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a b s t r a c t 

A semi-supervised emotion recognition algorithm using reduced features as well as a novel feature selec- 

tion approach is proposed. The proposed algorithm consists of a cascaded structure where first a feature 

extraction is applied to the facial images, followed by a feature reduction. A semi-supervised training 

with all the available labeled and unlabeled data is applied to a Deep Belief Network (DBN). Feature se- 

lection is performed to eliminate those features that do not provide information, using a reconstruction 

error-based ranking. Results show that HOG features of mouth provide the best performance. The perfor- 

mance evaluation has been done between the semi-supervised approach using DBN and other supervised 

strategies such as Support Vector Machine (SVM) and Convolutional Neural Network (CNN). The results 

show that the semi-supervised approach has improved efficiency using the information contained in both 

labeled and unlabeled data. Different databases were used to validate the experiments and the applica- 

tion of Linear Discriminant Analysis (LDA) on the HOG features of mouth gave the highest recognition 

rate. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Amongst the various modes of emotion recognition (ER), the

facial expression is one of the conveying forms used for the dis-

play of emotions. ER can be applied in various fields like medicine,

marketing, entertainment. For example, a medical robot can be

designed to continuously monitoring their emotional state [1,2] ,

or a diagnostic suggestion system for therapists [3] . In Human-

Computer Interaction, a system endowed with emotional intelli-

gence can be used to create effective communication with users

[4] . In emergency situations, as part of the corresponding situa-

tional awareness, real-time decisions can be made from the behav-

ioral patterns of the subjects. 

The development of a facial ER system is challenging since the

images of the same person with the same facial expression can

vary with the lighting conditions, background, and occlusions [5] ,

which precludes homogeneity. Certain emotions have only subtle

distinctions which make them harder to analyze and describe. The

state-of-the-art approaches in facial ER used feature-based meth-

ods [6,7] and template-based methods [8] . The first ones focus

appearance and geometric modelled feature extraction. Template-

based methods were less reliable because they are limited to only
∗ Corresponding author. 
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rontal faces and the accuracy rate changed with variations in pose,

cale, and shape. Feature extraction is mostly based on Histogram

f Oriented Gradients (HOG) [9] and Local Binary Patterns (LBP)

10] . HOG descriptors were used to encode facial components since

t projected the appearance of gradient orientation in an image.

ther works use Discrete Wavelet Transform (DWT) for feature ex-

raction and Neural Networks for classification [11] . Dimension-

lity reduction (DR) techniques in ER include principal compo-

ents analysis (PCA) [12] and linear discriminant analysis (LDA)

13] . Recently, PCA based facial feature projection has also been

sed for age progression application [14] . These methods cannot

e used to find the nonlinear structure of the data. To overcome

his limitation various nonlinear DR algorithms such as kernel PCA

15] , locally linear embedding (LLE) [16] , isometric feature map-

ing (Isomap) [17] and T-distributed Stochastic Neighbor Embed-

ing (t-SNE) [18] have been proposed. The sparse representation-

ased methods for classification (SRC) are also widely used since

009 [19] . SRC is most effective when there is high separability

etween the subspaces [20–22] . But its main disadvantage over

lassical subspace learning algorithms is that the classification cri-

erion of SRC fails and leads to misclassification when the sam-

les are highly correlated. Deep Neural Networks [23] have gained

opularity in the recent years as a choice for supervised learning.

he major drawback of supervised learning comes from the fact

hat most of the data available in general is unlabeled., something

articularly evident in the case of human face images. In 2004,

https://doi.org/10.1016/j.neucom.2019.08.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.08.029&domain=pdf
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Fig. 1. Block diagram of the proposed method. 
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t  
inton and co-workers Hinton et al. [24] proposed the idea of

he Restricted Boltzmann Machines (RBM) and its generalization to

eep Belief Networks (DBN), where unsupervised techniques can

odel the probabilistic distribution of the data and cluster it [25] . 

In this paper, a semi-supervised DBN is used to include un-

abeled and labeled data to improve the accuracy of the classi-

er. Semi-supervised learning is comparable to human learning,

hich involves a small amount of labeled data along with greater

mounts of unlabelled observations [26] . To make use of unlabeled

ata, DBNs are applied to learn the model [27] and the obtained

iscriminative model is fitted to a labeled dataset by performing

ackpropagation (BP). 

