2019 Workshop on Computing, Networking and Communications (CNC)

HYPER-VINES: A HYbrid Learning Fault and
Performance Issues ERadicator for VIrtual
NEtwork Services over Multi-Cloud Systems

Lav Gupta
Dept. of Computer Science &
Engineering
Washington University in St. Louis
St. Louis, USA
lavgupta@wustl.edu

Aiman Erbad
Dept. of Computer Science &
Engineering
Qatar University
Doha, Qatar
aerbad@qu.edu.qa

Abstract—Fault and performance management systems, in
the traditional carrier networks, are based on rule-based
diagnostics that correlate alarms and other markers to detect
and localize faults and performance issues. As carriers move to
Virtual Network Services, based on Network Function
Virtualization and multi-cloud deployments, the traditional
methods fail to deliver because of the intangibility of the
constituent Virtual Network Functions and increased
complexity of the resulting architecture. In this paper, we
propose a framework, called HYPER-VINES, that interfaces
with various management platforms involved to process
markers through a system of shallow and deep machine learning
models. It then detects and localizes manifested and impending
fault and performance issues. Our experiments validate the
functionality and feasibility of the framework in terms of
accurate detection and localization of such issues and
unambiguous prediction of impending issues. Simulations with
real network fault datasets show the effectiveness of its
architecture in large networks.

Keywords— Network Function Virtualization, Virtual
Network Function, Service Function Chain, Virtual Network
Service, Multi-Cloud Environments, Fault Management,
Performance Management, FCAPS, Machine Learning, Deep
Learning

L INTRODUCTION

Virtualization of datacenter resources has been immensely
successful in the Information Technology (IT) world. Carriers
(an entity providing telecommunication or Internet services)
see Network Function Virtualization (NFV) as a paradigm that
could help them transpose this success to their networks by
instantiating network functions on virtual resources, like
Virtual Machines (VMs), hosted on commercial, off-the-shelf
servers. The resulting Virtual Network Functions (VNFs),
e.g., virtual routers and virtual load-balancers, form the basic
building blocks of the Virtual Network Services (VNSs) like
cellular mobile service and broadband service. To carriers,
such deployments mean freedom from proprietary solutions,
ease of scaling, reduced cost of operation and reduced time to
market. Additionally, instantiating a VNS on multiple clouds
adds advantages like proximity to users and avoidance of a
single point of failure.

978-1-5386-9223-3/19/$31.00 ©2019 IEEE

Tara Salman
Dept. of Computer Science &
Engineering
Washington University in St. Louis
St. Louis, USA
tara.salman@wustl.edu

Raj Jain
Dept. of Computer Science &
Engineering
Washington University in St. Louis
St. Louis, USA
jain@cse.wustl.edu

141

Ria Das
Dept. of Computer Science &
Engineering
Washington University in St. Louis
St. Louis, USA
ria.das@wustl.edu

Mohammed Samaka
Dept. of Computer Science &
Engineering
Qatar University
Doha, Qatar
samaka.m@qu.edu.qa

The catch in this utopian scheme is that VNSs do not yet
meet the requirements of five-nines availability and quality of
service that the traditional, largely physical and standards-
based carrier networks have been assiduously built to provide
[1]. Areas like the quality of service, performance monitoring
and useful metrics are current research challenges relating to
NFV [2]. Our study shows that the lack of credible Fault,
Configuration, Accounting, Performance and Security
(FCAPS) standards, the complexity of architecture and ill-
defined interfaces, among the involved management
platforms, are the primary causes for these services not
measuring up.

In this paper, we make a case for the HYbrid Learning
Fault and Performance Issues ERadicator for VlIrtual
NEtwork Services over a Multi-cloud (HYPER-VINES)
framework that will improve the availability and reliability of
VNSs thereby benefitting the carriers as well as their
subscribers. This framework is designed to work with the
available markers (alarms, notifications, counter values and
measurements) and uses an innovative combination of
predictive shallow and deep machine learning models for
detection and localization of faults and performance issues in
operational VNS deployments. Symbolically, much like
friendly vines help in choking harmful weed in plantations,
HYPER-VINES reaches deep into networks to weed out fault
and performance issues.

The framework achieves detection and localization
accuracies which are substantially better than the baseline and
any reported results in a similar environment. The main
contributions of this work are summarized below:

i) Examination of the major reasons for performance and
availability challenges in NFV and cloud-based VNS
deployments. We find that handling detection and
localization of faults and performance issues is difficult
because of multiple layers in implementation and
distributed and overlapping responsibilities for fault
management. Besides, incomplete definition of interfaces
among cloud, NFV and operation support platforms
worsen the situation.

