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ABSTRACT

A semi-supervised emotion recognition algorithm using reduced features as well as a novel feature selec-
tion approach is proposed. The proposed algorithm consists of a cascaded structure where first a feature
extraction is applied to the facial images, followed by a feature reduction. A semi-supervised training
with all the available labeled and unlabeled data is applied to a Deep Belief Network (DBN). Feature se-
lection is performed to eliminate those features that do not provide information, using a reconstruction
error-based ranking. Results show that HOG features of mouth provide the best performance. The perfor-
mance evaluation has been done between the semi-supervised approach using DBN and other supervised
strategies such as Support Vector Machine (SVM) and Convolutional Neural Network (CNN). The results
show that the semi-supervised approach has improved efficiency using the information contained in both
labeled and unlabeled data. Different databases were used to validate the experiments and the applica-
tion of Linear Discriminant Analysis (LDA) on the HOG features of mouth gave the highest recognition
rate.

K-Fold cross-validation

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Amongst the various modes of emotion recognition (ER), the
facial expression is one of the conveying forms used for the dis-
play of emotions. ER can be applied in various fields like medicine,
marketing, entertainment. For example, a medical robot can be
designed to continuously monitoring their emotional state [1,2],
or a diagnostic suggestion system for therapists [3]. In Human-
Computer Interaction, a system endowed with emotional intelli-
gence can be used to create effective communication with users
[4]. In emergency situations, as part of the corresponding situa-
tional awareness, real-time decisions can be made from the behav-
ioral patterns of the subjects.

The development of a facial ER system is challenging since the
images of the same person with the same facial expression can
vary with the lighting conditions, background, and occlusions [5],
which precludes homogeneity. Certain emotions have only subtle
distinctions which make them harder to analyze and describe. The
state-of-the-art approaches in facial ER used feature-based meth-
ods [6,7] and template-based methods [8]. The first ones focus
appearance and geometric modelled feature extraction. Template-
based methods were less reliable because they are limited to only
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frontal faces and the accuracy rate changed with variations in pose,
scale, and shape. Feature extraction is mostly based on Histogram
of Oriented Gradients (HOG) [9] and Local Binary Patterns (LBP)
[10]. HOG descriptors were used to encode facial components since
it projected the appearance of gradient orientation in an image.
Other works use Discrete Wavelet Transform (DWT) for feature ex-
traction and Neural Networks for classification [11]. Dimension-
ality reduction (DR) techniques in ER include principal compo-
nents analysis (PCA) [12] and linear discriminant analysis (LDA)
[13]. Recently, PCA based facial feature projection has also been
used for age progression application [14]. These methods cannot
be used to find the nonlinear structure of the data. To overcome
this limitation various nonlinear DR algorithms such as kernel PCA
[15], locally linear embedding (LLE) [16], isometric feature map-
ping (Isomap) [17] and T-distributed Stochastic Neighbor Embed-
ding (t-SNE) [18] have been proposed. The sparse representation-
based methods for classification (SRC) are also widely used since
2009 [19]. SRC is most effective when there is high separability
between the subspaces [20-22]. But its main disadvantage over
classical subspace learning algorithms is that the classification cri-
terion of SRC fails and leads to misclassification when the sam-
ples are highly correlated. Deep Neural Networks [23] have gained
popularity in the recent years as a choice for supervised learning.
The major drawback of supervised learning comes from the fact
that most of the data available in general is unlabeled., something
particularly evident in the case of human face images. In 2004,
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Fig. 1. Block diagram of the proposed method.

Hinton and co-workers Hinton et al. [24] proposed the idea of
the Restricted Boltzmann Machines (RBM) and its generalization to
Deep Belief Networks (DBN), where unsupervised techniques can
model the probabilistic distribution of the data and cluster it [25].

