Can We Trust Profiling Results?

Understanding and Fixing the Inaccuracy in Modern Profilers

Hao Xu
hxu07@email. wm.edu
College of William and Mary

Lizy Kurian John
ljohn@ece.utexas.edu
The University of Texas at Austin

ABSTRACT

Profilers are an indispensable component in modern software stack
of data centers and supercomputers. Profilers collect detailed perfor-
mance data during program execution and guide code optimization
across the entire software stack. The accuracy of the profiling result
proves to be vital for one to effectively gain performance insights.
Unfortunately, inaccuracy may arise due to measurement tech-
niques or hardware limits, which can waste optimization efforts.

However, there are few studies in evaluating the accuracy of
modern profiling techniques. In this paper, we study performance
monitoring units (PMU) based statistical sampling, one of the pro-
filing techniques widely adopted by many state-of-the-art profil-
ers. While PMU sampling based profilers are efficient in collecting
performance data, they suffer from inaccurate instruction measure-
ment due to the intrinsic limit in the PMU design. To understand
and fix the instruction profiling inaccuracy, we propose a novel 3-
step approach. First, we investigate multiple modern architectures
and quantify the PMU instruction profiling inaccuracy in these
architectures with mathematical modeling. Second, we design a
systematic framework to evaluate the impact of PMU inaccuracy
to the profiling results. Finally, we propose a software-based tech-
nique to rectify the measurement inaccuracy raised by PMU and
demonstrate its effectiveness.

CCS CONCEPTS

« General and reference — Performance; - Software and its
engineering — Runtime environments.

KEYWORDS
PMU, Call path profiling, Statistical sampling, Accuracy.

ACM Reference Format:

Hao Xu, Qingsen Wang, Shuang Song, Lizy Kurian John, and Xu Liu. 2019.
Can We Trust Profiling Results?: Understanding and Fixing the Inaccuracy
in Modern Profilers. In 2019 International Conference on Supercomputing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6079-1/19/06....$15.00
https://doi.org/10.1145/3330345.3330371

Qingsen Wang
qwang06@email. wm.edu
College of William and Mary

284

Shuang Song
songshuang1990@utexas.edu
The University of Texas at Austin

Xu Liu
x110@cs.wm.edu
College of William and Mary

(ICS °19), June 26-28, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/lO.1145/3330345.3330371

1 INTRODUCTION

Computer systems have become increasingly complex. It is chal-
lenging to tune software on a specific hardware platform for high
performance [45, 46]. To address such a problem, modern computer
systems provide performance monitoring units (PMU) [2, 30, 42],
which are able to monitor more than a hundred performance events,
such as CPU cycles, cache misses, floating point operations, and
many others. Performance tools utilize PMUs to identify perfor-
mance inefficiencies, attribute them to different code segments, and
provide optimization guidance for hardware designers, compiler
developers, and application programmers.

PMU sampling (also known as event-based sampling) is widely
used in mainstream performance tools, such as Oprofile [13], Linux
Perf [38], HPCToolkit [5], and Intel VTune [3]. These tools con-
figure the PMUs to a preset value MAX — P, where MAX is the
maximum value a 64-bit PMU register can represent, while P is
the sampling period predefined for the monitored event. When
the event occurs P times, the PMU triggers an overflow interrupt,
known as a sample. The monitored program suspends its execu-
tion and switches to the signal handler routine installed by the
performance tool. In the signal handler, the performance tool is
able to associate the sample with the program code obtained from
the signal context. Furthermore, Perf can create an internal buffer
to store all samples and use pol1l() to read the buffer to further
lower the overhead. Performance tools based on PMU sampling
typically have low overhead with reasonable sampling periods and
thus are more desirable in production.

There has been a large volume of work [3, 5, 13, 39, 40, 44]
showing the usefulness of the sampling-based tools in guiding per-
formance diagnosis and optimization. Instruction per cycle (IPC) is
one of the most important evaluation metrics during performance
analysis, which largely relies on accurate instruction and cycle pro-
filing results. However, there is a lack of systematic study about
the accuracy of sampling-based instruction measurement. The com-
mon knowledge about the PMU sampling is that hot procedures
(i.e., procedures with more samples) tend to have more reliable
profiling results, while the measurement results of cold procedures
(i.e., procedures with fewer samples) come with more noises. Since
performance tools usually focus on hot procedures more than cold
ones, such inaccuracy is tolerable. However, this common knowl-
edge is derived from theoretical analysis or intuition [36], with

https://doi.org/10.1145/3330345.3330371
https://doi.org/10.1145/3330345.3330371

Table 1: Exclusive function-level instruction counts for two hot
procedures in PowerGraph PageRank [17]. The ground truth result
is collected by CCTLib.

Procedure VTune | Perf |HPCToolkit|Ground Truth
140e12|137e12| 1.63e12 9.32e11
gather (50.1%) | (49.6%) | (59.3%) (33.8%)
execute_gathers | 20¢12| 13912 [L1312 1.83e12
- 49.3%) | (50.4%) | (40.7%) (66.2%)

little work in quantifying the accuracy in practice. We show that
state-of-the-art tools based on this common knowledge can produce
misleading results.

We use Intel VTune, Linux Perf, and HPCToolkit to collect retired
instructions via PMUs on a real code base—PowerGraph [17], one
of the most popular graph engines, as discussed in Section 6.1.
Table 1 shows the profiling results in two hot procedures—gather
and execute_gather. These two procedures account for more than
80% of CPU cycles of the entire graph processing phase. We can see
that all three tools report similar results but significantly different
from the ground truth, which is collected with CCTLib [10], a tool
based on binary instrumentation. This profiling result incorrectly
identifies the hotspot, potentially wasting optimization efforts.

This inaccurate measurement arises due to the hardware limit in
handling the PMU samples. There is always a time delay between
the PMU overflow interrupt and the signal delivery to the perfor-
mance tool, which is known as “skid” [15]. Such skid pervasively
exists in most architectures, such as x86, POWERPC, and ARM, and
is the major source of the inaccuracy. However, the impact of the
skid to the measurement accuracy has not been extensively studied.
Prior work [11] relies on hardware support to minimize the skid,
such as the precise event-based sampling (PEBS) [2] and last branch
record (LBR) [4] in Intel processors. However, PEBS and LBR are
not generally available in all processors. Moreover, even PEBS is
not guaranteed to be accurate, which will be described in Section 2.

To address the limitations in existing approaches, we systemati-
cally study the instruction measurement accuracy of performance
tools based on the PMU sampling. We will show the provenance of
the inaccuracy by identifying the inaccurate, misleading profiling
results generated by state-of-the-art performance tools even for hot
procedures. We then design an emulation based algorithm to mea-
sure the skid cycle duration on different CPU architectures. With
measured skid cycle duration, we propose a software-based fixing
technique that can be employed by other tools to eliminate such
inaccuracy with the utilization of control flow graph. In summary,
we make the following contributions in this paper:

e We show the instruction measurement inaccuracy in state-of-
the-art performance tools by comparing with the ground truth
and summarize the characteristics of victims of the inaccurate
measurement from the software perspective.

o We design and implement a measurement technique to quan-
tify the skid in various architectures, as the root cause of the
inaccuracy from the hardware perspective.

o We propose a novel software scheme without any extra hardware
support to quantify the measurement inaccuracy by solving an
optimization problem.

285

e We evaluate our techniques on several benchmarks and applica-
tions, which shows significant improvement on the accuracy of
instruction profiles.

We organize the paper as follows. Section 2 shows the back-
ground and motivation of this paper. Section 3 describes our ap-
proach to quantifying the skid in various CPU architectures. Sec-
tion 4 elaborates on the methodology of fixing the measurement in-
accuracy with a pure software technique. Section 5 and 6 depict our
evaluation and case study on real applications and benchmarks, re-
spectively. Section 7 offers related work. Finally, Section 8 presents
some conclusions of the paper.