2019 Workshop on Computing, Networking and Communications (CNC)

ii) Development of mechanisms, within the described
architectural framework, which make use of the
network’s operational markers for detection and
localization of faults and performance issues.

iii) The innovative use of shallow and deep predictive
algorithms to obtain high accuracy of detection and
localization. We achieve accuracies markedly better than
the baselines and any other reported result in similar
environment.

iv) Demonstration of the feasibility and effectiveness of the
proposed HYPER-VINES framework using real network

data

II. BACKGROUND

A. Terminology Related to VNSs

Figure 1 illustrates a broadband service created on virtual
resources, i.e., as a VNS. It consists of a Service Function
Chain (SFC), an ordered and linked collection of VNFs,
containing four VNFs, viz., an aggregation switch, two types
of Broadband Remote Access Servers (BRAS) and a core
router. It also has multiple instances of a Physical Network
Function (PNF), viz., Digital Subscriber Line Access
Multiplexers (DSLAMs), retained from the legacy networks.
The switch has a built-in load balancing function for
distributing traffic between the two forked paths.

Cloud2

Fig. 1. Broadband Access Virtual Network Service

B. Fault and Performance Management of VNS over
Multiple Cloud Systems

In VNSs over multi-cloud systems, we deal with three
interacting platforms. (i) The Management and Orchestration
(MANO) platform that creates and manages VNSs over the
virtual resources provided by one or more cloud service
providers, (i) A multi-cloud management and control
platform (MMCP) that optimizes and manages the complete
placement across all used clouds and collects performance and
other telemetry information from various clouds [3] and, (iii)
The Operation Support System (OSS) that manages the
carrier's network. Figure 2 shows how these platforms are
positioned relative to each other. Communication among all
the platforms, flows through the reference interconnection
points as shown. The broken line shows that the specific
interconnection has not been defined yet.

The responsibility of the fault and performance
management of VNS, within MANO, is distributed among its
three main modules (Figure 2). The Virtualized Infrastructure
Manager (VIM) records the events and collects performance
measurements of the resources which are part of a service

142

provider’s NFV-Infrastructure (NFVI) domain. The Virtual
Network Function Manager (VNFM) manages VNFs and
carries out fault and performance related functions for them.
The NFV Orchestrator (NFVO) interacts with the carrier’s
OSS for fault management of network services [4].

H Os-Nfvo :I»
[MANO

l NFV Orchestrator (NFVO)

Resource Catalogs

Or-Vnfm

0ss

Ve-Nf-Em
i

VNF3 VNF Manager (VNFM) ‘
VNF

anm-Vi+ Or-Vi
Virtualized Infrastructure

Ve-Nf-Vnfm

‘
Networ

Nf-Vi

MMCP

Fig. 2. Virtual Network Service and its Management

C. Unsuitability of the Existing Systems in the VNS
Environments

The traditional systems are not equipped to handle the
complexities of the VNS environments. The former's built-in
diagnostic systems directly probe the hardware and software
through well-defined interconnections between the control
unit and other sub-systems. Even though the possible set of
markers is relatively small, maintenance personnel still have
to work through the linked set of tables of possible causes to
reach the root cause of the problem. VNSs have the added
complexity of having multiple layers physical
infrastructure, virtual resource and VNFs - all possibly owned
by different providers. The same faults may have a different
appearance across layers. For instance, a bootable disk failure
in the physical layer may manifest as a VM crash in the virtual
resource layer and as a failure of a VNF instance in the virtual
network function layer. The failed VNF could be, for example,
a virtual router in a broadband SFC and would result in a low-
performance issue or a total failure of the service.

The situation in VNS gets even more intractable and
fuzzy, as the locations of the appliances, middleboxes and
links, that form part of a service, do not remain fixed. Many
instances relating to the same appliances may be created on
different servers and even on different clouds. Virtual
resources are routinely migrated for optimization of factors
like cost and performance. Any fault and performance
framework, which attempts to work in the NFV multi-cloud
VNS environment, has to meet the following challenges:

Challenge 1: The framework should be able to handle gaps in
the specifications proposed by standards bodies [2] [5].
Additionally, it should be able to reconcile overlapping
responsibilities among the management platforms. Both the
OSS and the MANO have to manage the VNS jointly. Both
the MMCP and the MANO are jointly involved in the creation
of the virtual infrastructure on which the VNFs are
instantiated.