In this paper, a semi-supervised DBN is used to include un-
labeled and labeled data to improve the accuracy of the classi-
fier. Semi-supervised learning is comparable to human learning,
which involves a small amount of labeled data along with greater
amounts of unlabelled observations [26]. To make use of unlabeled
data, DBNs are applied to learn the model [27] and the obtained
discriminative model is fitted to a labeled dataset by performing
Backpropagation (BP).

The major contributions in this paper are two. First, we pro-
pose to use semi-supervised learning during feature selection to
determine the features that are more explanatory of the human
emotions in the available data. The proposed DBN has an input
layer taking in the dimensionality-reduced feature vectors corre-
sponding to Histogram Oriented Gradients (HOG) of mouth, HOG
of the eye, Wavelet Transform of mouth and Wavelet transform of
the eye. Reconstruction error and validation accuracy were used to
find the most significant feature vector. Second, a semisupervised
learning process is proposed that uses non labelled data to train
a DBN. After convergence, we proceed to fine tune the structure
with BP and the available labelled data. The data is previously pro-
cessed by a dimensionality reduction method. The most efficient
linear method was LDA and amongst the nonlinear approaches,
the best one was Isomap.The proposed semi-supervised framework
was evaluated on the CK+, MMI and RAFD databases. The results
show that the presented approach have a performance similar or
better than those of the state of the art (SVM and CNN) with the
additional benefits of using significantly less labelled data and a
dramatically reduced training and test computational burdens.

2. Proposed approach

The introduced semi-supervised deep belief network for facial
ER is shown in Fig. 1. The proposed method incorporates differ-
ent feature extraction methods and dimensionality reduction tech-
niques prior to passing the data into the DBN. Based on the char-
acteristics of the different facial expressions, the mouth and eye
patches are extracted from the facial data. Then two feature ex-
traction methods namely HOG and 2D-DWT were used to com-
pute the significant spatial components from the mouth and eye

data. Histogram of oriented gradients (HOG) is a feature descrip-
tor which extracts the information regarding the image gradients
to formulate the shape of structures in an image [28,29]. HOG
was first used for pedestrian detection in 2005 and it was im-
plemented by dividing the images into overlapped cells of nxn
pixels. The cells are organized as overlapping blocks. Inside each
cell, the pixel gradients are computed by using vertical and hori-
zontal kernels [—1,0, 1] and [—1, 0, 1]T. Varying the cell size helps
in capturing information at different scale. The number of orien-
tation histogram bins helps in recording the details of orienta-
tion. Increasing the number of bins helps in capturing finer ori-
entation details. The gradient vectors are arranged to form a his-
togram to compress the feature descriptor as well as to generalize
the information contained in the cells. By normalizing the gradi-
ent vectors, HOG also becomes invariant to geometric and photo-
metric transformations. HOG characterizes the local shape by cap-
turing the edge or gradient structure and the features being a
lot smaller compared to the local spatial or orientation bin size
makes it invariant to translations and rotations. Whereas, in 2D-
DWT [30-32] the image is decomposed into a set of basis func-
tions called wavelets which provides both frequency and time in-
formation. The 2D wavelet decomposition of an image is imple-
mented as a set of filter banks in which 1D-DWT is at first applied
along the rows and then along the columns. The filter banks com-
prise of a cascaded design of high pass and low pass filters and
the decomposition results in four sub-band images namely low -
low (LL), low - high (LH), high - low (HL), and high - high (HH).

In this paper, four different feature vectors, which are HOG of
mouth, HOG of eye, 2D-DWT of mouth and 2D-DWT of eye are
evaluated to obtain the most suitable feature extraction method
for this application. However, the dimensionality of these feature
vectors are further decreased to accelerate the training of the DBN.
These reduced features are given as input to the semi-supervised
DBN and the recognition rate for different feature vectors are com-
puted. Based on this accuracy, a ranking is assigned to the reduced
HOG and DWT features of mouth and eye. Therefore this proposed
approach, as shown in Fig. 1 can be used to predict the most rele-
vant facial features using lesser computations.

