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Incorporating modeling activities into 
classroom instruction requires flexibility 
with pedagogical content knowledge and 
the ability to understand and interpret 
students’ thinking, skills that teachers often 
develop through experience. One way to 
support preservice mathematics teachers’ 
(PSMTs) proficiency with mathematical 
modeling is by incorporating modeling 
tasks into mathematics pedagogy courses, 
allowing PSMTs to engage with mathematical 
modeling as students and as future teachers. 
Eight PSMTs participated in a model-eliciting 
activity (MEA) in which they were asked to 
develop a model that describes the strength 
of the magnetic field generated by a solenoid. 
By engaging in mathematical modeling as 
students, these PSMTs became aware of their 
own proficiency with and understanding 
of mathematical modeling. By engaging in 
mathematical modeling as future teachers, 
these PSMTs were able to articulate the 
importance of incorporating MEAs into their 
own instruction.
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Using mathematics to solve real-world problems is con-
sistently identified as one of the most important applica-
tions of mathematics, and students should be regularly 
provided the opportunity to experience mathematics in 
context (National Council of Teachers of Mathematics 
[NCTM], 2000; National Governors Association Cen-
ter for Best Practices & Council of Chief State School 
Officers, 2010). Mathematical modeling requires one to 
be able to move fluidly between the real world and the 
mathematized world and is rooted in the “assumption that 
humans interpret their experiences using internal concep-
tual systems (or constructs) whose functions are to select, 

filter, organize, and transform information, or to infer pat-
terns and regularities beneath the surface of things” (Lesh 
& Lehrer, 2003). To create a meaningful representation of 
the given situation when modeling a real-world situation, 
students must interpret and make sense of complex and 
imperfect information (Daher & Shahbari, 2015).

Mathematical modeling requires facility with mathematics 
beyond computational proficiency. Previous success with 
routine tasks does not imply proficiency with mathemati-
cal modeling. Garofalo and Trinter (2013) found that 
preservice mathematics teachers (PSMTs) who were able 
to successfully complete textbook trigonometry exercises 
were not as successful when generating mathematical 
models to represent the projectile motion of a softball 
and the periodic motion of a pendulum. Similarly, Delice 
and Kertil (2015) found that preservice teachers struggled 
with applying their prior knowledge related to linear and 
angular speed when asked to develop a mathematical 
model to describe the change in radii in a cassette tape. 

Mathematical modeling also requires the ability to 
critically analyze the applicability of proposed models. 
Zbiek (1998) found that PSMTs who relied too heavily 
on technological tools to generate mathematical models 
for data had difficulty explaining the appropriateness of 
models in mathematical terms. These PSMTs tended to 
choose their models based on “goodness of fit” (i.e., r2 
values) regardless of whether or not the model reflected 
the relationship visible in the data’s scatterplot. When one 
is modeling with mathematics, the situation for which the 
model is being generated must remain at the forefront. 
Yet, for some preservice teachers, connecting math-
ematics with real-world situations is difficult even when 
solving tasks that do not require the use of mathematical 
models (Verschaffel, De Corte, & Borghart, 1997).

Lesh and Lehrer (2003) argue that the use of modeling 
perspectives in classroom instruction emphasizes the idea 
that “expertise in teaching is reflected not only in what 
teachers can ‘do,’ but also what they ‘see’ in teaching, 
learning, and problem-solving situations” (p. 111). Suc-
cessfully integrating modeling activities into classroom 
instruction requires teachers to have facility with their 
pedagogical content knowledge, the ability to understand 
and interpret students’ thinking, and knowledge of the 
types of contexts and situations that can be modeled. 
Because of this, teachers have a tendency to avoid using 
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modeling tasks in their own classrooms (Delice & Kertil, 
2015). Because these skills are often developed through 
experience, implementing modeling activities is particu-
larly difficult for preservice and early career teachers.

One of the indicators of a well-prepared beginning 
teacher is having “solid and flexible knowledge of math-
ematical processes and practices” (Association of Math-
ematics Teacher Educators [AMTE], 2017, p. 9). Effective 
mathematics teacher preparation programs provide 
teacher candidates with “opportunities . . . to learn math-
ematics that enable them to engage in mathematical prac-
tices and processes that are appropriate to the content 
being studied” (p. 31). In particular, mathematics teacher 
preparation programs should incorporate the practice of 
mathematical modeling throughout a teacher candidate’s 
course of study (AMTE, 2017).

Theoretical Framework

The documented challenges of PSMTs applying their prior 
mathematical knowledge to modeling situations clearly 
indicate that this is a skill that does not develop naturally 
and must be developed and supported in teacher prepa-
ration courses. Furthermore, modeling with mathematics 
is something that can be taught through the use of appro-
priate tasks that encourage multiple solutions (Blum & 
Ferri, 2009). Incorporating modeling tasks into mathemat-
ics teacher preparation courses provides preservice teach-
ers with the opportunity to engage with mathematical 
modeling, both as student and as teacher, and to become 
proficient. Anhalt and Cortez (2016) found that preservice 
teachers who participated in a mathematical modeling 
module that was integrated into their content pedagogy 
course developed a deeper conceptual understanding of 
mathematical modeling, better preparing them to inte-
grate mathematical modeling into their future classroom 
instruction. Our approach to mathematical modeling is 
related but different as we incorporated a STEM-related 
modeling activity that we developed using the design 
principles of the Model-Eliciting Activity (MEA) theory 
into a pedagogy course for PSMTs.

