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ABSTRACT

This work takes the first steps towards solving the “phaseless
subspace tracking” (PST) problem. PST involves recovering
a time sequence of signals (or images) from phaseless lin-
ear projections of each signal under the following structural
assumption: the signal sequence is generated from a much
lower dimensional subspace (than the signal dimension) and
this subspace can change over time, albeit gradually. It can
be simply understood as a dynamic (time-varying subspace)
extension of the low-rank phase retrieval problem studied in
recent work.

Index Terms— Phase retrieval, PCA, low-rank

1. INTRODUCTION
The Phase Retrieval (PR) problem occurs in many applica-
tions such as ptychography, crystallography, astronomy. The
original PR problem involves recovering an n length signal x
from the magnitudes of its Discrete Fourier Transform (DFT)
coefficients. Generalized PR (see [1] and [2]) replaces DFT
by inner products with any set of measurement vectors, ai.
Thus, the goal is to recover x from |〈ai,x〉|, i = 1, 2, . . . ,m.
It is clear that, without extra assumptions, PR will require
m ≥ n. In recent works, structural assumptions such as
sparsity (see [3, 4, 5]) or low-rank (see [2]) have been in-
corporated into the PR problem in order to reduce the number
of measurements m required for exact or accurate recovery.
Low-rank has been used in two ways. One is to assume that
a single signal re-arranged as a matrix (or a single image) is
itself approximately or exactly low-rank. The goal is to re-
cover this low-rank “signal” from its phaseless linear projec-
tions [6, 7]. The second is to assume that a time sequence
of signals (or vectorized images) together form a matrix that
is well modeled as being low-rank. Each signal/image is one
column of this matrix. The measurements are phaseless lin-
ear projections of each signal or image (each column of the
matrix) [2]. This problem has been referred to as “Low-Rank
Phase Retrieval (LRPR)” in [2] where it was first studied.

Another way to interpret the LRPR problem is as fol-
lows: a time sequence of signals xt, t = 1, 2, . . . , d, are
generated from an unknown low dimensional subspace, i.e.,
xt = Ubt, where U is an n × r basis matrix (tall matrix
with mutually orthonormal columns) with r � n, and bt is
an r × 1 coefficients’ vector. For each xt, t = 1, 2, . . . , d,
we have m phaseless measurements, yi,t = |〈ai,t,xt〉|, i =

1, 2, ...m, t = 1, 2, ...d. The goal is to either just recover the
subspace, span(U), or to recover both span(U) and the co-
efficients and hence recover the signals xt’s (equivalently, re-
cover the low-rank matrix X = [x1,x2, . . . ,xd]). The for-
mer problem can be called “phaseless PCA”, although the
only known way to exactly recover span(U) involves also
recovering the bt’s via iterative alternating minimization (or
gradient descent); see the LRPR algorithms of [2].
Our problem: Dynamic LRPR or phaseless subspace
tracking (PST). PST can be simply understood as the dy-
namic (time-varying subspace) extension of LRPR. Thus,
instead of the subspace span(U) being fixed, we assume that
it can change with time, albeit slowly. Often, for long data
sequences, e.g., long image sequences or videos, if one tries
to use a single lower dimensional subspace to represent the
entire data sequence, the required subspace dimension may
end up being quite large. This can be problematic because it
means that the resulting data matrix may not be sufficiently
low-rank. In such cases, a better model is to assume that the
data lies in a low-dimensional subspace that can change over
time, albeit gradually.

The most general model for time-varying subspaces al-
lows the subspace to change by a little at each time. However
such a model involves too many unknowns. An r dimensional
subspace in n-dimensional ambient space is fully specified by
nr parameters. But the signal xt is an n× 1 vector (has only
n unknowns). Thus, allowing the subspace to change at each
time will result in an increase in the number of unknowns
(rather than a decrease which is the purpose of incorporating
structure into the PR problem). A less general model, but one
that allows for a reduction in the number of unknowns, is to
assume that the true data subspace is piecewise constant with
time. This model has been extensively used in robust sub-
space tracking literature [8, 9, ?] where it in fact helps ensure
identifiability of the subspaces (in that problem, only one n
length measurement vector is available at each time t).