2.1. Dimensionality reduction

Dimensionality reduction can be used for both feature extrac-
tion as well as feature selection. This work focuses on feature
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extraction using linear methods such as PCA and LDA and nonlin-
ear techniques such as Kernel PCA, Isomap and t-SNE. PCA [33] is
an extensively used technique which outputs a linear approxima-
tion of dimension d which is lesser than the input dimension n.
The input data is projected such that the variance of each principal
component is maximal [34]. Though PCA is not computationally
demanding, it fails to model the nonlinear variabilities in high di-
mensional data. This problem was addressed by introducing Kernel
PCA [35] which uses different kernels to project the input to a non-
linear feature space. The most popular kernels used are gaussian,
polynomial and hyperbolic tangent [36]. However, for Kernel PCA
as the number of data points increases, the kernel matrix grows
quadratically and hence the eigenvalue decomposition of this ma-
trix becomes computationally expensive. Another supervised but
linear dimensionality reduction algorithm is LDA [37], which can
be defined as an optimization problem to compute linear combi-
nations with coefficients w, which tries to maximize the ratio of
between the class variance to within the class variance. The objec-
tive function used is as follows:
w'Sgw

JW) = e M
Where Sg is between the class variance and and Sy, is within the
class variance. Despite being a popular dimensionality reduction
method, LDA has its limitations. For classification purposes, when
the distribution of the data is non-gaussian, LDA won'’t be able to
preserve the complex structure of the data [38].

[somap uses the geodesic distance to create a lower dimen-
sional embedding to preserve the manifold structure. Though it
provides an estimate of the underlying geometry of the data
[39], the main disadvantage of isomap is that it generally fails
for manifolds which have holes. Thus in contrast to isomap, LLE
[40] computes neighborhood-preserving embeddings of the high-
dimensional data. LLE represents each data point as the weighted
sum of the k nearest neighbors. This linear mapping to lower di-
mension helps to retain the weights learned in the higher dimen-
sion. Further, t-SNE is a nonlinear algorithm developed by Laurens
van der Maaten and Geoffrey Hinton [41] for embedding high-
dimensional data for visualization in a low-dimensional space. It
models the affinities of data points to probabilities and hence iden-
tical objects are characterized by nearby points and non-identical
are modeled by distant points.

2.2. Deep belief networks

DBNs are a representative deep learning model built using
stacked RBMs. It is an unsupervised learning algorithm in contrast

X1 X2 X3

Input

to perceptron [42] and BP NNs [43]. The DBN training process con-
sists of a pretraining phase and fine-tuning phase [44,45]. Each
RBM is pre-trained in an unsupervised manner, the output of one
layer being the input of the next one. Fine tuning is done in a su-
pervised manner using labeled data and the BP algorithm.

An RBM is restricted since there are only connection between
hidden and visible units. Structure of an RBM is shown in Fig. 2.
The energy function associated with a joint distribution of two lay-
ers of a binary RBM is given by

V H \%4 H
Ev.h) ==Y S wyvih; — Y by — Y ajh; (2)
i=1 j=1 i=1 j=1

where g; and b; are the bias terms, V and H are the number of
visible and hidden units, wjj is the weight of the connection be-
tween visible unit i and hidden unit j, v;, h; are the binary states
of the units, and v, h are column vectors containing them. A joint
probability of h and v is defined as:

P, h) = e FM) 3)

where Z is the partition function
Z=Y etwm (4)
v,h

its marginalization over h is:
1§ p-Ewh)
pv) = Y et (5)
h
The posterior probability of a hidden node given v is modelled as
p(h; =1|v) =0(bj+ZUiWij) (6)
i

where the sigmoid function o (x) = (1 +e~*)~1. Similarly, the pos-
terior of a visible node given h is modelled as

p(v;=1lh) =0 (a; + Zhjwij) (7)
i

An efficient training procedure called contrastive divergence (CD)
is introduced in [46], where the incremental learning rule is

AWU & (hivj>data - (hivj>rec (8)

where (h;Vj)qqq denotes the measured correlation between h;
and v; when the states of the hidden units are determined by
Eq. (6) and the visible vectors are samples from the training
set. The term (h;Vj)rc is the correlation where h; and v; are

Hidden Layer

Visible Layer

Fig. 2. Structure of RBM. An RBM is a bipartite graph in which observations are represented using visible units in the visible layer, which are connected to the hidden units

in the hidden layer through undirected weighted connections.
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both reconstructions of the data vectors and the states of the
hidden units are chosen at random from distributions (6). The
above pre-training stage aims at reconstructing the input and it is
unsupervised.

