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ABSTRACT

This work takes the first steps towards solving the “phaseless
subspace tracking” (PST) problem. PST involves recovering
a time sequence of signals (or images) from phaseless lin-
ear projections of each signal under the following structural
assumption: the signal sequence is generated from a much
lower dimensional subspace (than the signal dimension) and
this subspace can change over time, albeit gradually. It can
be simply understood as a dynamic (time-varying subspace)
extension of the low-rank phase retrieval problem studied in
recent work.

Index Terms— Phase retrieval, PCA, low-rank

1. INTRODUCTION

The Phase Retrieval (PR) problem occurs in many applica-
tions such as ptychography, crystallography, astronomy. The
original PR problem involves recovering an n length signal x
from the magnitudes of its Discrete Fourier Transform (DFT)
coefficients. Generalized PR (see [1] and [2]) replaces DFT
by inner products with any set of measurement vectors, a;.
Thus, the goal is to recover x from [(a;,x)|,i =1,2,...,m.
It is clear that, without extra assumptions, PR will require
m > n. In recent works, structural assumptions such as
sparsity (see [3, 4, 5]) or low-rank (see [2]) have been in-
corporated into the PR problem in order to reduce the number
of measurements m required for exact or accurate recovery.
Low-rank has been used in two ways. One is to assume that
a single signal re-arranged as a matrix (or a single image) is
itself approximately or exactly low-rank. The goal is to re-
cover this low-rank “signal” from its phaseless linear projec-
tions [6, 7]. The second is to assume that a time sequence
of signals (or vectorized images) together form a matrix that
is well modeled as being low-rank. Each signal/image is one
column of this matrix. The measurements are phaseless lin-
ear projections of each signal or image (each column of the
matrix) [2]. This problem has been referred to as “Low-Rank
Phase Retrieval (LRPR)” in [2] where it was first studied.

Another way to interpret the LRPR problem is as fol-
lows: a time sequence of signals x;, ¢ = 1,2,...,d, are
generated from an unknown low dimensional subspace, i.e.,
x; = Ub;, where U is an n x r basis matrix (tall matrix
with mutually orthonormal columns) with » < n, and b; is
an r x 1 coefficients’ vector. For each x;,t = 1,2,...,d,
we have m phaseless measurements, y; : = |(@; ¢, X¢)|,7 =
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1,2,..m,t = 1,2, ...d. The goal is to either just recover the
subspace, span(U ), or to recover both span(U) and the co-
efficients and hence recover the signals x;’s (equivalently, re-
cover the low-rank matrix X = [x1,Xg,...,Xq4]). The for-
mer problem can be called “phaseless PCA”, although the
only known way to exactly recover span(U) involves also
recovering the b;’s via iterative alternating minimization (or
gradient descent); see the LRPR algorithms of [2].

Our problem: Dynamic LRPR or phaseless subspace
tracking (PST). PST can be simply understood as the dy-
namic (time-varying subspace) extension of LRPR. Thus,
instead of the subspace span(U) being fixed, we assume that
it can change with time, albeit slowly. Often, for long data
sequences, e.g., long image sequences or videos, if one tries
to use a single lower dimensional subspace to represent the
entire data sequence, the required subspace dimension may
end up being quite large. This can be problematic because it
means that the resulting data matrix may not be sufficiently
low-rank. In such cases, a better model is to assume that the
data lies in a low-dimensional subspace that can change over
time, albeit gradually.

The most general model for time-varying subspaces al-
lows the subspace to change by a little at each time. However
such a model involves too many unknowns. An r dimensional
subspace in n-dimensional ambient space is fully specified by
nr parameters. But the signal x; is an n x 1 vector (has only
n unknowns). Thus, allowing the subspace to change at each
time will result in an increase in the number of unknowns
(rather than a decrease which is the purpose of incorporating
structure into the PR problem). A less general model, but one
that allows for a reduction in the number of unknowns, is to
assume that the true data subspace is piecewise constant with
time. This model has been extensively used in robust sub-
space tracking literature [8, 9, ?] where it in fact helps ensure
identifiability of the subspaces (in that problem, only one n
length measurement vector is available at each time t).