Challenge 2: There are many more layers of abstraction in
virtualized networks than in physical networks. Pinpointing
the location and exact nature of the fault is not trivial.
Additionally, the variety of issues relating to the fault and

2019 Workshop on Computing, Networking and Communications (CNC)

performance problems that can affect such a system is large,
making the work of diagnosis difficult [6] [7].

Challenge 3: The data is high dimensional making extraction
of anomalous conditions difficult. Markers pertaining to
different events overlap, making differential diagnosis
difficult.

A number of researchers, and standards bodies like
ETSI, believe that the fault and performance management in
the NFV environment needs predictive analysis [8] [9]. In
Section IV, we will see the design of the proposed framework
for such analyses.

III. RELATED WORK

Relevant to FCAPS are ETSI specifications of NFV
resiliency requirements [9] and service quality metrics [10].
The former provides a list of faults and relationship between
them while the latter gives VNF related metrics useful for
quality of service. Both ETSI and ONAP describe the
specifications for fault management support functionality [11]
[12].

There has been extensive work on performance modeling
systems for distributed Internet applications of the pre-NFV
era, notably TIPME (2000) [13], Pinpoint (2002) [14] and
Magpie (2003) [15]. TIPME helps in identifying and
eliminating causes of long response times. Pinpoint uses data
mining to correlate the behavior of each active user request
with the past failures and successes to determine failed
components. Magpie works on individual user requests and
compares the observed behavior, with saved normal models,
to identify anomalous requests and malfunctioning
components. Recently, the ‘mPlane’ consortium of European
telecom companies and academic institutions, has worked on
developing a measurement plane for Internet and CDN (2013-
2016). The core of the project is ‘mpAD-Resoner,” which uses
machine learning to detect anomalies involving multiple flows
or users. It compares the current distribution with stored
average distributions [16]. The OPNFV Doctor project deals
with the problems of the underlying hardware [7].

Most techniques relate to the IT environment with the aim
to achieve three nines availability as against the five nines
required for carrier networks. These techniques work on the
static or dynamic dependency models, which makes
previously unobserved faults difficult to detect. These
methods are limited by the implausibility of having up-to-date
models in a dynamic environment. They deal with faults in the
physical compute components. The NFV over cloud networks
have a virtual network function layer that calls for a totally
different set of markers, metrics and methods.

The proposed HYPER-VINES framework has been
designed to overcome the problems of the legacy frameworks
and work in a multi-cloud VNS environment. It works on
markers at physical and virtual levels, works with multiple
instances, can discover known and unknown fault and
performance issues, and predict impending faults with good
accuracy. In the next section, we discuss this framework in
detail.

IV. DESIGN AND IMPLEMENTATION OF HYPER-VINES

The operational basis of the HYPER-VINES framework is
to consume markers from large volumes of multi-source and
high dimensional operational data to accurately detect and
localize faults and performance issues of VNSs in a carrier's
environment. Figure 3 gives a simplified illustration of the
process.

Data Preprocessing

Raw fault datasets

| Data Collation and Curating |
I

‘ Feature selection/engineering ‘

Normal
Operation Mode

Training Mode

Detection: Broad
classification

‘ Detection: Specialized ‘

‘ Training Dataset ‘ ‘ Test Dataset ‘ classification

Localization: | | Localization:

Train and Test Shallow and Deep !
| Manifest Fault | | Impending Fault :

Learning Models for Detection

Fig. 3. HYPER-VINES Fault
mechanism
In the training mode, the data is curated and partitioned
into training and test datasets. Shallow machine learning and
deep learning models, used in various stages of detection and
localization, are trained and tested. The models are fine-tuned
till the mean square error of classification or prediction is
optimized. The framework is called hybrid as it involves both
machine leaning and deep learning models. During operation,
the generated markers are pre-processed and run through the
trained models for detection and localization. We discuss
more details of the process in the next sub-section.

and performance management

A. Architecture of the Proposed Framework

The relationship of the HYPER-VINES framework with
its environment is shown in Figure 4. It collects performance
markers primarily from MANO, OSS and the cloud
management platforms over standard interfaces. Additional
information about operational statuses of individual VNFs
comes from the EMS via OSS or is pulled directly by
HYPER-VINES. Since HYPER-VINES obtains markers
from multiple sources, it mitigates the problem of
overlapping responsibilities and ill-defined interfaces of the
management platforms.

