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ABSTRACT

Carriers’ network services are distributed, dynamic, and investment intensive. Deploying them as virtual
network services (VNS) brings the promise of low-cost agile deployments, which reduce time to market new
services. If these virtual services are hosted dynamically over multiple clouds, greater flexibility in optimizing
performance and cost can be achieved. On the flip side, when orchestrated over multiple clouds, the stringent
performance norms for carrier services become difficult to meet, necessitating novel and innovative placement
strategies. In selecting the appropriate combination of clouds for placement, it is important to look ahead and
visualize the environment that will exist at the time a virtual network service is actually activated. This serves
multiple purposes — clouds can be selected to optimize the cost, the chosen performance parameters can
be kept within the defined limits, and the speed of placement can be increased. In this paper, we propose
the P-ART (Predictive-Adaptive Real Time) framework that relies on predictive-deductive features to achieve
these objectives. With so much riding on predictions, we include in our framework a novel concept-drift
compensation technique to make the predictions closer to reality by taking care of long-term traffic variations.
At the same time, near real-time update of the prediction models takes care of sudden short-term variations.
These predictions are then used by a new randomized placement heuristic that carries out a fast cloud
selection using a least-cost latency-constrained policy. An empirical analysis carried out using datasets from
a queuing-theoretic model and also through implementation on CloudLab, proves the effectiveness of the P-
ART framework. The placement system works fast, placing thousands of functions in a sub-minute time frame
with a high acceptance ratio, making it suitable for dynamic placement. We expect the framework to be an
important step in making the deployment of carrier-grade VNS on multi-cloud systems, using network function
virtualization (NFV), a reality.

1. Introduction — challenges and contributions

Carriers perceive Network Function Virtualization (NFV) as a dis-
ruptive technological development that has the potential of delivering
them from the problems of the traditional physical networks. NFV
allows network functions and appliances to be instantiated in software
on computing and networking resources obtained from datacenters or
cloud service providers. The concoction of NFV and cloud computing
holds a great promise for carriers. It promises to deliver freedom
from vendor dependence and expensive proprietary equipment, ease
of service creation and phasing out, the flexibility of scaling and de-
scaling, having points of presence closer to the users and avoiding a
single point of failure. Cloud computing and Network Function Vir-
tualization have a natural synergy that awaits full exploitation. It is
expected that these two powerful paradigms would evolve together
to support the requirements of virtual network services (VNS). The
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European Telecommunications Standards Institute (ETSI) specification
of classification of cloud-native VNF implementations describes the
creation of VNFs on different types of clouds [1].

One of the biggest challenges in deploying NFV over multiple
clouds today is the low VNS performance. There is a general concern
regarding the current technological capability to extract carrier-grade
performance from NFV-based services [2,3]. The Internet Engineering
Task Force (IETF) has also identified performance and guaranteeing
the quality of service as open research areas and technology gaps
in NFV [4]. The performance standards have been strict in telecom-
munications networks, with International Telecommunications Union
(ITU) standards being adopted by most administrations. The standards
prescribe stringent control over performance parameters like latency,
jitter and packet loss [5]. The availability requirement is of the order
of five nines (permissible downtime of just 26 s in 30 days).
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There are a number of reasons why the software versions of the
network functions, i.e., Virtual Network Functions (VNFs), do not
give a performance that is comparable to the purpose-built physical
appliances used in the traditional networks. As anyone would guess,
the main reason is the inability of the network functions created in
software over general-purpose hardware, in matching the performance
of specialized hardware-based functions. The performance suffers fur-
ther when these ‘softwarized’ functions are instantiated over clouds.
To compound the problem, carriers have lesser control when network
appliances move from their own switch rooms and transmission centers
onto the Cloud Service Providers’ (CSPs’) virtual machines (VMs).
Add to this the newfound ease of creation, destruction, migration,
and scaling of virtual resources (courtesy NFV), and opportunities for
indiscriminate virtualization proliferate. All of these issues cause per-
formance to go downhill. Previous work has shown that virtualization
may lead to abnormal latency variations and significant throughput
instability [6]. In their infrastructure overview, ETSI has indicated
latency and throughput constraints as the discouraging factors for
the use of public clouds for hosting NFV. Even though researchers
have proposed ways of improving the performance of virtual network
functions [7,8], legitimate concerns still remain. All said and done,
the advantages of the VNSs are far too important for researchers in
academia and industry to forge ahead.

In the VNS game, carriers and CSPs may not always have a cordial
relationship. It is challenging to co-optimize their conflicting goals
when they collaborate to provide VNSs. Carriers look for standards-
grade performance and availability at the minimum cost and in the
desired time frame. So, not to take any chances, they incorporate these
in their Service Level Agreements (SLAs) with the CSP. On the other
hand, the CSPs aim to maximize the utilization of their physical and
virtual resources to improve their profit margin.

In this paper, we make a case for the P-ART framework that will
help CSPs alleviate some of the main concerns of carriers while de-
ploying services — meeting the contracted performance and keeping
the cost within the prescribed budget. The main contributions of this
paper are summarized below:

1. We develop techniques for improving the performance of deployed
VNSs through the following:

(i) We propose an innovative predictive dynamic placement al-
gorithm that takes care of changes in the state of the cloud
environment to ensure the validity of the placement at the time
of activation of a service. In addition, we propose placing com-
plete chains rather than the commonly followed path of placing
VNFs individually, to yield better results. As most carrier services
are affected by latency, we choose to work with latency as an
important performance measure. The work can be extended to
other parameters following the same guiding principles.

Since a public dataset suitable for the problem is scarce, we
generated realistic datasets to train and test the models. To be
doubly sure, we used a dataset obtained by building a queuing-
theoretic model and another by implementing the system on
CloudLab [9].

One of the important parts of the framework is a novel method
that refines the prediction algorithm by taking into account vari-
ations in network latency because of temporally varying traffic
conditions in the carriers’ networks. Unattended, such variations
cause a concept-drift, which makes predictions unreliable and
affects the accuracy of predictions. For this, we introduce a novel
concept of using time as a feature in training the predictive
machine learning models. The resulting use of multiple models
makes the framework adaptive to diurnal traffic variations.
Short-term traffic changes, because of events like a football
match or an election rally, do not follow a pattern like diurnal
traffic variations and need a different way of handling. Since re-
training of models is a time consuming and expensive operation,
the framework uses incremental learning to keep the models
up-to-date.

(i)

(iii)

(@iv)
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2. We propose multiple criteria optimization through an innovative
placement strategy. Specifically, placements are carried out to optimize
cost and keep latency within the specified threshold. We explain in the
related works section that, in general, ILP and its variants give optimal
solutions but take significantly more time than other methods. This
limits their utility in responding fast to the change of state of the multi-
cloud system and the subscriber demands from the service during its
actual operation. To the best of knowledge, the random optimization
as a viable method to achieve optimized placement has not been used
before. The algorithm converges to the global minimum even in the
case of a multi-modal dataset.

3. We incorporate in our framework, innovative techniques for making
the placement fast with high acceptance rate. The high speed of place-
ments allows the CSP to make changes in the network dynamically, in
real-time or near real-time, as the factors like demand, traffic conges-
tion on links, availability of resources on various clouds change. A high
acceptance rate implies that a placement attempt would be successful
every time if enough resources are available on the clouds.

4. Finally, the ideas explained above are brought together to form
the P-ART framework for dynamic predictive, adaptive and real-time
placement of carrier virtual network services.

In the preliminary version of the paper, presented at an IEEE confer-
ence in 2017, the contributions mentioned in 1(i), 1(ii), 2 and 3 were
explored [10]. The new work explained in 1(iii), 1(iv) and 4 enables us
to report the complete framework in this paper. The rest of the paper
is organized as follows. In Section 2, we discuss the VNS environment.
This section also serves to clarify the terminology used. Section 3
presents a summary of the related work and how this work is different
from other previously reported solutions. The problem description is in
Section 4. The P-ART framework is discussed in Section 5. In Section 6,
we present the evaluation results. Finally, Section 7 gives a summary
and describes the ongoing work.

2. Virtual network service environment

The network services are voice and data services, wired or wireless,
provided by telecommunication companies (referred to as carriers in
this paper). These network services include public services like mo-
bile telephony, broadband and Internet, content delivery, enterprise
networks, leased circuits, and virtual private networks. Traditionally,
networks providing these services have been built using physical ap-
pliances and transmission links that are custom built for carrier-grade
performance. This physicality usually creates vendor lock-in, prolonged
service deployment time, inflexibility in scaling and introducing new
services, and high cost. NFV and cloud computing provide a way to cre-
ate network functions, in software, over inexpensive virtual resources.
Such virtual functions can be linked with virtual network resources to
create VNSs. The VNSs result in flexible, scalable and less expensive
networks that are not proprietary and prevent vendor lock-in. We shall
see the constituents of VNS in this section along with the cloud set-up
that can be used for hosting such services.

2.1. Constituents of a virtual network service

In most discussions on VNSs, VNFs are the basic unit of place-
ment. VNFs are software-based implementations of physical network
functions that are used in traditional carrier and enterprise networks.
They exhibit functional behavior similar to their physical counterparts
and have well-defined interfaces consistent with relevant industry stan-
dards. VNFs can be instantiated on virtual machines (VMs) obtained
from datacenters, or from cloud service providers. All the instances of
a VNF, say the core router function, would usually be hosted on one or
more dedicated VMs on one or more clouds depending on the carriers’
requirements and CSPs own policies regarding these deployments.

A Service Function Chain (SFC) or a VNF forwarding graph is
a set of VNFs interconnected to route the packets in a well-defined
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Fig. 1. Broadband service function chain and associated modules.

Fig. 2. Mapping service function chain to the multi-cloud system.

sequence [11]. They are connected like the physical appliances are
connected in a traditional network [12]. IETF RFC 7498 [13] describes
each network service (NS) being implemented through one or more
service function chains (SFC) [14]. The carrier may like to retain some
of the legacy physical network functions (PNFs) while virtualizing
the other functions. The SFC may, therefore, consist of VNFs, PNFs,
and links among them. Fig. 1 shows the components of an SFC and
associated modules.

The broadband VNS, shown in Fig. 1, is an SFC consisting of
four VNFs, viz., an aggregation switch, two types of Border Network
Gateways (BNGs) and a core router. It also has multiple instances
of a Physical Network Function (PNF), viz., Digital Subscriber Line
Access Multiplexers (DSLAMs), retained from the legacy network. Each
VNF has its own Element Management System (EMS), which inter-
faces the VNF to rest of the network [12]. The Operation Support
System/Business Support System (OSS/BSS) of the carrier manages the
VNFs and SFC through the EMSs.

