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Abstract—Simulating applications and benchmarks can take
hundreds of hours in full-system cycle-accurate simulators. This
problem is exacerbated in many emerging applications, as they
execute a large amount of dynamic instructions. For instance, in
contrast to SPEC CPU2006 benchmarks, the newly released SPEC
CPU2017 programs dramatically increase the total instruction
count, which results in a much longer runtime. Therefore, it is of
interest to analyze the program behavior to tell whether there are
distinct behaviors throughout the executions or the executions are
formed by the repetitions of the same behavior. Techniques that
identify the repeated program behaviors (a.k.a simulation points)
can narrow down the regions of interest. Researchers leverage
such techniques to only simulate the regions of interest while
maintaining a high simulation accuracy.

In this paper, we study the phase behavior of the recent SPEC
CPU2017 benchmarks and provide simulation points for them
using the SimPoint methodology. We find that the number of
simulation points are approximately the same as that for CPU2006,
even though CPU2017 has significantly higher execution time.
Besides identifying SimPoints, we also study the time-varying
behavior of the SPEC CPU2017 benchmarks, and observe a strong
correlation between the runtime behavior and the simulation
points that are invoked.

I. INTRODUCTION

It is widely known that during execution, the behavior of
a program varies over time. Distinct program behavior phases
have been observed even at large scales [1]. Knowing the
phase behavior can help processor designers in multiple ways.
On one hand, these phase behaviors usually reveal a program’s
bottlenecks (e.g., flurry of cache misses, increase of power
consumption and thermal peaks, poor CPU utilization in certain
phases). On the other hand, only targeting “hot” regions of
the benchmark can save a considerable amount of simulation
time [2][3]. It is even helpful to know the phase behavior for
users who run an entire application from beginning to end. If
aware of the phase behavior, they can configure the system and
schedule resources accordingly to achieve a higher performance
and efficiency [4] [5]. For instance, Dynamic Voltage Frequency
Scaling (DVFS) can achieve a better energy efficiency in longer
program phases [6] [7].

To keep the pace of emerging applications, one of the
most prominent benchmark providers, SPEC (Standard Perfor-
mance Evaluation Corporation), released its 6 generation CPU
benchmark suite, CPU2017 [8], in June 2017. The CPU2017
benchmark suite contains applications from many domains
including Artificial Intelligence as illustrated in Table 1. As the
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TABLE I: Classification of SPEC CPU2017 benchmarks
based on application domains.

App Domains Benchmarks

Compiler gcce, perlbench
Compression X264, xz

Artificial Intelligence deeps jeng, leela, exchange2
Combinational Optimization — mcf

Discrete Event Simulation omnetpp

Document Processing xalancbmk

Physics cactuBSSN, fotonik3d
Fluid Dynamics lbm, bwaves

Molecular Dynamics namd, nab

Visualization povray, blender, imagick
Bimedical parest

Climatology wrf, cam4, pop2, roms

predecessor of CPU2017, CPU2006 benchmark suite has served
as the de facto benchmark suite of single-threaded performance
study the semiconductor community for more than a decade.
Thus,the new SPEC CPU2017 benchmark suite has immedi-
ately received wide attention from both academia [9][10][11]
and industry [12][13][14] since release.

Some of those experiments [12][13] have tested CPU2017
on state-of-the-art platforms, and some of those studies [9][10]
have compared CPU2017 against CPU2006, and reported high
level similarities and differences such as: the overall perfor-
mance, micro-architecture challenges, redundancy, coverage,
and balance of the suite. However, to the best of our knowledge,
there is no experiment on the CPU2017 benchmark has been
done for large scale phase behaviors.

To capture the phase behavior of the CPU2017 benchmarks,
we conduct experiments sampling their performance during ex-
ecution. We identify the “hot” regions in those workloads with
an approach developed by preceding work [15][16]. Apart from
an IPC validation, we link the region clustering results with
the phase behaviors to expose the correlation between those
two, which further justifies the correctness of the approach.
We summarize the contributions of this paper as follows:

o We present simulation points for SPEC CPU2017 bench-
mark suite and share them with the computer architecture
community via our github repository [17].