0SS/BSS I
[

HYPER-VINES: Fault and
Performance Management

5 1

| |

Placement
Policies

MANO

Multi-Cloud

Platform
VNFs

|]
NFVI
ETSI-NFV defined interfaces

+«— Part of HYPER-VINES
“=* Defined in other systems

Fig. 4. The environment of HYPER-VINES

The internal architecture of HYPER-VINES is shown in
Figure 5. The main sub-systems are the Detection and
Localization functions with an optional inclusion of the data

143

2019 Workshop on Computing, Networking and Communications (CNC)

pre-processing module. We discuss the important details of
the framework below.

r -
! Detection Predictive
' Inference
|
Level 1 .
: ;‘;i‘h Fault | Level 2 Fault Detection
088 ; . Classification | || Manifest Reports
| Detection Fault
MMCP ! .
| lFI:;)ll Impending| o
g (Elective L
1 I
EMS : . Trained Multi-layer Model for
i |Deep Leamning| | ojization of Manifest Faults
Management : Model for
Systems Analyzi
| yzing Layer 1 Layer 2 it
Markers i| Impending | |(Coarse Grain— Fine Grain H+ L"ﬁ‘;h(z);l;"“
| Faults Localization| |Localization P
i
' 1
e
Impending
Fault Report

Fig. 5. Architecture of HYPER-VINES

i) Data Pre-Processing: The marker data, obtained from
various sources, are collated and normalized to remove biases.
The pre-processing policy may involve reduction of features
based on some criterion like correlation with the labels. Tools
like Weka can be used to select features based on correlation
with the labels [24]. With the dataset used in this study,
inclusion of features up to a correlation threshold of 23%
improved accuracy. This may be changed based on the dataset
used. In the training mode, the available dataset is split into
training and test datasets, which are used to train and test all
the models. During operation, the marker data is run through
the framework to detect and localize problems. We shall see
more details of the actual datasets in the next section.

ii) The Detection Subsystem: We have organized the
detection subsystem into two levels of chained binary
classification. Level 1 uses a shallow machine learning model
to filter out the no-fault cases, which are much larger in
number than fault cases. Level 2 classifies ‘fault’ cases into
‘manifested’ and ‘impending’ fault conditions. A two-stage
model removes ‘skewness’ in the data and performs better
than one level classifiers [17]. It also enhances the accuracy of
prediction [18]. Algorithm 1 describes the process succinctly.
X and Y are predictor variable and labels, respectively, in
training or test datasets. Hyper-parameters {pa} and {pa'}
pertain to detection models at the two layers, {ps} and {pn}
are for models at the localization layers 1 and 2 and {pi} are
for deep learning model for impending faults.

iii) The Localization Subsystem: Algorithm 2 explains the

Algorithm 1: Detection Levels 1 & 2

procedure detect_levell (X,Y)
#fault/no-fault classification
{pa} € values of hyper-parameters for the chosen model
use trained model for detect_levell with XY, {pa})
if ‘fault’ is true
call detect_level2 (X',Y")
produce detection report

procedure detect_level2 (X',Y")
classify as manifest/impending and call localization
{pa'} € values of hyper-parameters for the chosen model
use trained model for detect_level2 with X,Y, {pa'}
if manifest is true
call manifest localization (X,Y) #defined in Algorithm2
elseif impending is true
call impending_localization (X,Y) #defined in Algorithm2

localization function. X, Y and the set of hyper-parameters

{p} have the same meaning as before (sparsity parameters
have been explained in Section V). Details of the models and
strategies manifested and the impending fault classes are
explained below.

Algorithm 2: Localization Layers 1 & 2

procedure manifest_localization (X,Y)
Coarse grain localization
{ps} € values of hyper-parameters for the chosen model
call localize layerl(X,Y,{ps})
fine grain localization with the appropriate model
if class_category ==
{p1} € hyper-parameters class_category 1
call localize_layer2(X",Y",{p1})

if class_category==7
{p7} € hyper-parameters class_category 7
call localize_layer2(X",Y",{p7})

produce localization report

procedure localize layerl(X.Y, {ps})

use trained model localize layerl with X,Y, {ps}
procedure localize layer2(X",Y",{pa})

use trained model localize layer2 with X,Y, {pa}
procedure impending_localization (X,Y)