SFCs can be placed on the available clouds in a number of ways.
CSPs may offer commonly used network functions in the form of VNF-
as-a-Service (VNFaaS), which may be a part of an SFC. Alternatively,
a carrier may lease virtual resources in the clouds and instantiate
VNFs itself, with a view to exercise more control over performance
parameters and cost. Our discussions presume the use of the latter
method. Fig. 2 shows an example of an SFC mapped to multiple clouds.
It may be noted that we now have four VNFs as the SFC has two types
of BNGs. The Aggregation Switch is presumed to have a built-in load-
balancing function for distributing traffic between the two forked paths.
The end-to-end latency of the service function chain would depend on
how, when, and where the constituent functions have been placed. The
users shown in the figure are customers of the carrier while the carrier
is a tenant on the cloud system. When the initially placed SFC does not
meet the required conditions, operations, like moving around the VNFs
in the clouds or scaling up the number of instances, would be resorted
to.

2.2. The multi-cloud hierarchy

There are public cloud services like Amazon EC2, Google Cloud
Services, and Microsoft Azure that provide the advantage of a relatively
inexpensive resource leasing solution. Big public clouds are multi-
tenant and have a regional or international presence. These clouds can
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handle large volume, variety, and velocity of traffic. Large public clouds
do offer greater flexibility in obtaining resources and more analytical
sophistication, but taking all the data to just one public cloud would
create traffic congestion and increase the access latency. Using a single
cloud could often result in a single point of failure in the case of cloud
blackouts, which are not uncommon.

Additionally, the points of presence (PoPs) of large public clouds
may not be close to the subscriber clusters and may give rise to
increased access latency. If the application calls for lower access la-
tencies then edge clouds may offer a good solution. Carriers may also
have their own private clouds, which they can customize and exercise
more control over. This hierarchy of clouds — mobile-edge, private,
and public - forms a multi-cloud system to provide a combination of
features like low latency, high storage, complex computations, lower
cost, and better security.

2.3. Representation of the tenant profile

In this work, a cloud tenant (in our case, a carrier) profile is repre-
sented as a tuple {cy.v;,0,,...,0,,, p) for each request. Here, v, ..., v,
represent the VNFs and the order of traffic traversal in a linear chain.
The term cy is the native cloud for the tenant to which it is parented
and through which the traffic enters an SFC and p is the desired packet
rate (packet/second). Multiple tuples can be used to represent branched
traffic flows. Other stipulations like latency threshold (L,,) are part of
the SLA. All the requests of the tenant are consolidated to calculate
the required number of instances of each VNF and inter-VNF links
of appropriate capacities. The cloud topology may be represented by
the graph G, = (C, T), where C is the set of available clouds {c|,
¢,---, ¢} and t; ; are the inter-cloud links. The CSP (or a cloud broker
who integrates services from multiple clouds) carries out the task of
mapping service chains onto the available clouds to achieve optimal
results for the carrier. In our case, optimality refers to the least-cost
solution that meets the end-to-end latency threshold requirement.

3. Problem definition

In this section, we summarize some of the key outstanding problems
in the dynamic placement of carrier VNSs, in a multi-cloud environment
that we attempt to handle in the P-ART framework described in this
paper.

3.1. Achieving dynamic placement in multi-cloud systems

Some carrier services may be fairly static, e.g., fixed voice network.
Thus, over time the number of instances of VNFs and link capacities
required only change slowly over time. On the other hand, some
services may be extremely dynamic, requiring a change in number and
types of VNF instances, re-dimensioning of links and changes in the
offered features of the service very frequently. An example of such a
service would be an intelligent network service like televoting in a TV
reality show. Different TV reality shows may require different features
and the number of voters may swing unpredictably during the voting
window. If the CSP only offers largely static placement with reactive
and relatively slow modifications, then the carrier’s requirements may
not be met.

The bottom line is that both, the dynamic and static services would
require the CSP to scale VNF capacities or links, albeit at a different
rate. However, dynamic services may be more demanding in terms
of types and number of instances of VNFs and link resources and
may even require migration of VNFs from one cloud to another to be
able to continuously meet the cost and end-to-end latency constraints.
A dynamic placement algorithm, that monitors the SLA parameters
and proactively causes changes in the amount of resources and the
combination of clouds to meet all the requirements, is still a challenging
issue.
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3.2. Optimizing the SFC performance

When the data are high dimensional and multi-modal, optimizing
placement of individual VNFs may not achieve the global minimum.
Placing SFCs as a unit yields better results. The opportunity to achieve
the global minimum for the parameter being optimized is available
when placing the SFC. If sufficient resources are not available to
implement full-service chains, then the request may be rejected or,
if the policy permits, degraded service (for instance without firewall)
is provided [11,15]. In this paper, we only consider complete SFC
placement. The case where the customer accepts degraded performance
due to low-capacity chain placement or partial functionality due to
incomplete chain placement would be taken up in future work.

3.3. Meeting the cost and latency constraints

From the carrier’s perspective, the placement problem boils down
to placing network functions to meet the cost and latency objectives.
At the commencement of the VNS and during operation, the placement
problem needs to be repeatedly solved to ensure that the carrier re-
quirements are continually met. Performance criteria vary from service
to service. For the carrier services like voice, broadband, and content
delivery some of the common factors are jitter, packet loss, latency, and
throughput. ITU standards for QoS parameters in carrier networks are
available in [5]. Latency is one of the most important criteria, and we
have taken that as a reference performance parameter. The framework
can be extended to include other criteria as well.

3.4. Speed and accuracy of the placement

Carriers want short placement and reconfiguration time so that
the solution can be useful in an operational network. The CSP wants
the solution to have the high success of placement requests such that
utilization of the virtual resources increases. When the system cannot
place despite the availability of resources, CSPs lose by way of unused
resources and possible breach of SLA.

3.5. Interference among VNFs

The CSP may instantiate a number of VMs on a physical machine
(PM) and a number of virtual links on the physical inter- and intra-
cloud links. VNFs of more than one service provider may be instantiated
on the same PM. In some cases, pre-instantiated VNFs may be shared
among carriers. Sharing of virtual resources does not only cause per-
formance concerns but could also give rise to security concerns. In this
paper, we have presumed that VNFs of different types belonging to a
carrier are on different VMs.

3.6. Problems addressed and not-addressed in this paper

The following issues have been specifically addressed in the paper:

(a) Dynamic placement of the complete SFCs belonging to a VNS.

(b) Meeting the specified performance and cost criteria.

(c) Prediction of latency using machine learning as a basic input for
the placement algorithm.

(d) Refining the prediction by handling the temporal variation of
traffic, unplanned short-term spikes in traffic and the time lag
between planning and commissioning of SFCs.

(e) A fast placement algorithm that places with high success rate.

The following problems are left for future work:

(a) Use of under-dimensioned service chains
(b) Security issues of the VNSs.
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4. Related work and how this research advances the state-of-the-
art

A review of recent publications shows a strong interest of re-
searchers in the problem of placement in the context of NFV. We
discuss here some of the relevant works published during the last
two years to show how the field has progressed. There is some older
useful research on which many of the recent works build, and these
have been cited in the works that have been examined. Since our
research is in the area of cost and latency optimization, we focus on
research dealing directly (for example by optimizing cost or latency)
or indirectly (by optimizing utilization of resources thereby reducing
cost) with these aspects. We conclude this section by elaborating how
our work advances the state-of-the-art.

4.1. Review of recent works on VNF placement

4.1.1. Methods based on ILP and its variants for optimization

In [16] the authors contend that unlike most other works they have
considered QoS/SLA along with resource requirement of network ser-
vices. They show that the virtualization overhead increases with traffic
load and the number of VMs due to factors such as scheduling delays,
context switching, and flow routing. The authors include virtualization
overhead while setting up their MILP model to optimize resource usage
while guaranteeing latency requirements. The model optimizes the cost
including the utilized processor, memory and physical links under the
latency constraint of maximum round-trip time. It is seen that for a
network with 28 nodes and 41 links the model takes about an hour to
arrive at an optimum solution. The authors in [17], use an MILP model
to optimize network latency and increase the acceptance rate of strict
delay requirements. One of the constraining factors in evaluation is the
location of all the VNFs in the same cloud. It is also somewhat unclear
how the method will scale from 5 VNF to a large network, for delays.
The algorithm chooses a more expensive path to ensure a minimum
delay. An intuition that probably does not require proof is that delay
will be more with high bandwidth requirement, or when more requests
seek the same link. In cases where the number of requests is high,
the solver is not able to find an optimal solution in the joint delay
and routing cost optimization problem. The solution for the optimal
chaining and routing with MILP limits the scale of the problem.

4.1.2. ILP and heuristic to speed up ILP

In [18], the authors optimize the number of physical machines (PM)
used using an ILP model. They take into account the time-varying
workloads while instantiating VNFs in PM. A two-stage heuristics so-
lution has been suggested to solve the ILP, with a correlation-based
greedy algorithm as the first stage and a further adjustment at the
VNF in each SFC as the second. The simulation demonstrates im-
proved utilization of network resources and reduced number of PMs
compared to the benchmarks. This and some other works presume
multi-tenant VNFs to improve utilization. While this may be good from
the point of view of cloud service providers, but carriers would usually
request exclusive VNFs hosted on exclusive VMs because of security
and performance concerns. In [19] the authors propose placement
of VNFs in the edge clouds to minimize end-to-end latency. Using
and ILP model, the authors show that cloud-only deployments gave
more than 3 times more latency than cloud-and-edge deployments. The
absolute times for initial placement and for each re-configuration are
not known. They also present a way to dynamically re-schedule the
optimal placement of VNFs based on temporal network-wide latency
fluctuations using optimal stopping theory. Scheduling re-optimization
may reduce latency violations, but they may require an increased
number of migrations. Periodic migration also has a problem, as it
requires human intervention to decide on the periodicity of tuning. The
authors suggest a method using optimal stopping theory to select the
right time for placement.
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4.1.3. ILP and heuristics for comparison

In [20], the authors consider an [oT-edge cloud-main cloud scenario
in a dynamic multi-user situation. The authors set up an MILP model
to minimize the end-to-end communication delay while keeping the
cost to the minimum. However, they realize that the MIP formulations
rapidly increase in complexity and take a long time to give an optimum
solution, as the problem becomes large. To counter this, the authors
also propose Tabu search for placement and chaining. They find that
the MIP method takes 200 times slower than the Tabu Search. The
authors in [21] solve VNF placement and chaining problem as ILP and
also propose another method called Cost-efficient Centrality-based VNF
Placement and chaining algorithm (CCVP). The objective is to minimize
the cost by finding an optimal number of VNF instances and their
locations for handling the required traffic. To simplify they assume that
the network provider is the owner of NFVI so concerned factors are
under its control. The CCVP is based on the Betweenness centrality
algorithm. The high centrality indicates that a vertex of a graph G
can reach other vertices on relatively short paths. This results in lower
network cost. They show that the overall cost of their method is close
to ILP. It should be noted that processing delays and link bandwidths
are not considered in the analysis. In [22], the authors pursue the
objective of optimization of energy consumption as an ILP model. This
purportedly gives a reduction in the operational cost of the placement.
They also propose a near-optimal approximated algorithm to solve the
problem using the Markov approximation technique. They show that
their algorithm can achieve the performance arbitrarily close to the
global optimum. Simulation results show that the algorithm saves up to
14.84% energy consumption compared with previous VNF placement
algorithms.