2 BACKGROUND

This section introduces the background knowledge of existing pro-
filers based on PMU sampling, reveals the provenance of inaccurate
measurement, and discusses our scheme of obtaining ground truth
for the accuracy study.

2.1 Profilers with PMU Sampling

Hardware Performance Monitoring Units (PMU). CPU’s PMUs
offer a programmable way to count hardware events such as retired
instructions, CPU cycles, cache misses, etc.. A PMU can trigger an
overflow interrupt once a preset number of occurrences of an event
is reached. A profiler, running in the address space of the monitored
program, can handle the interrupt and attribute the measurement
“appropriately”. We refer to a PMU counter overflow as a “sample”.
PMUs pervasively exist in CPU processors from different vendors,
such as Intel, AMD, IBM, and ARM.

Linux Perf_events: Linux provides APIs to configure, enable, and
disable PMUs under thread granularity (e.g., perf_event_open [38],
ioctl). Once a PMU event counter overflows, the Linux kernel sig-
nals the corresponding thread with the details of the event (e.g.,
instruction pointer). The signal handler in the user space then ex-
amines the event information and attributes proper measurements.
Some PMU facilities, such as Intel’s precise event-based sampling,
allocate a kernel buffer to record multiple samples and allow tools
to read the buffer via pol1().

Profiling Mechanisms: Many tools utilize call path profling [18],
a profiling technique in which runtime events (e.g., cache misses)
are attributed to the full call path seen at the time of the event.
Call path profiling offers insightful details in complex applications
with deep call chains. The calling context of an event is a set of
active procedure frames when the event happens. A calling context
begins at a process or thread entry function such as main and ends
at the instruction pointer (IP) of the instruction that triggers the
event. With the calling context, tools are able to associate samples
with all functions in the call chain. The accumulated metrics from
all the callees are known as inclusive metrics, while metrics not
accumulated from the callees are known as exclusive metrics.

Provenance of Inaccurate Measurement. In out-of-order proces-
sors, the PMU counter overflow interrupts triggered by the moni-
tored event may be significantly delayed. Such delay is called “skid”,
which typically is indeterminate and not fixed [11, 15]. Figure 1
illustrates how skid incurs inaccurate measurement. For simplicity,

Counter

Skid Duration S Sample

Overflow Point
Counter Counter
Sample Sample
Overflow Point Counter Sample Overflow Point
Counter Overflow Point
Overflow Sample
Point
/""'\L """ SN "' """""""""""""""" _\\'/ """""" ST T T T T \‘
I Y e |
| ins ins ins ins ins ins ins ins !
! /, /, /. / /. / Lol e '
L 2 DN 4 5 1" 2 /s i
L f\ f L 1 L 1
1 T T T T T . T T \
|

¢ G C3 c, Cs Lo e o :
‘\ Context 1 ,’\ Context 2 N Context 1 Context2 1

N e e e e e e N e e e e e e e e e e e e L O e e -

Time
___-.__________________________>

Figure 1: Skid effects on instruction profiling result. A loop consists of 5 instructions Iy, I, ..., Is, which has different cycle duration
€1, €2, ..., c5, respectively. Due to the skid effects, it takes CPU a fixed length of time S to address the active instruction. For example, after
retired instruction I; triggers the instruction counter overflow, the CPU will take a short period of time S to find Iy is active and then treat it
as sample point. Every instruction has the same probability causing the counter overflow, but every instruction does not have the same
probability to be treated as sample points. Instruction I4 is more likely to be selected as sample points, since its cycle duration is significantly
larger than those of other instructions. As a result, it will cause instruction sample point mis-attribution at context level.

ey
functign oy 7 2? &
"8 i g S 0 27

w !

(a) PEBS

(b) Traditional PMU Sampling

Figure 2: Comparison of instruction profiling inaccuracy loss. Z-
axis value indicates the total mis-attributed instruction number at
the function level.

a context (e.g., a procedure, a loop) only consists of two or three
instructions (I) and each instruction has its own execution time
(c). Due to the skid effects, samples occurring at a context can be
mis-attributed to its adjacency.

2.2 Limitation of Precise Event Based Sampling

Modern CPU processors provide various precise sampling mech-
anisms to alleviate or eliminate the skid, such as Intel’s precise
event-based sampling (PEBS) [2] and AMD’s instruction-based
sampling (IBS) [15]. These mechanisms use specific PMU regis-
ters to record the precise instruction pointers (IP) that trigger PMU
counter overflows. However, not all CPU vendors (e.g., ARM) sup-
port these precise mechanisms. Moreover, these mechanisms do
not always provide reliable profiling results. For IBS, PMU needs to
tag an instruction at the issuing point to monitor its execution in
the pipeline. If this instruction is not retired due to the speculative
execution, PMU will not capture any sample in this period. PEBS
suffers from shadow effect [2]. When the PMU selects an instruction

286

being retired in the pipeline to report, there can be multiple candi-
dates. Yet PEBS is more likely to report the one with the highest
execution latency, leading to biased profiling results.

To show PEBS does not produce reliable results, we compare
the profiles generated by PEBS and traditional PMU. We adopt the
micro-benchmarks, introduced in Section 3. Every micro-benchmark
contains two functions g(), f() with Ny and Ny instructions, re-
spectively. We quantify the profiling accuracy loss in functions g()
and f (), which account for N; + E and Ny — E instructions (Eis
the accuracy loss) from the measurement. Figure 2 plots the error
E of PEBS and traditional PMU for all micro-benchmarks with dif-
ferent sizes of g() and (). Traditional PMU produces consistent
and predictable inaccuracy due to skid effects, while PEBS incurs
unpredictable profiling results that are difficult to reason with the
ground truth.

Thus, for general applicability, we target the widely-used tradi-
tional PMUs, rather than specialized precise PMUs.

2.3 Ground Truth Profiler

We cannot rely on PMUs to collect the ground truth. Alternatively,
one may use simulators [8, 9, 37, 47] to measure the hardware-
related events (e.g., cycles, cache misses). However, since it is diffi-
cult to accurately simulate every feature of a processor, simulators
may not truly produce ground truth for these events. We observe
that software-related events such as retired instruction and float-
ing point operations, do not depend on hardware. We are able to
adopt a software method to collect ground truth profile of these
software-related events, regardless of hardware platforms. Thus,
we develop a tool that uses a pure software method to measure
the number of retired instructions of procedures in their calling
contexts. We build the tool based on CCTLib [10], a Pin tool that is
able to determine the calling context of each monitored instruction
in a parallel program. We design a client tool atop CCTLib to count
the number of retired instructions in each procedure within its
calling context.

Skid Duration S

Figure 3: Skid effect on cycle profiling result. The skid duration
S is less than 2 cycles and every cycle has the same probability to
cause the counter overflow. There are three instructions (1, 2, 3)
executed in order. Two different kinds of time points are defined:
1) counter overflow point, a finished cycle causing the hardware
performance counter to overflow; 2) sample point, a time point
when active instruction is blamed as the cause of performance
counter overflow. Each counter flow point has a corresponding
sample point (e.g., the counter overflow pointer A, has its own
sample point A;.). The time difference of each pair of counter over-
flow point and sample point is skid duration S measured in cycles.

3 QUANTIFYING SKID EFFECT

In this section, we introduce a mathematical model to quantify the
skid effect for a simple program that only consists of a simple loop
of instructions.

Definition 3.1. Simple Loop' of Instructions: A repeatedly
executed loop consists of a fixed number of instructions, which
contains no conditional branches except the one for loop control.

The mathematical model relies on the following assumptions:

o The skid effect can be quantified in CPU cycles [12].

e Each instruction takes a fixed number of cycles on average, i.e.,
its Cycle Per Instruction (CPI) stays the same.

e CPU can issue multiple instructions at the same time.

o When sampled by CPU cycles, each cycle has the same chance to
overflow the hardware event counter, regardless of the instruc-
tion being currently executed.