{pi} € parameters neurons, sparsity parameters
use deep_learning_model (X,Y, {pda}

produce impending fault report

Manifest Faults: The manifested fault analysis has been
designed as a multi-layered, multi-class strategy based on
actual data from a carrier’s network. For this study, we have
limited the broad fault classes, at Layer 1, to 7 (Table I). At
Layer 2, we have N (=7 in our case with 7 broad classes)
separate multi-class models, one for each of the broad classes.
Some examples of Layer 2 issues that would fall under Class
Category 1 (Network Availability) are antenna height,
backhaul failure, traffic channel congestion, radio unit
failure and power module failure. For the multi-class
classification with SVM, we chose to work with simple
models like One vs. One (OvO) and One vs. All (OvA) [19].
We eventually selected OvA since it provided more accuracy
and was comparable to OvO in training and actual operations.
In the OVA approach, for the i classifier f;, the examples can
be classified with f(x)=argmaxifi(x), i.e., choose the class that
classifies the example with the maximum margin.
Impending Faults: In traditional systems, in the absence of
predictive analysis, preventive maintenance is relied to catch
issues early. In HYPER-VINES localization of impending
faults consists of predicting the severity and location of the

TABLE L. LOCALIZATION LAYER 1 FAULT CLASSES
Class Class Category Class Class Category
#
1 | Network Availability 5 Virtualization-Component
Failure
2 | Connection 6 Virtualization — Software
Maintenance vulnerabilities
3 | Network Performance 7 Miscellaneous
4 | Security

fault. An operational network produces data continuously. In
a stable network, most of these would be normal data with
markers indicating anomalous conditions interspersed
sporadically. While our data has more than 800 features, any
anomalous condition would present <5% of these! Thus, the
data are quite sparse. Impending faults may also contain
previously unseen faults. Thus, while manifest faults are

144

2019 Workshop on Computing, Networking and Communications (CNC)

manageable with shallow models, impending faults have been
tackled with deep learning. We have used Stacked Sparse
Autoencoder (SSAE) (a type of deep neural networks). A
single SAE contains an input, an output and a hidden layer.
With an undercomplete hidden layer, the autoencoder is
forced to learn the most useful features (automatic feature
selection). The advantage can be accentuated with stacking a
number of autoencoders and carefully designing the hidden
layers [20].

Figure 6 shows the stack of three sparse autoencoders used
in this work. Input layer [x], an output layer [p] and three
hidden layers consisting of paired encoders and decoders. The
colored neurons show three matching pairs of encoders and
decoders. By reducing the size of hidden layers, the output is
made reliant on increasingly lesser but richer features. Such a
network can be trained in an unsupervised mode to reconstruct
input data at the output with good accuracy. These networks
can be tuned well for sparse data by using parameters like
sparsity regularization and sparsity proportion as discussed in
the evaluation section.

We train our model to have good reconstruction of the

N
\V/
N‘

N aki
.wf Wi 7 \
) 9 3 é“(Av'{ ‘
é,;«(" i \)”\\
i \

Compressed Encoded
Input Representation

Hidden Layers

3 Layers of Encoders 3 Layers of Decoders

Fig. 6. Stacked Sparse Autoencoders

input at the output (decided by the L2-norm), with
unsupervised data, in a layerwise greedy method (one hidden
layer at a time). A model that reconstructs well also gives good
predictions [24]. During training, features (z) learned by each
hidden layer are input to the next layer. Pairs of {weights,
biases}, viz., (o1, by), (02, by) and (ws, bs), are learned in
achieving good reconstruction.

argmin{L2 norm(x,x”), k=1
{ok, bx, o, b’} =

argmin{L2 norm(zk-1, zx-1’}, k> 1 (1)
z1=f(o1, X) 2
zx = f(ox, Zk-1), k>1 3)

After achieving good reconstruction of the input, the
decoders are removed and a prediction layer is added in
tandem with the encoded representation layer. This layer is
trained in a supervised manner to learn ®4 and produce
predictions y’ for given labels y. w4 are the weights for
minimum prediction MSE (mean square error). Thus, for
labels y and its prediction y’ we have,

{®1, W2, W3, W4} = argmin {L2 norm (y, y')} 4)
The model is fine-tuned using back-propagation, for
improving predictions [20] [22].
V. EVALUATION OF HYPER-VINES AND DISCUSSION
OF RESULTS

In this section, we discuss the dataset used and the
evaluation of the proposed approach. The performance of the

HYPER-VINES framework is demonstrated by good
accuracies achieved by the detection and the localization
subsystem.