4.1.4. Non-ILP heuristic solutions

In [23] the authors presume sharing of VNFs among different ser-
vice chains. It should be noted that while sharing may improve VM
utilization, it might consume more link bandwidth because these chains
may need to go through a longer path in order to reach the shared
VM. As mentioned before, from carriers’ point of view this arrangement
may give rise to security issues as well as make it difficult to control
latency. The authors contend that most of the existing works are
mainly targeted on improving VM utilization, without considering the
required bandwidth resources. This paper has examined the joint VNF
placement and Path Selection problem, so as to maximize the served
traffic demands. In [24], the authors discuss a proactive placement
model in the context of a content distribution network (CDN). They
argue that VNF chaining and placement affect QoS, and formulate
an optimization problem to find the optimal number of locations as
well as efficient chaining such that the CDN cost is minimized and
QoS is satisfied. The authors set up the problem as a bin-packing
problem that involves selection of bins (surrogate servers) and drop-
ping the items (VNFs) into them. The authors conclude that while
their solution gives fewer servers but may give a high communica-
tions cost. In [25], the authors investigate the optimal placement of
virtual resources to minimize the average response time in mobile
edge computing (MEC) environment with a capacity constraint on the
edge network. They use OEPA (Optimal Enumeration Placement Algo-
rithm) as a benchmark to compare Latency-Aware Heuristic Placement
Algorithm (LAHPA), which has lower computation complexity, Clus-
tering Enhanced Heuristic Placement Algorithm (CEHPA) to enhance
the performance of LAHPA, Substitution Enhanced Heuristic Placement
(SEHPA). SEPHA turns out to be better than LAHPA. CEHPA and
outperforms LAHPA and both are better than the general Greedy Place-
ment Algorithm. The authors in [26] describe a dynamic placement
algorithm based on traffic variations that saves operational expendi-
tures. Their algorithm consolidates VNFs in the fewer possible number
of network nodes while maintaining low blocking probability and guar-
anteeing latency targets to the supported services. They reuse VNFs,
select VNFs based on locality and activate them based on the shortest
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path. The authors claim that their algorithm is able to balance the
trade-off between minimizing latency violations, decreasing blocking
probability and reducing operational expenditure. The success rate of
the algorithm has not been mentioned. The authors claim 50% saving
in telecom operators cost.

4.2. How does this work advance the state-of-the-art?

A carrier’s environment is essentially different from an IT applica-
tion environment. Carriers assiduously follow norms that have long
been enforced by standardization agencies like ITU or through self-
imposed discipline. They are generally loath to give these good prac-
tices up, even if that would mean marginally sacrificing on other
competing cost objectives. Some of these practices relate to five nines
reliability, guarding against inadvertent or malicious interaction of
services (for example, because of VNFs being on the same servers or
VNFs sharing the same VM) and having well-defined points of inter-
connections. Another important aspect is ensuring the security of their
services. Some of these may be required by regulation to account for
revenue generation by different networks or to have non-contentious
sharing among carriers in case of multi-domain services.

There are a number of important factors that go into the planning
of carriers’ network services. The locality of VNFs, for instance, those
belonging to the access network (like Radio Access Network), should
ensure that the VNFs serving a cluster of subscribers are instantiated
close to them to reduce cost and latency. There are a number of
virtual functions that have an affinity and need to be placed as close as
possible. In a broadband network, the edge routers may be connected
to two core routers in order to ensure that large clusters of subscribers
are not cut off from the network. In such a case, the cost of connectivity
would be exorbitant if edge routers are generally located far away from
the core routers. In the case of carrier’s VNSs deployed over clouds, it
must be remembered that the cloud resources (or the NFV resources)
may not all belong to the carrier. In such a case, when the placement
solution deals with packing the VNFs into physical or virtual machines,
it generally helps the cloud service providers to reduce their cost. The
carrier’s objectives of isolation of services, security, affinity and QoS
parameters may be jeopardized.

Unlike most other papers that deal with placing VNFs on virtualized
datacenter resources or single clouds, this paper presumes a multi-
cloud environment. Rather than optimizing the utilization of physical
or virtual resources, it assumes carriers’ viewpoint and optimizes, under
latency constraint, the total cost of placement of network functions,
which includes resources on various clouds and links. The cost is
presumed to be adjusted to contain the apportioned capital and op-
erational costs for the virtual network service under deployment. The
method that we propose falls in the category of dynamic and proactive
placement algorithms rather than being either of those. Our objective
and constraint-based determination of clouds, on which the SFC will be
placed, removes the tight binding between resources and the VNFs of
the SFC. During operation, the placement is frequently re-evaluated to
ensure continued optimality. We avoid the ILP route and use machine
learning for placement, which reduces the time taken even for large
placements and renders the re-evaluation problem trivial. If required,
new placement and virtual resource dimensioning will be done con-
sistent with the carrier SLA requirements and CSP policies. Selection of
clouds for placement of chains of VNFs is based on the prediction of the
state of the clouds at the time of placement. A number of innovations
have been proposed in this part of the work. One such refinement is
the compensation of concept drift due to diurnal variation of traffic.
The methods adopted also lead to the high efficiency of the placement
process, which ensures that placement requests are successful in all
cases where enough capacity is available and constraints can be met.
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Fig. 3. The configuration of the experimental service chain.

5. The proposed P-ART framework

In this section, we describe our framework with approaches to
solutions for the problems mentioned in Section 3 and for achieving the
objectives specified. We also describe how the refinements mentioned
were carried out to achieve the solution that can be used for carrier
networks as well as in the enterprise environment. For our studies, we
will consider the placement of the SFC shown in Fig. 3.

5.1. Information available from carriers and CSPs

Carriers, who request service chain placement, provide information
about the performance requirement for a VNS, and the number and
structure of SFCs and VNFs to be instantiated. A VNS may have one or
more SFCs. The ith SFC S; can be represented in terms of the constituent
VNFs, i.e.,

S; = (Cy, vaf, (i), vaf, (i), ..., vof, (i), p) (@D)]

where Cy is the native cloud and p is the maximum packet rate through
the chain. The native cloud is usually the point of presence (PoP) of the
CSP closest to the carrier and provides interconnection to the carrier.
The CSP may provide an option to connect at PoPs located at other
places. This gives a choice to the carrier to have traffic ingress points
close to the customers. The design is to be carried out such that the
costs of the network, as well as latency in reaching the cloud system,
are kept to the minimum or below a given threshold value.

An SFC is represented as a forwarding graph of the type G,
(V, E), the nodes V being virtual network functions and edges E the
virtual links among these functions. The demanded capacity of ith VNF,
vnf; (i < n) is expressed as uiC in the same integrated units as the
cloud capacities (shown in Table 2). An integrated figure represents
the compute capacity ¢, of a cloud k, consisting of a certain amount
of processing, memory and storage components. However, there is
no integer constraint on the VNF capacities. These are mapped onto
resources in the available clouds represented as another graph G, =
(C, T), where C represents the set of clouds with physical/virtual
infrastructure and T the set of links #;; among them. The state of a cloud
k at any time would involve the cloud compute and link capacities —
installed capacities denoted as c,(:) and tj:;), and the corresponding used
capacities are c,((“) and t%). The tenant carrier provides the maximum
expected packet rate p for each request originating from a cluster of
subscribers. The expected end-to-end latency is specified by the carrier
in terms of a latency threshold (L,,). The CSP consolidates the VNF
requests and packet rates required for each type of chain to allocate
resources in an optimum way. Table 1 gives the symbols frequently
used in the paper

Some of the important constraints subject to which the cost opti-
mization is carried out are:

» The number of instances of each type of VNF across all the used
clouds, for any carrier, should not exceed the number of licenses
for that function type paid for by the carrier.

» To place any chain, at least one instance of each type of VNF
needs to be instantiated.
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Table 1
Symbols used.
Symbol Description Symbol Description Symbol Description
A Cloud k ey Native cloud c;{“) Used capacity of
cloud k
C Set of all vf” Capacity tf',‘) Used capacity of
clouds demand for the link between
available VNF i clouds i & j
1y Link from c%’ Equipped cap P The maximum
cloud k to j of native cloud expected packet
rate
T Set of all P Used cap of m No of clouds
inter-cloud native cloud selected
links
v, ith VNF o Installed onf; The ith VNF in
capacity of the SFC
cloud k
v Set of VNFs IEIL.') Capacity of Ly, Latency
link between threshold
clouds i & j
n Types of VNFs V,‘" Capacity Cy Cost budget
demand for ith
VNF

The total capacity of each type of VNF placed on any cloud k
should not exceed the capacity available in the cloud.

At any given time the sum of the traffic flows, due to all service
chain placements, between any two clouds k and j should not
exceed inter-cloud link capacity tﬁfj).

The end-to-end latency, L, of any chain should not exceed the
specified threshold L.

While the cost is optimized, the carrier may additionally specify
a budget Cj, for it.

The framework requires that the CSP lays down its policies regard-
ing tariffs, integrated virtual resource capacities, clouds offered, the
arrangement with other cloud providers, cloud and link capacities
offered, etc.