The major contributions in this paper are two. First, we pro-

ose to use semi-supervised learning during feature selection to

etermine the features that are more explanatory of the human

motions in the available data. The proposed DBN has an input

ayer taking in the dimensionality-reduced feature vectors corre-

ponding to Histogram Oriented Gradients (HOG) of mouth, HOG

f the eye, Wavelet Transform of mouth and Wavelet transform of

he eye. Reconstruction error and validation accuracy were used to

nd the most significant feature vector. Second, a semisupervised

earning process is proposed that uses non labelled data to train

 DBN. After convergence, we proceed to fine tune the structure

ith BP and the available labelled data. The data is previously pro-

essed by a dimensionality reduction method. The most efficient

inear method was LDA and amongst the nonlinear approaches,

he best one was Isomap.The proposed semi-supervised framework

as evaluated on the CK + , MMI and RAFD databases. The results

how that the presented approach have a performance similar or

etter than those of the state of the art (SVM and CNN) with the

dditional benefits of using significantly less labelled data and a

ramatically reduced training and test computational burdens. 

. Proposed approach 

The introduced semi-supervised deep belief network for facial

R is shown in Fig. 1 . The proposed method incorporates differ-

nt feature extraction methods and dimensionality reduction tech-

iques prior to passing the data into the DBN. Based on the char-

cteristics of the different facial expressions, the mouth and eye

atches are extracted from the facial data. Then two feature ex-

raction methods namely HOG and 2D-DWT were used to com-

ute the significant spatial components from the mouth and eye
ata. Histogram of oriented gradients (HOG) is a feature descrip-

or which extracts the information regarding the image gradients

o formulate the shape of structures in an image [28,29] . HOG

as first used for pedestrian detection in 2005 and it was im-

lemented by dividing the images into overlapped cells of n × n

ixels. The cells are organized as overlapping blocks. Inside each

ell, the pixel gradients are computed by using vertical and hori-

ontal kernels [ −1 , 0 , 1] and [ −1 , 0 , 1] � . Varying the cell size helps

n capturing information at different scale. The number of orien-

ation histogram bins helps in recording the details of orienta-

ion. Increasing the number of bins helps in capturing finer ori-

ntation details. The gradient vectors are arranged to form a his-

ogram to compress the feature descriptor as well as to generalize

he information contained in the cells. By normalizing the gradi-

nt vectors, HOG also becomes invariant to geometric and photo-

etric transformations. HOG characterizes the local shape by cap-

uring the edge or gradient structure and the features being a

ot smaller compared to the local spatial or orientation bin size

akes it invariant to translations and rotations. Whereas, in 2D-

WT [30–32] the image is decomposed into a set of basis func-

ions called wavelets which provides both frequency and time in-

ormation. The 2D wavelet decomposition of an image is imple-

ented as a set of filter banks in which 1D-DWT is at first applied

long the rows and then along the columns. The filter banks com-

rise of a cascaded design of high pass and low pass filters and

he decomposition results in four sub-band images namely low -

ow (LL), low - high (LH), high - low (HL), and high - high (HH). 

In this paper, four different feature vectors, which are HOG of

outh, HOG of eye, 2D-DWT of mouth and 2D-DWT of eye are

valuated to obtain the most suitable feature extraction method

or this application. However, the dimensionality of these feature

ectors are further decreased to accelerate the training of the DBN.

hese reduced features are given as input to the semi-supervised

BN and the recognition rate for different feature vectors are com-

uted. Based on this accuracy, a ranking is assigned to the reduced

OG and DWT features of mouth and eye. Therefore this proposed

pproach, as shown in Fig. 1 can be used to predict the most rele-

ant facial features using lesser computations. 

.1. Dimensionality reduction 

Dimensionality reduction can be used for both feature extrac-

ion as well as feature selection. This work focuses on feature
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extraction using linear methods such as PCA and LDA and nonlin-

ear techniques such as Kernel PCA, Isomap and t-SNE. PCA [33] is

an extensively used technique which outputs a linear approxima-

tion of dimension d which is lesser than the input dimension n .