Denote the subspace change times by ¢; forj = 1,2,...,J
and let ty = 0. Thus, we assume that x; = U;b; where
U, =Uy forallt =t;,t; +1,...,1;41 — 1. For simplicity,
we sometimes misuse notation and use Uj; to denote Uy ;. The
goal is to recover the x;’s from m phaseless measurements
at each time, ie., from y;; = |{(@is,%¢)], ¢ = 1,2,...,m
for eacht = 1,2,...,d. Under this model and assuming
“slow subspace change” (quantified in Sec. 1.1), the question
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is when can one solve this problem using a smaller m per
signal than what is needed for LRPR? The LRPR work [2]
has already demonstrated that just exploiting the low-rank
assumption enables a reduction in the required m compared
to simple PR done for each signal x; individually.

Our Contribution. This work takes the first steps towards
solving the phaseless subspace tracking problem described
above. Any subspace tracking problem requires two sub-
problems to be solved:

(a) given an accurate estimate of the previous subspace, de-
tect if the subspace has changed; and

(b) given an accurate estimate of the previous subspace,
and given that it is known that the subspace has
changed, estimate the new subspace using as few mea-
surements (as short a tracking delay) as possible.

We will henceforth refer to (a) as “phaseless subspace change
detection” and to (b) as “phaseless PCA with partial subspace
knowledge™. Of course to solve (b) to € accuracy for any € >
0, the resulting algorithm needs to also estimate the subspace
projection coefficients as well. An early version of the current
work (one that only solves (b) and only under the assumption
that the previous subspace is exactly known) will be presented
at Asilomar [10].

1.1. Notation, assumptions and some definitions
Notation. ||-|| denotes the I norm of a vector or the induced
I3 norm of a matrix. For other [, norms, we use || - ||.

A matrix with mutually orthonormal columns is referred
to as a “basis matrix”. For basis matrices [j’, U, the sub-
space error (SE) between their respective column spans is
quantified by SE(U,U) = || (I - ﬁﬁ’) U||. This mea-
sures the sine of the principal angle between the subspaces.
The phase-invariant distance between two vectors is quan-
tified using dist(z1,22) = mingcjoan |21 — €V P22
Normalized column-wise phase-invariant recovery error for
matrices X and X, its estimated verzsion, is computed as

G 1_, dist(xp,®
NormFErr( X, X) := Lkiﬁ:llflTkllgk)
gers i1, ig, the interval [¢; : i3] denotes the set of integer val-

For any two inte-

ues {71,471 + 1,...,42} and interval [i; : i3) denotes the set
{il,il +1,...,12 — ]_}
Assumptions. We quantify “slow subspace change” using

the model from [9]. In [9] and previous work, this has been
successfully used to improve outlier tolerance of dynamic ro-
bust PCA as compared to its static counterpart. “Slow sub-
space change” [9] means that Uy = Uy, := U; ¥Vt € [t; :
tj+1) (piecewise constant subspaces) and the following hold:
(a) SE(U;_1,U;) < A with A small,

(b) at each change time, only one direction changes, and

(c) min;(t;41 — t;) is lower bounded.

Definitions. As mentioned above, at each subspace change
time, only one direction changes, while the rest of the sub-
space remains fixed. Of course at different change times, the
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changing direction could be different, thus over a long period
of time, the entire subspace could change. To explain this fur-
ther, if %;_1 cng denotes the direction from span(U;_1) that
changes at t;, and u; «hq denotes its changed version, then
span(U;_1) = span([U;_1 fix, Uj_1,cng|) and span(U;) =
span([U;_1 fix, Wjchal). Where Uj_q sx is an n x (r — 1)
matrix corresponding to the fixed part of the subspace at ¢;.
Denote the direction that gets added to the subspace at time
t; by U aqq. Clearly,

(I - uj—l,.chguj—l,Chg,)u.f:Chd
SE(%j_1,chg, Wj,chd)

Ujadd =

Also, 0; := cos !|uj_1.cng'Ujcnal is the angle between
Uj_1,chg and Uj,chd and Uj del = Wj—1,chg sin 93: —Uj,add COS Gj
is the direction that gets deleted at ¢;.