A Deep Boltzmann Machine (DBN) can be constructed by stack-
ing L layers with parameters W), a) and b{), 1 <I<L. This ma-
chine can be trained layerwise, as each layer of nodes is condition-
ally independent of each other given the knowledge of the previ-
ous or following layer.

2.3. Backpropagation

Backpropagation [47] is a very well known technique to opti-
mize neural networks (see, e. g. [25] or [48]). Given a training set
(X;, yi), 1<i<m where targets y;, € RP. A common approach is to
minimize a cost function that takes into account the averaged neg-
ative log-likelihood of the training targets given the input data and
a prior over the parameters as

JOw) = —log ([T PWni X, W)POWV))
= — " log p(ynslX, W) — log p(W) ®)

n,k

where matrix X contains all data X, and W contains all the linear
parameters of the DBN. The posterior probability is proportional
to the prior times the data likelihood. thus, this setup is equiv-
alent to maximize the parameter log-posterior, given the training
data. Usually, the prior for the parameters is a zero mean Gaussian
function with covariance X.

If the likelihood model for the data is a Gaussian distribution,
then the function to optimize is simply

1 _
JOV) = 5 3 Iynic— o) |2 + W E,'w
nk

(10)

and if the distribution is a multinoulli, then
1 _
Jow) = ﬁZyn,klogok(xn)-kwT):p]w (11)

nk

where w is a vector containing all parameters and oy(X;) is the
response of the k:h output of the DBN to input X,. Usually, the
simplification X, =1 is taken, so the regularization term of the
cost function is simply the norm of the vectorized parameters,
or wElw=y" 'y Z;’: (WJ(.?)Z, assuming that wﬁ.) is a
weight connecting node i of layer [ — 1 and node j of layer .

2.4. Architecture and training of the network

The network has five layers (Fig. 3). The input layer has two
nodes. The classification is designed using a 4 bit code for the
classes. Since the classification problem at hand consists of 7
classes, 4 bits are necessary for representing them. Then, the num-
ber of nodes at the output layer is 4. The rest of the layers have
3, 3, and 4 nodes, all of them with sigmoid activation. The output
nodes are normalized using a softmax activation. The network is
first trained in an unsupervised way using CD, and then a softmax
activation of the output layer is used to apply a BP with the la-
belled data. The various steps involved in semi-supervised training
are as follows.

The data is partitioned into a training set and test set. The
training set consists of Nl(") non labelled data and N,S") labelled
data. The test set consists of N labelled data. During the train-
ing of DBN, RBMs are trained layer after layer using the process
explained above. For each epoch, all the RBMs were trained indi-
vidually 5 times. In this process, and using Eqs. (6) and (7), the
outputs v and h of each RBM are computed using the N,‘H—N,‘lr
data. After that, the learning rule is used to find the weight up-
date and Eq. (8) is used to compute the new weights and biases.
For training the network, different learning rates were used. The

[ Classification

Hidden Layer {

Input layer ~{

Supervised

Backpropagation
of error

RBM

Unsupervised DBN

Fig. 3. Architecture of the semi-supervised DBN. The structure consists of five layers. The number of nodes, from input to output layers, is 2, 3, 3, 4 nodes. The number of
staked RBMs is 4. The dashed area highlights the structure of the first stacked RBMs. The network is first trained with unlabelled data using CD until convergence, and then

a softmax activation of the output layer is used to apply a BP with the labelled data.
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hidden output of the previous RBM is passed onto the next RBM
and the output of the final layer is further fine-tuned using BP
with the N,” labelled data. Hence the entire training procedure
uses both labeled and non-labeled data to classify facial expres-
sion. A portion of the training data is also used for validation to
obtain the optimized training parameters and model.