The input data is projected such that the variance of each principal

component is maximal [34] . Though PCA is not computationally

demanding, it fails to model the nonlinear variabilities in high di-

mensional data. This problem was addressed by introducing Kernel

PCA [35] which uses different kernels to project the input to a non-

linear feature space. The most popular kernels used are gaussian,

polynomial and hyperbolic tangent [36] . However, for Kernel PCA

as the number of data points increases, the kernel matrix grows

quadratically and hence the eigenvalue decomposition of this ma-

trix becomes computationally expensive. Another supervised but

linear dimensionality reduction algorithm is LDA [37] , which can

be defined as an optimization problem to compute linear combi-

nations with coefficients w , which tries to maximize the ratio of

between the class variance to within the class variance. The objec-

tive function used is as follows: 

J(W ) = 

w 

� S B w 

w 

� S W 

w 

(1)

Where S B is between the class variance and and S W 

is within the

class variance. Despite being a popular dimensionality reduction

method, LDA has its limitations. For classification purposes, when

the distribution of the data is non-gaussian, LDA won’t be able to

preserve the complex structure of the data [38] . 

Isomap uses the geodesic distance to create a lower dimen-

sional embedding to preserve the manifold structure. Though it

provides an estimate of the underlying geometry of the data

[39] , the main disadvantage of isomap is that it generally fails

for manifolds which have holes. Thus in contrast to isomap, LLE

[40] computes neighborhood-preserving embeddings of the high-

dimensional data. LLE represents each data point as the weighted

sum of the k nearest neighbors. This linear mapping to lower di-

mension helps to retain the weights learned in the higher dimen-

sion. Further, t-SNE is a nonlinear algorithm developed by Laurens

van der Maaten and Geoffrey Hinton [41] for embedding high-

dimensional data for visualization in a low-dimensional space. It

models the affinities of data points to probabilities and hence iden-

tical objects are characterized by nearby points and non-identical

are modeled by distant points. 

2.2. Deep belief networks 

DBNs are a representative deep learning model built using

stacked RBMs. It is an unsupervised learning algorithm in contrast
Fig. 2. Structure of RBM. An RBM is a bipartite graph in which observations are represen

in the hidden layer through undirected weighted connections. 
o perceptron [42] and BP NNs [43] . The DBN training process con-

ists of a pretraining phase and fine-tuning phase [44,45] . Each

BM is pre-trained in an unsupervised manner, the output of one

ayer being the input of the next one. Fine tuning is done in a su-

ervised manner using labeled data and the BP algorithm. 

An RBM is restricted since there are only connection between

idden and visible units. Structure of an RBM is shown in Fig. 2 .

he energy function associated with a joint distribution of two lay-

rs of a binary RBM is given by 

( v , h ) = −
V ∑ 

i =1 

H ∑ 

j=1 

w i j v i h j −
V ∑ 

i =1 

b i v i −
H ∑ 

j=1 

a j h j (2)

here a i and b j are the bias terms, V and H are the number of

isible and hidden units, w ij is the weight of the connection be-

ween visible unit i and hidden unit j, v i , h j are the binary states

f the units, and v, h are column vectors containing them. A joint

robability of h and v is defined as: 

p( v , h ) = 

1 

Z 
e −E( v , h ) (3)

here Z is the partition function 

 = 

∑ 

v , h 

e −E( v , h ) (4)

ts marginalization over h is: 

p( v ) = 

1 

Z 

∑ 

h 

e −E( v , h ) (5)

he posterior probability of a hidden node given v is modelled as

p(h j = 1 | v ) = σ (b j + 

∑ 

i 

v i w i j ) (6)

here the sigmoid function σ (x ) = (1 + e −x ) −1 . Similarly, the pos-

erior of a visible node given h is modelled as 

p(v i = 1 | h ) = σ (a i + 

∑ 

j 

h j w i j ) (7)

n efficient training procedure called contrastive divergence (CD)

s introduced in [46] , where the incremental learning rule is 

w i j ∝ 〈 h i v j 〉 data − 〈 h i v j 〉 rec (8)

here 〈 h i v j 〉 data denotes the measured correlation between h i 
nd v j when the states of the hidden units are determined by

q. (6) and the visible vectors are samples from the training

et. The term 〈 h i v j 〉 rec is the correlation where h i and v j are
ted using visible units in the visible layer, which are connected to the hidden units 
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oth reconstructions of the data vectors and the states of the

idden units are chosen at random from distributions (6) . The

bove pre-training stage aims at reconstructing the input and it is

nsupervised. 