We observe that even though SPEC CPU2017 has 10x dy-
namic instructions as CPU2006 [9] there is no significant
increase in the number of simulation points.

Our experiment results reveal that some workloads in
SPEC CPU2017 have distinct phase behaviors, while oth-
ers including 2 of the 3 from the artificial intelligence do-
main exhibit relatively stable behavior over the execution.



The rest of this paper is organized as follows. Section II
provides necessary background knowledge and introduces our
experiments. Section III presents the phase behavior, “hot”
regions, as well as observations and analysis. We discuss related
work in Section IV and conclude in Section V.

II. EXPERIMENTAL METHODOLOGY
A. Basic block vector

In the computer architecture field, software programs are
sometimes split into to smaller components for study, and basic
block is one of them. A basic block usually refers to a single-
entrance, single-exit block of instructions that is always getting
executed sequentially. In a region of dynamic instructions sliced
by some analytical tools [15] [18], the same basic block could
repeat several times. This is due to the basic blocks often consist
of a couple of instructions, while the size of a program region
is 100 million instructions for the tools’ default setting (<
100 million instructions requests cache-warming to guarantee
the accuracy [19][20]). Counting how many times each basic
block is executed during a region’s execution produces a vector
known as Basic Block Vector (BBV).

B. SimPoint and PinPoint

Based on the basic block analysis, SimPoint [15] helps
researchers find representative slices of instruction sequence.
SimPoint first profile the program for the BBV of each region
(i.e., a slice of 100 million instruction), then conducts a K-
mean clustering. The clustering, where distances are calculated
according to the BBV, groups similar program slices together,
and picks only one slice from a cluster as the representative
(a.k.a. simulation point). Although SimPoint does not take all
potential factors into account, such as the instruction order and
the influence from data side, SimPoint has achieved a great
success since it was introduced. This success is due to its high
adaptability and accuracy. A variant of SimPoint, PinPoint [18],
accelerates the BBV generation by instrumenting a program’s
execution dynamically using the PIN profiler [21].

C. Experiments design

The remainder of the paper will classify our experiments
into two groups: clustering and and sampling. Clustering ex-
periments profile the micro-architecture independent program
information, namely the BBVs. This analysis is used to identify
the “hot” regions. Sampling experiments focus on the hardware
performance (e.g., IPC and cache misses) during the execution
of a benchmark.

In our clustering experiments, we follow the philosophy of
SimPoint, but use the Pin profiler from Intel to profile and
generate the simulation points. In the sampling experiments,
we use Perf [22] from the Linux toolkit to do the sampling
on the time scale (i.e., every 100 milliseconds), and Tuning
and Analysis Utilities (TAU) [23] to do the sampling on the
instruction scale (i.e., every 100 million instructions).

D. Workloads and platform

Since the formation in 1988, SPEC has been carefully choos-
ing benchmarks from real world applications, and periodically
releases benchmark suites for processor design evaluation.
CPU2017 [8] is SPEC’s latest CPU benchmark suite. Compared
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to the CPU2006 [24] benchmark suite, CPU2017 changes its
organization. For the first time, benchmarks are categorized not
only according to the data type: floating point or integer, but
also according to the evaluation purpose: speed or rate. Users
use the speed version to test a benchmark’s execution time,
while rate version aims to measure the maximum throughput
of the underlying hardware. As reported in prior work [9], the
speed version of some applications has much heavier workloads
than its rate variation. Since multiple processes/copies of a
benchmark (rate version) can easily lead to interference and the
maximum throughput is not the focus of our study, this paper
only evaluates the speed version of CPU2017 benchmarks.