3. Experiments and results
3.1. Databases

The extended Cohn-Kanade database (CK+) [49], the Radboud
Faces database (RaFD) [50] and MMI database [51] were used
to test the proposed method for facial ER. The CK+ and MMI
databases were captured from a lab-based environment whereas
the RaFD database contained facial images with varying poses and
gaze directions. Firstly, in the case of CK+ database, there are
327 image sequences with 7 expression labels namely anger, neu-
tral, disgust, fear, happy, sad, and surprise. The last frame of each
sequence consists of the peak expression with an image size of
640 x 490 or 640 x 480 pixels. A total of 1400 images i.e. 200 im-
ages from each of the seven emotion classes were used for all the
experimentation. Secondly, the MMI database consist of 205 image
sequence and the peak expression can be found in the middle of
this sequence. This database consists of 6 facial expression classes
and with an image resolution of 720 x 576 pixels. Finally, the RaFD
database used for this experimentation consists of images from 67
subjects displaying 8 different expressions. The image data belong-
ing to the category of contempt has been eliminated for this exper-
iment. Further there exist samples belonging to 5 different camera
angles and amongst them, only three angles 135°, 90° and 45° are
taken into consideration. The frontal face images in this database
have a size of 125 x 160 pixels whereas the images including the
distinct camera poses have a size of 284 x 284 pixels.

3.2. Overview of the experiments

The Viola-Jones face detector [52] was used to detect the face
from the given image and after which it detects possible mouth
and eye regions. From these image regions, the HOG and wavelet
features were extracted to form different feature vectors. Further
different dimensionality reduction methods such as PCA, LDA, Ker-
nel PCA, Isomap, t-SNE, and LLE were compared and evaluated to
obtain the reduced features for easier computation during train-
ing [53]. The selection of the most significant features was done
by cross-validating the model using the different feature vectors.
It was found that the HOG features of the mouth provided more
accuracy compared to the rest of the features. Finally, these HOG
features were passed into a 5 layered DBN for pre-training [54]. A
fine-tuning procedure using BP was used at the end of the DBN in
order to reduce the reconstruction error of the entire network. Dif-
ferent experimentation was done to test the semi-supervised, su-
pervised and unsupervised models. The proposed semi-supervised
architecture was obtained by cascading the unsupervised DBN
along with the supervised BP. The main test parameters used were
the learning rate, the number of epochs, reconstruction error, and
accuracy. K-fold cross-validation method was used here for testing
the semi-supervised DBN models. The training data is first shuffled
and split into 5 groups. In each case, a unique fold is chosen as the
validation data set and the remaining 4 folds are iteratively used
to train the model. The evaluation accuracy is retained, and the
model is discarded. Finally, the recognition rate over the 5 folds is
averaged to estimate the accuracy and the results were compared
with a multiclass SVM classifier [55]. An NVIDIA GeForce GTX 1060
GDDR5 6.0 GB GPU and supercomputers from The Center for Ad-

Table 1
Recognition rate of the CK+ database using different dimensionality reduction al-
gorithms and the proposed semisupervised classification algorithm.