Model-Eliciting Activities

The underlying assumption of the models and modeling 
perspective is that people use conceptual systems as a 
way to interpret mathematical experiences (Lesh, Doerr, 
Carmona, & Hjalmarson, 2003). From this perspective, 
problem-solving tasks are those that emphasize interpret-
ing meaningful situations. The process of generating these 
complex models is the primary product of such tasks.

Delice and Kertil (2015) propose a five-phase cyclical 
process to describe the steps involved in developing a 

mathematical model (Figure 1). According to this pro-
cess, one needs to first decide how a real-world prob-
lem should be mathematized and then interpret what 
information given in the real-world problem is relevant 
and which mathematical techniques are appropriate 
in developing the model (Crouch & Haines, 2004). As 
mathematical models are developed, they are tested and 
revised, and the initial real-world problem itself is revis-
ited and reinterpreted as the model is amended (Delice 
& Kertil, 2015).

A MEA is “a problem-solving activity constructed using 
specific principles of instructional design in which stu-
dents make sense of meaningful situations, and invent, 
extend, and refine their own mathematical constructs” 
(Kaiser & Sriraman, 2006, p. 306). By emphasizing the 
modeling process rather than merely applying known 
procedures, MEAs encourage students to think mathemat-
ically and provide them with the opportunity to showcase 
their mathematical understanding and capabilities (Daher 
& Shahbari, 2015). MEAs also provide students with mul-
tiple entry points to a problem because they encourage 
authentic problem solving, defined as “engaging in a task 
for which the solution method is not known in advance” 
(NCTM, 2000, p. 52). Because there is no prescribed 
procedure for MEAs, mathematical modeling tasks are 
open-ended, and the final models themselves can vary 
(Bliss & Libertini, 2016). When meaningfully incorporated 
into classroom instruction, MEAs can support students’ 
ability to transition between abstract representations in 
mathematics and applications of mathematical reasoning 
to real-world problems. 

The models and modeling perspective also informs 
the rationale for incorporating MEAs into mathemat-
ics teacher preparation coursework. According to this 
perspective, professional development of teachers should 
emphasize “designing effective and sophisticated ways of 
helping teachers see and interpret children’s thinking and 
support the development of that thinking” (Lesh et al., 
2003, p. 228). Teachers need to be able to develop tasks 
that encourage children to develop models. Thus, provid-
ing PSMTs with authentic modeling experiences during 
their teacher preparation program can help uncover their 

 

Figure 1. Mathematical modeling cycle.
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own proficiency with and attitudes toward incorporating 
modeling activities into their future classroom instruc-
tion. By incorporating MEAs into pedagogy courses, 
mathematics teacher educators can support PSMTs’ 
development of their own conceptual understandings of 
mathematical modeling and the knowledge required to 
incorporate such tasks into their future teaching.

The MEA on which this study is based was designed 
to provide students with the opportunity to develop a 
mathematical model to describe a scientific phenomenon 
(Ampere’s law). Preservice mathematics teachers were 
asked to relate the magnetic field strength generated by 
a solenoid to its different attributes (explained below). 
The research questions we explored in this study were 
(a) What strategies do preservice secondary mathemat-
ics teachers use when experimentally deriving Ampere’s 
law? and (b) What are preservice secondary mathemat-
ics teachers’ thoughts about incorporating mathematical 
modeling tasks in classroom instruction after participating 
in this model-eliciting activity? The intent of the first ques-
tion was to explore preservice teachers’ engagement with 
mathematical modeling as students, whereas the intent 
of the second question was to explore their engagement 
with modeling as future teachers.

Methodology

A solenoid is a coil of conductive wire; when electric cur-
rent flows through the wire, the coil generates a magnetic 
field (see Figure 2). Ampere’s law (B = μ NL I) relates the 
strength of the magnetic field produced by a solenoid 
(B) to the number of coils of wire (N), the length of the 
solenoid (L), and the current passing through the wire 
(I). Solenoids can be found in a number of modern-day 
technologies, including telephones, speakers, and electric 
guitar pickups.

Ampere’s law can be derived experimentally by system-
atically varying the different attributes of a solenoid. The 

number of wraps of wire and the current are directly 
related to magnetic field strength, whereas the length of 
the solenoid is inversely related to magnetic field strength.

Setting

The setting for this study was a major public university 
located in central Virginia. Within this university is a self-
contained college of education that offers both graduate 
and undergraduate programs of study, including a dual-
degree teacher preparation program and a postgraduate 
teacher preparation program. The Deriving Ampere’s Law 
activity took place at this university during the 2016–2017 
academic year.

Participants

Eight preservice secondary mathematics teacher educa-
tion students (PSMTs) completed the Deriving Ampere’s 
Law activity in two phases. These students were selected 
because they were enrolled in the yearlong secondary 
mathematics pedagogy course at the time of the study. Of 
the eight PSMTs who completed the activity, two PSMTs 
volunteered to complete the activity in the fall 2016 
semester outside of the mathematics pedagogy course 
(Phase 1), and the remaining six PSMTs completed the 
activity in the spring 2017 semester during one session of 
the mathematics pedagogy course (Phase 2).