As mentioned in Section I, there are new benchmarks and
application domains introduced in the CPU2017 suite. The most
remarkable enhancement is three new Artificial Intelligence
(AI) applications. They are deepsjeng for a-f tree search
(i.e., chess), leela for Monte-Carlo tree search (i.e., go), and
exchange? for recursive solution generator (i.e., Sudoku). Three
new benchmarks are related to image processing: imagick for
image manipulation; parest for biomedical imaging; blender
for 3D rendering and animation. Three new benchmarks are
from the climatology domain: cam4 for atmosphere modeling;
pop2 and roms for ocean modeling. Three new benchmark
are selected on behalf of scientific computing: cactuBSSN
for solving Einstein equations, nab for building nucleic acid
molecules, and foronik3d for computing Maxwell equations.
Two new benchmarks, x264 and xz are for compression. As
those new applications contribute to expanding the workload
space coverage [9], they are also expected to increase the
diversity of phase behavior.

The experiments are conducted on a state-of-the-art platform,
Dell PowerEdge R320 server equipped Xeon ES5-2430 v2
processor (codenamed Ivy Bridge), and 64 GB DDR3 memory.

III. HOT REGION AND PHASE BEHAVIOR ANALYSIS

In this section, we first provide an overall discussion on
the runtime performance variability as well as the information
of “hot” or frequently used regions. A study pairing the
phase behavior captured with “hot” regions (i.e., SimPoints)
is presented to illustrate the correlation between the two.

“Hot” regions: Table II lists detailed information about the
simulation regions picked using the SimPoint approach [15].
The Pinballs (a compressed simulation point format of Pin-
Point [18]) are available for download on our Github reposi-
tory [17]. Some CPU2017 benchmarks are absent due to fail-
ures running with the tools [15][18]. Each region is described
by a start instruction count (specifically apply to binaries
compiled for the aforementioned platform) and a weight. The
total numbers of “hot” regions are in the rightmost column
(the left ones are the counts of top 90% “hot” regions).
For the nine Speed&INT benchmarks we have investigated,
the average unique region count is 19.1, and the average
number of regions to cover the top 90% weight is 12.22. In
comparison, those numbers for SPEC CPU2006 were 16.4, and
11.4, respectively [16][25]. Such an increase is not significant,
especially considering that SPEC CPU2017 has 10x dynamic



TABLE II: “Hot” Regions of SPEC CPU2017 (100 million instruction regions selected by Multiple SimPoint tool)