Figure 3 illustrates the skid effect of a simple loop under instruc-
tion profiling, which helps us draw the two conclusions:

CPU Cycle profiling result for each instruction is not af-
fected by skid effects. As shown in Figure 3, Instruction 2 with a
duration of 4 cycles should trigger 4 counter overflows (Co, Do, Eo,
F,) and own 4 samples?. With a skid of 2 cycles, the sample points
E2 and F2 are finally attributed to Instruction 3. In the meantime,

!t is also called Simple Cycle. We deliberately use Simple Loop to avoid any confusion
from CPU cycles.

2More accurately, it is 4p samples instead of 4, where p is the probability of a cycle to
trigger an overflow.

287

D =10,2,0,2,1]

D(Slerez03640d) = [0,2,0,2,1]

i)
D(Slerezeseqed) = [1,1,1,1,1]

Figure 4: Skid effect emulation with three different skid values
on a simple loop consisting of five instructions. Each emulation
generates an instruction distribution D(S, [¢1, ¢z, ¢3, ¢4, ¢5]) that is
a vector of the number of samples of all instructions, while D is the
actual instruction profiling result.

another two sample points A2 and B2 triggered by previous in-
structions are attributed to Instruction 2, which makes Instruction
2 still own 4 sample points. The number of sample points within
an instruction always stays constant whatever the skid duration is.
Thus, the skid effect does not affect the cycle profiling result [11].
Instead, a sampling profiling with a period of T and a skid S is
equivalent to the one with a period of T + S without any skid. This
property can be used to estimate the CPI value of each instruction
from cycle profiling result. To minimize the overhead of profiler, T
is usually significantly greater than S, which is usually very small.

CPU cycle profiling result is not affected by instruction-
level parallelism (ILP). CPU has its own mechanism to blame
which instruction from all instructions on the fly as the sample
point, when performance counter are employed for sampling CPU
cycles. Each instruction has its own probability to be blamed at
the sample point. Such probability is not affected by skid effect
and up to CPU PMU design. Since the skid effect only increases
the sampling period and the sampling period does not alter the
profiling result, instruction-level parallelism (ILP) with skid effect
will not introduce any further effect on CPU cycle profiling.

In the next few subsections, we will first explain how skid effect
emulation can generate relative instruction distribution in a simple
loop of instructions, and then design an algorithm to measure the
CPU cycle duration of the skid. .

3.1 Skid Effects Modeling in a Simple Loop

We use a simple loop with 5 instructions Iy, Iz, I3, I3 and I to illus-
trate our skid effect model. They have their CPI values, which are cj,
c2, ¢3, c4 and cs respectively. Figure 4 shows skid effect emulations
with different skid CPU cycle duration S. Each instruction has the
same probability to cause the performance counter overflow, when
PMU is adapted to sample instructions with a fixed sampling rate.
When a retired instruction causes the counter overflow, it takes S
CPU cycles (skid duration) to stop and then attributes to the instruc-
tion on the fly as the sample point. Then we can construct a mapping

from the instruction causing counter overflow to the instruction
at the sample point. With the CPI information, this mapping for
fixed skid CPU cycle can generate the relative sampled instruction
distribution D(S, [c1, c2, 3, ¢4, ¢5]). In Figure 4, we emulate the skid
effect under three different skid values, thus generating three rela-
tive sampled instruction distributions. For example, skid emulation
(2) generates a distribution of D(S, [c1, c2, 3, ¢4, ¢5]) = [0,2,0,2,1],
which is closest to the actual profiling result D = [0, 2,0, 2, 1].

For a simple loop with a specific CPI vector c¢, a specific skid
duration S will generate a corresponding instruction distribution
D(S, ¢) upon skid effect emulation. We rely on this property to
design an algorithm to measure the skid duration S for specific CPU,
which will be explained in the next subsection. Formal mathematical
modeling is provided in Section 1 in our complement document [1].

3.2 Measurement of CPU Skid Duration

The skid model of a simple loop introduced in the previous subsec-
tion involves three variables:

e S, skid duration in cycles,

e ¢, a vector of cycle duration of instructions, equivalent to
{c1,¢2,...,¢N }s

e D, a vector of the number of samples of all instructions, i.e., the
profiling result.

As CPU skid changes the instruction distribution of a simple loop
other than the total number of sampled instructions, we have

DIy = [ID(S, o)l = [P0,)l -

Since the cycle profiling result of a simple loop is immune to
the skid effect, we can estimate each instruction’s CPI by the cycle
profiling result. More specifically, if the loop is executed N, times,
we can derive the CPI value of an instruction i by

Ci
Ci =
Ne
where C; is the total number of cycles executing instruction i from
the cycle profiling result. After applying this equation to all the
instructions, we can get the CPI values of all instructions, which
constitute a vector c.

Knowing ¢, we can further obtain D(S, ¢) under different values
of S as described in Section 3.1. To quantify how close our emulation
result D(S, c) is from the actual instruction sampling result D, we
introduce an error metric Error(C, S), where

Error(C,S) = ||D(S, c) — D||2.

If Error(C,S) is small enough, we can assume the skid value S
chosen is correct.

There may be more than one "correct” skid value for one simple
loop. Thus we adopt several similar but different simple loops to
eliminate other possible values. Listing 1 shows a mini-benchmark
template that is used to measure the skid duration S. ® It consists
of two functions in a simple loop. By altering the number of add
operations P and div operations Q from 1 to 10, respectively, we
end up with M = 10 X 10 = 100 programs in total. Then we collect
all programs’ cycle profiling results (denoted as {C1,Ca, ...,Car})
and instruction profiling results (denoted as {D1, D3, ..., Djs}) to

3The mini-benchmark code and scripts to collect the data are in

https://github.com/xuhao417347761/ics19-minibenchmark.git.

288

; i<=NUM_TIME; i++) {

Listing 1: Mini-benchmark template for measuring skid cycle
duration. A for-loop in main calls two functions g() and
f(), which contains P div operations and Q add operations,
respectively.

Y —

Intel-Xeon Phi
AMD-Opteron
Intel-SandyBridge

Error Value

Intel-Broadwell
Intel-Skylake

0 50 100 150 200

Skid Cycle Duration

250 300

Figure 5: Measurement of skid cycle duration for multiple plat-
forms. Y-axis represents the sum of errors described in the equation,
while X-axis denotes the candidate skid duration from 0 to 300 cy-
cles. We search for the skid duration value, which makes the error
sum minimum.

estimate the CPI vectors for all programs on the same CPU (denoted
as {c1, €2, ..., cpr}). By choosing an arbitrary skid value S and emu-
lating the skid effect on all the programs, we can get Error(C, S) of
all the programs. The correct skid duration S of this CPU should
minimize the sum of Error(C,S), i.e.,
M
arg min Z Error(Cp, S). (1)
S m=1

Algorithm 1 describes how we measure the skid duration on a
specific platform. We exhaustively set S from 0 to 300 (Line 3). Under
each value of S, we emulate the skid effect on all the programs and
sum up the error as shown in Equation 1 (Line 4-8). The value of
S is only kept when the corresponding error sum is the minimal
value seen so far (Line 9-12).

Figure 5 plots the error sums when S changes from 0 to 300 under
five platforms (AMD-Opteron, Intel-SandyBridge, Intel-Broadwell,
Intel-Skylake and Intel-Xeon Phi). We can always find a global
minimum point for every platform, where its S value makes the
error sum minimal. The skid duration measurement process is a
one-time job for a specific CPU platform, which takes around 10
minutes to finish running all mini-benchmarks and searching for
the optimal value. As we discussed earlier, the S value at the minimal
point is the skid duration of this platform. The skid duration of all
Intel CPUs is less than 20 cycles, while AMD-Opteron has a much
longer skid, which is 34 cycles.