Recognition rate %

Method Feature - - - -
2 dimension 5 dimension
PCA+DBN HOG eye 55.71 58.1
HOG mouth 63.81 65.71
2D-DWT eye 41.90 43.81
2D-DWT mouth 55.24 60.0
LDA+DBN HOG eye 62.86 61.31
HOG mouth 98.57 94.68
2D-DWT eye 80.0 76.57
2D-DWT mouth 90.0 86.78
Kernel PCA+DBN HOG eye 27.12 27.62
HOG mouth 36.19 37.14
2D-DWT eye 28.10 29.52
2D-DWT mouth 25.24 31.43
LLE+DBN HOG eye 40.95 55.71
HOG mouth 70.00 72.86
2D-DWT eye 42.38 46.67
2D-DWT mouth 50.95 69.05
Isomap+DBN HOG eye 55.71 66.19
HOG mouth 69.52 74.29
2D-DWT eye 40.95 56.19
2D-DWT mouth 63.81 75.71
t-SNE+DBN HOG eye 27.12 27.62
HOG mouth 36.19 37.14
2D-DWT eye 28.10 29.52
2D-DWT mouth 25.24 31.43

vanced Research Computing (CARC) of the University of New Mex-
ico were used to carry out all the experiments.

3.3. Comparison of recognition rate

Table 1 shows the comparative analysis of various linear and
nonlinear dimensionality reduction algorithms. The feature vectors
HOG eye, HOG mouth, 2D-DWT eye, and 2D-DWT mouth are pro-
jected to a lower dimensional space using the dimensionality re-
duction methods. Here, 2 dimension and 5 dimension refers to
the number of dimensions after performing the dimensionality re-
duction. The recognition rate is similar for 2 dimensions and 5
dimensions when the semi-supervised DBN is used along with
PCA, Kernel PCA, LLE, Isomap, and t-SNE. However, LDA and semi-
supervised DBN with a 2-dimensional feature vector give a rea-
sonable increase in recognition rate compared to using 5 dimen-
sions. The dimensionality-reduced HOG mouth features show the
best performance by giving a recognition rate of 98.57%. Similarly,
the 2D-DWT mouth features also gave a comparable accuracy of
90%. The dimensionality-reduced mouth features were able to clas-
sify the emotions more effectively than the others. Further, it was
observed that LDA based dimensionality reduction gave a huge in-
crease in recognition rate compared to the rest of the methods.

3.4. Confusion matrices for different feature vectors

The test confusion matrices comparing the four different fea-
ture vectors are shown in Fig. 4 for CK+ database. Here the di-
mensionality reduction of the feature vectors is done using LDA
and these features are passed on to the semi-supervised DBN us-
ing 60% of labeled data and the rest non-labeled data. in order to
evaluate its performance. In the case of HOG eye features, it is un-
able to classify sadness, disgust and neutral emotions whereas it
shows better accuracy for the rest of the cases. The 2D-DWT fea-
tures of eye show confusion only in case of surprise and disgust
whereas the 2D-DWT features of mouth show good performance
in all cases except in case of sadness.
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Fig. 4. Test confusion matrix of CK+ database for semi-supervised DBN with LDA, using (a) HOG eye (b) HOG mouth (c) 2D-DWT eye (d) 2D-DWT mouth features.

However, the overall recognition rate of 2D-DWT of mouth is
higher than that of HOG eye and 2D-DWT eye features. Amongst
the four features used, the best performance was given by HOG
mouth features since it gave a recognition rate of 90% for fear and
100% for the rest of the emotions. In general, the mouth features
after dimensionality reduction were found to be more suitable for
the application of facial ER.

3.5. Test accuracy comparing different training criteria

Fig. 5 compares the test accuracies obtained for supervised,
semi-supervised and unsupervised training of the DBN. It can be
observed from the bar graph that the best performance in terms of
the most significant features is shown by HOG features of mouth.
Semi-supervised training is able to give better test accuracy for
each of the feature sets, compared to supervised and unsupervised
training methods. The experimental data undergoes dimensional-
ity reduction using LDA before inputting into the DBN system. The
semi-supervised DBN network using HOG features of mouth gives
the highest test accuracy of 98.57% with CK+ database.

Semi-supervised training uses both labeled and unlabeled data
for training and hence it is able to provide the network with more
information. This training technique uses 60% as labeled data and
the label information of the rest of the data is discarded before the

experiment. The supervised training uses only the labeled data for
recognizing the facial expressions whereas the unsupervised DBN
uses the entire data as unlabeled and the training of the network
does not include the minimization of BP error.