Denote the subspace change times by tj for j = 1, 2, . . . , J
and let t0 = 0. Thus, we assume that xt = Utbt where
Ut = Utj for all t = tj , tj + 1, . . . , tj+1 − 1. For simplicity,
we sometimes misuse notation and use Uj to denote Utj . The
goal is to recover the xt’s from m phaseless measurements
at each time, i.e., from yi,t := |〈ai,t,xt〉|, i = 1, 2, . . . ,m
for each t = 1, 2, . . . , d. Under this model and assuming
“slow subspace change” (quantified in Sec. 1.1), the question
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iswhencanonesolvethisproblemusingasmallermper
signalthanwhatisneededforLRPR?TheLRPRwork[2]
hasalreadydemonstratedthatjustexploitingthelow-rank
assumptionenablesareductionintherequiredmcompared
tosimplePRdoneforeachsignalxtindividually.
OurContribution. Thisworktakesthefirststepstowards
solvingthephaselesssubspacetrackingproblemdescribed
above. Anysubspacetrackingproblemrequirestwosub-
problemstobesolved:

(a)givenanaccurateestimateoftheprevioussubspace,de-
tectifthesubspacehaschanged;and

(b)givenanaccurateestimateoftheprevioussubspace,
andgiventhatitisknownthatthesubspacehas
changed,estimatethenewsubspaceusingasfewmea-
surements(asshortatrackingdelay)aspossible.

Wewillhenceforthreferto(a)as“phaselesssubspacechange
detection”andto(b)as“phaselessPCAwithpartialsubspace
knowledge”.Ofcoursetosolve(b)to accuracyforany ≥
0,theresultingalgorithmneedstoalsoestimatethesubspace
projectioncoefficientsaswell.Anearlyversionofthecurrent
work(onethatonlysolves(b)andonlyundertheassumption
thattheprevioussubspaceisexactlyknown)willbepresented
atAsilomar[10].

1.1. Notation,assumptionsandsomedefinitions
Notation. ·denotesthel2normofavectorortheinduced
l2normofamatrix.Forotherlpnorms,weuse ·p.
Amatrixwithmutuallyorthonormalcolumnsisreferred

toasa“basismatrix”.ForbasismatriceŝU,U,thesub-
spaceerror(SE)betweentheirrespectivecolumnspansis

quantifiedbySE(̂U,U):= I−ÛÛ U . Thismea-

suresthesineoftheprincipalanglebetweenthesubspaces.
Thephase-invariantdistancebetweentwovectorsisquan-
tifiedusingdist(z1,z2):= minφ∈[0,2π]z1−e

√
−1φz2.

Normalizedcolumn-wisephase-invariantrecoveryerrorfor
matricesX andX̂,itsestimatedversion,iscomputedas

NormErr(X,̂X):=
q
k=1dist(xk,̂xk)

2

q
k=1 xk 2 .Foranytwointe-

gersi1,i2,theinterval[i1:i2]denotesthesetofintegerval-
ues{i1,i1+1,...,i2}andinterval[i1:i2)denotestheset
{i1,i1+1,...,i2−1}.
Assumptions. Wequantify“slowsubspacechange”using
themodelfrom[9].In[9]andpreviouswork,thishasbeen
successfullyusedtoimproveoutliertoleranceofdynamicro-
bustPCAascomparedtoitsstaticcounterpart.“Slowsub-
spacechange”[9]meansthatUt=Utj :=Uj∀t∈[tj:
tj+1)(piecewiseconstantsubspaces)andthefollowinghold:
(a)SE(Uj−1,Uj)≤∆with∆small,
(b)ateachchangetime,onlyonedirectionchanges,and
(c)minj(tj+1−tj)islowerbounded.
Definitions. Asmentionedabove,ateachsubspacechange
time,onlyonedirectionchanges,whiletherestofthesub-
spaceremainsfixed.Ofcourseatdifferentchangetimes,the

changingdirectioncouldbedifferent,thusoveralongperiod
oftime,theentiresubspacecouldchange.Toexplainthisfur-
ther,ifuj−1,chgdenotesthedirectionfromspan(Uj−1)that
changesattj,anduj,chddenotesitschangedversion,then
span(Uj−1)=span([Uj−1,fix,uj−1,chg])andspan(Uj)=
span([Uj−1,fix,uj,chd]),whereUj−1,fixisann×(r−1)
matrixcorrespondingtothefixedpartofthesubspaceattj.
Denotethedirectionthatgetsaddedtothesubspaceattime
tjbyuj,add.Clearly,

uj,add:=
(I−uj−1,chguj−1,chg)uj,chd
SE(uj−1,chg,uj,chd)

.