Activity Development

With support from the National Science Foundation, the 
University of Virginia’s Make to Learn Lab partnered with 
the Smithsonian Institution to develop a series of inven-
tion kits: Middle school students reconstruct historical 
inventions (e.g., solenoid, motor, speaker) using modern 
technology (e.g., computer-aided design software, three-
dimensional [3D] printing, laser cutting). These inven-
tion kits were created as a way to meaningfully integrate 
science, technology, engineering, and mathematics. The 
Deriving Ampere’s Law activity was developed to further 
extend the mathematics connections within the Solenoid 
Invention Kit.

When working with solenoids, many students shared 
qualitative observations that indicated an intuitive 
understanding of the relationship between the different 
attributes of a solenoid and the strength of the resulting 
magnetic field. For example, one might correctly con-
clude that a solenoid with fewer wraps of wire would 
produce a weaker magnetic field than a solenoid that is 
more densely wrapped. These qualitative observations 
inspired us to explore whether a mathematical model 
existed that was accessible to middle school students and Figure 2. Example of a solenoid.
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that would describe the magnetic field strength generated 
by a solenoid. When developing the Deriving Ampere’s 
Law activity, we engaged in the MEA design process of 
expressing, testing, and revising our own understand-
ing of what it would mean for students to understand 
the underlying mathematics of Ampere’s law (Lesh, 
Middleton, Caylor, & Gupta, 2008). Through this process, 
we realized that because the relationships between the 
independent variables and the dependent variable were 
either proportional or inversely proportional, this model 
could be derived experimentally.

Unlike other MEAs, the Deriving Ampere’s Law activ-
ity challenges students to develop a model of an exist-
ing law. Because of this, it has been suggested that this 
activity might be better described as a “function-eliciting 
activity” (R. Zbiek, personal communication, February 7, 
2019) rather than a model-eliciting activity. However, the 
participants who completed the Deriving Ampere’s Law 
activity did not know that they were deriving an existing 
model; not until after the participants derived their own 
model was it revealed that the model they generated was, 
in fact, Ampere’s law. Although the nature of the Deriving 
Ampere’s Law activity may not appear to be completely 
consistent with published literature related to MEAs, 
this activity nevertheless preserves the underlying goals 
of MEAs. The Deriving Ampere’s Law activity provides 
students with the opportunity to “develop powerful, shar-
able, and reusable models . . . for accomplishing specific 
goals in mathematically interesting situations” (Lesh et al., 
2008, p. 118).

Activity Description

To complete the Deriving Ampere’s Law activity, the 
PSMTs were provided with a set of solenoids that varied 

in both the number of wraps of wire and the solenoid 
length. They were also provided with a variable DC 
power supply and a magnetic field sensor. To generate 
magnetic field measurements that would allow a wide 
range of participants to be successful with this activity, 
the solenoids were calibrated during activity develop-
ment (Table 1). The power supply used for this activity 
consistently and reliably held 3.16 A, which is why the 
solenoids were calibrated using this current value.

In previous iterations of the Deriving Ampere’s Law 
activity, the activity was divided into four separate 
investigations for use with several groups of middle 
school students, who successfully derived the final model 
(see Corum & Garofalo, 2018). Given the nature of the 
research questions for this project, a less scaffolded ver-
sion of the Deriving Ampere’s Law activity was presented 
to the PSMTs. They received all of the solenoids up front 
and were asked to develop a model that related number 
of wraps of wire, solenoid length, and electric current to 
magnetic field strength.

Data Collection

Because of the nature of the research questions for this 
study, data collection was separated into two phases. The 
goal of Phase 1 was to understand the PSMTs’ engage-
ment with mathematical modeling as students; the goal of 
Phase 2 was to understand the PSMTs’ engagement with 
mathematical modeling as future teachers. During Phase 
1, only two PSMTs participated in the Deriving Ampere’s 
Law activity to allow for fine-grained data collection. 
Collected data included video recordings, audio tran-
scriptions, the PSMTs’ written work, and observational 
field notes. On completing the activity, these two PSMTs 
participated in a debriefing interview to further explore 

Table 1
Solenoid Data Collected During Activity Development

Number of Wraps (N) Solenoid Length (L) Electric Current (I) Field Strength (B) Constant (μ)

50 2 in 3.16 A 35.97 G 0.455

100 2 in 3.16 A 71.87 G 0.455

150 2 in 3.16 A 107.8 G 0.455

50 1 in 3.16 A 71.87 G 0.455

50 2 in 3.16 A 35.97 G 0.455

50 3 in 3.16 A 24.20 G 0.459

50 4 in 3.16 A 18.10 G 0.458

50 2 in 0.79 A 9.0 G 0.456

50 2 in 1.58 A 17.97 G 0.455

50 2 in 3.16 A 35.97 G 0.455
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their opinions about the activity and how this activ-
ity compared to their previous classroom experiences. 
During Phase 2, the six remaining PSTMs completed the 
Deriving Ampere’s Law activity in a classroom setting 
and were given a postactivity questionnaire to report their 
experiences with the activity.