Besides the arithmetic instructions, we have also developed other
mini-benchmark suite with heavy memory access instructions. The
skid measurement results are quite close to Figure 5. We will release

Algorithm 1: Measurement of Skid Duration

Input: Cycle profiling result {Cy, Co, ..
result {Dq, Dy, ..., Dar}
Output: Skid duration S
1 min « 0;

., Ca}, instruction profiling

2 minErrorTemp « oo;
3 for S « 0 to 300 with step of 0.5 do

4 errorSum « 0;

5 for m « 1to M do

6 ¢ C,y/Ne;

7 errorSum « errorSum + ||D(S, ¢) — Dy, |l2;
8 end

9 if errorSum < minErrorTemp then

10 minErrorTemp < errorSum ;

11 min « S;

12 end

13 end

14 S «— min;

all the mini-benchmarks for the skid duration measurement once
the paper gets accepted.

After we obtain the skid value S of a platform, we can use it
to emulate the skid effect happening in any simple loop, which
should resemble the actual instruction profiling result. However, we
encounter a challenge when applying the skid effect emulation to
control flow graph with multiple branches. PMU does not quantify
the execution frequency of every branch, which makes it impossible
to estimate CPI of each instruction (one of the skid emulation
inputs). We elaborate on how to eliminate skid effect for on complex
control flow graphs with multiple branches in the next section.

4 NULLIFYING SKID EFFECT ON
INSTRUCTION PROFILING

In this section, we explain how to eliminate the skid effect on in-
struction profiling results for real programs by obtaining the skid
duration S from Section 3. Unlike instructions in simple loops, in-
structions from a real program usually belong to a control flow
graph with many branches. To apply our skid emulation with mea-
sured skid CPU cycle duration S, we decompose the control flow
graph into several simple loops and aggregate the skid effects on
these simple loops. An optimization problem is formulated to ob-
tain the simple loop frequencies with measured skid duration in
cycles. In this section, we will show the intuition and all the formal
mathematical description is in the complement material [1].

4.1 Control Flow Graph Decomposition

Extracting Instruction Control Flow Graph. We rely on static anal-
ysis [5] to extract the basic-block level control flow graph of the
whole program. Since instructions within the same basic block
are executed in a deterministic order, we are able to deduce the
corresponding instruction control flow graph, which is the result
generated after step (1) in Figure 7. In practice, we only focus on
the code blocks with large amounts of instructions, which are most
interesting to profiler users.

289

Decomposing Control Flow Graph into Simple Loops. A control
flow graph is a directed graph, which contains several simple loops.
Previous work [20] proves that a directed graph can be decomposed
into simple loops. The example shown in Figure 7 describes a com-
plete process of control flow graph decomposition. We rely on a
Python library networkx to generate simple loops (simple cycles)
for instruction control flow graph. Every instruction is treated as
a node, while branches are treated as directed edges. Each simple
loop generated by decomposition is with a fixed set of instructions
in order and its own execution frequency. Their execution frequen-
cies can be adapted to calculate the CPI of each instruction. In the
next subsection, we will explain how we formulate an optimization
problem based on the connection between simple loops execution
frequencies and instructions’ CPIL.

4.2 Obtain Simple loop Frequency to Recover
Instruction Profile

Every simple loop has its own execution frequency. The instruction
profile is up to execution frequencies of these simple loops. We
cannot directly derive the CPI values of a simple loop from the CPU
cycle profiling result as the number of times executed (or execution
frequency) is unknown. Seeking the execution frequency of all sim-
ple loops is then formulated as an optimization problem consisting
of six steps as shown in Figure 6. We keep using the control flow
graph in Figure 7 as an example to explain our methodology.

(1) Obtain Cycle Per Instruction. With a fixed set of simple loop
frequencies, we are able to obtain execution frequency for each
instruction. Like simple loop, skid effect with fixed CPU cycle
duration does not affect the cycle profiling distribution in the
control flow graph [12]. Since CPU cycle profiling result can
provide CPU cycle counts for each instruction, cycle per in-
struction information for each instruction can be obtained by
dividing CPU cycle counts by instruction counts. As a result,
we are able to obtain the CPI information for each simple loop
to emulate the skid.

(2) Emulate Skid Effect on Simple Loops. Skid emulation on each
simple loop produces the instruction distribution.

(3) Aggregate Instruction Distribution. We aggregate all the instruc-

tion distribution with their frequency weights to generate the

instruction distribution for the entire control flow graph. The
emulation error is the difference between the generated instruc-
tion distribution and the actual instruction sampling result.

Generate New Simple Loop Frequencies. By investigating the

emulation error, we are able to obtain a cost function to evaluate

how close the summation of emulations on all simple loops to
the instruction profile generated by sampling based profilers.

We formulate an optimization problem to find the best solution

for all simple loop frequencies based on this cost function. To

avoid brute-force enumerating all possible values of simple

loop frequencies, we adopt the Gibbs Sampling method [16]

in polynomial time complexity to search the best simple loop

frequency vector.

Update Simple Loop Frequencies. When the emulation error is

still large, we start a new iteration by updating the simple loop

frequencies in steps (1) and (3) with more accurate ones obtained
from the last step.

“

=

G

~

_ Skid Emulation |
s — ®m x & G
CPI Instruction clofz Calt.:ulate
CPU Cycle Profile Distribution emulation E"°
CPU Instruction :> nE
Ow] ® Calculate GPI Skid Emulation Profile Instruction Count
Simple Loop Frequency e E m) m X é Aggregate Error of Emulation
[|:> CPI Instruction L B ﬂ
ow el 0} Distribution —> | —’:’:F‘
Simple Loop Frequency 3) N Optimization
Skd Emlation Instruction Count
OW é E |:> EHEE“ X é | Obtain New Simple Loop @
Simple Loop Frequency | cPI @ Instruction Frequency

Distribution /T

Recover the Instruction
Profile when ion
Error is Small Enough A

®)

Update Simple Loop Frequency

Iél—:} g
<F> ®

Figure 6: Recover instruction profile of control flow graph in Figure 7. There are six steps for recovering process. CPU cycle profile and
instruction profile are provided by sampling based profile. Step (1) to (5) constitutes a closed iterative loop to improved the recovering quality.

Table 2: Evaluation platform configurations.

. Static Analysis

o

—

@

0%6
OWG

Figure 7: Control flow graph with multiple branches decomposi-
tion. After static analysis, we obtain a instruction level control flow
graph with 5 instructions (A, B, C, D, E). Decomposition generate 3
different simple loops: A =B —-C—-D,A—-B—>C—>D,A—
B—C—E.

(6) Output Recovered Instruction Profile. When the emulation error is
significant smaller than initial emulation error and does not con-
verge to smaller value with additional iterations, the iteration
process is stopped. Then We are able to obtain the instruction
profile close enough to the ground truth, combined with the
structure of the simple loops. We implement this algorithm
using MATLAB. The optimization problem can be solved in less
than 1 minute. After solving this optimization problem, we can
get each instruction’s profiling result inside the problematic
loop. Then each function’s profiling result can be successfully
recovered.

Our method only requires to profile the program by sampling
cycles and instructions and the optimization problem can be solved
offline. The algorithm’s time complexity grows linearly with the

290

Microarchitecture Intel-SandyBridge Intel-Broadwell Intel-Skylake AMD-Opteron Intel-Xeon Phi
Processor Xeon E5 4650@2.7GHz Xeon E5-2650 v4@2.2GHz | Xeon E3-1240 v5@3.5GHz Opteron 6168@1.6GHz KNL 7210@1.30GHz
SMT X # Cores 2% 8 2% 12 2X4 1x12 2 X 64
L1/L2/L3 Cache, Memory | 32KB/256KB/20MB, 64GB | 64KB/256KB/30MB, 128GB 64KB/256KB/8MB, 64GB 64KB/512KB/10MB,16GB 32KB/32MB/-,32GB
Compiler gee 4.8.5 -03 gee 4.8.5 -03 gee 5.4.0 -03 gee 4.8.5 -03 gee 4.8.5-03
(W{(E)1c)(D) number of simple loops and the number of iterations. For the prob-
w lematic loops of real applications we have studied, the simple loop
number generated from the control flow graph decomposition is
Decomposition

less than ten.