Also,θj :=cos
−1|uj−1,chguj,chd|istheanglebetween

uj−1,chganduj,chdanduj,del:=uj−1,chgsinθj−uj,addcosθj
isthedirectionthatgetsdeletedattj.
Thefollowingfactsareimmediatefromtheabove:(i)

|sinθj|=sinθj =SE(uj−1,chg,uj,chd),(ii)uj,chd =
uj,addsinθj+uj−1,chgcosθj,(iii)uj,addisorthogonalto
Uj−1,and(iv)span(Uj)⊆span([Uj−1,uj,add]).
Definethesub-matrixXj:=[xtj,xtj+1,...,xtj+1−1],

letq:=(tj+1−tj)andlet

E



1

q
t∈[tj,tj+1)

xtxt



EVD= Uj̄ΛjUj

denoteitseigenvaluedecomposition(EVD).Tosimplifyno-
tation,inthetextbelowwesometimesremovethesubscript
j,e.g.,weoftenuseθtodenoteθj.

2.SOLUTIONAPPROACH
Inthenexttwosubsections,weexplainhowtosolveeachof
thetwosub-problemsmentionedabove.
2.1. Automaticphaselesssubspacechangedetection
Considerthematrices

YU:=
1

mq

m

i=1t∈[tj:tj+1)

y2i,tai,tai,t,and (1)

ỸU:=(I−Ûj−1Ûj−1)YU(I−Ûj−1Ûj−1). (2)

Tounderstandourapproachsimply,supposethatÛj−1
isaperfectestimate,i.e.,supposethatspan(̂Uj−1) =
span(Uj−1).Then,itisnothardtoseethat

E[̃YU]=(I Uj−1Uj−1)2(UjΛ̄Uj)+tr(̄Λ)I(I Uj−1Uj−1)

= 2sin2θλmin(̄Λ) uj,adduj,add +tr(Λ̄)(I Uj−1Uj−1).
(3)

Thefirstequalityfollowsfrom[11,LemmaA.1],andthesec-
ondfollowsusingthesubspacechangeassumption.Observe
thattheabovematrixisorthogonaltoUj−1.LetUj−1,⊥be
abasismatrixforthesubspaceorthogonaltoUj−1.Since
Uj−1hasrankr,thiswillbeann×(n−r)matrix.Since
uj,addisorthogonaltoUj−1,thus,withoutlossofgenerality,
wecanassumethatuj,addisoneofthecolumnsofUj−1,⊥.
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Denote the matrix for the rest of its columns by Ǔj−1,⊥.
Thus, span(Uj−1,⊥) = span([uj,add, Ǔj−1,⊥]) and so, us-

ing (3), an EVD of E[ỸU ] is E[ỸU ]
EVD
=

[uj,add, Ǔj−1,⊥]

[
2 sin2 θλmin(Λ̄) + tr(Λ̄) 0

0 tr(Λ̄)I

] [
uj,add

′

Ǔj−1,⊥
′

]
.

Clearly the top eigenvector of this matrix is equal to uj,add,
with the corresponding eigenvalue of 2 sin2 θ λmin(Λ̄) +
tr(Λ̄), and a gap of 2 sin2 θ λmin(Λ̄) between first and other
eigenvalues. So, by law of large numbers [12], with high
probability (w.h.p.), that the top eigenvector of this matrix
will be a good initial estimation of uj,add, when m and q are
large enough. Currently we are making an intuitive argument,
these statements will be made rigorous in follow-up work.

From above, again by law of large numbers and assuming
Ûj−1 is a good estimate of Uj−1, when m and q are large,
if the subspace has not changed, the first eigenvalue of ỸU ,
λ1(ỸU ), will be close to tr(Λ̄) w.h.p.; while if it has changed,
it will be close to 2 sin2 θλmin(Λ̄) + tr(Λ̄) w.h.p.. A natural
subspace change detection approach thus involves threshold-
ing λ1(ỸU ). Thus, λ1(ỸU ) ≥ Ctr(Λ̄) can be used as a cri-
terion for detecting the change with C being a value slightly
more than one. Here tr(Λ̄) is unknown but notice that for
i = r + 1, r + 2, . . . , n λi(E[YU ]) = tr(Λ̄). Thus, w.h.p.,
when m and q are large enough, λn(YU ) ≈ tr(Λ̄) and so we
use λn(YU ) as an estimate of tr(Λ̄). Algorithm 1 summarizes
our approach.