A Deep Boltzmann Machine (DBN) can be constructed by stack-

ng L layers with parameters W 

( l ) , a ( l ) and b 

( l ) , 1 ≤ l ≤ L . This ma-

hine can be trained layerwise, as each layer of nodes is condition-

lly independent of each other given the knowledge of the previ-

us or following layer. 

.3. Backpropagation 

Backpropagation [47] is a very well known technique to opti-

ize neural networks (see, e. g. [25] or [48] ). Given a training set

 x i , y i ), 1 ≤ i ≤ m where targets y k ∈ R 

D . A common approach is to

inimize a cost function that takes into account the averaged neg-

tive log-likelihood of the training targets given the input data and

 prior over the parameters as 

(W) = − log 
(∏ 

n,k p(y n,k | X , W) p(W) 
)

= −
∑ 

n,k 

log p(y n,k | X , W) − log p(W) 
(9) 

here matrix X contains all data x n and W contains all the linear

arameters of the DBN. The posterior probability is proportional

o the prior times the data likelihood. thus, this setup is equiv-

lent to maximize the parameter log-posterior, given the training

ata. Usually, the prior for the parameters is a zero mean Gaussian

unction with covariance �. 

If the likelihood model for the data is a Gaussian distribution,

hen the function to optimize is simply 

(W) = 

1 

2 σ 2 

∑ 

n,k 

‖ y n,k − o k (x n ) ‖ 

2 + w 

� �−1 
p w (10)
ig. 3. Architecture of the semi-supervised DBN. The structure consists of five layers. The

taked RBMs is 4. The dashed area highlights the structure of the first stacked RBMs. The

 softmax activation of the output layer is used to apply a BP with the labelled data. 
nd if the distribution is a multinoulli, then 

(W) = 

1 

2 σ 2 

∑ 

n,k 

y n,k log o k (x n ) + w 

� �−1 
p w (11)

here w is a vector containing all parameters and o k ( x n ) is the

esponse of the k t h output of the DBN to input x n . Usually, the

implification �p = I is taken, so the regularization term of the

ost function is simply the norm of the vectorized parameters,

r w 

� �−1 
p w = 

∑ n l −1 

l=1 

∑ s l 
i =1 

∑ s l +1 

j=1 
(w 

(l) 
ji 

) 2 , assuming that w 

(l) 
ji 

is a

eight connecting node i of layer l − 1 and node j of layer l . 

.4. Architecture and training of the network 

The network has five layers ( Fig. 3 ). The input layer has two

odes. The classification is designed using a 4 bit code for the

lasses. Since the classification problem at hand consists of 7

lasses, 4 bits are necessary for representing them. Then, the num-

er of nodes at the output layer is 4. The rest of the layers have

, 3, and 4 nodes, all of them with sigmoid activation. The output

odes are normalized using a softmax activation. The network is

rst trained in an unsupervised way using CD, and then a softmax

ctivation of the output layer is used to apply a BP with the la-

elled data. The various steps involved in semi-supervised training

re as follows. 

The data is partitioned into a training set and test set. The

raining set consists of N 

(tr) 
l 

non labelled data and N 

(tr) 
n labelled

ata. The test set consists of N 

tst labelled data. During the train-

ng of DBN, RBMs are trained layer after layer using the process

xplained above. For each epoch, all the RBMs were trained indi-

idually 5 times. In this process, and using Eqs. (6) and (7) , the

utputs v and h of each RBM are computed using the N 

tr 
l 

+ N 

tr 
n 

ata. After that, the learning rule is used to find the weight up-

ate and Eq. (8) is used to compute the new weights and biases.

or training the network, different learning rates were used. The
 number of nodes, from input to output layers, is 2, 3, 3, 4 nodes. The number of 

 network is first trained with unlabelled data using CD until convergence, and then 
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Table 1 

Recognition rate of the CK + database using different dimensionality reduction al- 

gorithms and the proposed semisupervised classification algorithm. 