The following facts are immediate from the above: (i)
|Si]:l 93| = sin Bj = SE(uj_l,chg, uj_.chd), (11) Ujchd =
Wj add SIN0; + Wj_1 chg cOsB; , (iii) U aqq is orthogonal to
U;_1, and (iv) span(U;) C span([U;_1, U add])-

Define the sub-matrix X; = [X;;,X¢,41,-
let ¢ := (tj4+1 —t;) and let

>

? tE€[ts,t41)

e th+1—l]¢

E

EVD x
tht! = UJA:'- Uj’

denote its eigenvalue decomposition (EVD). To simplify no-
tation, in the text below we sometimes remove the subscript
7, e.g., we often use 6 to denote 6;.

2. SOLUTION APPROACH
In the next two subsections, we explain how to solve each of
the two sub-problems mentioned above.
2.1. Automatic phaseless subspace change detection
Consider the matrices

1 m
Y = m—qz Z Vi @iy, and

=1 t€[tjitjp)

(1)

Y’U — (I - ﬁj_lﬁj_l!) YU (I - ﬁj_lﬁj_l!). (2)

To understand our approach simply, suppose that [jrj_l

is a perfect estimate, ie., suppose that span(U;_;) =
span(U;_1). Then, it is not hard to see that

EYo]=(I U;-1U;—1") [2(U;AU;") +te(A)I] (I U;—1U;-1")
= (25in” 0 Amin(A)) Ujaaatyaad’ +r(A)I  Us—1U;-1).

3

The first equality follows from [11, Lemma A.1], and the sec-
ond follows using the subspace change assumption. Observe
that the above matrix is orthogonal to U;_. Let U;_; | be
a basis matrix for the subspace orthogonal to U;_;. Since
U;_1 has rank r, this will be an n x (n — r) matrix. Since
U;j add i orthogonal to U;_1, thus, without loss of generality,
we can assume that % ,qq is one of the columns of Uj_y .



Denote the matrix for the rest of its columns by Uj,l, L.
Thus, span(U;_1,1) = span([w; adad, Uj—1,1]) and so, us-
0

ing (3), an EVD of E[Yy] is E[Yy/] "X”
J Uuj, add’
tr(MI| U1 1"

Clearly the top eigenvector of this matrix is equal t0 Uj add,
with the corresponding elgenvalue of 2sin?0 Apin(A) +
tr(A), and a gap of 2sin? @ Ay, (A) between first and other
eigenvalues. So, by law of large numbers [12], with high
probability (w.h.p.), that the top eigenvector of this matrix
will be a good initial estimation of u; ,q4, when m and ¢ are
large enough. Currently we are making an intuitive argument,
these statements will be made rigorous in follow-up work.

From above, again by law of large numbers and assuming
Uj,l is a good estimate of U;_y, when m and ¢ are large,
if the subspace has not changed, the first eigenvalue of Yy,
A1 (Yy), will be close to tr(A) w.h.p.; while if it has changed,
it will be close to 2sin® @Amin(A) + tr(A) w.h.p.. A natural
subspace change detection approach thus involves threshold-
ing A1 (Yy). Thus, A;(Yy) > Ctr(A) can be used as a cri-
terion for detecting the change with C' being a value slightly
more than one. Here tr(A) is unknown but notice that for
i=r+1,7r+2...,n NE[Yy]) = tr(A). Thus, wh.p.,
when m and q are large enough, \,,(Yyr) ~ tr(A) and so we
use A\, (Y7) as an estimate of tr(A). Algorithm 1 summarizes
our approach.

