strength increases. Emily assigned letters to
represent the different variables and recommended that
they think about the relationships in terms of strength
increasing; she drew the following diagram on her paper
(Figure 7).
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Figure 7. Emily’s summary of the relationships between
the variables.

Anna suggested that they could use the types of varia-
tion they identified to determine the equation’s structure:
“Alright, so a and w, in some way or form, have to be on
top.” Because every relationship they had seen thus far
involved a ratio, they decided that they would need to
divide by the length of the solenoid. This resulted in the

. s a
following structure for their final model: s = -

Recognizing the need for a constant (Verifying and
Revising). From this model, Anna noticed that the
magnetic field strength divided by the number of wraps
of wire should equal the current divided by the length
and that this could be used to help them determine the
constant. Returning to the observation that all the rela-

Deriving Ampere’s Law

tionships involved ratios, Emily predicted that the con-
stant would be multiplied. Anna agreed that the constant
should be multiplied but for a different reason. She
explained, “[In] science, every single time you add some-
thing [to an equation], it’s a variable of some kind. All of
our variables are already taken up, so it can’t be that.”

To determine the constant, Anna suggested using the
data they collected for the 2-inch, 50-wrap solenoid at
2.0 A. She used s/w = a/l and set up the equation below
(Figure 8).

L

Figure 8. Anna’s initial attempt at determining the constant
for their equation.

Emily also calculated s/w and a// and, using their col-
lected data, she found that those two were not equal.
However, she noticed that the two expressions were
approximately equal if they multiplied the denominator
by two. Emily explained, “We need to find a relationship
to make this true. Our strength needs to be multiplied by
two, which means it’s this over 2/.” She then proposed

. aw .
the equation s = =T and used their collected data to

see whether that equation held true (see Figure 9).

aw
Emily saw that $ = —— held true for some of their

collected data but not all of it, which led her to ques-
tion whether their constant was correct. After testing the
equation using all their collected data, both Anna and
Emily acknowledged that the model was not entirely
correct, but they were unsure whether the discrepancy

23 = Lew(59) (= 3(>)
\ Y
¢ 13 =15 L Sy [
2 o) ~ 3 = ’(*)
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Figure 9. Emily’s verification of their initial equation.
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between the predicted values and their collected data
could be attributed to measurement error.

Testing and revising their model (Generalizing). Anna
and Emily were confident that their model’s structure was
correct, but they questioned the accuracy of their con-
stant, as demonstrated in the following exchange:

We found the direct and inverse varia-
tions . . . so we know that our variables
are in the right places, so the only
thing we're not 100% sure about is

this constant.

Emily:

Anna: I'm wondering if it's a little over two.

Emily: Or what if it’s a decimal? Oh god,
what are we gonna do? How are we
gonna tell?

Thinking that the constant might be a value greater than
two, Anna recalled that the metric system is most com-
monly used in science and suggested that the constant
in their equation might be the conversion factor between
inches and centimeters (2.54). Emily tested their new

model (s = %) with their collected data and saw that

this did not work.

Anna no longer believed that the constant was related to
a conversion factor, but she still wanted to find a value for
their constant that was more accurate; Emily disagreed.
Emily liked the fact that the constant in the denominator
was a “nice number” (an integer) because “that’s how

a lot of science things look.” Anna, however, suggested
that they rearrange their equation so that the constant
was isolated.

aw
With the equation ¢ = K Emily suggested that they
S

calculate values for their constant using their collected
data. Anna and Emily worked together and found that

the constant ranged from 2.08 to 2.27. Emily suggested
that if the constant was an irrational number, they would
never be able to calculate the constant exactly. Anna
suggested that the constant could be either pi (m = 3.14) or
e (e = 2.72), but it did not take much time for them to rec-
ognize that these values did not work in their equation.

Anna and Emily now had's = % as their model. Emily

suggested that the only way they could get a more accu-
rate constant would be if they collected more data. She

recalled that they had determined the value of their con-
stant using the data collected at 1.0 A, 2.0 A, and 3.0 A,
but they still had the data they collected at 3.16 A. Using
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(s= aw ), Emily confirmed that the magnetic field

21
strength predicted by this equation matched the data they

collected at 3.16 A. At this point, both Anna and Emily
agreed that their final model was s = aw/21.