Data Analysis

The primary goals of this project were to understand 
how PSTMs’ prior experiences influenced their approach 
to completing a MEA, which strategies they used when 
developing their models, and their thoughts about 
incorporating mathematical modeling tasks after partici-
pating in a MEA. Data analysis for Phase 1 began after 
the first two PSMTs completed the Deriving Ampere’s 
Law activity.

During preliminary data analysis, the first author 
attempted to code the transcripts on the basis of the 
PSMTs’ application of prior knowledge (e.g., slope, 
variables, direct variation, linear equations). However, 
differentiating among applications of prior knowledge 
is difficult when mathematical concepts are intercon-
nected (e.g., slope and linear equations), and coding 
efforts resulted in the data becoming disjointed. The first 
author then analyzed the data more holistically by read-
ing through the transcript multiple times and aligning the 
PSMTs’ progression through the task with the different 
phases of the mathematical modeling framework: math-
ematizing, interpreting, verifying, revising, and general-
izing (see Figure 1). In particular, the first author focused 
on the PSMTs’ interpretation of the activity, strategies for 
data collection and model development, applications of 
prior knowledge, use of technology, and beliefs about 
the nature of mathematics and mathematical tasks. The 
first author prepared narrative descriptions of the PSMTs’ 
solution strategies. After completing the initial round of 
data analysis, the second author reviewed the narrative 
descriptions separately from the first author.

The two authors then met to confirm the first author’s 
interpretation. They reread parts of the transcript, 
reanalyzed the PSMTs’ written work, and reviewed 
their separately collected field notes. During this meet-
ing, both authors regularly revisited their multiple data 
sources to ensure that their analysis and interpretations 
were warranted. The two authors triangulated the nar-
rative descriptions with the observational field notes, 
audio transcripts, and the PSMTs’ written work, and they 
agreed that the narrative accurately captured what the 
PSMTs had done to complete the Deriving Ampere’s 
Law activity.

Data analysis for Phase 2 began once the remaining 
PSMTs had completed the postactivity debriefing survey, 
which was administered electronically several weeks 
after the in-class activity implementation. The second 
author reviewed the survey responses and identified 
several common themes. He then shared the original 
survey responses with the first author, who analyzed 
the survey responses separately from the second author. 
The two authors then met to confirm the second 
author’s interpretations.

Findings

Overall, in both phases of the activity, the PSMTs had lit-
tle difficulty recognizing the structure of their final model. 
By identifying the relationships between the independent 
variables and dependent variables separately (i.e., direct 
or inverse variation), the PSMTs hypothesized how the 
variables should be organized in the final model and 
then confirmed this using their collected data. Modeling 
strategies identified during Phase 1 included establishing 
a strategy prior to beginning data collection, being sys-
tematic in their data collection and analysis, and regularly 
testing and revising their model using their collected data. 
These are illustrated in Figure 3 and described through 
the work of Emily and Anna below. We then report on 
the Phase 2 findings focused on PSMTs’ beliefs related to 
incorporating mathematical modeling tasks in their future 
mathematics teaching.

Phase 1. Emily and Anna

Anna and Emily’s progression through the Deriving 
Ampere’s Law activity can be summarized in four parts: 
collecting and analyzing solenoid data, structuring the 
model, recognizing the need for a constant, and testing 
and revising the model. Each of these parts aligned with 
the different phases of the mathematical modeling cycle 
(see Figure 3). Given the nature of this task, the processes 
of mathematizing and interpreting were intertwined and 
are reported as such.

Figure 3. Anna and Emily’s task progression.
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Collecting and analyzing data (Mathematizing and 
Interpreting). To begin the activity, Emily suggested that 
they isolate the independent variables as they collected 
their data to better understand the relationships between 
the independent and dependent variables. They first 
measured the 2-inch solenoids at 3.16 A and 3.0 A. Emily 
noticed that at 3.16 A, the rate of change in the number 
of wraps equaled the rate of change in the magnetic field 
strength (Figure 4) and that this relationship also held true 
at 3.0 A.

Emily summarized this relationship: “As the number 
of wraps increases by a factor of x, so does the mag-
net strength,” to which Anna responded, “We have a 
direct variation.” Emily noted that because the relation-
ship between number of wraps of wire and magnetic 
field strength was a direct variation, the formula should 
be in the form “wraps over magnet is some factor,” 
and she hypothesized that the relationship might be 
wraps/gauss = 1/2 ∙ amps. Anna suggested that they 
measure the 2-inch solenoids at 2.0 A to see whether the 
relationship still held true. Although the data collected at 
2.0 A did not fit Emily’s hypothesized relationship, both 
Emily and Anna noticed that the direct variation they 
observed previously also held true at 2.0 A. At this point, 
Emily abandoned her initial model but confirmed the 
direct variation between number of wraps of wire and 
magnetic field strength. She then suggested, “If we find 
out all the different ways they [the independent variables] 
vary, we can just kind of put it together.” 

Anna and Emily then collected data for solenoids of 
varying lengths (see Figure 5). They noticed that at 1.0 A, 
the 1-inch, 50-wrap solenoid generated a magnetic field 
strength of 23 G, which was a field strength they had 
previously observed with other solenoids. Anna com-
mented that the magnetic field strength was increasing by 
approximately 10 G as the current increased by 1.0 A.