Benchmarks Start Instructions(100 million)/Weight(%) Note: in the order of weight, and the bold regions count to top 90% #90/100%
(214681/28.85), (924424/12.60), (1277200/8.97), (1327590/7.96), (58779/7.77), (54633/5.43), (521547/5.39), (1233410/3.88), (752064/2.42),
600.perlbench_s (701679/2.40), (789265/2.19), (1258340/2.06), (236975/1.78), (48882/1.71), (482810/1.44), (467463/0.77), (478321/0.68), (29698/0.68), (199580/0.61), 13/25
(607466/0.55), (236842/0.54), (1339730/0.53), (1044350/0.30), (790578/0.30), (1141890/0.23)
602.0cc s (23077/48.65), (35817/23.62), (21069/12.00), (2812/5.28), (29282/3.60), (1353/1.36), (35911/1.21), (34118/0.87), (24369/0.84), (33794/0.82), 515
goe (33733/0.69), (36933/0.44), (27933/0.36), (27185/0.17), (910/0.09)
605.mcf s (5943/21.24), (16201/12.54), (6315/10.82), (14440/10.75), (587/7.69), (6563/6.97), (13680/6.04), (7430/5.14), (14107/3.40), (12030/3.36), (12099/2.41), 121
T (9255/2.25), (7606/2.12), (14669/2.02), (7843/0.93), (15653/0.89), (12189/0.50), (17489/0.42), (9375/0.27), (15180/0.19), (1765/0.07)
620.omnetpp_s  (6053/32.56), (6737/30.32), (2966/15.25), (623/9.00), (1387/6.55), (9548/5.76), (10990/0.51), (10994/0.06) 5/8
625.x264 s (49503/16.54), (22073/14.94), (3910/12.74), (42644/12.32), (10435/12.03), (46339/10.83), (26034/5.69), (41393/4.04), (11557/4.00), (24352/3.17), /14
’ = (4650/1.17), (11998/1.08), (53156/0.96), (31753/0.47)
631.deepsiene s (17909/8.84), (21851/7.87), (84/7.02), (9700/7.00), (20151/6.98), (6204/6.37), (637/5.85), (7853/5.74), (20454/5.69), (15965/5.60), (14515/5.28), 16/20
ECPSIENES  (9851/5.05), (3602/4.01), (12151/3.94), (5259/3.73), (11812/2.92), (11347/2.76), (3900/2.53), (15357/2.39), (0/0.46)
(13198/8.63), (10150/7.15), (9272/6.85), (9870/6.75), (10635/6.57), (6871/5.64), (12252/5.49), (19208/4.29), (7341/4.17), (1830/3.90), (17685/3.67),
641.leela_s (6004/3.59), (4934/3.45), (17328/3.37), (4952/3.10), (923/2.66), (21528/2.52), (1463/2.50), (22193/2.40), (1105/2.03), (820/1.91), (12296/1.84), 21/29
(13929/1.60), (15764/1.47), (1193/1.36), (6041/1.15), (21296/0.98), (3514/0.96), (4/0.04)
648.exchanee? s (41189/9.81), (46142/9.62), (28949/9.02), (32593/7.77), (46603/7.71), (11758/7.30), (50970/7.10), (27060/6.76), (3146/6.75), (66198/4.31), (38948/3.81), 15/19
: 8o (17591/3.70), (31131/3.13), (20553/3.04), (9923/2.98), (56692/2.95), (424/1.68), (5824/1.63), (10190/0.95)
65732 5 (36367/13.00), (16895/9.39), (1400/8.92), (39442/8.76), (38731/6.97), (31742/6.59), (35941/6.33), (6913/5.80), (25357/5.25), (28962/4.09), (35764/3.86), |55,
R (22587/3.21), (10870/3.02), (45973/2.94), (29995/2.88), (39598/2.72), (45675/2.26), (40484/2.04), (38264/1.88), (18/0.07), (44672/0.02)
603.bwaves_s (59291/71.46), (248007/14.61), (287430/5.89), (313019/3.23), (315053/2.21), (95707/1.67), (318138/0.34), (263763/0.31), (303136/0.28) 3/9
619.1bm_s (7134/69.69), (10742/14.92), (43825/4.43), (11740/4.36), (6240/3.65), (9400/2.38),(8491/0.56), (0/0.01) 4/8
638.imacick s (551856/43.83), (394592/27.24), (467091/8.12), (28460/4.97), (91452/4.24), (4209/2.76), (41027/2.50), (515828/2.45), (72623/1.27), (656007/1.21), 6/15
Amagiex (651005/0.78), (10504/0.54), (102890/0.04), (272722/0.04), (567401/0.04)
644.nab s (9237/34.24), (52046/22.75), (56855/17.91), (58776/9.76), (122599/7.45), (133757/6.91),(48950/0.26), (120710/0.25), (130263/0.16), (104620/0.14), 512
nab_s (76009/0.09), (84205/0.08)
649 fotonik3d_s (19088/43.91), (2468/29.02), (56395/6.90), (1608/4.72), (11626/2.65), (53620/2.21), (17985/2.12), (33097/1.95), (35644/1.20), (38568/0.91), 17
’ —7 (31846/0.83), (44869/0.83), (3563/0.80), (46262/0.64), (33943/0.49), (43842/0.41), (36949/0.41)
TABLE III: IPC prediction error sensitivity to simulation IPC
oints subsettin SP,xW;) —MYW;
p g Erl”or'%: |Z( L l) Z l‘ (1)

Length (100M instructions) Error (%)
Benchmarks Original 100% 90% ToplO Top5 100% 90% ToplO Top5
602.gcc_s 17817 14 5 10 5 031 030 0.17 0.30
605.mef_s 22460 20 11 10 5 1.56 0.77 8.50 28.37
641.leela_s 49459 28 21 10 5 0.14 045 123 215
648.exchange2_s 66589 18 15 10 5 023 002 003 0.17
657.x2_s 45718 20 17 10 5 031 030 0.17 0.30

instruction counts as SPEC CPU2006. The average “hot” region
count for the five Speed&FP benchmarks is 12.2, and 90
percentile regions count average is 5. It is worth mentioning
that the “hottest” regions of the three new AI benchmarks
(631.deepsjeng_s, 641.leela_s, and 648.exchange?2_s) take up
weights no more than 10%. As opposed to programs such as
602.gcc_s, 619.1bm_s and 638.imagick_s and 649. fotonik3d_s
that have individual regions that represent almost half of their
program’s entire execution.