A. Analysis of the Dataset Used

Having been drawn from the real fault logs of the Telstra
Telecommunications' network, the Telstra dataset, provides a
good basis for evaluating our models [23]. The complete
dataset consists of sub-datasets for resource_type, event_type,
event_volume, features, fault_severity and severity_type. All
sub-datasets have “4d’ as the common field. The event type
sub-dataset encodes the fault and performance events. Each
event is given an id, which also gives a chronology of these
events. This sub-dataset contains 31,170 events recorded with
53 unique event types. There are 21,076 examples in the
resource_type sub-dataset with many events involving
multiple resources. The features sub-dataset with 58,671
records gives reported markers with each incident generating
some of the featurel to feature386. The training and test
datasets have id, location, and fault severity. The

fault severity feature describes the severity level of a fault

event and has values 0, 1, or 2 for no faults, a few faults, and
many faults, respectively. The severity type feature describes
the intensity of the warning with values 1 to 5 with 5 being the
highest.

TABLE II. FEATURES FROM NETWORK FAULT DATASETS
1 1d (1) 5 | Resource type (10)
2 Location (1) 6 | Severity type (1)
3 Features (386) 7 | Event type (5)
4 Volumes for features (386) 8 | Fault severity (1)

Table IT gives a list of features contained in the sub-
datasets mentioned above with the number in brackets
indicating how many can occur in one event. There are about
800 features (columns) in the consolidated dataset. Following
the mechanism given in Section IV, pre-processing of data,
including feature selection, has been carried out using label-
class correlation method in weak to prepare the training and
test datasets [24].

B. Evaluation of the Framework

We provide, in this sub-section, the results of the
evaluation of the detection and localization parts of the
framework. Table III gives the metrics used.

TABLE III. METRIC USED
Metric Interpretation
Accuracy (TP+TN)/(TP+TN+FP+FN)
Precision TP/(TP+FP)
Recall TP/(TP+FN)
TP=True Positive, TN=True Negative, FP=False Positive, FN=False
Negative

i) Detection: The Telstra dataset prepared, as explained in
Subsection V (A), was used in the binary supervised two-
stage model for “fault’/’no-fault’ and
‘manifested’/‘impending’ classification. Various standard
algorithms were tested for the two stages (called Level 1 and
Level 2) in the framework. Tuning of various parameters,
peculiar to any model, was carried out judiciously. In the
comparative test, it was seen that Support Vector Machine
(SVM) with Radial Basis Function (RBF) kernel stands out
with > 95% accuracy for Level 1, with a high ratio of true

145

2019 Workshop on Computing, Networking and Communications (CNC)

positives to false positives, indicating good fault detection.
Precision is high, indicating ‘no-fault’ cases are correctly
classified. Compared to these results, the baseline results with
Zero-R (which predicts the majority class) has 65% accuracy.
We see some of the simulation results in Figure 7.

==Detailed Accuracy By Class ==

TP Fp Precision Recall F-Measure ROC Class
Rate Rate Area
0.943 0.024 0.987 0.943 0.964 0.959 o
0.976 0.087 0.9 0.976 0.936 0.959 1
Weighted 0.954 0.036 0.957 0.954 0.988 0.959
Avg.
Accuracy= 95.42%

Fig. 7. Level 1 detection accuracy, using Telstra dataset

For the Level 2 classification into manifested/impending
classes again a tuned SVM with RBF Kernel works well

(Figure 8).

==Detailed Accuracy By Class ==

TP Fp Precision Recall F-Measure ROC Class

Rate Rate Area

0.951 0.103 0.938 0.951 0.943 0.942 0

0.897 0.049 0.921 0.897 0.909 0.924 1
Weighted 0.930 0.082 0.930 0.930 0.930 0.924

Avg.
Classification accuracy for impending faults = 95.1%
Classification accuracy for manifest faults 89 7%
Fig. 8. Level 2 detection accuracy, using Telstra dataset

For baseline at Level 2, we have used One-R, a simple
but accurate classification algorithm, which generates one
rule for each predictor and then selects the one with the
smallest error [25]. Accuracy for HYPER-VINES is 95%,
which is markedly higher than the baseline as shown in
Figure 9.

Baseline and HYPERVINES Detection Comparison

W Impending M Manifested

]
8

100.00

95.00

90.00

85.00

Level 2 Detection Acauracy

80.00 -

75.00

HYPER-VINES
Correctly Classifle Cases

Baseline

Fig. 9. Detection sub-system Level 2 classification, effectiveness
compared to baseline
ii) Localization: One of the main concerns handled in the
framework is to localize impending faults and predict their
severity levels. While preprocessing selected the 353 features,
further condensation was left to the stacked autoencoders
used.