Emily analyzed the data they had collected so far and 
summarized the relationship between current and 
magnetic field strength. She explained, “There’s direct 
variation again. . . . Current over Gauss equals x, so both 
the number of wraps and the current vary directly with 
the strength.” Emily also observed, “The length increases, 
the strength decreases. That makes sense because it’s 
[wraps of wire] not as close together.” Once Emily had 
articulated the relationship between electric current 
and magnetic field strength in this way, she immediately 
recognized the relationship as inverse variation. She then 
confirmed this relationship by looking at the relation-
ship across different levels of current to see whether the 
relationship still held true. Emily recalled that the inverse 
relationship is represented by the equation xy = k, and 
Anna recalled that in an inverse relationship, “as one goes 
up, the other goes down.” They decided to check the 
relationship using their collected data.

Looking at their data, Emily and Anna multiplied the 
length of the solenoid by the magnetic field strength to 
determine whether this resulted in a constant. They did 

Figure 4. Emily’s data table for solenoids of varying wraps of wire.
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Figure 5. Anna’s (L) and Emily’s (R) data for solenoids of varying length.
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this for the data they collected at each of the different 
current values (see Figure 6). Emily questioned how they 
were verifying whether the relationship between electric 
current and magnetic field strength was inverse variation. 
She suggested that they review all the relationships they 
had identified with the three independent variables.

Structuring their model (Mathematizing and Interpret-
ing). The relationships Emily and Anna observed were as 
follows: (a) as length increases, strength decreases; (b) as 
current increases, strength increases; and (c) as wraps 
increase, strength increases. Emily assigned letters to 
represent the different variables and recommended that 
they think about the relationships in terms of strength 
increasing; she drew the following diagram on her paper 
(Figure 7).

Anna suggested that they could use the types of varia-
tion they identified to determine the equation’s structure: 
“Alright, so a and w, in some way or form, have to be on 
top.” Because every relationship they had seen thus far 
involved a ratio, they decided that they would need to 
divide by the length of the solenoid. This resulted in the
following structure for their final model: =s

aw
l2
.

l

Recognizing the need for a constant (Verifying and 
Revising). From this model, Anna noticed that the 
magnetic field strength divided by the number of wraps 
of wire should equal the current divided by the length 
and that this could be used to help them determine the 
constant. Returning to the observation that all the rela-

tionships involved ratios, Emily predicted that the con-
stant would be multiplied. Anna agreed that the constant 
should be multiplied but for a different reason. She 
explained, “[In] science, every single time you add some-
thing [to an equation], it’s a variable of some kind. All of 
our variables are already taken up, so it can’t be that.”

To determine the constant, Anna suggested using the 
data they collected for the 2-inch, 50-wrap solenoid at 
2.0 A. She used s/w = a/l and set up the equation below 
(Figure 8).

Emily also calculated s/w and a/l and, using their col-
lected data, she found that those two were not equal. 
However, she noticed that the two expressions were 
approximately equal if they multiplied the denominator 
by two. Emily explained, “We need to find a relationship 
to make this true. Our strength needs to be multiplied by
two, which means it’s this over 2l.” She then proposed 

the equation =s
aw
l2
. and used their collected data to

see whether that equation held true (see Figure 9).

Emily saw that =s
aw
l2
. held true for some of their 

collected data but not all of it, which led her to ques-
tion whether their constant was correct. After testing the 
equation using all their collected data, both Anna and 
Emily acknowledged that the model was not entirely 
correct, but they were unsure whether the discrepancy 

Figure 6. Anna’s attempt to verify xy = k for data collected at 
different current values.

Figure 7. Emily’s summary of the relationships between 
the variables.

Figure 8. Anna’s initial attempt at determining the constant 
for their equation.

Figure 9. Emily’s verification of their initial equation.
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between the predicted values and their collected data 
could be attributed to measurement error.

Testing and revising their model (Generalizing). Anna 
and Emily were confident that their model’s structure was 
correct, but they questioned the accuracy of their con-
stant, as demonstrated in the following exchange:

Emily:	 We found the direct and inverse varia-
tions . . . so we know that our variables 
are in the right places, so the only 
thing we’re not 100% sure about is 
this constant.

Anna:	 I’m wondering if it’s a little over two.

Emily:	 Or what if it’s a decimal? Oh god, 
what are we gonna do? How are we 
gonna tell?

Thinking that the constant might be a value greater than 
two, Anna recalled that the metric system is most com-
monly used in science and suggested that the constant 
in their equation might be the conversion factor between 
inches and centimeters (2.54). Emily tested their new

model ( =s
aw
l2
.) with their collected data and saw that

this did not work.

Anna no longer believed that the constant was related to 
a conversion factor, but she still wanted to find a value for 
their constant that was more accurate; Emily disagreed. 
Emily liked the fact that the constant in the denominator 
was a “nice number” (an integer) because “that’s how 
a lot of science things look.” Anna, however, suggested 
that they rearrange their equation so that the constant 
was isolated.

With the equation =

=

=

=

c
aw
sl

s
aw

l

s
aw

l

s
aw

l

,

2.2

2.2
,

2.2
.