5.2. Predictive adaptive real time strategy

The proposed placement solution optimizes cost and constrains the
end-to-end latency below the specified threshold, L. We assume that
the design for instantiation of SFCs, belonging to a VNS, is ready at time
t, but actual placement is yet to happen. In other words, the placement
problem has been solved at time t for the placement and activation
that will actually take place at time #,. Predictive placement is used
to take care of the change of state because of this time difference.
Using prediction of the latency as the basis of design also takes care of
the large number of infrastructure and network level parameters that
interact in a complex way to decide the end-to-end latency. In addition
to these, the background traffic in the network affects the latency
experienced by the subscribers of the VNS being placed. Therefore,
taking care of the diurnal traffic variations in the network makes the
prediction of latencies more accurate and system more adaptive to
such changes [27]. Short-term surges in traffic, due to events like
a football match, would affect latency during the event and should
be accommodated by dimensioning and reconfiguring the SFCs. This
renders the system more responsive (and near real-time) in terms of
latency predictions. We have taken into account all these factors in
formalizing our prediction algorithm. Latencies so predicted are then
used to select a suitable subset of least-cost clouds meeting the latency
constraint. The complete algorithm is given in Algorithm 1.
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Algorithm 1:
cv_model)
1:Setupclouddata //allcke Cand ;e T

:Setup clientdata //allvie V

: Latency threshold€ L

: Cost budget < Cp

: NCloud ¢ cN // Native Cloud

: Vi€ € capacity demands for vaf;

: n € length of the service function chain (number of VNFs)
: native € true
10: if (native == 1)
11:

PLACE_SERVICE_CHAIN (client demands, csp_data,

R - N VR Y

// set native to 1 if native cloud is used else 0
/Iplace as many VNFs as possible in the native cloud
forv, i=l,n
if cN—C'n > V€
pop v;
c'né€ cUNTVi€ // update cloud capacity

// native cloud has unused capacity

else
break

end if

18: end for

19: end if

20:if V=0 // for remaining vnfs

21: call RANDOM_SELECTION(C, cv_model, r_clouds) //get a set of

lowest cost clouds

22: sort ascending _clouds on cost //set of smallest latency clouds
23: while V' 1= 0

24: place vnfs /lon sorted clouds

25: update capacity

26: update bandwidth

27: update vnfs_placed status

28: end while

29: end if

30:if all vnf placed & latency of chain < Lin & cost of chain < Cg
31:
32:else
33:

34: end if

output placement details

report failure to place

The essential elements of the placement process can be understood
like this: the placement process takes care of the change of state of the
cloud system by predicting latencies at the time of actual activation of
the SFCs. This obviates the need for drastic changes soon after place-
ment or reconfiguration. Prediction is, thus, an essential element of
the framework. Having said that, the prediction methodology needs to
be robust against traffic variations. With this, the framework becomes
adaptive to placement time and traffic variations. To make the frame-
work fast, responsive, and useful in real-time, further steps need to be
taken. For this, short-term traffic variations are taken into account. Two
other important factors that need to be taken into account are speed and
acceptance rate of placement. Fast placement algorithms would allow
continuous optimization by making real-time changes (e.g., migration)
possible when the need arises during the operation of the network. For
dynamic scaling, a fast algorithm would be able to place hundreds or
thousands of functions in sub-minute time frame. Concurrently, a 100%
acceptance rate implies that the algorithm is able to satisfy all requests
for placing SFC, subject to capacity being available. This contributes to
the avoidance of repeated attempts and saves time.

Algorithm 1 is called for placement and reconfiguration. The cloud
and client data are initialized based on the CSP resources and the
client request and policies (lines 1-5). A separate process produces a
trained model cv_model using the training data (X « feature_set and y «
labels), which is available to the placement procedure. The placement
normally begins with the native cloud (this can be overridden in line
9 by setting native = 0). The algorithm accommodates as many VNFs
as possible in the native cloud (lines 10-18). For the remaining VNFs,
the SVR module predicts the latency of various clouds. This algorithm
uses Algorithm 3 (procedure RANDOM_SELECTION) to select the set of
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State at the time of planning deployment

State at the time of provisioning

Capacities shown: used/installed
M: Mega-, G: Giga- bps

Fig. 4. Need for predictive placement.

m least-cost clouds that meet the latency requirements. The number m
can be decided to start with enough capacity to place all the VNFs. For
the least-cost set, the algorithm calculates the assignment of VNFs in the
sequence in which they appear in the SFC. The final cost and latency
are reported (line 31). If the clouds are exhausted, and placement has
not completed, then failure to place is reported. If this case happens
frequently, then the number m needs to be increased.

5.2.1. Predictive placement for handling change of state of the system

The cost of placing an SFC is a function of the set of clouds C;
(C, € C), where C is the set of all available clouds), selected to place
the virtual network functions and the amount of computing, storage,
and networking resources consumed. End-to-end Latency (L) of the
SFC depends on a number of factors prominent of which are, (a) the
installed and used capacities of computing, networking and storage
resources in the physical servers and the links, (b) the traffic pattern
on the links, (c) the types of network functions sharing the servers, and
(d) the distance between clouds. These factors together constitute the
state .S, of the multi-cloud system at time t.

As the system operates, the number of tenants and their workloads
change, the state also changes. The amount of latency introduced in
a placement by the state of the cloud, therefore, changes over time.
Given the state S,, latency can be computed by using assumptions
about the type of traffic, e.g., Poisson, service times and the queuing
discipline. The process of planning service function chains, creating
virtual resources to host network functions and booting them up takes
time [28]. Loading the network function software for various VNFs,
chaining, acceptance testing, and commissioning need additional time.
Initial placements and reconfigurations planned based on calculations
at time ¢, and the state S, are actually carried out at a time ¢,. In due
course, parameters may change and require fresh reconfiguration [29].

Fig. 4 shows the SFC to be placed and the available clouds. Used and
installed compute capacities (in integrated units) are shown within the
clouds, and so are the used and installed link capacities in M (Megabits)
or G (Gigabits) per second. At time t, the assessed end-to-end latency is
20 ms. When the actual placement and activation takes place at time 7,
the latency turns out to be 50 ms. This may cause SLA violation right
at the inception and trigger reconfiguration of the chain. When this
happens for several service chains, it may lead to a heavy penalty to
be paid by the CSP and a loss of customers and revenue for the carrier.
When the states of the target clouds are known, the set of least-cost
clouds, which give cost and latency below the stated thresholds, can
be determined.

Thus, if the state St; at the time 7, can be predicted and the
placement is carried out based on this state then the placement remains
consistent with the requirements. This is demonstrated by our empirical
study given in Section 6.

How is the placement carried out: In an operational CSP set-up as
well as the carrier network, a large amount of useful labeled data
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Fig. 5a. Traffic variation on Chicago-Seattle link.

is available, which can be curated for use with supervised machine
learning techniques. As the speed, simplicity, and accuracy are of
concern, we worked on a prediction technique that could be applied
repeatedly for cloud set selection consistent with the objectives of the
framework. A review of the literature shows that many supervised
machine-learning techniques have been used in cloud computing set-
tings, such as Artificial Neural Networks (ANNs), Bayesian networks,
Ensemble classifiers and Support Vector Machines (SVMs). We worked
with a number of methods and found interesting results using a well
trained and tuned support vector regression (SVR). We discuss the
results given by some well-known stock algorithms to show the reason
for our choice in Section 6.4. SVR offers the advantage of a unique
global minimum as it solves a convex optimization problem. Also, it
is amenable to incremental learning. We found that it adapts well to
multi-modal cases where the latency is time variant and needs multiple
models to fully capture the actual situation. Well-tuned and trained
models generalized well from training to the production environment.
The results of our experimental evaluation are given in Section 6. For
a thorough exposure of SVR, readers are referred to [30].

5.2.2. Time adaptive placement — incorporating temporal variation of
traffic in the model

We show through our empirical analysis that taking diurnal traffic
variations into account will improve prediction of latencies. In carrier
networks, there is temporal and spatial variation in traffic demand
because of time differences and patterns of use. The amount of traffic
flowing through the virtual devices and links varies from place to
place and hour to hour. This affects the latency experienced by the
subscribers of the carrier’s VNS. If the provider over provisions the
resources, to meet the surge in traffic in the busy hour, then resources
may lie unused most of the time. On the other hand, if enough resources
are not provisioned fully in order to reduce the cost of the deployment,
then traffic may be lost along with the associated revenue. Figs. 5a
and 5b show an hourly variation of the actual traffic on a 100 Gbps
link from Chicago to Seattle and 10 Gbps link from Los Angeles to San
Jose [31].

The traffic that a carrier routes through the VNFs consists of streams
of voice, video, and data with different probability distributions. Each
of this traffic varies independently in the time domain. The aggregate
traffic in the CSP’s network is a composite of all the tenants’ traf-
fic and has a complex distribution. The traffic flows continuously as
data streams and has properties of big data [32]. In such a dynami-
cally changing and non-stationary environment, the data distribution
changes over time, causing the phenomenon of concept drift [33].
The drift is characterized by the change in the density function that
is, in turn, reflected by the change in the shape of the traffic distri-
bution or its statistical properties like mean and variance. Thus, the
joint distribution p, of the predictor variables (X) and the labels (y)
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Fig. 5b. Traffic variation on Los Angeles-San Jose Link.
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Fig. 6. Comparison of generalization error with an integrated model and FPTV model.

would change dynamically over time such that at time ¢, t;, ...z, the
following relationship (2) holds for all X.

poXoy) # py X y) # - # ppX,y) (2)

How do we propose to solve the diurnal traffic variation problem?: The
solution that we propose takes care of the concept drift to ensure
more accurate traffic predictions. While a single SVR model works
well in situations where there is no sizable ambient traffic from other
applications and network services. However, SVR by itself does not
take care of the time-varying nature of the traffic present on the links
from other voice, data, and video applications. To handle this, we
incorporate time as a feature by allocating numerical codes to windows.

Researchers have experimented with both fixed and adaptive win-
dow methods to handle concept drift in real time situation. In the
case of fixed windows, the data is segregated into many small windows
to have lower overall generalization errors as compared to a single
window situation [33]. The utility of fixed window sizes under certain
conditions for topological data analysis has been shown by the authors
in [34]. A window of a certain minimal fixed size allows learning
concepts because the extent of drift is appropriately limited [35].
In Adaptive Windows [36], the window size is changed so that the
difference in errors (¢), given by a point in two neighboring windows,
is bounded by a small value 6 such that ¢—¢,_; < 6.

To achieve a good compromise between prediction accuracy and
complexity, we propose a method that has the simplicity of a fixed
number of windows and is also flexible to include a variable number of
traffic data points depending on the frequency of variations in different
windows. Consequently, we call this method fixed-time variable-points
(FTVP) window. SVR models are trained, one for each window, to
tackle the effect of the concept drift. While even as few as two windows
give an improvement in prediction, finding the right number and sizes
is a matter of optimization. A larger number of small windows may
give more accuracy, but would produce a larger number of models and
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would necessitate maintenance of all of them. Using this concept, time
is incorporated as one of the features in the training examples. In a
sense, each example carries a time-stamp, which makes it a member of
a particular FTVP window. When a prediction for a new point is made,
the time feature will cause the framework to use the model appropriate
for the corresponding time window. In our experiments, this method
gives far lower prediction root mean squared error (RMSE) and absolute
error ratio (AER) than a single integrated windowless model.