5 EVALUATION

In this section, we evaluate the accuracy of instruction profiles
collected from 23 applications (21 from SPEC CPU2006 benchmark
suite [34] and 2 real applications) on five platforms. We also evaluate
our methodology on problematic applications. Our study demon-
strates that our method is able to rectify the skid effect effectively.
Our study indicates the instruction profile of application with small
hot functions is more likely to be mis-attributed at function level.

5.1 Evaluation Setup

The experiments are performed on five platforms, whose configu-
rations are shown in Table 2. We run SPEC CPU2006 integer and
floating-point benchmarks with reference inputs [30, 42]. For real
applications like PowerGraph and libsvm, we use their represen-
tative datasets as inputs. Two profiling tools HPCToolkit [5] and
CCTLib [10] are adapted to profile each application®:

o HPCToolkit is an integrated suite of tools for collecting measure-
ment and analysis of program performance, based on statistical
sampling hardware performance counters. HPCToolkit incurs
low overhead during the whole sampling process, but its profiling
result may suffer from skid effects [5].

4We have explained in the previous section about inconsistent profiling result of PEBS
techniques. Besides, AMD-Opteron and Intel-Xeon Phi do not support PEBS. Thus, we
do not choose PEBS as our baseline to prove the effectiveness of our method.

I Intel-SandyBridge 0 Intel-Broadwell

I Intel-Skylake

I Intel-Xeon Phi s AMD-Opteron

0.4

0.2

0.0~

Metric Value in Percent

Figure 8: The value €p¢1001ki¢ for chosen applications on five platforms. Smaller value is better.

I Intel-SandyBridge 0 Intel-Broadwell

I Intel-Skylake

I Intel-Xeon Phi N AMD-Opteron

-
f=
ll)
N
(2
[a
£
ll)
=1
S
=
Q
5
s
o o . ¢ & > X & & 'S o » . ~
F RN 8 8 T £ LEEF £§&8E ¢gg g8 gy § £S5
& & ° S & 5 & 9 F £ § ¥ & K ¥ ¢ & &
g v & & &8 S < s §F ¥ ¢
& 9 N
Figure 9: The value ep,, s for chosen applications on five platforms. Smaller value is better.
- B Intel-SandyBridge [Intel-Broadwell B Intel-Skylake I Intel-Xeon Phi s AMD-Opteron
3
3]
a
£
[
=1
kS
=
L
=
=
23 o . 9 o > RS) X & & ES Y A N & N3
IR S EFTTEELES SIS gy g gy §FER
& & 2 y § g5 & & F § & & & g ¥ ¢ & &
g 9 2 6}0 § R 5 g o S < 153 < Lo
& <5 Ny
& N

Figure 10: The value €f;, for chosen applications on five platforms. Smaller value is better.

e CCTLib [10] is an instrumentation tool based on Intel Pin [25].
It instruments every instruction instance dynamically, however,
with significantly higher overhead than HPCToolkit. We treat its
result as the ground truth to identify mis-attribution problem
from the HPCToolkit profiling result.

Our method recovers instruction profiling result at the basic
block level. However, we present all the profiling result in function
level, since function level profiling result is more straightforward
for users and helps users more effectively pinpoint hotspots and
optimize problematic code blocks.

5.2 Effectiveness Provenance

After processing instruction profiling result generated by sampling
based profiler HPCToolkit, our algorithm can generate fixed (recov-
ered) instruction profiling result. We use this property to identify
the application with problematic instruction profiling result at the
function level. A metric € is defined to quantify the difference of
sampling based instruction profile from ground truth instruction

291

profiling result provided by CCTLib. Since we only care about hot
functions in each application, here we only focus on the top 10
functions with most instruction counts executed in recovered in-
struction profiling result, these functions are denoted as set ®. We
define 74, and 74 . as the instruction profiling result (in percent)
of function ¢ from HPCToolkit and CCTLib, respectively. Then we
define €hpctoolkit AS:

Ehpctoolkit = Z 7, = mg,cl-
Pped
If €pperootkir 1 close to 0, the HPCToolkit profiling result is close
to the ground truth, which means that HPCToolkit produces an
accurate instruction profile. The €pp¢ 1001k Values of all applica-
tions are summarized in Figure 8. Most of the applications have
a very ideal sampling based instruction profile while several ap-
plications with €ppcs00ikiz > 0.1 are problematic. The profiling
result of omnet is severely mis-attributed on all five machines, as
well as 1ibsvm and pagerank. Another two applications astar and

I Intel-Xeon Phi
s AMD-Opteron

I Intel-SandyBridge
[Intel-Broadwell
I Intel-Skylake

Metric Value in Percent

X Y & A
s v § 8

F

g

2
= $
R

Figure 11: The value €f;, p), for chosen applications on five plat-
forms. Smaller value is better.

soplex fail to get accurate profiling results on four machines except
AMD-Opteron. As to mef, only AMD-Opteron and Intel-Skylake
produce accurate results.

To demonstrate the effectiveness of our approach, we define
another metric €

€fix = Z 7, f = 7p,cls
Ped

where 74 ¢ denotes the instruction profiling result (in percent) of
function ¢ after applying our approach on HPCToolkit profiling
results 774 p,. As shown in Figure 10, most of the applications have
a €fjy below than 0.1, indicating that our recovered profiling result
is quite close to the ground truth. Besides, low €f;, in figure 10
indicates our approach generates accurate instruction profile for
non-problematic applications. Finally, our method is able to achieve
an average error reduction (€ppcrooikir — €fix) Of nearly 0.178,
which is a significant improvement on instruction profile accuracy.

Profiling Accuracy of Linux Perf. Same as €ppcrootkir for HPC-
Toolkit, we also define metric €pe,f:

eperf =), 7.0 = g
ped

il

, where 7 , represents the instruction profiling result (in percent)
of function ¢ collected by Perf. Figure 9 indicates Perf profiling
result are very close to that of HPCToolkit.

Profiling Accuracy at Basic Block Level. We collect all basic blocks
belong to functions set ¢, which are denoted as B. Sample as 7 p,
and 7y ., we also define 7}, ¢ and 7, . as the instruction profil-
ing result (in percent) of basic block b from HPCToolkit with our
approach and CCTLib, respectively. Then we define ef;y. pp as:

€fix,bb = Z |7, £ = 7b,
beB
Figure 11 shows the €f;y,) value of six problematic applications’
profiling accuracy. Most of the applications have a good basic block
level instruction profiling accuracy with our approach (ef;x, pp <
0.1). €f;x, pp of omnet and astar are higher than other applications,
since they have more branches within the hot functions. Our tech-
nique improves the profile accuracy on the basic block level, which
results in accuracy improvement on the function level.

292

6 CASE STUDY

In this section, we evaluate a few benchmarks with high €p,p¢ 1001kt
value, seen in Figure 8. For each application, We select functions
with largest €ppcr001kis» Use our algorithm to fix the problematic
instruction profile, and discuss the root cause of mis-attribution.
Due to the page limit, we only show the fixed results of Pagerank,
astar and hmmer on two different Intel CPUs: Intel-Skylake and
Intel-SandyBridge. The rest of results are provided in Section 3 of
complement material [1]. Our study shows that the mis-attribution
at function level of a problematic application is caused by heavy-
weight instructions located near hot small functions.