Phase 2: Reflections From All Eight PSMTs

A few weeks after completing the Deriving Ampere’s
Law activity in the mathematics pedagogy course, the
PSMTs reflected on the experience. A number of themes
emerged from their responses to the postactivity ques-
tionnaire (see Appendix A) related to (a) the value of the
activity for PSMTs themselves, (b) perceived benefits

for students working through the activity, and (c) issues
connected with implementing similar model-eliciting
activities in their own future classrooms. The PSMTs said
that working through the Deriving Ampere’s Law activity
helped them learn more about mathematical modeling,
the importance of planning and collaborating with col-
leagues, and the benefits of group work.

The value of the activity for PSMTs. By participating
in an MEA themselves, the PSMTs developed a better
understanding of different aspects of doing mathemat-
ics, including the nature of mathematical formulas and
models, the value of collecting sufficient data and taking
repeated measurements when developing mathematical
models, and the role of collaborative group work when
engaging in authentic mathematical problem solving:
Alice: Math can be used to model things in the
natural world. It was great to see how
formulas are derived.
Erin: [ learned that a lot of data is required to
make sure your models are accurate and
show the correct relationships.
Simon: [ think for students experiencing this
for the first time, there’s enough in this
activity to supply them [with] the idea
that one or two measurements won't
be enough for accurate mathematical
models of physical phenomena.
Julie: It was good to get insights from other
students instead of possibly being unsure
of what to do if working independently.
Erin: Working with the group was helpful
because a few people were needed to
work the technology and collect the
data. But my group members were also
helpful when it came to making the
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hypotheses. It is always good to discuss
and talk about hypotheses before col-
lecting the data, and being able to talk
with my group members was beneficial
to understanding what was happening.

Perceived benefits for secondary students working
through the activity. Besides being useful for their own
development, these PSMTs expressed thoughts related to
the benefits of modeling tasks for students. They men-
tioned that such activities would engage students and

help them see connections between mathematics and sci-

ence. In particular, the PSMTs thought that MEAs would
be more engaging for students and would help students
see mathematics as more authentic and purposeful:
Alice: Tasks like this could help students make
real connections with material.
Sean: It keeps students engaged with the
content. It counteracts the notion
that only geniuses can derive
mathematical postulates.

When students have measured and
recorded data values for themselves,
they might see them as more than arbi-
trarily chosen numbers picked from a
textbook. This gives them an ownership
of what they’re examining and could
allow them to help feel a personal con-
nection to the problem.

Simon:

Emily: This could help students realize that
the subjects they learn in school are
often divided a little arbitrarily and are
actually way more similar than they
might realize.

Naija: One advantage is that it connects
mathematical concepts with the real
world, which makes the knowledge
more meaningful to students. Also it can
connect with other classes, in this case
physics, so students would be exposed
to the same information more than once.
Alice: It allows students the chance to feel
like career mathematicians, deriving
formulas the way a mathematician
would have, and | believe that’s a really
valuable experience.

Constraints to classroom implementation. By partici-
pating in an MEA themselves, these PSMTs realized that

Deriving Ampere’s Law

implementing such activities is not easy. Because they
were concurrently enrolled in a field experience course,
almost all of them commented on the difficulties and
constraints due to their own inexperience, the materials
needed, the necessary class time, and potential classroom
management issues:

Anna: These activities require a lot more
thought and planning than a simple
lecture. There are many facets to think
about and account for in order to make
the investigation worth it.

Emily: This task also showed me that | really
lack the skills to create my own authen-
tic tasks, at least in many science areas.
Sean: [ am still worried, personally, about
implementing this activity in the class-
room, but | think that'll change over time
as | become more acclimated to the
classroom environment.

Alice: [ absolutely loved the hands on aspect
of this task, but it may be challeng-
ing to implement in a large scale in

a classroom.

All the PSMTs saw great value in this activity, not only for
themselves but also for secondary mathematics students.
They reported that completing the activity helped them
better understand the nature of mathematical model-

ing with real data, experience firsthand the benefits of
working as a group on complex tasks, and appreciate the
importance of preparation and collaboration in teach-
ing. These PSMTs said that activities like this one would
be exciting and engaging for students and, furthermore,
could help students see mathematics as authentic and
useful. But they acknowledged that implementing such
activities in a classroom would not be easy because of
the time, materials, and expertise required.