It is clear from the above that the change detection per-
formance improves as 6 increases. This fact is also observed
through our experiments (see the ROC curves in Fig. 1).

2.2. Phaseless PCA with partial subspace knowledge
After detecting the change, the next step of PST algorithm is
estimating the current subspace knowing the existence of a
change. Here in order to use the previously estimated sub-
space U'j,l, we construct a bigger subspace matrix ﬁj €
R™*("+1) which contains a new added column besides U;_;.
Similarly, the number of rows of B are increased by one and
Bj € R"+1)%4 s a relaxed estimation of B;. Phaseless PCA
with partial subspace knowledge consists of two steps which
we explain in the following.

Initialization.  The initialization is inspired by the previ-
ously proposed spectral method which is used in many exist-
ing works like [1] and extended in [2]. From the discussion
above, when m and ¢ are large enough and span(Uj,l) is
close to span(U;_1), using the Davis-Kahan sin ¢ theorem

[13], it can be argued that the top eigenvector of Yy will be
a good estimate of u; aqq. Denote this by 1 .qq. With this,
U, = = [Uj 1 Uj add] can be used as the initial estimated sub-
space. Using an idea similar to the approach of [2], the top
eigenvector of

2 sin 0/\mm( ) + tr(l_\)

[wj,aaa, Uj—1,1] 0

“

( Zyz t @it t) Jo
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Algorithm 1 PST-detection

1: Compute Yy and Yo using (1) and (2).
2: Declare a change if A1 (Yy) > C M\ (Yy).

bt,l:r—l

by, cosf|.
bs,rsinf
Main loop. Main loop is an alternating minimization so-
lution. Similar to our previous work [2], this part has three
steps. At each step one of the three variables is estimated and
the other two is assumed to be constant. Using alternating
minimization, U can be obtained by solving

denoted b~t, will be a good estimate of 5t =

o . A _ / = 2
U—argrrgnitjllctyt A/Ub |,

where b, € R™! is provided by the previous iteration. In
the simple situation where just one direction is changing at a
time, recovering @ .44 is enough. This can be obtained by

N . A NS - 2
U add = argmin E |ICrys — A Ugby 1. — Ay uby oy ||7
u
?

where l;t,l:r and IN)M,H are vectors that contain the first r el-

ements and the last element of b, respectively. Then matrix
ij = [ﬁj,l, U 2qad] Will be the estimate of current subspace.
Rest of the solution is similar to our previous work. Using the
new estimate of Uj, Bj and the phase are updated respec-
tively. To remove the relaxed dimension whenever is needed,
singular value decomposition can be used as the last step. Ma-
trix X ;j can be recovered as a byproduct also.

The complete algorithm is summarized in Algorithm 2.
This works well when the column span of ﬁj,l is a good es-
timate of the subspace spanned by U;_;. Its final subspace
recovery error is lower bounded by SE(U;_1,U;_1). To re-
duce the error beyond this value, at the end of Algorithm 2, a
few iterations of LRPR-AltMin (the algorithm of [2]) can be
used. Just a few iterations of LRPR-AltMin will significantly
reduce the error because this can be interpreted as beginning
LRPR-AltMin with a very good initial estimate.

3. NUMERICAL EXPERIMENTS
Phaseless subspace change detection. To evaluate the de-
tection performance of Algorithm 1, we plot the Receiver Op-
erating Characteristic (ROC) curve by varying the constant
C. 50 runs of two sets of data are generated, one without
the change and one with the change. For each value of C,
we compute the Monte Carlo estimate of the probability of
correct detection by using the dataset with change, and we es-
timate the false alarm probability by using the dataset without
change. We then plot the detection probability on the y-axis
and the false alarm on the x-axis for various values of C. We
show the plots in Fig. 1 for various values of . Settings for



Algorithm 2 PST-PCA

Input: y;, and a;, for i € |1
ﬁj_l ,r,n
1: Initialization:
2: Compute Yy as described in (2) and compute .49 as its
top eigenvector.
Set 0 = [Ujfl, ﬁadd} .
fort ¢ [tj,tj+1) do
Compute Y}, as described in (4).