To validate the FTVP concept, we created a trained SVR model using
a single window (full integrated dataset) and separately for each of the
four selected FTVP windows. In Fig. 6, we show a plot of the absolute
error rate versus the latency for both cases. The motivation for using
multiple training datasets, using time as one of the predictors, becomes
amply clear. The errors, in general, remain more controlled in the FTVP
case.

5.2.3. Corrections for short-term traffic variations — incremental learning
from new data

In an operational network, the dynamicity of the environment
would render the trained predictive models obsolete if the effect of
the short-term changes in the traffic is not accounted for. Short-term
variations are caused by events like festivals, game tournaments, or
rallies. If the effect of short-term changes in traffic is not taken care
of, latency prediction and consequent placement decisions may not
be correct. Since retraining of all the models would entail prohibitive
time and cost, we have used an incremental update of the models. The
authors in [33] confirm that the online method can adapt to sudden
changes.

Choice of SVR for prediction makes incremental learning easier
to understand. In SVR, the support vectors are the only points that
determine the decision surface. They also satisfy the Karush-Kuhn-
Tucker (KKT) conditions [30]. Each new point generated because of
the change in traffic is checked for being a support vector. If it is a
support vector and improves the overall model for future predictions,
then it is included. If this becomes time-consuming, due to continuously
generated traffic data, training in small batches speeds up the process.
Support vectors can be separately found for each batch of fresh points,
and they can be included in the model only if they improve it. Algo-
rithm 2 gives the incremental training algorithm. We see in the next
section that this contributes positively to the model empirically.

The initial training process creates a set S = {x,, y,} of support
vectors that decide the decision surface. Algorithm 2 starts with the
solution function f(t) at time t in terms of the initial training dataset
T={(x;,y;),i=1,...,n} x; € R" and y; € R. The set of support vectors
at this time are S(t). For the time t+1 for which the model needs to be
incrementally updated each of the new example {X,.,(t), Vuew(t)} is
received in the time window (t, t+1), the algorithm checks if the new
point is a support vector. The new support vectors are incorporated
in the set S(t+1) if they improve the performance of the model as
indicated by reduced mean squared error. Our simulations given in
Section 6.6 also support this argument. The simplified algorithm is
given below:

Algorithm 2: TRAIN_REAL_TIME (T, Xuew, Ynew)
1: //Initial training set T = (X1, y1)...(Xn, ¥n))
2: f(t)=A(T)
3:f(t) : S(t) //S(t) is the set of support vectors at time t
4: Initialize S(t+1) to S(t)
S:for all {Xnew, Ynew} in the window (7, #+1)

//Training done at time t

6: if Xnew(t) : Xs and ynew(?) 1 ys // new point is a support vector
7 S(r+1) = S(t+1) ) U (Xnew, Ynew)

8: endif

9: endfor

10: output f(#+1) : S(¢+1) /lupdated model at #+1

The removal of support vectors when the short-term traffic condi-
tion that created them has passed will be taken up as future work.
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5.3. Cost optimization

5.3.1. Random optimization for cloud selection

An important part of the solution is to select the set of clouds that
would be used for placing the VNFs of an SFC such that the total
placement cost is the lowest possible, within the budget Cy specified by
the carrier, and is consistent with the latency constraints, i.e., Y, /; <L,
where /; is the latency within ith cloud, and its link to the next cloud
and L,, is the threshold given in the SLA. Following Occam’s razor,
we looked for an algorithm that would be simple and yet effective in
meeting the real-time requirements. Algorithms like A-Star are efficient
in finding a low-cost walking path from one node to another. Even
with one parameter, i.e., the length of the path, its time complexity
can degenerate to exponential.

A naive approach is to search m lowest cost clouds (enough to
meet the capacity requirements), one at a time out of total n (m <
n) such that the total cost (in terms of cloud resources and links) is
minimized and the latency remains below the given threshold. In large
networks, a systematic search like this for the global minimum becomes
impractical [37]. The worst case time complexity of this algorithm
can be assessed as follows: the search for each next lowest cost cloud
requires approximately n lookups, searching m clouds would have the
complexity O(mn). Again in the worst case, we would need to look
through all the remaining (n — m) clouds to make sure the latency is
below the threshold. Thus the complexity is O((n — m).mn) or O(n*m —
nm?). Selecting just five clouds out of a hundred would require 47,500
iterations. In Section 6.8 we compare the randomized cloud search with
a modified sequential baseline method to show the usefulness of the
adopted technique.

We find that the application of the general theory of optimization
by random search gives us good results in the multi-cloud environ-
ment. The mathematical treatment of this technique is given in [38].
We have adapted this model to multimodal cases in the presence
of constraints [37]. The random search algorithm pursued in this
work belongs to the category of Global Optimization. This category
of algorithms is useful and efficient for large-scale ill-structured global
optimization problems. In contrast with the deterministic methods like
branch and bound which guarantee asymptotic convergence to the
optimum at the high computational effort, random search algorithms
find a relatively good solution quickly and easily. It has been shown
that a global optimum can be found with random optimization even
if the objective function is multi-modal [39]. Deterministic methods
for global optimization are NP-hard, a random search method may be
executed in polynomial time [40]. Many of the global random search
(GRS) algorithms have the following desirable features because of
which they are popular (i) the algorithms are usually easy to construct
with guarantee of convergence, even if the objective function is multi-
modal [40]; (ii) they are insensitive to noise in the objective function;
(iii) they are insensitive to the shape of the feasible reason; (iv) they are
insensitive to the growth in the dimensionality of the feature set (c). In
these cases, it is relatively easier to construct GRS algorithms guaran-
teeing theoretical convergence. The theoretical basis of general random
search is given below. The implementation is shown in Algorithm 3,
and the convergence is proven empirically in Section 6.8.

According to [41], the general problem of minimization can be
stated in terms of minimization of the objective function f(x) in the
feasible region x € X, if x* is the global minimizer of f(x) or f(x*)
= min,cx f(x). A global minimization algorithm constructs a set of
points x; i = 1...n, in X. A global minimization algorithm is a rule for
constructing a sequence of points x,, x,, ... from the region X, such that
the sequence of labels y,_; , =min,_; ,f(x;) approaches the minimum
f(x*) as n increases.

To establish the convergence of a global random search, we assume
that if x is randomly chosen from within the region X, then f(x*) is
a result of some stochastic process. We are presuming a generalized
construction of the algorithm where the next point can be chosen from
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the entire space. Thus, if X C R and 0 < X < 0, Y, , inf P(B(x,
€)) = oo for all x € X and € > 0, where B(x, ¢) = {y € X [y —
x|l, < €} and the infimum is over all possible previous points x;__y,
and the result of the evaluation of the objective function at these
points. P; are the probability distribution of x;. Then with probability
one, the sequence of points x;, x,, ... falls infinitely often into any
fixed neighborhood of any global minimizer. In other words, if the
algorithm is allowed to converge to a global optimum in a finite number
of iterations within an acceptance probability, then it will converge
with probability one [41,42]. The authors in [38] prove that as long
as random sampling does not ignore any region, then the algorithm
converges with probability one.

As even for large chains, the number of clouds from which resources
are to be taken is not very large; we apply random selection to our
problem by selecting at each step a unique set of the desired number
of clouds randomly. Accordingly, we repeatedly choose, with replace-
ment, a set M of m clouds from a space N of n clouds (such that m
< n) with replacement. If the total cost of the last set is less than the
set examined in the last iteration, and the latency is still less than the
prescribed threshold, then the algorithm remembers this set. The cost
includes that of cloud resources and inter-cloud links. The link costs
are usually much larger and ensure locality of clouds while selecting
clouds for placement. When the random selection no longer changes the
achieved least cost, the process terminates, and the resulting least cost
cloud-set is used for placement of the SFC in Algorithm 1. Alternatively,
to ensure graceful stop, if the difference between the last two costs falls
below a given value, the process can be terminated.

It is appropriate to mention that the total cost and latency of
the selected cloud-set places an upper bound on the final figures as
eventually more than one VNF may be placed on the same cloud, and all
the clouds in the selected set may not be used. As the algorithm iterates
over the available clouds, the set M clusters around the minimum.
The algorithm converges to the global minimum, with probability one,
even in a multimodal case, as long as it does not consistently ignore
any of the clouds in the space N. These conditions are met in our
implementation. Algorithm 3 gives the details of random selection. The
procedure PREDICT_LATENCY has not been separately elaborated as it
is based on the SVR model(s) refined for concept drift and short-term
changes in traffic as already discussed above.

Algorithm 3: RANDOM_SELECTION (C, Ly, cv_model, r_clouds )

//find a set of m unique clouds
while (m_clouds not unique)

1://C: a set of available clouds, cv_model: trained model

2: init small //contains the sum of costs of the current smallest cost clouds
3: init lat // lat: latency

4: init iter //set iterations large enough for convergence

5: while (iter)

6: init _clouds // r-cloud array holds final min cost set of clouds

7:

8:

9:

m_clouds €a random set of m clouds from set C

10: end while

11: //test set r_clouds still has the lowest cost and lat < threshold
12: call PREDICT_LATENCY //uses trained and refined models
13:fork=1,m

14: lat =lat + latk

15:  cost = cost + costk
16:
17:
18:
19:
20:
21:

/finitial assessment of total latency

end for
if cost < small and lat < Ly,
small = cost
r_clouds € m_clouds
end if
end while

Algorithm 3 expects CSP data like the available clouds C and a
trained prediction model cv model and produces a set of ‘m’ minimum
cost clouds to be used for placement by Algorithm 1. The variable small
represents the smallest total cost of the selected clouds. In line 8-10
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a set of m unique clouds is selected. Line 12 calls the procedure that
predicts latencies for the selected set of clouds. The total cost of the
selected clouds is checked against the current minimum cost, and if
found to be lower then the vector r._clouds is updated with the new set
of clouds and small with the new lower cost.

5.4. Increasing speed and acceptance ratio of placement

These requirements arise from the dual necessity of real-time usage
and agility of the service deployment.

(a) Speed for real-time usage

In an operational virtual network service, the cloud service provider
needs to monitor latency continuously for avoiding a breach of SLA re-
quirements. Not only the latency and other QoS requirements should be
met on initial placement, but also during operation of the service. If the
end-to-end latency goes over the stipulated threshold, then the change
of placement of VNFs and reconfiguration of the SFC is required. This
necessitates the algorithm to be fast in giving optimum SFC placement,
migration, and scaling (increasing or reducing the number of instances)
decisions so that the network can be dynamically managed. As reported
in the literature, ILP based solutions for the placement problem may
take a long time (of the order of hours) to converge to the optimum
solution [43] making them unsuitable in many situations of dynamic
placement.