Discussion

Participating in the Deriving Ampere’s Law activity was

a valuable experience for these PSMTs because it not
only revealed their own understanding of the nature of
mathematical modeling and their own strategies for solv-
ing MEAs (engaging with modeling as students), but it
also brought to light their own concerns about integrating
MEA:s into their future classrooms (engaging with model-
ing as teachers).
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Modeling as Students: Strategies for
Experimentally Deriving Ampere’s Law

Emily and Anna understood that the goal of the activity
was to develop a mathematical model that could describe
their collected data. Their productive modeling strate-
gies included (a) planning a systematic approach to data
collection, (b) identifying direct and inverse variations,
and (c) routinely verifying and revising their developed
models. However, the two struggled with determining the
constant for their final model. And although they were
ultimately successful, they experienced several instances
when their initial conjectures regarding the constant were
completely unrelated to the context at hand.

Emily and Anna analyzed their collected data by look-
ing for relationships between the independent variables
and the dependent variable, which was an approach that
came about organically for these PSMTs. Emily and Anna
also considered informal models for each of the indepen-
dent variables before arriving at their model. Both Emily
and Anna referred to direct and inverse variation by name
when describing the relationships between the indepen-
dent variables and the dependent variable. With an initial
model structure in mind, Emily and Anna used their col-
lected data to confirm whether their model was accurate.
Their conclusion then informed their next steps for model
revision. They continued this cycle of testing and revising
until they settled on a generalizable model that they felt
predicted their collected data accurately.

Grappling with the constant. Although Emily and Anna
had no trouble with recognizing whether the indepen-
dent variables were directly or inversely related to their
dependent variable, they did struggle with identifying the
constant in their final model. Recall that before using their
collected data to solve for the constant, they tried the
conversion factor from inches and centimeters (2.54) and
the mathematical constants pi and e. Although recogniz-
ing that these values did not work in their equation did
not take much time, the fact that these values had no
relation whatsoever to the problem at hand did not deter
them from testing the values in their final model.

Emily and Anna seemed to focus on “obvious candidates”
for the constant. They initially chose numbers they were
familiar with and that were reasonably close to the actual
constant, even though these numbers had nothing to

do with the situation they were asked to model. Emily
and Anna were able to quickly rule out these proposed
values for the constant after testing the model using their
collected data, yet they seemed to focus on numbers
because of their magnitude rather than the real-world
context of the problem.

85

Modeling as Teachers: Incorporating
MEAs Into the Classroom

To these PSMTs, the Deriving Ampere’s Law activity was
unique and nontraditional. Working through the task was
a truly integrated STEM experience for them because
this activity not only involved developing a mathemati-
cal model of a scientific law but also helped them better
understand the science behind solenoids and how they
can be designed to meet identified specifications. These
experiences helped the PSMTs see how engaging math-
ematical modeling activities can be to students and what
can be learned through model-eliciting activities. The
PSMTs reported that participating in the activity encour-
aged them to reconsider how these types of activities
could be used in their future classrooms.

Because the Deriving Ampere’s Law activity was so
different from what these PSMTs had previously experi-
enced, participating in an MEA encouraged them to con-
sider developing such activities themselves. Many PSMTs
might not be in a position to come up with these sorts of
tasks without support, so incorporating tasks like this into
teacher education courses can be a worthwhile endeavor.
Other MEAs that we have implemented in our mathemat-
ics methods course include modeling the relationship
between voltage and sound pressure level, the relation-
ship between the ratio of resistors in an amplifier circuit
and the increase in loudness, and equal temperament fret
spacing on stringed instruments. Incorporating MEAs into
a mathematics methods course gives preservice teachers
the chance to begin visualizing how they might create
authentic contexts for their future students to explore
mathematical modeling.

Limitations

This research study has several potential limitations. The
first limitation is that researcher bias may have influenced
data analysis. The first author developed the materials for
the Deriving Ampere’s Law activity, giving her an intimate
understanding of the task as well as her own modeling
strategies. The second author was the co-PI on the sup-
porting National Science Foundation grant. To mitigate
how their roles may have influenced data analysis, both
authors recorded field notes separately and also triangu-
lated their findings across multiple data sources.

The second limitation is related to the participants’
recent experiences with the mathematics and science
content related to the activity. The PSMTs who partici-
pated in the activity were also enrolled in a concur-

rent “maker” course where they designed artifacts that
incorporated solenoids (e.g., motor, speaker), giving them
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prior experience with solenoids that other PSMTs may
not possess. However, on the basis of our experiences
implementing the Deriving Ampere’s Law activity with
other groups of participants, we concluded that limited
knowledge of either direct and inverse variation or sole-
noids does not make the activity inaccessible (see Corum
& Garofalo, 2018). Similarly, having prior knowledge

of Ampere’s law itself does not prohibit someone from
participating in the activity, as the Deriving Ampere’s Law
activity challenges students to develop a mathematical
model to describe data collected experimentally.