As a validation, we calculate the IPC prediction errors
and report them in Table IIl. The predicted IPC is derived
weighted average of clusters’ representative IPCs. To compare
with the measured IPC of the whole program, we scale the
average according to the coverage percentage when a subset
of simulation points is used. The absolute difference between
the predicted IPC and measured IPC is then divided by the
measured IPC to get the error rate. The formula is shown in
Equation 1, where SP; refers to the IPC of simulation point,
W; refers to the corresponding weight, and M is the measured
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o MYW;
Because subsetting is a common approach to reduce redun-

dancy, it is also applied to simulation points to further shorten
the simulation length. We recreate the predicted IPC from all
the simulation points (columns marked with “100%”) as well
as from three different subsets of simulation points: columns
“90%” means simulation points are used that cover 90% of the
program’s execution; columns “Top10” (“Top5”) means the 10
(5) simulation points having the most weights are used for the
prediction. From the table, we can see, the IPC error rates are so
low that most of the numbers are less then 2%. This means the
simulation points offer an accurate estimation on performance
even with hundreds of times miniaturization (as shown in the
left half of Table III). Two surprising facts are seen here: 1) it
is not necessary for the full set of simulation points to achieve
the lowest error rate, because clusters with least weights usually
have a dispersed spread and their simulation points is not that
representative; 2) one more simulation point for 605.mcf_s can
cause the error rate to drop from 8.5% to 0.77%. It may also be
observed that reasonable simulation experiments can be devised
with approximately one billion instruction simulation budget.
Variability: The statistics in Table IV are calculated based
on the measurements of executions on the aforementioned
platform, using the Perf [22] tool with sampling at 100 ms
intervals. Apart from IPC, level 1 data cache Mises Per Kilo-
Instructions (MPKI) is studied as well, because it is said to be
one of the most sensitive metrics [9]. Along with the means of



TABLE IV: Variability in SPEC CPU2017 speed benchmarks

IPC L1 D$ MPKI
Benchmarks mean stdev Cov mean stdev COov
600.perlbench_s 2.26 0.12 0.05 1.95 1.36 0.70
602.gcc_s 1.58 0.26 0.16 12.91 7.46 0.58
605.mcf_s 0.76 0.17 0.22 91.99 63.90 0.69
620.0mnetpp_s 0.74 0.06 0.08 40.83 2.45 0.06
623.xalancbmk_s 1.14 0.35 0.31 55.66 11.79 0.21
625.x264_s 231 0.11 0.05 1.18 0.36 0.31
631.deepsjeng_s 1.60 0.30 0.19 9.04 38.84 4.30
641.leela_s 1.23 0.05 0.04 5.26 1.80 0.34
648.exchange2_s 2.04 0.02 0.01 0.01 0.00 0.00
657.xz_s 1.46 0.40 0.27 17.20 43.36 2.52
Average of INT 1.51 0.18 0.14 23.60 17.13 0.97
603.bwaves_s 2.32 0.59 0.25 12.89 21.44 1.66
607.cactuBSSN_s 0.98 0.23 0.23 127.90 96.84 0.76
619.1bm_s 0.90 0.21 0.23 150.90 27.39 0.18
621.wrf_s 1.14 0.13 0.11 18.00 16.12 0.90
627.cam4_s 1.36 0.08 0.06 19.01 4.22 0.22
628.pop2_s 1.54 0.08 0.05 36.41 10.91 0.30
638.imagick_s 0.87 0.18 0.21 10.67 3.89 0.36
644.nab_s 1.22 0.09 0.07 11.73 4.26 0.36
649.fotonik3d_s 1.46 0.66 0.45 59.83 31.64 0.53
654.roms_s 1.50 0.45 0.30 41.27 27.53 0.67
Average of FP 1.33 0.27 0.20 48.86 24.42 0.59

TABLE V: Level of Phase Variations in the SPEC CPU 2017
Integer and FP Programs (based on IPC). The omitted ones
have medium level of variability.