The comparative reconstruction performance is given in
Figures 10(a) through 10(d). It is seen that the model with 3
hidden layers of 200/150/100 neurons, respectively,
converges quite fast to a low mean-square error.
Reconstruction accuracy is important as it affects the
prediction based on the trained encoders, which the model is
eventually used for [21].

Sparsity in data is handled by using the Autoencoder
parameters sparsity regulation (SR) and sparsity proportion
(SP). SP gives the proportion of training examples a neuron
reacts to. A low value of SP encourages sparsity.

10 F4
—— 8 et
rain - Train
g - = Best S. W - - Best
iina a
o MSE=0.343 at 360 epochs &
u g MSE= 0.0060 at 160 epachs
= 10 3 10
W
2 0w | .
0 10 20 300 g2 5 10 150 200
Epochs Epochs
(a) Single AE (b) 2-layer SSAE
10° —Train
—Train —— st

z | == Best é 10
.8 é
B
E é s MSE= 0.0054 at 270 epoch §
gy(hﬂ | Bt MSE 0.0044 at 305 Epocrs
: :
[} 100 200 300 = 0 0 100

B om0 20 0
Epochs

(c) 3-layer SSAE (d) 4-layer SSAE

Fig. 10. Mean Square Error for reconstruction of Input

The graph in Figure 11 shows that the model has good
generalization characteristics as MSE for the test dataset is
close to that of the training dataset. Having achieved good
reconstruction results, the model was tested for prediction of
severity of impending fault and performance issues. Having
achieved good reconstruction results with stacked
autoencoders, the model was tested for prediction of severity
of impending fault and performance issues.

To see the effect of fine-tuning with backpropagation,
experiments were carried out for SR=1 and SP=0.4. Figure 12
shows that fine-tuning may yield better results for some
configurations of the model. The accuracy ranges between 72
and 85% with the abridged dataset (~1000 examples) and
~92% with the enhanced dataset (~5000 examples).

0.024

0.02 \\
0.016

i A\

] 4

2 0.012 Train

0.008

0.004

0

Test

0 20 40 60 80
No of Hidden Layers

Fig. 11. MSE in Training and Test dataset

We baselined the above results with those obtained with a
shallow model, viz., SVM with RBF kernel which did quite
well for detection, and could only obtain 70% accuracy in
localizing impending faults. The deep structure, thus provided
a substantial improvement in terms of accuracy of prediction
of the severity level of the impending faults.

146

2019 Workshop on Computing, Networking and Communications (CNC)

0.5

0.45 with

fine tuining

0.4

w 0.35
)

0.3 A
Prediction without
fine-tuning

0.25

0.2

0.15
10 20 30

Size of Hidden Layers

40 50

Fig. 12. MSE of predictions before and after fine tuning

VL

In this work, we have identified the challenges faced by
carriers in creating virtual network services based on NFV and
instantiated over multiple clouds. The primary concerns
addressed are availability and performance of virtual network
services. To overcome these problems, we propose HYPER-
VINES as a fault detection and localization framework to help
cloud service providers, carriers, and independent NFVI
providers to overcome these challenges. We demonstrated the
effectiveness and feasibility of the hybrid framework using
shallow machine learning and deep learning algorithms with
a mix of unsupervised and supervised learning in a multi-layer
configuration. We show that the proposed framework can
handle both the detection and localization of faults and
performance issues with good accuracy. Lastly, we believe
that HYPER-VINES would be useful to the industry by
improving the proliferation of NFV and cloud-based
deployments and also spur other researchers to further develop
and improve the framework.

DiISCUSSION AND CONCLUSION

ACKNOWLEDGMENT

This publication was made possible by NPRP grant #8-
634-1-131 from the Qatar National Research Fund (a member
of Qatar Foundation) and NSF grants CNS-1718929. The
statements made herein are solely the responsibility of the
authors.

REFERENCES
(1]

R. Mijumbi et al., “ Network Function Virtualization: state-of-the-art
and research challenges,” IEEE Communications Surveys and

Tutorials, 2016, pp.236-262.