3.6. Performance evaluation based on dimensionality

Fig 6 shows the comparison between the performance of
semi-supervised DBN using high dimensional and lower dimen-
sional features. The relevance of dimensionality reduction is well-
explained through the bar graph. Using the reduced features the
test accuracies have improved significantly. The test accuracy im-
proved from 75.24% to 98.57% in case of HOG features of mouth
after using low dimensional features.

It is very clear that dimensionality reduction, in particular us-
ing LDA, is able to classify the facial expressions better compared
to the higher dimensional data. For example, using LDA the dimen-
sionality was reduced from 6048 to 2 dimension for HOG features
of mouth. This huge reduction of dimension guarantees that the
relevant information for classification of facial expression is pre-
served, hence, it shows improvement in the test accuracy. Further,
it can be observed that for all the feature vectors the low dimen-
sional features show much better performance compared to the
high dimensional features.
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3.7. Feature analysis using reconstruction error

Minimization of the quadratic reconstruction error was one of
the methods used for the analysis of different feature vectors. Re-
construction of the input is a mapping from the output to input.
The mean square error of the input and the reconstructed input is
computed for each epoch during training for different feature ma-
trices as inputs. Fig. 7 shows the plot of reconstruction error vs
epoch for validation.

It is observed that mouth HOG features have the lowest recon-
struction error, hence the most informative among all the feature
sets. The reconstruction error attains a steady value around 1000
epochs after which there is not much change recorded. It can be
seen that the mouth features perform better compared to that of

the features from the eyes. Further, the HOG features of mouth per-
form the best among all the feature sets with the highest test ac-
curacy of 98.57%.

3.8. Computational analysis based on dimensionality of data

Table 2 shows the run-time for different dimensions of the in-
put feature vector. The feature vectors were input to the semi-
supervised DBN and the run-time was recorded for testing and
over individual epoch for training. The experiment was performed
for different feature sets. The feature vector with the exact dimen-
sions before dimensionality reduction and after dimensionality re-
duction was used to compute the run-time for training and test-
ing. For example, the HOG features detected from the eye patch
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Fig. 7. Graph showing the reconstruction error versus epoch during semi-
supervised training of DBN for different features.

Table 2
Performance based on the run-time for different dimensions of input feature vector.

Feature Dimensionality Run time (in seconds)
Training Testing
(per epoch)
HOG eye 9504 1.832 0.1534
5 0.0635 0.0283
2 10591 0.0228
HOG mouth 6048 1.082 0.0891
5 0.0628 0.0263
2 0.0578 10231
2D-DWT eye 5832 1.038 0.0854
5 0.0621 0.0256
2 0.0569 0.0221
2D-DWT mouth 2916 0.501 0.052
5 0.0645 0.0272
2 0.0595 0.023

was of dimension 9504 x 1 for each sample data and the dimen-
sionality of the feature vector was reduced to 5 dimensions and
2-dimension to train using semi-supervised DBN.

From Table 2, it can be observed that dimensionality reduction
results in fast training. The run-time recorded for reduced features
is half of that of the whole feature set. The dimensionality reduc-
tion technique used here is LDA. It was able to capture the most
relevant features required for the classification of facial expression
as it was able to give a good performance in terms of accuracy.
The significant reduction in the run-time shows the relevance of
dimensionality reduction as it saves computational time and also
memory usage.

3.9. Performance comparison with multi-class SVM and CNN

Fig. 8 shows the test error comparing the semi-supervised DBN
and SVM. The test error graphs of HOG mouth features were plot-
ted against different percentages of labeled data in order to evalu-
ate the performance of the classifiers.