Method Feature 

Recognition rate % 

2 dimension 5 dimension 

PCA + DBN HOG eye 55.71 58.1 

HOG mouth 63.81 65.71 

2D-DWT eye 41.90 43.81 

2D-DWT mouth 55.24 60.0 

LDA + DBN HOG eye 62.86 61.31 

HOG mouth 98.57 94.68 

2D-DWT eye 80.0 76.57 

2D-DWT mouth 90.0 86.78 

Kernel PCA + DBN HOG eye 27.12 27.62 

HOG mouth 36.19 37.14 

2D-DWT eye 28.10 29.52 

2D-DWT mouth 25.24 31.43 

LLE + DBN HOG eye 40.95 55.71 

HOG mouth 70.00 72.86 

2D-DWT eye 42.38 46.67 

2D-DWT mouth 50.95 69.05 

Isomap + DBN HOG eye 55.71 66.19 

HOG mouth 69.52 74.29 

2D-DWT eye 40.95 56.19 

2D-DWT mouth 63.81 75.71 

t-SNE + DBN HOG eye 27.12 27.62 

HOG mouth 36.19 37.14 

2D-DWT eye 28.10 29.52 

2D-DWT mouth 25.24 31.43 

v  

i

3
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d  

P  

s  

s  

s  

b  

t  

9  

s  

o  

c

3

 

t  

m  

a  

i  

e  

a  

s  

t  

w  

i

hidden output of the previous RBM is passed onto the next RBM

and the output of the final layer is further fine-tuned using BP

with the N 

tr 
l 

labelled data. Hence the entire training procedure

uses both labeled and non-labeled data to classify facial expres-

sion. A portion of the training data is also used for validation to

obtain the optimized training parameters and model. 

3. Experiments and results 

3.1. Databases 

The extended Cohn-Kanade database (CK + ) [49] , the Radboud

Faces database (RaFD) [50] and MMI database [51] were used

to test the proposed method for facial ER. The CK + and MMI

databases were captured from a lab-based environment whereas

the RaFD database contained facial images with varying poses and

gaze directions. Firstly, in the case of CK + database, there are

327 image sequences with 7 expression labels namely anger, neu-

tral, disgust, fear, happy, sad, and surprise. The last frame of each

sequence consists of the peak expression with an image size of

640 × 490 or 640 × 480 pixels. A total of 1400 images i.e. 200 im-

ages from each of the seven emotion classes were used for all the

experimentation. Secondly, the MMI database consist of 205 image

sequence and the peak expression can be found in the middle of

this sequence. This database consists of 6 facial expression classes

and with an image resolution of 720 × 576 pixels. Finally, the RaFD

database used for this experimentation consists of images from 67

subjects displaying 8 different expressions. The image data belong-

ing to the category of contempt has been eliminated for this exper-

iment. Further there exist samples belonging to 5 different camera

angles and amongst them, only three angles 135 ◦, 90 ◦ and 45 ◦ are

taken into consideration. The frontal face images in this database

have a size of 125 × 160 pixels whereas the images including the

distinct camera poses have a size of 284 × 284 pixels. 

3.2. Overview of the experiments 

The Viola-Jones face detector [52] was used to detect the face

from the given image and after which it detects possible mouth

and eye regions. From these image regions, the HOG and wavelet

features were extracted to form different feature vectors. Further

different dimensionality reduction methods such as PCA, LDA, Ker-

nel PCA, Isomap, t-SNE, and LLE were compared and evaluated to

obtain the reduced features for easier computation during train-

ing [53] . The selection of the most significant features was done

by cross-validating the model using the different feature vectors.