The third limitation is related to the amount of time
required to develop and calibrate the materials used
during the Deriving Ampere’s Law activity. All the
solenoid bobbins were printed using a 3D printer,
and the solenoids themselves were then hand-wound
and calibrated by the first author. In addition to the
solenoids, supplemental materials (e.g., variable DC
power supply, magnetic field sensor) are required to
complete the activity. To attend to this limitation, the
authors have made available the related 3D printing
file and materials list (see Appendix B and download
the 3D printer file for Deriving Ampere’s Law activity
here: Ampere’s Law activity: https://www.nctm.org
/Publications/Mathematics-Teacher-Educator/2019
/Vol8/lIssuel/Engaging-Preservice-Secondary
-Mathematics-Teachers-in-Authentic-Mathematical
-Modeling -Deriving-Ampere s-Law/).

Conclusion

The eight preservice mathematics teachers who partici-
pated in the Deriving Ampere’s Law activity were able
to experimentally derive Ampere’s Law and develop

a mathematical model that related three independent
variables (number of wraps of wire, electric current, and
solenoid length) to a single dependent variable (strength
of the magnetic field produced by a solenoid). Despite
the limitations described above, the findings from this
study indicate the value of incorporating mathematical
modeling activities into teacher preparation courses.
Incorporating MEAs into our secondary mathematics
pedagogy course allowed our preservice teachers to
experience mathematical modeling as both students and
future teachers. By engaging in the modeling process
themselves, the PSMTs who participated in this study
not only became more aware of their own understand-
ing of mathematical modeling but also considered how
they might incorporate model-eliciting activities into their
future classroom instruction.

Deriving Ampere’s Law
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Appendix A: Ampere’s Law Task Reflection
Questionnaire

Self-Reflection:

1.

2.

What kinds of mathematical thinking did you do while completing the task? Please briefly explain.
What mathematics concepts or procedures were used or needed in doing the task? Please briefly explain.

What did you learn about the nature of mathematical modeling and the processes involved in creating
mathematical models?

What did you learn about formulas, science, or the nature of science?
Please describe the experience of working with your group. What was the value of group work in doing this task?
What technology features did you learn, or relearn, when doing this task?

Did you struggle with any aspects of this task? Please describe or explain. What, if anything, did you learn from
that struggle?

Task Reflection:

1.

2.

How did doing this task affect your thinking about developing and providing authentic tasks for students?

What learning-related advantages or benefits do you see in giving assignments like this to middle school or high
school students?

What possible drawbacks or problems do you see in giving assignments like this?

Do you have any further thoughts or comments on using such tasks in class or for homework?

Return to page 83
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Appendix B: List of Materials Used When
Implementing the Deriving Ampere’s Law Activity

Solenoids of various lengths/windings
(3) 2-inch solenoids varying in coil windings (50, 100, 150)
(3) 50-wrap solenoids varying in length (1-inch, 3-inch, 4-inch)
PASCO PASPORT Magnetic Field Sensor (PS-2112)
PASCO Airlink (PS-3200) or PASCO Universal Interface
SPARKvue software (can be installed on a computer, tablet, or mobile device)
DC power supply

Set of banana plug to alligator clip test leads
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(Return to page 89)
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Appendix C: Adapted Version of the Deriving
Ampere’s Law Activity

Create a single mathematical model that relates the strength of the magnetic field generated by
a solenoid to: (1) number of coils of wire, (2) length of the solenoid, and (3) current output.

Data Table 1. Magnetic field strengths generated by 2-inch solenoids with varying coils of wire

Wraps Current Field Current Field
Strength Strength
50 3.16 Amps 36 Gauss 3 Amps 33 Gauss
100 3.16 Amps 72 Gauss 3 Amps 67 Gauss
150 3.16 Amps 107 Gauss 3 Amps 102 Gauss

Data Table 2. Magnetic field strengths generated by 50-wrap solenoids of varying length

Field Field Field
Length Current Current Current
Strength Strength Strength
1inch 1 Amp 23 Gauss 2 Amps 46 Gauss 3 Amps 69 Gauss
2 inches 1 Amp 12 Gauss 2 Amps 23 Gauss 3 Amps 33 Gauss
3 inches 1 Amp 8 Gauss 2 Amps 16 Gauss 3 Amps 23 Gauss
4 inches 1 Amp 6 Gauss 2 Amps 12 Gauss 3 Amps 18 Gauss
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