(b) Efficiency of placement

The efficiency of placement refers to successful placement rate (also
called the acceptance rate) and reconfiguration of chains consistent
with SLA requirements. It is important for this rate to be high since
frequent failure to place and reconfigure chains according to the re-
quirement may lead to the carrier not being able to handle customer
requests.

5.5. Combining the elements of the framework

The placement strategy described above has been implemented in a
placement framework called the P-ART framework. The main modules
of P-ART are as shown in Fig. 7 along with the relationship with the
algorithms discussed.

The framework allows CSP and carrier policies to be stored as well
as the means for them to communicate with the framework. The instant
state of a cloud consists of the used capacities of virtual compute,
storage and networking resources. For each placement request, the
management and monitoring module produces a success or a failure
report. A brief description of the modules is as follows:

SVR Training and Windowing: This part takes the integrated dataset and
breaks it into a separate dataset for the specified number of windows. It
then trains one model for each window applying the FTVP methodology
discussed above. Short-term changes are incorporated through incre-
mental training. These predictions are used by the prediction module
to give an assessment of latencies at the time of placement.

CSP Policies: Through this module, the cloud service provider (or a
multi-cloud broker) enters the cloud configuration data, installed and
used cloud capacities, installed and used link capacities as well as tariffs
for resources.

Carrier Policies: This module accepts client’s requests for changes in
service chain placements, types of virtual functions and inter-function
traffic rates. Operative parts of the tenants’ SLAs, including latency,
threshold, and cost budgets are also stored. Carrier privileges are also
recorded in the database.

Prediction module: The prediction module uses the correct model for
prediction of latencies at the time of activation of the chain. It predicts
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Fig. 7. The P-ART placement framework.

the latencies among clouds at the time an SFC would be actually placed
and activated.

Placement and Reconfiguration Module: This module carries out place-
ment, scaling, and adaptation to the changed State of the environment.
Heuristics for placement has been devised to work fast and converge
to a set of clouds close to the minimum cost and latency below the
threshold. If a placement is successful, it gives the end-to-end latency
and cost.

Monitoring and Management Module: This module keeps an inventory of
the resources used, the status of performance parameters and the state
of the cloud environment. If placement is successful, it gives the end-
to-end latency and the cost. Online monitoring reports are part of the
future extension.

6. Evaluation of the framework

We evaluated the P-ART framework to confirm the validity of all
the sub-systems incorporated, viz., model training and generalization,
prediction and its refinement, cloud selection for placement, speed
and acceptance ratio of placement. To keep evaluation close to reality
and to cross-verify results, datasets used for training and testing were
generated in two ways: simulation using a queuing-theoretic model and
an actual implementation on CloudLab [9].

6.1. The experimental set-up for evaluation

In our experiments, we use multiple instances of the VNS using
one SFC with 5 VNFs introduced in Section 5 (Fig. 3). As we shall
see in Section 6.8, the method scales well for bigger chains with
thousands of virtual functions. The traffic entering the aggregation
switch (VNF1) is divided into two streams, one going to one of the
Provider Edge (PE)-routers (VNF2 or VNF3) depending on the carrier’s
traffic routing policies. For instance, the policy may route traffic from
different geographical areas through different paths. All the traffic
passes through one of the instances of BNG (VNF4) where in practice,
the flow accounting will take place for billing purposes. The traffic is
then routed to P-Router on route to the destination. The end-to-end
latency of the chain would be the greater of the latencies of the two
paths VNF1-VNF2-VNF4-VNF5 and VNF1-VNF3-VNF4-VNF5.

In the experiments reported here, the CSP domain consists of 10
clouds. However, we also tested the random selection algorithm for

Table 2

Categorization of server resources.
Integrated capacity vCPUs Memory Storage
1 1 1 GB Flexible
2 2 2 GB Flexible
4 4 4 GB Flexible
6 4 8 GB Flexible
8 8 8 GB Flexible
10 8 16 GB Flexible

a larger number of clouds, and the results have been discussed in
Section 6.6. Without the loss of generality, we generate the link ca-
pacities randomly from the chosen set of realistic capacities. In our
experiments, we choose from the set L= [0.016, 0.064, 0.100, 0.155,
0.622, 2.5] (in Gbps). All links are presumed to be bi-directional. The
compute capacities of the VMs hosting VNFs have been taken as a single
consolidated figure for processor, memory, and storage. An example of
such a usage is Amazon EC2 where, for instance, f,, the medium virtual
machine provides two virtual CPUs, 4 GB storage and elastic storage.
In our experiments, the categories defined are as shown in Table 2.

6.2. Selection of features for training the prediction models

Considering the importance of the selection of predictor variables,
due attention was given to this aspect. Too many features can make
prediction models complex, increase the training time and make test
errors worse. Further, selecting a good set of features, out of all the
features generated, improves the accuracy of prediction and speed
of processing. Cross-validation error has been used to guide feature
selection for our prediction models in SVR. Features that do not give
an improvement in terms of lower overall errors (indicating better
prediction) were removed from the initial feature set. We settled on
the set of features given in Table 3. Further analysis, to include other
variables that are not highly correlated with the existing ones, but may
reduce the cross-validation error, is left as future work.

As seen in Table 3, the feature space is represented by X = [x;, x,,
X3, X4, X6, X7, Xg]T and corresponding labels y. The equipped physical
compute, and storage capacities of a server govern the number of
VMs that can be created on it and correspondingly the number VNFs
that can be hosted. VMs on the same PM may cause interference in
each other’s operation because of shared resources which may lead
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Table 3
Predictor variables and output label.

Predictor variables Label (output)

X Origin cloud compute installed capacity y: Latency (ms)

X, Destination cloud compute installed capacity

X3 Link installed capacity (Gbps)

Xy Link used capacity (Gbps)

X5 Origin cloud compute capacity used

Xg Destination cloud compute used capacity

X4 Window #

Xg The distance between the origin and destination clouds

to delays. As far as the links are concerned, each additional Gbps of
equipped capacity does not give the same increase in traffic carrying
capacity. The amount of traffic that can actually be carried depends
on the grade of service required. Total ingress traffic depends on the
number of served subscriber clusters. The end-to-end latency depends
on the traffic, requiring this feature to be included. We have seen in
Section 5 that traffic is dependent on the time of the day. We discussed
the number of windows and its relationship with the complexity of the
model. The increasing window number is indicative of the increasing
time of the day. While the number of windows is a parameter in the
evaluation, we obtained good compensation of concept drift with four
windows as indicated by the results.

6.3. Obtaining training datasets

We were cognizant of the fact that if a model has been trained with
the adequate, realistic dataset, it will generalize well in the production
environment. For a more thorough evaluation of the model, we use
two methods for generating datasets. One dataset was obtained through
simulation of inter-VNF traffic flows and the other through actual
implementation of the service chain on CloudLab. The details are as
follows.

6.3.1. Inter-VNF traffic flow simulation

Carrier networks carry all kinds of traffic: voice, data, and video.
Some of these applications are real-time, and their packets have higher
priorities. When queues build up at link or router buffers, the higher
priority traffic may pre-empt lower priority traffic. It follows that
different types of traffic will experience different delays. The delay
model shown in Fig. 8 takes care of all the important delays. Queuing
delay in the links is the variable part of the end-to-end delay and
depends on the network load. Propagation delay is the time required
by the signal to travel on the link from one VNF to another. This delay
depends on the media and is proportional to the length of the link,
approximated by the distance between clouds. The other prominent
delays are processing delay in the clouds, queuing delay in the virtual
machines, and transmission queuing delays on the link. Intercloud
simulation was carried out covering all significant delays.

The total time spent by voice and data packets in the network
can follow any distribution. Following the conclusion in [44,45], we
have assumed an M /G/1 queuing system of infinite capacity with non-
preemptive priority. The traffic load is varied to imitate the pattern of
the actual traffic. A C++ routine generates the dataset that incorporates
all the parameters described above. The dataset was normalized to
keep the numbers comparable. This will prevent any feature from
overpowering others in the model and avoid biases.

6.3.2. Cloudlab implementation

CloudLab is a “meta-cloud” that has been implemented by the
University of Utah, Clemson University, the University of Wiscon-
sin, Madison, the University of Massachusetts Amherst, Raytheon BBN
Technologies, and the US Ignite for researchers to build their own
clouds for experimentation [45]. The software stack that manages
CloudLab is based on Emulab. The infrastructure at Utah, Wisconsin
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Fig. 9. The CloudLab implementation.

and South Carolina is interconnected with nationwide and interna-
tional infrastructure from Internet2, so it has been possible to extend,
software-defined networks right to every host. The CloudLab set up
created for this study is shown in Fig. 9.

The data collection process involves traffic being routed from a host
on the WUSTL (Washington University in St. Louis) LAN through the
Internet to the CloudLab nodes. Thus the test traffic goes with the live
traffic on the Internet and provides real-life traffic conditions. Nodes
0, 7 and 10 are the transit points for traffic at APT Utah, Clemson
University and IG Utah DDC (InstaGENI Rack in Downtown Data
Center) clouds, respectively. The distance from the host at Washington
University in St Louis to each of these were IG Utah DDC (800 miles),
Clemson University (1950 miles) and APT Utah (800 miles). The VNFs
are presumed to be hosted as follows: VNF1 on nodell, VNF2, and
VNF3 on Node 10, VNF4 on Node 7 and VNF5 on Node 9. Delays on
the link from WUSTL to the CloudLab depended on the traffic on the
Internet. Within CloudLab the delays were varied by loading the links
with different amounts of traffic. Various delays were recorded as part
of the training data. A snapshot of part of one of the training sets is
shown in Table 4.