It was found that the HOG features of the mouth provided more

accuracy compared to the rest of the features. Finally, these HOG

features were passed into a 5 layered DBN for pre-training [54] . A

fine-tuning procedure using BP was used at the end of the DBN in

order to reduce the reconstruction error of the entire network. Dif-

ferent experimentation was done to test the semi-supervised, su-

pervised and unsupervised models. The proposed semi-supervised

architecture was obtained by cascading the unsupervised DBN

along with the supervised BP. The main test parameters used were

the learning rate, the number of epochs, reconstruction error, and

accuracy. K-fold cross-validation method was used here for testing

the semi-supervised DBN models. The training data is first shuffled

and split into 5 groups. In each case, a unique fold is chosen as the

validation data set and the remaining 4 folds are iteratively used

to train the model. The evaluation accuracy is retained, and the

model is discarded. Finally, the recognition rate over the 5 folds is

averaged to estimate the accuracy and the results were compared

with a multiclass SVM classifier [55] . An NVIDIA GeForce GTX 1060

GDDR5 6.0 GB GPU and supercomputers from The Center for Ad-
anced Research Computing (CARC) of the University of New Mex-

co were used to carry out all the experiments. 

.3. Comparison of recognition rate 

Table 1 shows the comparative analysis of various linear and

onlinear dimensionality reduction algorithms. The feature vectors

OG eye, HOG mouth, 2D-DWT eye, and 2D-DWT mouth are pro-

ected to a lower dimensional space using the dimensionality re-

uction methods. Here, 2 dimension and 5 dimension refers to

he number of dimensions after performing the dimensionality re-

uction. The recognition rate is similar for 2 dimensions and 5

imensions when the semi-supervised DBN is used along with

CA, Kernel PCA, LLE, Isomap, and t-SNE. However, LDA and semi-

upervised DBN with a 2-dimensional feature vector give a rea-

onable increase in recognition rate compared to using 5 dimen-

ions. The dimensionality-reduced HOG mouth features show the

est performance by giving a recognition rate of 98.57%. Similarly,

he 2D-DWT mouth features also gave a comparable accuracy of

0%. The dimensionality-reduced mouth features were able to clas-

ify the emotions more effectively than the others. Further, it was

bserved that LDA based dimensionality reduction gave a huge in-

rease in recognition rate compared to the rest of the methods. 

.4. Confusion matrices for different feature vectors 

The test confusion matrices comparing the four different fea-

ure vectors are shown in Fig. 4 for CK + database. Here the di-

ensionality reduction of the feature vectors is done using LDA

nd these features are passed on to the semi-supervised DBN us-

ng 60% of labeled data and the rest non-labeled data. in order to

valuate its performance. In the case of HOG eye features, it is un-

ble to classify sadness, disgust and neutral emotions whereas it

hows better accuracy for the rest of the cases. The 2D-DWT fea-

ures of eye show confusion only in case of surprise and disgust

hereas the 2D-DWT features of mouth show good performance

n all cases except in case of sadness. 
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Fig. 4. Test confusion matrix of CK + database for semi-supervised DBN with LDA, using (a) HOG eye (b) HOG mouth (c) 2D-DWT eye (d) 2D-DWT mouth features. 
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However, the overall recognition rate of 2D-DWT of mouth is

igher than that of HOG eye and 2D-DWT eye features. Amongst

he four features used, the best performance was given by HOG

outh features since it gave a recognition rate of 90% for fear and

00% for the rest of the emotions. In general, the mouth features

fter dimensionality reduction were found to be more suitable for

he application of facial ER. 

.5. Test accuracy comparing different training criteria 

Fig. 5 compares the test accuracies obtained for supervised,

emi-supervised and unsupervised training of the DBN. It can be

bserved from the bar graph that the best performance in terms of

he most significant features is shown by HOG features of mouth.

emi-supervised training is able to give better test accuracy for

ach of the feature sets, compared to supervised and unsupervised

raining methods. The experimental data undergoes dimensional-

ty reduction using LDA before inputting into the DBN system. The

emi-supervised DBN network using HOG features of mouth gives

he highest test accuracy of 98.57% with CK + database. 

Semi-supervised training uses both labeled and unlabeled data

or training and hence it is able to provide the network with more

nformation. This training technique uses 60% as labeled data and

he label information of the rest of the data is discarded before the
xperiment. The supervised training uses only the labeled data for

ecognizing the facial expressions whereas the unsupervised DBN

ses the entire data as unlabeled and the training of the network

oes not include the minimization of BP error. 