 Emily suggested that they

calculate values for their constant using their collected 
data. Anna and Emily worked together and found that 
the constant ranged from 2.08 to 2.27. Emily suggested 
that if the constant was an irrational number, they would 
never be able to calculate the constant exactly. Anna 
suggested that the constant could be either pi (π ≈ 3.14) or 
e (e ≈ 2.72), but it did not take much time for them to rec-
ognize that these values did not work in their equation.

Anna and Emily now had

=
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=
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as their model. Emily 

suggested that the only way they could get a more accu-
rate constant would be if they collected more data. She 
recalled that they had determined the value of their con-
stant using the data collected at 1.0 A, 2.0 A, and 3.0 A, 
but they still had the data they collected at 3.16 A. Using 
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), Emily confirmed that the magnetic field 

strength predicted by this equation matched the data they 
collected at 3.16 A. At this point, both Anna and Emily 
agreed that their final model was s = aw/2l. 

Phase 2: Reflections From All Eight PSMTs

A few weeks after completing the Deriving Ampere’s 
Law activity in the mathematics pedagogy course, the 
PSMTs reflected on the experience. A number of themes 
emerged from their responses to the postactivity ques-
tionnaire (see Appendix A) related to (a) the value of the 
activity for PSMTs themselves, (b) perceived benefits 
for students working through the activity, and (c) issues 
connected with implementing similar model-eliciting 
activities in their own future classrooms. The PSMTs said 
that working through the Deriving Ampere’s Law activity 
helped them learn more about mathematical modeling, 
the importance of planning and collaborating with col-
leagues, and the benefits of group work. 

The value of the activity for PSMTs. By participating 
in an MEA themselves, the PSMTs developed a better 
understanding of different aspects of doing mathemat-
ics, including the nature of mathematical formulas and 
models, the value of collecting sufficient data and taking 
repeated measurements when developing mathematical 
models, and the role of collaborative group work when 
engaging in authentic mathematical problem solving:

Alice:	 Math can be used to model things in the 
natural world. It was great to see how 
formulas are derived.

Erin:	 I learned that a lot of data is required to 
make sure your models are accurate and 
show the correct relationships.

Simon:	 I think for students experiencing this 
for the first time, there’s enough in this 
activity to supply them [with] the idea 
that one or two measurements won’t 
be enough for accurate mathematical 
models of physical phenomena.

Julie:	 It was good to get insights from other 
students instead of possibly being unsure 
of what to do if working independently.

Erin:	 Working with the group was helpful 
because a few people were needed to 
work the technology and collect the 
data. But my group members were also 
helpful when it came to making the 
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hypotheses. It is always good to discuss 
and talk about hypotheses before col-
lecting the data, and being able to talk 
with my group members was beneficial 
to understanding what was happening.

Perceived benefits for secondary students working 
through the activity. Besides being useful for their own 
development, these PSMTs expressed thoughts related to 
the benefits of modeling tasks for students. They men-
tioned that such activities would engage students and 
help them see connections between mathematics and sci-
ence. In particular, the PSMTs thought that MEAs would 
be more engaging for students and would help students 
see mathematics as more authentic and purposeful:

Alice:	 Tasks like this could help students make 
real connections with material.

Sean:	 It keeps students engaged with the 
content. It counteracts the notion 
that only geniuses can derive 
mathematical postulates.

Simon:	 When students have measured and 
recorded data values for themselves, 
they might see them as more than arbi-
trarily chosen numbers picked from a 
textbook. This gives them an ownership 
of what they’re examining and could 
allow them to help feel a personal con-
nection to the problem.

Emily:	 This could help students realize that 
the subjects they learn in school are 
often divided a little arbitrarily and are 
actually way more similar than they 
might realize.

Naija:	 One advantage is that it connects 
mathematical concepts with the real 
world, which makes the knowledge 
more meaningful to students. Also it can 
connect with other classes, in this case 
physics, so students would be exposed 
to the same information more than once.

Alice:	 It allows students the chance to feel 
like career mathematicians, deriving 
formulas the way a mathematician 
would have, and I believe that’s a really 
valuable experience.

Constraints to classroom implementation. By partici-
pating in an MEA themselves, these PSMTs realized that 

implementing such activities is not easy. Because they 
were concurrently enrolled in a field experience course, 
almost all of them commented on the difficulties and 
constraints due to their own inexperience, the materials 
needed, the necessary class time, and potential classroom 
management issues:

Anna:	 These activities require a lot more 
thought and planning than a simple 
lecture. There are many facets to think 
about and account for in order to make 
the investigation worth it.

Emily:	 This task also showed me that I really 
lack the skills to create my own authen-
tic tasks, at least in many science areas.

Sean:	 I am still worried, personally, about 
implementing this activity in the class-
room, but I think that’ll change over time 
as I become more acclimated to the 
classroom environment.

Alice:	 I absolutely loved the hands on aspect 
of this task, but it may be challeng-
ing to implement in a large scale in 
a classroom.