6.4. Selection of the machine learning model

There are quite a few Al techniques, involving machine learning,
that are potentially applicable to the problem of detection and localiza-
tion of fault and performance anomalies. Models with a single layer of
non-linearity, e.g., a neural network with one hidden layer, are referred
to as shallow structures or shallow machine learning architectures and
those with more than one layer of non-linearity as deep structures or
deep learning architectures. Shallow models with linear hypothesis may
have O(n) prediction time complexity and training time of O(/2+n3)
where [ denotes the size and n the degree of the dataset, but approxima-
tion errors are large for the high dimensional and large volume of data
that are usually associated with FP problem. With non-linear hypothesis
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Table 4 Table 5
An extract of the integrated training dataset. Comparative study of machine learning algorithms.
ocap dcap linkcap linkused oused dused window linklen latency Corr. Mean RMS error Relative Root relative
x) (%) (x3) (x4) (xs) (Xq) (x7) (xg) y coeff. absolute absolute squared error
1 1 0622 02488 04 04 4 0.4 2.2482 error error (%) (%)
2 6 2.5 1.25 1 3 4 0.4 1.93968 Random 0.8639 1.1881 2.4219 33.6077 50.3668
1 1 0.3 0.12 0.4 0.4 1 0.1 0.549477 Forest
2 1 0.064 0.0064 0.2 0.1 2 0.4 7.87455 SVR 0.8610 1.2426 2.5048 35.4465 52.8385
4 1 0.016 0.008 2 0.5 2 0.2 11.0425 KNN 0.8007 1.469 2.9681 41.9043 61.7248
1 2 0.016 0.0032 0.2 0.4 2 0.4 10.9699 MLP 0.8015 1.9317 2.9405 55.103 61.1514
1 1 0.622 0.1244 0.2 0.2 3 0.4 4.2971 Gaussian 0.5714 2.7523 3.9340 78.5130 81.8128
1 1 0.3 0.21 0.7 0.7 4 0.1 1.9999
1 1 0.3 0.09 0.3 0.3 1 0.1 1.59822
4 8 0.3 0.18 2.4 4.8 1 0.1 0.95361
6 1 0064 00064 06 01 2 0.4 745232 range. This would, therefore, call for a regression model as against a
1 1 0.3 0.03 0.1 0.1 1 0.1 1.02085 classification model.
4 6 0.1 0.04 1.6 2.4 3 0.4 4.78636
2 1 25 0.5 0.4 0.2 4 0.2 3.15644 We need to understand the requirements of the problem to pick the

Legeng: origin cloud installed capacity (o_cap), destination cloud installed capacity
(d_cap), link installed capacity (link_cap), origin cloud used capacity (o_used), desti-
nation cloud used capacity (d_used), length of the link between origin and destination
(link_len).

space and kernel trick, the approximation errors may be smaller at the
cost of higher complexity of the training time which is O(/* + I?n) and
prediction speed of O(In). Of the prevalent shallow machine learning
architectures, Support Vector Machines (SVM) and Random Forest
(RF) are considered useful for diagnostic applications [46]. Another
supervisory technique, Bayesian Network (BN), has been applied to
fault management in the industrial settings. We will discuss below the
analysis that was carried out to finalize the model [47].

Size of Training Dataset: The size of the available training dataset
governs the choice of the machine-learning algorithm. How much data
is enough depends on the number of features and the non-linearity in
the relationship of features and labels among others. If the dataset is
small, one may choose high bias and low variance classifiers like Naive
Bayes as compared to the low bias and high variance classifies like KNN
to avoid overfitting. When the training dataset size is large, low bias
and high variance classifiers give a lower asymptotic error.

Number of Parameters: Most machine learning algorithms are as-
sociated with some parameters and hyperparameters. Parameters of an
algorithm are internal to it and their values affect how the algorithm
behaves. They are usually learned at the time of training of the model.
The value chosen for these parameters may affect the accuracy with
which the model predicts. Support vectors of the SVM algorithm are an
example of a model parameter. Hyperparameters are normally external
to the algorithm. They need careful tuning to get good accuracy from
the model. An example is the C hyperparameter in SVM. Even though
having many parameters or hyperparameters typically provides greater
flexibility, training time and accuracy of the algorithm can sometimes
be quite sensitive to getting just the right settings.

Number of Features: If the number of features is large then the
dataset is said to be high dimensional. With high dimensional dataset,
we need more data to train the model. Increase in size of the dataset
affects different algorithms differently. The complexity of some ma-
chine learning algorithms may rise exponentially in such cases. The
training time may become too long for the model to be used in real-time
applications.

Learning Process: The learning process of a model may be super-
vised or unsupervised based on whether labels are available or not.
Since the labels indicate the ground truth, we know how our trained
model should behave. In unsupervised learning, the data is unlabeled,
so the model learns the inherent structure in the data. If there is
some labeled data and a lot of unlabeled data, then we may use semi-
supervised learning in which the labeled data can be used to improve
the accuracy of the model built using unlabeled data . Another thing to
note is that we are predicting latency values which vary in a continuous
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right algorithm for the application. In our case, it is important that
the model works in real-time or near real-time. This is possible if the
placements and reconfigurations are fast. The model should be fast to
train and update with real-time information. This requires models to
be generally simple, with controlled dimensionality and a manageable
number of hyperparameters to tune. Additionally, some models may
not be suitable for online training.

Keeping the above in view, we compared a few suitable stock
methods to decide on the one that we would include in our model. The
models were created and tested on Weka [48]. In each case, the models
were tuned for good parameter values, and a 13-fold cross validation
was used. We discuss the methods briefly followed by a comparison of
their performance in Table 5.

Random Forest is a supervised method which is robust yet simple to
use. It provides good results in many situations. It does not have many
hyperparameters to tune, the useful ones being the number of trees and
the maximum number of features to be tried in each tree. Despite their
flexibility, random forest does not support online learning. Retraining
by rebuilding the trees when new examples are introduced takes time.
The maximum depth of each tree has been set at unlimited. The number
of iterations or number of trees is set as 100.

Support Vector Machine (SVM) is a supervised learning algorithm.
The regression version of SVM, which is designated SVR or Support
Vector Machine for Regression (SMOReg), gives good accuracy and
can work with high dimensional data, which is not linearly separable.
Parameter values that obtained for good results are C = 200, y = 0.01,
€ = 10E-8, RBF Kernel.

K-Means is an unsupervised model and has been included for com-
parison here. In this, k data points are chosen, and data is divided into
clusters with each example going with the nearest data-point. Then,
centers of the clusters are converted, and the process repeats until
convergence. The result depends on the initial choice of the points, and
the global minimum is not guaranteed.

Multi-layer Perceptron (MLP) are neural networks with at least
three layers of neurons — an input, a hidden and an output layer.
These layers are connected in the form of a directed graph between the
input and the output layers. It is also called a feed forward network. An
MLP uses backpropagation as a supervised learning technique. Some of
the parameters include N (the number of epochs for training) taken
as 500, E (the number of consecutive increases of errors allowed for
validation before terminating the training) fixed at the default of 20
and L(the learning rate) taken as 0.3.

Gaussian processes are a supervised learning technique and gen-
eralization of Gaussian probability distribution. Gaussian distributions
are governed by stochastic processes and describe random variables.
A Gaussian distribution is fully specified by its mean and covariance
matrix. In a similar manner, a Gaussian process is specified by a mean
and a covariance function. Some of the parameters are L (the level of
Gaussian noise) taken at the default value of 1 and K (the Kernel to
use) taken as PolyKernel.
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Table 6
Training error.

Evaluation on training set

=== Summary ===
Correlation coefficient 0.861
Mean absolute error 1.2426
Root mean square error 2.5408
Relative absolute error 35.4465%
Root relative squared error 52.8385%
Table 7
Test error.
=== Evaluation on training set ===
=== Summary ===
Correlation coefficient 0.7304
Mean absolute error 1.8895
Root mean squared error 2.5469
Relative absolute error 63.5334%
Root relative squared error 71.5849%
Total Number of Instances 56

Using the root mean square error as a good indication of the appro-
priateness of the algorithm for the datasets used we see that Random
Forest gives the lower error followed by SVR. Taking into account our
requirement of online updates, we chose to implement SVR.

6.5. Prediction model tuning and testing

In the SVR models, three hyper-parameters, viz., €, C, Y need at-
tention. Tuning these hyper-parameters is one of the main challenges in
improving the predictive accuracy of an SVR model. The Y parameter
can be seen as the inverse of the radius of influence of samples selected
by the model as support vectors. With a small Y, the model cannot
capture the complexity or “shape” of the data. If Y is too large, the
radius of the area of influence of the support vectors only includes
the support vector itself, and no amount of regularization with C will
be able to prevent overfitting. The constant C determines the tradeoff
between the flatness of f and the amount of error allowed above e. A
low C makes the decision surface smooth; a high C aims at classifying
all training examples correctly by giving the model freedom to select
more samples as support vectors. Most researchers have followed a
standard procedure in using a grid search [9] to determine the appro-
priate values. Some of the results are given in Table 5. A number of
runs narrowed down the parameters to C =1 x 1072 and Y = 1. The
cross-validation error for this combination was the lowest at 7.84295
x 103. It is worth mentioning that with system decided settings when
the built-in tuning feature is allowed to choose the parameters; the loss
is higher at 2.21345 x 10*. The grid search has, in this case, resulted
in better hyper-parameter values.

The basic idea of using latency prediction is to improve the place-
ment of virtual functions at a future time. This will only work if the
predictive model produces good predictions of latency. With the Weka
tool, SVR with RBF Kernel with the hyper-parameters set at C=10,
€ = 0.4 and 20% hold-out for cross-validation, we get the errors shown
in Tables 6 and 7. It can be seen that both the training and test RMSEs
are low indicating good performance. In the classical case, test errors
would be slightly higher than the training errors. A lower test error may
indicate overfitting or biases in the dataset. These can be overcome by
curating the training dataset.

A comparative plot of training and test error ratios (defined as
prediction _error/acutal latency) is given in Fig. 10. It can be seen that the
model training errors are low and generalize well with the test data.

6.6. Refinement of latency prediction by compensating concept drift

The FTVP method for handling the concept drift in telecommuni-
cation traffic was presented in Section 5.2. This method brings in the
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Fig. 10. Training and test error ratios (with standard error bars).
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Fig. 11. Extract of FTVP windows.
Table 8
Probability distribution parameters in different windows.
Window 1 2 3 4
Latency range  (1.824-0.422) (27.683-7.452) (7.317-4.131) (4.216-1.869)
Mean 1.083 11.834 5.366 2.773
Standard 0.425 4.848 0.797 0.588
deviation
Table 9

Errors with integrated and multiple models.

Full dataset Window 1 Window 2 Window 3 Window 4
Mean absolute 3.2279 0.3698 0.4613 0.7342 2.5248
error
Root mean 4.5869 0.4283 0.5515 0.9102 2.9353

squared error

sense of time in the datasets. Most researchers working with predictive
model do not include time as a feature. In our experience, including
time as a feature affects the predictions positively. We divided the data
into windows of equal time blocks, which give variable data ranges.
The window# is the feature (x;) in the training dataset and has a direct
relation with the time as increasing number relates to increasing time.
All the time-related observations were divided into four windows. A
sample from each of these is given in Fig. 11.

The data in different windows have different characteristics as
shown by the mean and standard deviation in Table 8:

SVR with separate window models gives much better predictions
on new data-points falling in those windows. Comparison of latency
prediction and error ratios for each window and full dataset is given in
Fig. 12(a) through (h).

Table 9 summarizes the mean absolute errors and RMSE for the full
(integrated) dataset and the window-based model. In the integrated
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Table 10
Performance of SVR before adding new support vectors.