6.1 PowerGraph Pagerank

PowerGraph is a high performance graph processing framework
written in C++ [17]. We evaluate a representative data analytic
application PageRank [29, 31-33], from it. The input graph data are
transformed from the Amazon product purchasing network with 0.4
million vertices and 3.3 million edges [21]. We configure PageRank
to run 50 iterations and only consider the application execution part
as the profiling domain (pre-processing part is excluded in profiling).
As the graph data are very large and cannot be entirely loaded into
the cache, instructions of loading data from main memory are quite
heavy, causing a severe problem of instruction mis-attribution in
the profiling result.

200 200
175 M execute gathers 175/ HEEE execute gathers
150 WEEE gather 150| W gather
= 125 2 125
8100 g 100
e o5 & | 382 e 34.8
50 50
25 25

0

Fixed Fixed

0Ground TruthSampling Ground TruthSampling

(a) pagerank, Intel-SandyBridge (b) pagerank, Intel-Skylake
Figure 12: Fixed result of 2 mis-attributed functions’ instruction
profile in PageRank for Intel-SandyBridge and Intel-Skylake.

Fixed results are shown in Figure 12a and Figure 12b for Intel-
Skylake and Intel-SandyBridge, respectively. The function gather
is overestimated in the instruction profiling result. Users may un-
derestimate the memory loading operations’ overhead of the whole
system, when they rely on sampling based profiling result to calcu-
late IPC. We effectively recover the three functions’ sampling based
instruction profiling result inside the loop from execute_gathers
(line 9 in Listing 2), with a low metric €7;,’s value close to 0.

6.2 SPEC CPU2006 astar

The benchmark astar is an application based on a 2D path-finding
library for game Al development [19]. The profiling result shows

that over 38% of the instructions are mis-attributed on Intel-SandyBridge.

Listing 3 shows function releasepoint and function addtobound
in Way2_. cpp, and function add in Arrays. cpp. These three func-
tions account for 41.3% of the total instructions. Function addtobound
is called in a nested for-loop belonging to function releasepoint.

1//callee gather called by execute_gathers
2 double gather(icontext_type & context, const vertex_type&
vertex, edge_type& edge) const{
return (edge.source().data()/edge.source().num_out_edges());

xecute_gathers(const size_t thread_id) {

3

4}

5...

6 // caller execute_gathers's loop in synchronous_engine.hpp
7e

8

9 %ééeach(local_edge_type local_edge, local_vertex.in_edges()){

10 edge_type edge(local_edge);

11 if(accum_is_set) {

12 accum += vprog.gather(context, vertex, edge);
13 } else {

14 accum = vprog.gather(context, vertex, edge);
15 accum_is_set = true;

16 3}

17 ++edges_touched;

18 3}

19 ...

20 }

Listing 2: Code of problematic loop in PowerGraph Pagerank.

The function addtobound is very small, invoking add near the
exit. The mod computation is very cycle-consuming in addtobound
at line 10. Figure 13a plots the normalized instruction profiling
result for releasepoint, addtobound and add. Here add is over-
attributed more than 3 times, while releasepoint and addtobound
are under-estimated. After applying our algorithm, we obtain an in-
struction profile on the function level very close to the ground-truth
generated by CCTLib.

200 200
175/ HEEM regwayobj::makebound2

175/ HEEE way2obj:releasepoint 7
150| EES way2obj::addtobound 150/ ™ regwayobj::addtobound
2125 BN way2obj::add 2125 B regwayobj::isaddtobound
g 100 g100 l
= &7
5 50
z 2
0

Fixed Ground TruthSampling ~ Fixed

OGround TruthSampling

(a) astar, Intel-SandyBridge (b) astar, Intel-Skylake
Figure 13: Fixed result of 3 mis-attributed functions’ instruction
profile in astar for Intel-SandyBridge and Intel-Skylake.

For Intel-Skylake machine, the instruction profiling result of
the nested loop (Listing 3, line 16) is not significantly affected.
However, there are still problematic loops with such mis-attribution
(makebound?2, addtobound and isaddtobound from RegWay_. cpp,
shown in Figure 13b). The addtobound, compared with ground
truth. Our algorithm also effectively fixes it.

6.3 SPEC CPU2006 hmmer

The application hmmer focuses on searching patterns in DNA se-
quences with hidden markov models [19]. We profile it with ref-
erence input. Its €ppcr001kir value indicates that the instruction
profile at function level is not significantly mis-attributed. How-
ever, we find that the profiling result for store instructions’ is quite
inconsistent at line level. A loop in fast_algorithms.c, shown
in Listing 4, contributes nearly 99% of all store instructions. There
is only one store instruction in line 137 and 134. Since line 137
is conditional executed, the attributed value of line 137 must be
smaller than that of line 134. However, the actual sampling result

SThe corresponding PAPI event name is PAPI_SR_INS.

293

1// callee flexarray<eobj>::add in Arrays.cpp

2 template <class eobj> inline void flexarray <eobj>::add(const
eobj& e){

if (elemqu==maxelemqu) doubling(true);

eplelemqul=e;

elemqu++;

3
// callee addtobound in Way2_.cpp
void way2obj::addtobound(i32 x, 132 y){

132 boundnum;
10 boundnum=((filltact+movetime(x,y))%(maxmovetact+1));
11 boundar[boundnum].add(pointt(x,y));
12}
13 // caller releasepoint in Way2_.cpp

3
4
5
6
7
8
9

14 void way2obj::releasepoint(i32 px, i32 py){
15 ...

16 for (y=yl; y<=y2; y++)

17 for (x=x1; x<=x2; x++)

18 if ((x!=px) |1 (y!=py))

19 if (waymap[x+yxmapsizex].fillnum==fillnum) {
20

21 else if (isaddtobound(x,y))

22 addtobound(x,y);

23

24 }

Listing 3: Code of problematic functions in astar

133 for (k = 1; k <= M; k++

134 mclk]l = mpplk-1] + tpmm[k-11;

135 ...

136 if (k < M) {

137 ic[k]l = mpp[k] + tpmi[k];

138 if ((sc = ip[k] + tpiil[k]) > ic[k]) ic[k] = sc;
139 ic[k] += is[k];

140 if (ic[k] < -INFTY) ic[k] = -INFTY;

141

142 }

Listing 4: Code for for-loop in fast_algorithms.c from hmmer in
SPEC CPU2006.

Table 3: PAPI_SR_INS instruction counts for code line of hmmer.

Code line | HPCToolkit | CCTLib
134 5.23e09 1.35e10
137 1.43e10 1.35e10

shown in Table 3 reveals that the attributed value of line 137 is even
greater than that of line 134, which seems unreasonable. Compared
with the ground truth, the value of line 134 is under-attributed by
more than 50%.

Since we are able to obtain the execution frequency of each basic
block, we can recover store instruction profiling result for each code
line. Our method reports the same result as the one from CCTLib.
The execution frequencies of three basic blocks within this loop are
very close. Such mis-attribution is not caused by heavy instructions,
but skid effect also incurs mis-attribution at code line level.

6.4 Summary and Discussion

The applications aforementioned show that instruction profiles of a
small function frequently called can be easily mis-attributed caused
by skid effect, especially when there are heavyweight instructions
near the exit of it. The heavyweight instructions can be further
categorized into two types:

e Heavyweight memory load instructions.
o Heavyweight arithmetic operations like mod and div.

When users utilize hardware sampling to profile applications,
they have to be aware of such inaccuracy within small hot functions.
Our method is able to rectify this limitation of sampling based
profiling regardless of the CPU architecture beneath.

6.5 Effectiveness on Other Hardware Events

We have already shown that our algorithm can successfully recover
sampling-based instruction profile from mis-attribution, caused
by skid effect. For other instruction-related hardware events (e.g.
load or store instruction), static analysis is able to characterize
each instruction as the instruction type we are interested in. For
instance, we can rely on static analysis to determine a specific
instruction is memory load instruction or not [35]. Based on this,
recovered instruction profile at function level by our algorithm
can also successfully deliver the recovered specific instruction type
profile at function level. For CPU cycle event, we have explained
the CPU cycle events are not affected by skid effects of sampling
based profiler, when skid CPU cycle duration is a fixed value.