In the case of the semi-supervised DBN approach, it was found
that each of the feature vectors exhibited the lowest test error
when there was just 60% of labeled data and the rest unlabeled
data. The test error of HOG features of mouth oscillates around
zero, thereby showing the significance of these features in improv-
ing the classifier. Moreover, the multiclass SVM does not show a
comparable performance even while utilizing the entire amount
of labeled data. It has a high and fluctuating test error irrespec-
tive of the feature vector used. Thus the proposed semi-supervised
approach was able to attain a superior performance with a lesser

HOG of mouth
09 T T T T T T

test error

0 10 20 30 40 50 60 70 80 90 100
percent of labelled data

Fig. 8. Test error of semi-supervised DBN with different ratios of labeled and unla-
beled data using HOG mouth features.

Table 3
Accuracy comparison with different databases and classifiers. For Semi-supervised
training 60% of the data had the label information and the rest 40% were used as
unlabeled data. But all the supervised methods used the entire labeled data for
training.

Method Training Feature Database Accuracy
DBN(Ours) Semi- HOG mouth CK+ 98.57%
supervised RaFD 135° 91.95%
RaFD 90° 94.50%
RaFD 45° 92.75%
MMI 98.75%
SVM Supervised HOG mouth CK+ 28.57%
RaFD 135° 84.00%
RaFD 90° 88.20%
RaFD 45° 86.28%
MMI 84.57%
STC-NLSTM Supervised Convolutional CK+ 99.80%
[56] features MMI 84.53%
CNN [57] Supervised Convolutional RaFD 90° 93.41%
features
CNN with visual ~ Supervised Convolutional RaFD 135° + 93.10%
attention [58] features RaFD 45°
RaFD 90° 95.20%

amount of labeled data compared to the traditional SVM. Table 3
shows the accuracy for different approaches. Our proposed ap-
proach using Semi-supervised DBN was able to obtain a compa-
rable accuracy with CNN based approaches. Semi-supervised DBN
required label information from just 60% of the total data to train
the system whereas CNNs undergo supervised training with label
information from the entire data. Further, the training time and
memory usage of CNNs [56-58] were very high compared to our
approach. The combined training and test time for our approach
was 197.5 seconds whereas the CNN based approach [57] takes
about 12,444 s.

4. Conclusion

A semi-supervised approach for facial ER utilizing reduced
facial features with most of the data being unlabeled is introduced
with a four-layered neural network. They are convenient to use
due to their easy training. Since we use CD and BP, training can
be done sequentially. Semi-supervised learning was achieved by
combining CD and BP, as CD is unsupervised, and BP is supervised.
The facial features used were mouth and eye HOG, 2D-DWT of
eyes and 2D-DWT of mouth. Further, the analysis was done with
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different dimensionality reduction algorithm on each of the feature
sets. The test accuracies were compared for the semi-supervised
training using DBN and supervised training using SVM and CNN. It
was observed that the semi-supervised training showed the best
performance with a test accuracy of 98.57% and outperformed
SVM in terms of accuracy and CNN in terms of computational
complexity. DBN used the information in unlabeled data to give
better performance and the most accurate model required 60%
of labeled data and 40% of unlabeled data. The semi-supervised
training with HOG features of mouth also showed a consistent
performance even when there was just 10% labeled data and rest
unlabeled data. Furthermore, the DBN was trained in a supervised,
semi-supervised and unsupervised manner using the reduced
features to examine the difference in performance and again semi-
supervised training was able to give better accuracy compared to
the supervised and unsupervised training. Feature analysis with
the reduced-dimensional features (LDA) was performed using the
reconstruction error technique. Based on the experiment using
reconstruction error it was found that reduced HOG features of
mouth contained the most relevant information to classify facial
expression. Analysis based on training run-time and test accuracies
for features of different dimension was also carried out. It was
observed that the best performance, that is minimum run-time
and high accuracy was given by the dimensionally reduced fea-
tures (LDA) with 2-dimensions. The test accuracies improved
significantly after using dimensionality reduction technique. Future
work aims at the use of ER technology in videos, in particular in
emergency response situational awareness systems with thermal
imaging, to detect emotions in civilians in the emergency scenario.
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