Support vectors before online update Performance before online update

SV# Actual Predicted Error === Evaluation on test set ===
latency latency
50 5.713 5.379 —-0.334 Correlation coefficient 0.8742
51 7.452 5.233 -2.219 Mean absolute error 1.2677
52 3.111 3.152 0.041 Root mean squared error 1.7366
53 1.531 2.785 1.254 Relative absolute error 47.3488
54 5.572 4.625 -0.947 Root relative squared error ~ 49.2994
55 5.771 5.298 —-0.473 Total Number of Instances 55
Table 11

Performance of SVR after adding new support vectors.

Support vectors after online updation Performance after online updation

SV# Actual Predicted Error === Evaluation on test set ===
latency latency

50 5.713 5.379 —-0.334 Correlation coefficient 0.8816

51 7.452 5.233 -2.219 Mean absolute error 1.2014

52 3.111 3.152 0.041 Root mean squared error 1.6797

53 1.531 2.785 1.254 Relative absolute error 44.5651

54 5.572 4.625 —0.947 Root relative squared error  47.9109

55 5.771 5.298 —0.473 Total Number of Instances 60

56 3.111 3.374 0.264

57 0.605 2.424 1.820

58 3.345 3.190 —0.155

59 3.315 3.579 0.064

60 10.259 10.199 —0.060

model validation was done with 20% of the data points separated as
a test set. For each window model also cross-validation was done with
separate test sets. It can be seen that errors are less in a separate model
for each widow compared to predictions made using integrated dataset.

6.7. Incremental update of models to compensate for short-term variations
in traffic

We tested an incremental update of the trained models, with support
vectors generated during VNS operation, while the trained model was
in use. The result of initial training is given in Table 10, and after
the introduction of separately generated support vectors, the results
improved as shown in Table 11. We can see that both the mean absolute
error and the RMSE decrease when new support vector points are
learned online. Before the addition of new support vectors, the RMSE
was 1.74; while after addition, it reduced to 1.68, which along with
other measures of errors show an improved model.

6.8. Cloud optimization with iterative random selection

The principle and methodology of random selection of clouds for
placement of VNFs have been discussed in Section 5.3 In one trial, a
total of 50 experiments were conducted with 1500 and 1700 iterations
each. The minimum possible cost was 51 units, and latency threshold
was set at 150 ms. In the former case, 98% of times the minimum cost
of 51 units was reached (Fig. 13a) with a latency of 137 ms. In the
1700 iteration case, the minimum cost clouds were selected with the
latency below the threshold in all cases (Fig. 13b).

In another trial of 5000 experiments, 50 each with the number of
clouds increasing from 10 to 100 in steps of 10 and iterations from
500 to 2000, the convergence rate is as shown in Fig. 14. Somewhere
between 1500 and 2000 iterations, the algorithm converges to the min-
imum cost in 100% cases. This is an order of magnitude improvement
over the exhaustive search described above.

We implemented as the baseline a variation of the sequential
method, which we call modified-sequential (M-sequential). In this
method, the first set of lowest cost clouds were sequentially selected
from a set of 100 clouds without replacement. This ensures the lowest
cost. However, if the total latency of the selected cloud was more
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Fig. 13a. 50 experiments with 1500 iterations each.
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Fig. 13b. 50 experiments with 1700 iterations each.
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Fig. 14. Number of convergences in 50 experiments.

than the given latency threshold, then the highest latency cloud was
removed from the selected set, and a search was made for the next
lowest cost cloud. The search stopped when a set of lowest cost with
latency below the given threshold was found.

Fig. 15 shows the number of iterations required to achieve the
target latencies (from 100 to 160 ms) for both the randomized and M-
sequential algorithms. We see that the M-Sequential takes from 34%
to about 67% more iterations than randomized. Fig. 16 gives the final
latencies achieved in the number of iterations for which the algorithm
was run (as shown in Fig. 15). From these, we can conclude that the
randomized algorithm performs better than the baseline both in terms
of the number of iterations and latencies achieved in selecting the
required set of clouds for placement.

6.9. Speed and efficiency

It is important for dynamic rescaling that the designed placement
strategy is able to carry out a large number of placements within an
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Fig. 15. Number of iterations required by randomized and M-Sequential to achieve
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Fig. 16. Latencies achieved by randomized and M-Sequential in the number of
iterations shown in Fig. 15.
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Fig. 17. Placement time vs. No of SFCs.

acceptable time period. A slow placement algorithm would not be
able to respond fast to the changing network situation or a tenant’s
new request. Changes made too late may not be suitable, and may
actually be detrimental to the health of the network, as by that time the
situation would have changed. On the other hand, if at a future time,
maintaining the required performance does not need all the resources
that have been deployed, then not descaling would use up a higher
amount of resources leading to higher expenses. For the training time
of SVR, various assessments of complexity in the range 0(n?) to O(n3)
are available in the literature. According to [29] the complexity is
O(max(n, d) min(n, d)2) where d is the size of the feature set. If n is
much larger than d, then it can be approximated to O(nd?). However,
the time complexity of the search is linear. It took about 1.19 s to
train with 2720 examples in Weka and 0.76 s in MATLAB. For speed of
placement, we tested with 10 clusters, each requesting 10 to 100 SFCs
of 5 VNFs each. Thus, the number of VNFs was varied from 500 to
5000. We observe that the algorithm is able to place up to 3000 VNFs
in about 1 min (Fig. 17).
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To see how the speed of the proposed method compares with
the placement speeds obtained in other works we see the work done
in [49]. The two methods have been performed under different con-
ditions and are thus not strictly comparable. However, we do get the
general idea of the behavior of the methods. From Fig. 18, we see that
in case of up to 20 SFCs the ILP solution is able to find a solution but
the author reported average time is 8 min and 41 s and that of heuristic
1 min and 21 s. For the case of 60 SFCs, the ILP model takes unduly
longer times (>48 h for >18 SFCs). The heuristic was able to give a
solution in less than 30 min. For small instances, 40 SFC requests (with
75 network functions per request or a total of 3000 functions) take
about 1000 s.

A comparison has also been made with results obtained by a com-
pletely different technique presented in [50]. The authors have carried
out joint optimization of resource allocation in NFV (JoraNFV). The
authors assume that the number of VNFs can be 3, 4 or 5. Taking the
example of a 5 VNF SFC and medium traffic, the authors conclude
that their method works faster than CoordVNF [51] and a simulated
annealing approach [52].

The coordinated NFV-RA is formulated as mixed-integer linear pro-
gramming (MILP). And we propose a heuristic based two-stage ap-
proach to get the near optimal solution. For ten units of traffic, the
number of instances deployed are about 7 for JoraNFV, 10.5 for Coord-
VNF and 7 for the SA method. For a 90 node network, the JoraNFV and
CoorNFV take 10 s to place an SFC while SA takes about 2000 s Even if
we assume a linear increase in time taken, for 3000 functions/instances
JoraNFV will take 4285 s (Fig. 19).

ILP based solutions for a large number of VNFs are slow, even
with efficient solvers. Researchers in [27,53] have carried out VNF
placement of different configurations using ILP method. In [27], the
authors have reported that ILP takes 2.3, 4.0 and 7.2 h for 10, 30 and 50
functions. In [53], the authors have tried to solve ILP for large networks
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(60 SFC with 4 VNFs and 30 instances, each, i.e., 7200 VNF instances)
but for more than 18 SFCs the time taken is more than 48 h. The
authors have suggested heuristics to find an acceptable solution within
reasonable time limits. Thus, [28] suggests using Genetic Algorithm
with which 200-700 functions are placed in 8-13 s. In [53], the
heuristics involve guiding the ILP solution by reducing the solution
search space using binary search. With this for 7200 VNF instances,
the time taken is 30 min. In [23], MILP based algorithm takes 500 s
for 3000 VNFs. We have shown above that with our framework we
are able to place up to 3000 VNF instances in less than 60 s. It
needs to be appreciated that the results are not exactly comparable
because of different experimental environments, but do give a sense
of improvement with predictive algorithms.

The acceptance rate of the heuristic is an important parameter that
often gets ignored. In the ongoing operations, whether we are looking
at new placements or reconfiguration or migration of existing chains,
it is important for the placement engine to be able to place SFCs every
time a request is made subject to resources being available. If a large
number of requests cannot be placed despite adequate capacities being
available, then the acceptance rate is low, and we do not have a good
algorithm. Failure to place SFCs would mean the loss of business for
cloud service providers and may affect the requesting carriers revenue.
For a medium-sized placement request, viz. 100 SFCs or 500 functions,
the acceptance rate with our algorithm turns out to be 100% (Fig. 20).

As the number of service chains increases, the acceptance rate may
fall because of a lack of capacity to place the complete service chains.
When corrected for capacity, the acceptance rate for our algorithm
remains above 98% up to the tested configuration of 500 SFCs or 2500
VNFs.

We compare this with the real-time placement presented in [54].
The authors propose an ILP model to provide an optimal solution
for placement and chaining VNFs based on minimizing the resources
allocation and the deployment (mapping) delay while meeting the real-
time condition. They also propose a heuristic solution named Degree
Based Heuristic (DBH) to minimize the end-to-end delay and resources
allocation cost. A comparison of successful requests is given in Fig. 21.

The authors in [23] claim that with 500 VNFs, the acceptance rate
is 85%. In comparison, for our solution, the acceptance rate is 100%
for up to 100 SFCs or 500 VNFs. Above this, the acceptance rate drops
to 98% for up to 2500 VNFs.
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7. Summary and future work

Innovative strategies are required to extract carrier-grade perfor-
mance from SFCs that use resources from multiple clouds. Our strategy
consists of techniques based on a predictive approach to performance
optimization. Complex performance indicators, like end-to-end latency
of a service chain at activation time, depend on far too many determin-
istic and probabilistic factors, to be modeled accurately by determin-
istic techniques. We have shown that a carefully designed predictive
approach combined with heuristics to select low-latency clouds can
help us in keeping the performance consistent with the SLA and costs
within the carrier’s budget. To make latency predictions more accurate,
we have worked with time-based windows and an incremental update
of the models used for prediction. Making use of the predicted latencies
is an iteratively convergent randomized search heuristic used to select
low latency clouds for successive placement of VNFs. Not only the
proposed strategy produces results with low error, but it also executes
fast so that the results can be used to take corrective actions. A
comprehensive empirical evaluation has been carried out and reported
in this paper. The proposed P-ART framework has been built from all
the techniques that have been described in this paper.

A number of research directions are foreseen in this project. When
enough resources are not available, carriers may accept under-
dimensioned service chains. The service has to be functional, even
though not meeting the performance criteria. Another important issue
to be worked upon is the security aspect of VNSs in the multi-cloud
environment.
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