All the PSMTs saw great value in this activity, not only for 
themselves but also for secondary mathematics students. 
They reported that completing the activity helped them 
better understand the nature of mathematical model-
ing with real data, experience firsthand the benefits of 
working as a group on complex tasks, and appreciate the 
importance of preparation and collaboration in teach-
ing. These PSMTs said that activities like this one would 
be exciting and engaging for students and, furthermore, 
could help students see mathematics as authentic and 
useful. But they acknowledged that implementing such 
activities in a classroom would not be easy because of 
the time, materials, and expertise required.

Discussion

Participating in the Deriving Ampere’s Law activity was 
a valuable experience for these PSMTs because it not 
only revealed their own understanding of the nature of 
mathematical modeling and their own strategies for solv-
ing MEAs (engaging with modeling as students), but it 
also brought to light their own concerns about integrating 
MEAs into their future classrooms (engaging with model-
ing as teachers).
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Modeling as Students: Strategies for 
Experimentally Deriving Ampere’s Law

Emily and Anna understood that the goal of the activity 
was to develop a mathematical model that could describe 
their collected data. Their productive modeling strate-
gies included (a) planning a systematic approach to data 
collection, (b) identifying direct and inverse variations, 
and (c) routinely verifying and revising their developed 
models. However, the two struggled with determining the 
constant for their final model. And although they were 
ultimately successful, they experienced several instances 
when their initial conjectures regarding the constant were 
completely unrelated to the context at hand.

Emily and Anna analyzed their collected data by look-
ing for relationships between the independent variables 
and the dependent variable, which was an approach that 
came about organically for these PSMTs. Emily and Anna 
also considered informal models for each of the indepen-
dent variables before arriving at their model. Both Emily 
and Anna referred to direct and inverse variation by name 
when describing the relationships between the indepen-
dent variables and the dependent variable. With an initial 
model structure in mind, Emily and Anna used their col-
lected data to confirm whether their model was accurate. 
Their conclusion then informed their next steps for model 
revision. They continued this cycle of testing and revising 
until they settled on a generalizable model that they felt 
predicted their collected data accurately.

Grappling with the constant. Although Emily and Anna 
had no trouble with recognizing whether the indepen-
dent variables were directly or inversely related to their 
dependent variable, they did struggle with identifying the 
constant in their final model. Recall that before using their 
collected data to solve for the constant, they tried the 
conversion factor from inches and centimeters (2.54) and 
the mathematical constants pi and e. Although recogniz-
ing that these values did not work in their equation did 
not take much time, the fact that these values had no 
relation whatsoever to the problem at hand did not deter 
them from testing the values in their final model.

Emily and Anna seemed to focus on “obvious candidates” 
for the constant. They initially chose numbers they were 
familiar with and that were reasonably close to the actual 
constant, even though these numbers had nothing to 
do with the situation they were asked to model. Emily 
and Anna were able to quickly rule out these proposed 
values for the constant after testing the model using their 
collected data, yet they seemed to focus on numbers 
because of their magnitude rather than the real-world 
context of the problem.

Modeling as Teachers: Incorporating 
MEAs Into the Classroom

To these PSMTs, the Deriving Ampere’s Law activity was 
unique and nontraditional. Working through the task was 
a truly integrated STEM experience for them because 
this activity not only involved developing a mathemati-
cal model of a scientific law but also helped them better 
understand the science behind solenoids and how they 
can be designed to meet identified specifications. These 
experiences helped the PSMTs see how engaging math-
ematical modeling activities can be to students and what 
can be learned through model-eliciting activities. The 
PSMTs reported that participating in the activity encour-
aged them to reconsider how these types of activities 
could be used in their future classrooms.

Because the Deriving Ampere’s Law activity was so 
different from what these PSMTs had previously experi-
enced, participating in an MEA encouraged them to con-
sider developing such activities themselves. Many PSMTs 
might not be in a position to come up with these sorts of 
tasks without support, so incorporating tasks like this into 
teacher education courses can be a worthwhile endeavor. 
Other MEAs that we have implemented in our mathemat-
ics methods course include modeling the relationship 
between voltage and sound pressure level, the relation-
ship between the ratio of resistors in an amplifier circuit 
and the increase in loudness, and equal temperament fret 
spacing on stringed instruments. Incorporating MEAs into 
a mathematics methods course gives preservice teachers 
the chance to begin visualizing how they might create 
authentic contexts for their future students to explore 
mathematical modeling.

Limitations

This research study has several potential limitations. The 
first limitation is that researcher bias may have influenced 
data analysis. The first author developed the materials for 
the Deriving Ampere’s Law activity, giving her an intimate 
understanding of the task as well as her own modeling 
strategies. The second author was the co-PI on the sup-
porting National Science Foundation grant. To mitigate 
how their roles may have influenced data analysis, both 
authors recorded field notes separately and also triangu-
lated their findings across multiple data sources.

The second limitation is related to the participants’ 
recent experiences with the mathematics and science 
content related to the activity. The PSMTs who partici-
pated in the activity were also enrolled in a concur-
rent “maker” course where they designed artifacts that 
incorporated solenoids (e.g., motor, speaker), giving them 
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prior experience with solenoids that other PSMTs may 
not possess. However, on the basis of our experiences 
implementing the Deriving Ampere’s Law activity with 
other groups of participants, we concluded that limited 
knowledge of either direct and inverse variation or sole-
noids does not make the activity inaccessible (see Corum 
& Garofalo, 2018). Similarly, having prior knowledge 
of Ampere’s law itself does not prohibit someone from 
participating in the activity, as the Deriving Ampere’s Law 
activity challenges students to develop a mathematical 
model to describe data collected experimentally.