Hardware-related Events. Hardware-related events like cache
miss or memory access, are not evenly distributed on all instruc-
tions [44, 48]. There is a probability for each instruction on the con-
trol flow graph causing specific these hardware-related events. Mod-
ern profilers cannot provide ground truth result for these hardware-
related events. Thus we are unable to verify the accuracy of the
recovered profile of these events. For these events, the probability
of each instruction causing counter overflow is not the same. For in-
stance, every instruction has a different probability causing a cache
miss. We are not able to determine the very instruction that triggers
the counter overflow based on the mapping from an overflow point
to its sample point directly. With all branch execution frequen-
cies, we can also formulate an optimization problem to recover the
probability of each instruction causing specific hardware-related
event, based on skid effect emulation. With this kind of probability,
hardware-related event profile is able to be recovered. Transform-
ing our method to recover hardware related event profile remains
an important direction of future work.

7 RELATED WORK

In this section, we review some previous work on edge profiling
and handling inaccurate hardware event sampling.

Edge Profile Prediction by Heuristics. Ball et al. [7] propose to
collect edge frequency profiles by optimally inserting monitoring
code, which incurs acceptable overhead. They also obtain some
heuristics about predicting the edge frequency profiles. Moreover,
Wau et al. [43] show that such branch frequency heuristics can guide
static profiling to obtain estimation of edge execution frequencies.
Anderson et al. [6] introduce a two-step framework, correlating the
sample count of instructions with execution frequencies heuristics,
to improve the prediction accuracy of execution frequencies. Yet
our research goes beyond heuristics by building a mathematical
model on skid effects in a complex control flow graph.

Accuracy Enhancement of Sampling Based Profiling. Much work
has been done to tame inaccurate hardware event sampling result.
Levin et al. [22] propose that constructing an edge profile from
basic block sample counts can be formalized as a Minimum Cost
Circulation problem. Chen et al. [12] extend the Minimum Cost
Circulation model by adding additional performance counters to
improve the quality of sampling profiles. They apply supervised
learning techniques to minimize the skid effect on sampling profiles.
A later study [41] by Wu et al. points out that varying the sampling

294

rate does not improve the accuracy of collected profiling result.
In a previous exploration [14], Dimakopoulou et al. have studied
event scheduling optimization in the Linux kernel to minimize
hardware performance counter corruption. Mytkowicz et al. [27]
have studied the accuracy of multiple java profilers and found
that only sampling at yield points, which is a JVM mechanism
for supporting maintenance operations, incurs bias on profiling
result. Lim et al. show that intelligently selecting how events are
multiplexed based on their rate of change can improve profiler’s
accuracy [24]. Moreover, Mathur et al. quantify the error caused
by events multiplexing and propose new estimation algorithms to
improve accuracy [26]. All of these works do not quantify the CPU
hardware flaw’s impact (skid effect) on profile accuracy. In this
paper, we propose a mathematical model to quantify the skid effect
in loop-based programs, measure skid duration for different CPUs,
and then formulate an optimization problem for control flow graph
to eliminate the mis-attribution caused by the skid effect.

Architecture Support for Profiling Accuracy. Intel x86 provides
Last Branch Records (LBRs) [4] to continuously record the most
recent branches, which can help count basic block execution fre-
quency [23]. Works by Chen et al. [11] and Nowak [28] have proved
the effectiveness of instruction profiling in basic block level by utiliz-
ing LBRs. However, users must sample event of branch instruction,
when user adopts LBR to calculate each basic block’s frequency.
The sampling result of taken branches could also be affected by
skid effects. LBRs cannot eliminate the skid effect, since skid effect
is caused by hardware flaw in CPU design. Moreover, not all CPU
vendors provide such branch logging facility as Intel, e.g., AMD
or ARM. Modern CPUs can often support more advanced forms
of sampling, such as Intel’s Precise Event-Based Sampling (PEBS).
PEBS tries to keep the skid small [39], directly supported by hard-
ware. Even though Nowak [28] claims that PEBS could obtain more
accurate profiling result over the standard hardware event sam-
pling method, we find that PEBS still suffers from skid effect, and
its sampling result cannot be quantified by an mathematical model
with a constant skid. Our method eliminates the skid effect from
the software side regardless of the hardware architecture beneath.

8 CONCLUSIONS

This paper describes a framework that rectifies the instruction pro-
file inaccuracy at function level. We design a measurement approach
to quantify the skid effect on five different CPUs. Furthermore, we
invent a novel software scheme to minimize the skid effect and
recover the instruction profiling result from the mis-attribution.
We study several CPU2006 benchmarks and real applications to
demonstrate the effectiveness of our approach on different CPU
architectures. We foresee our scheme can be integrated into modern
profilers as an important component to produce accurante mea-
surement.

ACKNOWLEDGEMENT

This project is partially supported by National Science Foundation
(NSF) under grant numbers 1618620, 1725743, and 1745813 and a
Google Faculty Research Award.

REFERENCES

(1]

[2

—

=
0

[10

[11

[12]

[13]

[14

[15

[16]

[17

=
&

[19]
[20]

[21

[22]

[23

[24

[25]

Complement material. https://github.com/simon4173/ics_complement_
materials/blob/master/Complement_ICS19.pdf.

Intel 64 and ia-32 architectures software developer’s manual.
//www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-software-developer-vol-3b-part-2-manual html.
[Accessed: 10-22-2018].

Intel Vtune. https://software.intel.com/en-us/intel-vtune-amplifier-xe. [Ac-
cessed: 08-12-2017].

An introduction to last branch records. https://lwn.net/Articles/680985/. [Ac-
cessed: 10-24-2018].

Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin,
John Mellor-Crummey, and Nathan R Tallent. Hpctoolkit: Tools for performance
analysis of optimized parallel programs. Concurrency and Computation: Practice
and Experience, 22(6):685-701, 2010.

Jennifer M Anderson, Lance M Berc, Jeffrey Dean, Sanjay Ghemawat, Monika R
Henzinger, Shun-Tak A Leung, Richard L Sites, Mark T Vandevoorde, Carl A
Waldspurger, and William E Weihl. Continuous profiling: Where have all the
cycles gone? In ACM SIGOPS Operating Systems Review, volume 31, pages 1-14.
ACM, 1997.

Thomas Ball and James R Larus. Optimally profiling and tracing programs. ACM
Transactions on Programming Languages and Systems (TOPLAS), 16(4):1319-1360,
1994.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. The gem5 simulator. ACM SIGARCH Computer Architecture News,
39(2):1-7, 2011.

Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: exploring the
level of abstraction for scalable and accurate parallel multi-core simulation. In
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, page 52. ACM, 2011.

Milind Chabbi, Xu Liu, and John Mellor-Crummey. Call paths for pin tools. In
Proceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization, page 76. ACM, 2014.

Dehao Chen, Neil Vachharajani, Robert Hundt, Xinliang Li, Stephane Eranian,
Wenguang Chen, and Weimin Zheng. Taming hardware event samples for precise
and versatile feedback directed optimizations. IEEE Transactions on Computers,
62(2):376-389, 2013.

Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao, Vinodha Ra-
masamy, Paul Yuan, Wenguang Chen, and Weimin Zheng. Taming hardware
event samples for fdo compilation. In Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization, pages 42-52. ACM,
2010.

William E Cohen. Tuning programs with oprofile. Wide Open Magazine, 1:53-62,
2004.

Maria Dimakopoulou, Stéphane Eranian, Nectarios Koziris, and Nicholas Bambos.
Reliable and efficient performance monitoring in linux. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, page 34. IEEE Press, 2016.

Paul J Drongowski. Instruction-based sampling: A new performance analysis
technique for amd family 10h processors. Advanced Micro Devices, 2007.