It is clear from the above that the change detection per-
formance improves as θ increases. This fact is also observed
through our experiments (see the ROC curves in Fig. 1).
2.2. Phaseless PCA with partial subspace knowledge
After detecting the change, the next step of PST algorithm is
estimating the current subspace knowing the existence of a
change. Here in order to use the previously estimated sub-
space Ûj−1, we construct a bigger subspace matrix Ũj ∈
Rn×(r+1) which contains a new added column besides Ûj−1.
Similarly, the number of rows of Bj are increased by one and
B̃j ∈ R(r+1)×q is a relaxed estimation of Bj . Phaseless PCA
with partial subspace knowledge consists of two steps which
we explain in the following.
Initialization. The initialization is inspired by the previ-
ously proposed spectral method which is used in many exist-
ing works like [1] and extended in [2]. From the discussion
above, when m and q are large enough and span(Ûj−1) is
close to span(Uj−1), using the Davis-Kahan sin θ theorem
[13], it can be argued that the top eigenvector of ỸU will be
a good estimate of uj,add. Denote this by ûj,add. With this,
Ũj = [Ûj−1 ûj,add] can be used as the initial estimated sub-
space. Using an idea similar to the approach of [2], the top
eigenvector of

Yb = Ũj
′

(
1

m

m∑
i=1

y2
i,tai,ta

′
i,t

)
Ũj , (4)

Algorithm 1 PST-detection

1: Compute YU and ỸU using (1) and (2).
2: Declare a change if λ1(ỸU ) ≥ C λn(YU ).

denoted ˆ̃
bt, will be a good estimate of b̃t :=

 bt,1:r−1

bt,r cos θ
bt,r sin θ

.

Main loop. Main loop is an alternating minimization so-
lution. Similar to our previous work [2], this part has three
steps. At each step one of the three variables is estimated and
the other two is assumed to be constant. Using alternating
minimization, Ũ can be obtained by solving

Ũ = arg min
U

∑
t

‖Ĉtyt −At
′U

ˆ̃
bt‖2,

where ˆ̃
bt ∈ Rr+1 is provided by the previous iteration. In

the simple situation where just one direction is changing at a
time, recovering ûj,add is enough. This can be obtained by

ûj,add = arg min
ũ

∑
t

‖Ĉtyt−At
′Û0

ˆ̃
bt,1:r−At

′ũ
ˆ̃
bt,r+1‖2,

where ˆ̃
bt,1:r and ˆ̃

bt,r+1 are vectors that contain the first r el-

ements and the last element of ˆ̃
bt respectively. Then matrix

Ũj = [Ûj−1, ûj,add] will be the estimate of current subspace.
Rest of the solution is similar to our previous work. Using the
new estimate of Ũj , B̃j and the phase are updated respec-
tively. To remove the relaxed dimension whenever is needed,
singular value decomposition can be used as the last step. Ma-
trix X̂j can be recovered as a byproduct also.

The complete algorithm is summarized in Algorithm 2.
This works well when the column span of Ûj−1 is a good es-
timate of the subspace spanned by Uj−1. Its final subspace
recovery error is lower bounded by SE(Ûj−1,Uj−1). To re-
duce the error beyond this value, at the end of Algorithm 2, a
few iterations of LRPR-AltMin (the algorithm of [2]) can be
used. Just a few iterations of LRPR-AltMin will significantly
reduce the error because this can be interpreted as beginning
LRPR-AltMin with a very good initial estimate.

3. NUMERICAL EXPERIMENTS
Phaseless subspace change detection. To evaluate the de-
tection performance of Algorithm 1, we plot the Receiver Op-
erating Characteristic (ROC) curve by varying the constant
C. 50 runs of two sets of data are generated, one without
the change and one with the change. For each value of C,
we compute the Monte Carlo estimate of the probability of
correct detection by using the dataset with change, and we es-
timate the false alarm probability by using the dataset without
change. We then plot the detection probability on the y-axis
and the false alarm on the x-axis for various values of C. We
show the plots in Fig. 1 for various values of θ. Settings for
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Algorithm 2 PST-PCA

Input: yi,t and ai,t for i ∈ [1 : m], t ∈ [tj : tj+1),
Ûj−1, r, n

1: Initialization:
2: Compute ỸU as described in (2) and compute ûadd as its

top eigenvector.
3: Set Ũ =

[
Ûj−1, ûadd

]
.