The third limitation is related to the amount of time 
required to develop and calibrate the materials used 
during the Deriving Ampere’s Law activity. All the 
solenoid bobbins were printed using a 3D printer, 
and the solenoids themselves were then hand-wound 
and calibrated by the first author. In addition to the 
solenoids, supplemental materials (e.g., variable DC 
power supply, magnetic field sensor) are required to 
complete the activity. To attend to this limitation, the 
authors have made available the related 3D printing 
file and materials list (see Appendix B and download 
the 3D printer file for Deriving Ampere’s Law activity 
here: Ampere’s Law activity: https://www.nctm.org​
/Publications/Mathematics-Teacher-Educator/2019​
/Vol8/Issue1/Engaging-Preservice-Secondary​
-Mathematics-Teachers-in-Authentic-Mathematical​
-Modeling_-Deriving-Ampere_s-Law/).

Conclusion

The eight preservice mathematics teachers who partici-
pated in the Deriving Ampere’s Law activity were able 
to experimentally derive Ampere’s Law and develop 
a mathematical model that related three independent 
variables (number of wraps of wire, electric current, and 
solenoid length) to a single dependent variable (strength 
of the magnetic field produced by a solenoid). Despite 
the limitations described above, the findings from this 
study indicate the value of incorporating mathematical 
modeling activities into teacher preparation courses. 
Incorporating MEAs into our secondary mathematics 
pedagogy course allowed our preservice teachers to 
experience mathematical modeling as both students and 
future teachers. By engaging in the modeling process 
themselves, the PSMTs who participated in this study 
not only became more aware of their own understand-
ing of mathematical modeling but also considered how 
they might incorporate model-eliciting activities into their 
future classroom instruction.
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Appendix A: Ampere’s Law Task Reflection 
Questionnaire

Self-Reflection:

1.	 What kinds of mathematical thinking did you do while completing the task? Please briefly explain.

2.	 What mathematics concepts or procedures were used or needed in doing the task? Please briefly explain.

3.	 What did you learn about the nature of mathematical modeling and the processes involved in creating 
mathematical models?

4.	 What did you learn about formulas, science, or the nature of science?

5.	 Please describe the experience of working with your group. What was the value of group work in doing this task?

6.	 What technology features did you learn, or relearn, when doing this task?

7.	 Did you struggle with any aspects of this task? Please describe or explain. What, if anything, did you learn from 
that struggle?

Task Reflection:

1.	 How did doing this task affect your thinking about developing and providing authentic tasks for students?

2.	 What learning-related advantages or benefits do you see in giving assignments like this to middle school or high 
school students?

3.	 What possible drawbacks or problems do you see in giving assignments like this?

4.	 Do you have any further thoughts or comments on using such tasks in class or for homework? 

(Return to page 83)



Corum and Garofalo	 89

Vol. 8, No. 1, September 2019  •  Mathematics Teacher Educator

Appendix B: List of Materials Used When 
Implementing the Deriving Ampere’s Law Activity

Solenoids of various lengths/windings

	 (3) 2-inch solenoids varying in coil windings (50, 100, 150)

	 (3) 50-wrap solenoids varying in length (1-inch, 3-inch, 4-inch)

PASCO PASPORT Magnetic Field Sensor (PS-2112)

PASCO Airlink (PS-3200) or PASCO Universal Interface

SPARKvue software (can be installed on a computer, tablet, or mobile device)

DC power supply

Set of banana plug to alligator clip test leads
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(Return to page 89)
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Appendix C: Adapted Version of the Deriving 
Ampere’s Law Activity

 

 

 

Using STEM-Related Modeling Tasks to Support Preservice 
Teachers’ Understanding of Mathematical Modeling 

Kimberly Corum 
kcorum@towson.edu 

Create a single mathematical model that relates the strength of the magnetic field generated by 
a solenoid to: (1) number of coils of wire, (2) length of the solenoid, and (3) current output. 

 

Data Table 1. Magnetic field strengths generated by 2-inch solenoids with varying coils of wire 

Wraps Current 
Field 

Strength 
Current 

Field 

Strength 

50 3.16 Amps 36 Gauss 3 Amps 33 Gauss 

100 3.16 Amps 72 Gauss 3 Amps 67 Gauss 

150 3.16 Amps 107 Gauss 3 Amps 102 Gauss 

 

Data Table 2. Magnetic field strengths generated by 50-wrap solenoids of varying length 

Length Current 
Field 

Strength 
Current 

Field 

Strength 
Current 

Field 

Strength 

1 inch 1 Amp 23 Gauss 2 Amps 46 Gauss 3 Amps 69 Gauss 

2 inches 1 Amp 12 Gauss 2 Amps 23 Gauss 3 Amps 33 Gauss 

3 inches 1 Amp 8 Gauss 2 Amps 16 Gauss 3 Amps 23 Gauss 

4 inches 1 Amp 6 Gauss 2 Amps 12 Gauss 3 Amps 18 Gauss 

 

 

 

 

 

 