.6. Performance evaluation based on dimensionality 

Fig 6 shows the comparison between the performance of

emi-supervised DBN using high dimensional and lower dimen-

ional features. The relevance of dimensionality reduction is well-

xplained through the bar graph. Using the reduced features the

est accuracies have improved significantly. The test accuracy im-

roved from 75.24% to 98.57% in case of HOG features of mouth

fter using low dimensional features. 

It is very clear that dimensionality reduction, in particular us-

ng LDA, is able to classify the facial expressions better compared

o the higher dimensional data. For example, using LDA the dimen-

ionality was reduced from 6048 to 2 dimension for HOG features

f mouth. This huge reduction of dimension guarantees that the

elevant information for classification of facial expression is pre-

erved, hence, it shows improvement in the test accuracy. Further,

t can be observed that for all the feature vectors the low dimen-

ional features show much better performance compared to the

igh dimensional features. 
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Fig. 5. Test accuracies of supervised, semi-supervised and unsupervised DBN for dimensionality reduced features using LDA on CK + database. 

Fig. 6. Test accuracies of semi-supervised DBN model using high dimensional and low dimensional features. 
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3.7. Feature analysis using reconstruction error 

Minimization of the quadratic reconstruction error was one of

the methods used for the analysis of different f eature vectors. Re-

construction of the input is a mapping from the output to input.

The mean square error of the input and the reconstructed input is

computed for each epoch during training for different f eature ma-

trices as inputs. Fig. 7 shows the plot of reconstruction error vs

epoch for validation. 

It is observed that mouth HOG features have the lowest recon-

struction error, hence the most informative among all the feature

sets. The reconstruction error attains a steady value around 10 0 0

epochs after which there is not much change recorded. It can be

seen that the mouth features perform better compared to that of
he features from the eyes. Further, the HOG features of mouth per-

orm the best among all the feature sets with the highest test ac-

uracy of 98.57%. 

.8. Computational analysis based on dimensionality of data 

Table 2 shows the run-time for different dimensions of the in-

ut feature vector. The feature vectors were input to the semi-

upervised DBN and the run-time was recorded for testing and

ver individual epoch for training. The experiment was performed

or different f eature sets. The feature vector with the exact dimen-

ions before dimensionality reduction and after dimensionality re-

uction was used to compute the run-time for training and test-

ng. For example, the HOG features detected from the eye patch
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Fig. 7. Graph showing the reconstruction error versus epoch during semi- 

supervised training of DBN for different features. 

Table 2 

Performance based on the run-time for different dimensions of input feature vector. 

Feature Dimensionality Run time (in seconds) 

Training 

(per epoch) 

Testing 

HOG eye 9504 1.832 0.1534 

5 0.0635 0.0283 

2 .0591 0.0228 

HOG mouth 6048 1.082 0.0891 

5 0.0628 0.0263 

2 0.0578 .0231 

2D-DWT eye 5832 1.038 0.0854 

5 0.0621 0.0256 

2 0.0569 0.0221 

2D-DWT mouth 2916 0.501 0.052 

5 0.0645 0.0272 

2 0.0595 0.023 
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Fig. 8. Test error of semi-supervised DBN with different ratios of labeled and unla- 

beled data using HOG mouth features. 

Table 3 

Accuracy comparison with different databases and classifiers. For Semi-supervised 

training 60% of the data had the label information and the rest 40% were used as 

unlabeled data. But all the supervised methods used the entire labeled data for 

training. 

Method Training Feature Database Accuracy 

DBN(Ours) Semi- 

supervised 

HOG mouth CK + 98.57% 

RaFD 135 ◦ 91.95% 

RaFD 90 ◦ 94.50% 

RaFD 45 ◦ 92.75% 

MMI 98.75% 

SVM Supervised HOG mouth CK + 28.57% 

RaFD 135 ◦ 84.00% 

RaFD 90 ◦ 88.20% 

RaFD 45 ◦ 86.28% 

MMI 84.57% 

STC-NLSTM 

[56] 

Supervised Convolutional 

features 

CK + 99.80% 

MMI 84.53% 

CNN [57] Supervised Convolutional 

features 

RaFD 90 ◦ 93.41% 

CNN with visual 

attention [58] 

Supervised Convolutional 

features 

RaFD 135 ◦ + 

RaFD 45 ◦
93.10% 

RaFD 90 ◦ 95.20% 

a  

s  

p  

r  

r  

t  

i  

m  

a  

w  

a

4

 

f  

w  

d  

b  

c  

T  

e  
as of dimension 9504 × 1 for each sample data and the dimen-

ionality of the feature vector was reduced to 5 dimensions and

-dimension to train using semi-supervised DBN. 