C. J. Bernardos et al., “ Network Virtualization research challenges,”
Internet Engineering Task Force (IETF) Draft.
https://tools.ietf.org/html/draft-irtf-nfvrg-gaps-network-virtualization-
10 Accessed Sept 2, 2019

H. R. Kouchaksaraei, and H. Karl, “Joint orchestration of cloud-based
microservices and Virtual Network Functions. ArXiv: 1801.09984
https://arxiv.org/pdf/1801.09984. Accessed Feb 13, 2018

ETSI GS NFV-MAN 001. “European Telecommunications Standards
Institute: Network Functions Virtualization (NFV); Management and
Orchestration,” 2017

P. Moore, “The current state of NFV: Standards,”
https://www.itential.com/blog/the-current-state-of-nfv-intro/.
Accessed Feb 21, 2018.

T.Nakamura, “Network Functions Virtualization (NFV) Network
Operator Perspectives on NFV priorities for 5G,” ETSI-White Paper,
February 2017

OPNVEF, “Building fault management into NFV deployments
background and purpose of OPNFV’s Doctor Project,”
https://www.opnfv.org/wpcontent/uploads/sites/12/2016/11/opnfv_fa
ultmgt final.pdf. Accessed January 20, 2018

(2]

(3]

[4]
[5] 2016
[6]

(7]

(8]

M. Ladki, “Developing a blueprint for zero-touch, end-to-end service
orchestration across hybrid and multiple networks,” April 2017,

147

1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]
(23]

[24]

[25]

https://inform.tmforum.org/features-and analysis/2017/04/developing-
blueprint-zero-touch-end-end-service-orchestration-across-hybrid-
multiple-networks/. Accessed March 21, 2018.

ETSI GS NFV-REL001, “European Telecommunications Standards
Institute: Network Functions Virtualization (NFV); Resiliency
Requirements,” 2015

ETSI GS NFV INF 010, “European Telecommunications Standards
Institute: Network Functions Virtualization (NFV); Service Quality
Metrics,” 2017

ETSI GS IFA 013, “European Telecommunications Standards
Institute: Network Functions Virtualization (NFV); Management and
Orchestration; Os-Ma-Nfvo reference point - Interface and Information
Model Specification,” 2016.

ONAP Whitepaper, Network Automation Platform:
Architecture Overview,” 2017,
https://www.onap.org/wpcontent/uploads/sites/20/2017/12/ONAP_Ca
seSolution_Architecture 120817 _FNL.pdf, Accessed March 20, 2018

Y. Endo and M. Seltzer, “Improving interactive performance using
TIPME,” Proc. ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, Volume 28, Issue
1, 2000, pp. 240-251.

M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox, “Pinpoint:
problem determination in large, dynamic, internet services,” Proc.
International Conference on Dependable Systems and Networks (IPDS
Track), 2002, pp. 595-604.

P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “ Magpie: online
modeling and performance-aware systems,” Proc of the 9th conference
on Hot Topics in Operating Systems, 2003, pp. 15-15.

B. Trammell et al., “mPlaneBuilding an intelligent measurement plane
for the internet,” IEEE Communications Magazine, Volume: 52, Issue:
5,2014, pp. 148-156.

M. L.Antonie, O. R.Zaiane, and R. C. Holte, “Learning to use a learned
model: a two-stage approach to classification,” IEEE International
Conference on Data Mining, 2016, pp.33-42.

F.Hachmi and M.Limam, “A two-stage process based on data mining
and optimization to identify false positives and false negatives
generated by Intrusion Detection Systems,” IEEE International
Conference on Computational Intelligence and Security, 2015, pp. 308-
311.

G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, Vol 313, Issue 5786, July 2006,
pp. 504-507.

L. Wang et al., “A computational-based method for predicting drug-
target interactions by using stacked autoencoder deep neural network,”
Journal of Computational Biology, 2018, pp. 361-373.

W. Huang, “ Dynamic boosting in deep learning using reconstruction
error,” IEEE International Joint Conference on Neural Networks
(IJCNN’14)., 2014, pp. 473-480.

I. Goodfellow, Y. Bengio, and A. Courville. 2016. “Deep Learning
(1st. ed.)”, MIT Press book.
Kaggle datasets, Available:
Accessed, March 12 2017

G. Holmes, A. Donkin, and I. H. Witten, “WEKA: A machine learning
workbench,” Proc ANZIIS of the Australian and New Zealand
Conference on Intelligent Information Systems, 1994, pp. 357-361.
Saed Sayad, “Classification Methods,”

http://chemeng.utoronto.ca/~datamining/Presentations/Basic_Method
s.pdf, Accessed March 2018

“Open

https://www.kaggle.com/datasets.