Alan E Gelfand, Susan E Hills, Amy Racine-Poon, and Adrian FM Smith. Illustra-
tion of bayesian inference in normal data models using gibbs sampling. Journal
of the American Statistical Association, 85(412):972-985, 1990.

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In
Presented as part of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12), pages 17-30, Hollywood, CA, 2012. USENIX.
Robert J Hall. Call path profiling. In Proceedings of the 14th international conference
on Software engineering, pages 296-306. ACM, 1992.

John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 34(4):1-17, 2006.

Donald B Johnson. Finding all the elementary circuits of a directed graph. SIAM
Journal on Computing, 4(1):77-84, 1975.

Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The dynamics of
viral marketing. ACM Transactions on the Web (TWEB), 1(1):5, 2007.

Roy Levin, Ilan Newman, and Gadi Haber. Complementing missing and inac-
curate profiling using a minimum cost circulation algorithm. In International
Conference on High-Performance Embedded Architectures and Compilers, pages
291-304. Springer, 2008.

David Levinthal. Performance analysis guide for intel core i7 processor and intel
xeon 5500 processors. Intel Performance Analysis Guide, 30:18, 2009.

Robert V Lim, David Carrillo-Cisneros, W Alkowaileet, and I Scherson. Com-
putationally efficient multiplexing of events on hardware counters. In Linux
Symposium, pages 101-110. Citeseer, 2014.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building

https:

295

™
2

[27

(28]

™~
29,

[30

(31]

[32

®
3

[34

[35

[36

[37

[38

%
20,

[40

[41]

[42

=
&

(44

[45

[46

customized program analysis tools with dynamic instrumentation. In Acm sigplan
notices, volume 40, pages 190-200. ACM, 2005.

Wiplove Mathur and Jeanine Cook. Toward accurate performance evaluation
using hardware counters. In ITEA Modeling and Simulation Workshop, pages
23-32, 2003.

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F Sweeney. Eval-
uating the accuracy of java profilers. In ACM Sigplan Notices, volume 45, pages
187-197. ACM, 2010.

Andrzej Nowak, Ahmad Yasin, Avi Mendelson, and Willy Zwaenepoel. Estab-
lishing a base of trust with performance counters for enterprise workloads. In
USENIX Annual Technical Conference, pages 541-548, 2015.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford InfoLab,
1999.

R. Panda, S. Song, J. Dean, and L. K. John. Wait of a decade: Did spec cpu 2017
broaden the performance horizon? In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 271-282, Feb 2018.

S. Song, M. Li, X. Zheng, M. LeBeane, J. H. Ryoo, R. Panda, A. Gerstlauer, and
L. K. John. Proxy-guided load balancing of graph processing workloads on
heterogeneous clusters. In 2016 45th International Conference on Parallel Processing
(ICPP), pages 77-86, Aug 2016.

S. Song, X. Zheng, A. Gerstlauer, and L. K. John. Fine-grained power analysis of
emerging graph processing workloads for cloud operations management. In 2016
IEEE International Conference on Big Data (Big Data), pages 2121-2126, Dec 2016.
Shuang Song, Xu Liu, Qinzhe Wu, Andreas Gerstlauer, Tao Li, and Lizy K. John.
Start late or finish early: A distributed graph processing system with redundancy
reduction. Proc. VLDB Endow., 12(2):154-168, October 2018.

SPEC Corporation. SPEC CPU2006 benchmark suite. http://www.spec.org/
cpu2006. 3 November 2007.

Pengfei Su, Shasha Wen, Hailong Yang, Milind Chabbi, and Xu Liu. Redundant
loads: A software inefficiency indicator. arXiv preprint arXiv:1902.05462, 2019.
Nathan R. Tallent. Performance Analysis for Parallel Programs: From Multicore to
Petascale. Ph.D. dissertation, Department of Computer Science, Rice University,
March 2010.

Rafael Ubal, Julio Sahuquillo, Salvador Petit, and Pedro Lopez. Multi2sim: A
simulation framework to evaluate multicore-multithreaded processors. In 19th
International Symposium on Computer Architecture and High Performance Com-
puting (SBAC-PAD’07), pages 62-68. IEEE, 2007.

Vincent M Weaver. Linux perf event features and overhead. In The 2nd In-
ternational Workshop on Performance Analysis of Workload Optimized Systems,
FastPath, volume 13, 2013.

Vincent M Weaver. Advanced hardware profiling and sampling (pebs, ibs, etc.):
Creating a new papi sampling interface. 2016.

Shasha Wen, Xu Liu, John Byrne, and Milind Chabbi. Watching for software
inefficiencies with witch. In Proceedings of the Twenty-Third International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
pages 332-347. ACM, 2018.

Bo Wu, Mingzhou Zhou, Xipeng Shen, Yaoqing Gao, Raul Silvera, and Graham
Yiu. Simple profile rectifications go a long way. In European Conference on
Object-Oriented Programming, pages 654-678. Springer, 2013.

Q. Wu, S. Flolid, S. Song, J. Deng, and L. K. John. Invited paper for the hot
workloads special session hot regions in spec cpu2017. In 2018 IEEE International
Symposium on Workload Characterization (IISWC), pages 71-77, Sep. 2018.
Youfeng Wu and James R Larus. Static branch frequency and program profile
analysis. In Proceedings of the 27th annual international symposium on Microar-
chitecture, pages 1-11. ACM, 1994.

Hao Xu, Shasha Wen, Alfredo Gimenez, Todd Gamblin, and Xu Liu. Dr-bw:
identifying bandwidth contention in numa architectures with supervised learning.
In Parallel and Distributed Processing Symposium (IPDPS), 2017 IEEE International,
pages 367-376. IEEE, 2017.

Maotong Xu, Sultan Alamro, Tian Lan, and Suresh Subramaniam. Optimizing
speculative execution of deadline-sensitive jobs in cloud. In ACM SIGMETRICS
Performance Evaluation Review, volume 45, pages 17-18. ACM, 2017.

Maotong Xu, Sultan Alamro, Tian Lan, and Suresh Subramaniam. Chronos: A
unifying optimization framework for speculative execution of deadline-critical
mapreduce jobs. In 2018 IEEE 38th International Conference on Distributed Com-
puting Systems (ICDCS), pages 718-729. IEEE, 2018.

Matt T Yourst. Ptlsim: A cycle accurate full system x86-64 microarchitectural
simulator. In Performance Analysis of Systems & Software, 2007. ISPASS 2007. IEEE
International Symposium on, pages 23-34. IEEE, 2007.

Gangyi Zhu and Gagan Agrawal. A performance prediction framework for irreg-
ular applications. In 2018 IEEE 25th International Conference on High Performance
Computing (HiPC), pages 304-313. IEEE, 2018.

https://github.com/simon4173/ics_complement_materials/blob/master/Complement_ICS19.pdf
https://github.com/simon4173/ics_complement_materials/blob/master/Complement_ICS19.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://lwn.net/Articles/680985/
http://www.spec.org/cpu2006
http://www.spec.org/cpu2006

	Abstract
	1 Introduction
	2 Background
	2.1 Profilers with PMU Sampling
	2.2 Limitation of Precise Event Based Sampling
	2.3 Ground Truth Profiler

	3 Quantifying Skid Effect
	3.1 Skid Effects Modeling in a Simple Loop
	3.2 Measurement of CPU Skid Duration

	4 Nullifying Skid Effect on instruction profiling
	4.1 Control Flow Graph Decomposition
	4.2 Obtain Simple loop Frequency to Recover Instruction Profile

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Effectiveness Provenance

	6 Case Study
	6.1 PowerGraph Pagerank
	6.2 SPEC CPU2006 astar
	6.3 SPEC CPU2006 hmmer
	6.4 Summary and Discussion
	6.5 Effectiveness on Other Hardware Events

	7 Related work
	8 Conclusions
	References