From Table 2 , it can be observed that dimensionality reduction

esults in fast training. The run-time recorded for reduced features

s half of that of the whole feature set. The dimensionality reduc-

ion technique used here is LDA. It was able to capture the most

elevant features required for the classification of facial expression

s it was able to give a good performance in terms of accuracy.

he significant reduction in the run-time shows the relevance of

imensionality reduction as it saves computational time and also

emory usage. 

.9. Performance comparison with multi-class SVM and CNN 

Fig. 8 shows the test error comparing the semi-supervised DBN

nd SVM. The test error graphs of HOG mouth features were plot-

ed against different percentages of labeled data in order to evalu-

te the performance of the classifiers. 

In the case of the semi-supervised DBN approach, it was found

hat each of the feature vectors exhibited the lowest test error

hen there was just 60% of labeled data and the rest unlabeled

ata. The test error of HOG features of mouth oscillates around

ero, thereby showing the significance of these features in improv-

ng the classifier. Moreover, the multiclass SVM does not show a

omparable performance even while utilizing the entire amount

f labeled data. It has a high and fluctuating test error irrespec-

ive of the feature vector used. Thus the proposed semi-supervised

pproach was able to attain a superior performance with a lesser
mount of labeled data compared to the traditional SVM. Table 3

hows the accuracy for different approaches. Our proposed ap-

roach using Semi-supervised DBN was able to obtain a compa-

able accuracy with CNN based approaches. Semi-supervised DBN

equired label information from just 60% of the total data to train

he system whereas CNNs undergo supervised training with label

nformation from the entire data. Further, the training time and

emory usage of CNNs [56–58] were very high compared to our

pproach. The combined training and test time for our approach

as 197.5 seconds whereas the CNN based approach [57] takes

bout 12,4 4 4 s. 

. Conclusion 

A semi-supervised approach for facial ER utilizing reduced

acial features with most of the data being unlabeled is introduced

ith a four-layered neural network. They are convenient to use

ue to their easy training. Since we use CD and BP, training can

e done sequentially. Semi-supervised learning was achieved by

ombining CD and BP, as CD is unsupervised, and BP is supervised.

he facial features used were mouth and eye HOG, 2D-DWT of

yes and 2D-DWT of mouth. Further, the analysis was done with
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different dimensionality reduction algorithm on each of the feature

sets. The test accuracies were compared for the semi-supervised

training using DBN and supervised training using SVM and CNN. It

was observed that the semi-supervised training showed the best

performance with a test accuracy of 98.57% and outperformed

SVM in terms of accuracy and CNN in terms of computational

complexity. DBN used the information in unlabeled data to give

better performance and the most accurate model required 60%

of labeled data and 40% of unlabeled data. The semi-supervised

training with HOG features of mouth also showed a consistent

performance even when there was just 10% labeled data and rest

unlabeled data. Furthermore, the DBN was trained in a supervised,

semi-supervised and unsupervised manner using the reduced

features to examine the difference in performance and again semi-

supervised training was able to give better accuracy compared to

the supervised and unsupervised training. Feature analysis with

the reduced-dimensional features (LDA) was performed using the

reconstruction error technique. Based on the experiment using

reconstruction error it was found that reduced HOG features of

mouth contained the most relevant information to classify facial

expression. Analysis based on training run-time and test accuracies

for features of different dimension was also carried out. It was

observed that the best performance, that is minimum run-time

and high accuracy was given by the dimensionally reduced fea-

tures (LDA) with 2-dimensions. The test accuracies improved

significantly after using dimensionality reduction technique. Future

work aims at the use of ER technology in videos, in particular in

emergency response situational awareness systems with thermal

imaging, to detect emotions in civilians in the emergency scenario.
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