4: for t ∈ [tj , tj+1) do
5: Compute Yb as described in (4).

6: Set ˆ̃
bt as top eigenvector of Yb and scale it by√∑

i y
2
i,t

m .
7: end for
8: for τ ∈ [0 : Tmax) do
9: for t ∈ [tj , tj+1) do

10: set Ĉt = phase(At
′Ũ b̃t).

11: Set ˆ̃
b =

[
ˆ̃
b[1:r],t
ˆ̃
br+1,t

]
.

12: Set dt = Ĉtyt −A′tÛj−1
ˆ̃
b[1:r],t

13: end for
14: Compute ûadd as ∑

t∈[tj :tj+1)

(
ˆ̃
br+1,t)

2AtA
′
t

−1 ∑
t∈[tj :tj+1)

ˆ̃
br+1,tAtdt.

15: Set Ũ =
[
Ûj−1, ûadd

]
.

16: for t ∈ [tj , tj+1) do
17: set ˆ̃

bt = argminb‖Ĉtyt −A′tŨb‖
18: end for
19: end for
20: Compute X̃j = Ũ ˆ̃B.
Output: Set Ûj as top r eigenvectors of X̃j , and B̂j =

Û ′jX̃j .

this experiment are n = 1000, r = 10, m = 850, q = 750,
θ = 30, 45, 60, 75 degrees and values of C varying between 0
and 3, with intervals of 10−4. Also Û0 was generated so that
SE(Û0,U0) u 10−4.

Fig. 1: ROC curve when SE(Û0,U0) u 10−4. “True positives” refers to
probability of correct detection; “False positives” refers to false alarm prob-
ability.
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Fig. 2: Normalized recovery error of X , NormErr(X, X̂).

SE ≈ 10−4 SE ≈ 10−6

m q=400 q=500 q=600 q=400 q=500 q=600
450 0.84 0.92 0.98 0.92 0.98 1.00
550 1.00 1.00 1.00 1.00 1.00 1.00
650 1.00 1.00 1.00 0.98 1.00 1.00

Table 1: Success probabilities for two values of SE(Û0,U0). Cases with
error of U less than 1.5 × SE(Û0,U0) are considered successful. PST
loop is broken when the subspace error of recovered U is less than 1.5 ×
SE(Û0,U0), or when the difference of estimated values of U between two
successive iterations is less than 10−9.

Phaseless PCA with partial subspace knowledge. In our
first experiment, we let n = 1000, r = 10, θ = 30 degrees.
For two values of the initial subspace error SE(Û0,U0), and
many values of q and m, we implemented PST-PCA and
computed the probability of the final recovery error reaching
the same level as the initial subspace error. This is displayed
in Table 1. 50 Monte Carlo runs were used. In our sec-
ond experiment, we compare PST-PCA performance with
that of LRPR-AltMin (algorithm of [2]) and with Truncated
Wirtinger Flow (TWF) [1]. TWF is one of the best known
singe signal PR algorithms provably requiring only O(n)
measurements for exact recovery. In this experiment, we
implemented PST-PCA for 12 iterations followed by LRPR-
AltMin for 3 iterations. LRPR-AltMin was implemented
for 15 total iterations. We show our results in Fig. 2 where
we plot the normalized phase-invariant recovery error of X
against the time taken in seconds. This is done by computing
the recovery error and time taken at the end of each algorithm
iteration. As can be seen just PST-PCA already significantly
outperforms both LRPR-AltMin and TWF (just PST-PCA
error decreases to 10−7 while that of LRPR-AltMin saturates
at 10−3 and TWF is even worse). This experiment used
n = 1000, q = 500, r = 15, m = 700, θ = 30, and 50
Monte-Carlo repeats; and value of U0 is corrupted by an
additive Gaussian noise so that SE(Û0,U0) =≈ 3.5× 10−4.
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