mlt € [t; 1 tin),

AN

Set b, as top eigenvector of Y; and scale it by

/ > y?t

7: end f?)lr
8: for 7 € [0: Tinax) do
9: fort € [tj, tj+1) do

10: set Gy = phase(At’ﬁl;t).
11 Set b — F[“]’t

br-‘rl,t
12: Setd; = étyt - A:‘/ﬁj—lb[lzr],t
13: end for
14: Compute U,qq as

-1
Y (bryia)’AAL Y beAdde
tE[t;tj41) tet;tj41)

15: Set ﬁ = |:Uj,1, ’aadd:| .
16: fort € [tj, tj+1) do
17: set by = argmin, ||Cyy; — ALUD||
18: end for
19: end for

20: Compute X; = UB.
Output: Set Uj as top r eigenvectors of X, and Bj =
U/X;.

this experiment are n = 1000, r = 10, m = 850, ¢ = 750,
0 = 30,45, 60, 75 degrees and values of C varying between 0
and 3, with intervals of 10~%. Also UO was generated so that
SE(U(), UQ) ~ 1074

True positive rate
o 0 0 ©

0.2

0.4 0.6 . 1
False positive rate

Fig. 1. ROC curve when SE(Up, Up) = 10~%. “True positives” refers to
probability of correct detection; “False positives” refers to false alarm prob-
ability.

59

Normalized error of X

< (=3
5 13

15
i
T

N VaVaws
pasaioTereieneasd)

PST-PCA-LRPR | |
LRPR-AltMin
TWE a

oG

i
200

T
400

i
600

i
800

Time taken (seconds)

| B
1,000

Fig. 2: Normalized recovery error of X, NormErr(X, X).

I \ SE~10~* \ SE~10°° |
m [ =400  ¢=500  ¢=600 | ¢=400  ¢=500  ¢=600
450 | 0.84 0.92 0.98 | 0.92 0.98 1.00
550 [ 1.00 1.00 1.00 | 1.00 1.00 1.00
650 [ 1.00 1.00 1.00 | 0.98 1.00 1.00

Table 1: Success probabilities for two values of SE(ﬁo, Uy). Cases with
error of U less than 1.5 x SE([}O7 Uy) are considered successful. PST
loop is broken when the subspace error of recovered U is less than 1.5 X
SE(I}Q7 Uy), or when the difference of estimated values of U between two
successive iterations is less than 1079,

Phaseless PCA with partial subspace knowledge. In our
first experiment, we let n = 1000, » = 10, § = 30 degrees.
For two values of the initial subspace error SE([}'O, Uyp), and
many values of ¢ and m, we implemented PST-PCA and
computed the probability of the final recovery error reaching
the same level as the initial subspace error. This is displayed
in Table 1. 50 Monte Carlo runs were used. In our sec-
ond experiment, we compare PST-PCA performance with
that of LRPR-AItMin (algorithm of [2]) and with Truncated
Wirtinger Flow (TWF) [1]. TWF is one of the best known
singe signal PR algorithms provably requiring only O(n)
measurements for exact recovery. In this experiment, we
implemented PST-PCA for 12 iterations followed by LRPR-
AltMin for 3 iterations. LRPR-AltMin was implemented
for 15 total iterations. We show our results in Fig. 2 where
we plot the normalized phase-invariant recovery error of X
against the time taken in seconds. This is done by computing
the recovery error and time taken at the end of each algorithm
iteration. As can be seen just PST-PCA already significantly
outperforms both LRPR-AltMin and TWF (just PST-PCA
error decreases to 10~ 7 while that of LRPR-AltMin saturates
at 1073 and TWF is even worse). This experiment used
n = 1000, ¢ = 500, r = 15, m = 700, # = 30, and 50
Monte-Carlo repeats; and value of Uy is corrupted by an
additive Gaussian noise so that SE([}'O7 Up) =~ 3.5 x 1072
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