High (INT) 605.mcf_s, 623.xalancbmk_s, 657.xz_s

Low (INT) 600.perlbench_s, 641.leela_s, 648.exchange2_s

High (FP) 603.bwaves_s, 607.cactusBSSN_s, 649.fotonik3d_s, 654.roms_s
Low (FP) 627.cam4_s, 628.pop2_s

IPC and MPKI, the standard deviation (stdev) and Coefficient
Of Variation (COV) are also presented. From Table IV, we
observe that some benchmarks, like 605.mcf_s, show great
variability on both IPC and L1 data cache MPKI, while some of
the new applications, for example 641.leela_s, have relatively
stable performance. Taking such difference into consideration,
we list the benchmarks having high level variability and low
level variability in Table V. It is interesting that diversity is
observable among the new applications from the emerging Al
domain. Two out of the three Al programs (641./eela_s and
648.exchange?_s) exhibit very low variations in IPCs, while the
631.deeps jeng_s benchmark exhibits wide variations in terms
of IPC and L1 data cache misses.

Paired-analysis: Figure la and 2a show the samples of
IPC taken every region (i.e., 100 million instructions) during
the execution of 605.mcf_s and 641.leela_s, respectively. The
sample points are connected in chronological order.

The curve in Figure 1a shows that the regional IPC fluctuates
between 0.2 and 3.0, which is a wide range (the ratio for
the maximum and minimum throughput is as high as 15x).
605.mcf_s possesses two very different patterns: The curve
first features a relatively stable descent, but is then followed by
an increasingly intense fluctuation. At the beginning, the stable
descent dominates, interleaved by the wild fluctuation from
time to time. Gradually, the ferocious fluctuation overwhelms
the stable descent. The region cluster distribution shown in
Figure 1b has a similar phenomenon. From Table II, we know
that 605.mcf_s has 21 clusters, so the vertical axis is ranged
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(a) IPC time varying graph of 605.mcf_s
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(b) Region cluster distribution of 605.mcf_s
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Fig. 1: Time varying graphs and region cluster distributions of
605.mcf_s

from O to 20 for each cluster. The regions’ sample points are
distributed in the Y scale according to which cluster they belong
to. As the same as Figure 1a, the horizontal axis represents the
execution order of those regions. For the regions during the
stable descent phase, most of them are categorized into cluster
17, 12, 11 and 4. For the regions of the ferocious fluctuation
phase, they spread over several clusters. Synchronized with the
IPC time varying graph: at the beginning, a great percentage
of regions are from cluster 17, 12, 11 or 4; when it goes to the
end, regions come from many other clusters.

Similarly, 641.leela_s’s time varying IPC plot, Figure 2a,
and region cluster distribution chart, Figure 2c, are aligned to
each other. It is worth mentioning that there are two large scale
phases in the execution of 641./eela_s. The first quarter of
execution is characterized by several spikes in IPC, while the
second phase contains slowly decreasing trends of IPC (but
fairly stable). We can find a distinct change in behavior after
the first quarter of execution in Figure 2¢ (around the instruction
count 620 billion). Before this instruction count, for example, it
has no region mapped to cluster 3, while cluster 3 gets executed
many times after the 620 billion point.

Unlike the previous two IPC plots, the IPC sample points
for 649.fotonik3d_s in Figure 3a are not connected, because
649. fotonik3d_s frequently changes its behavior. If we were
to add lines between continuous sample points, the plot would
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show nothing but a large red block. Nevertheless, the discrete
points offer interesting insight about the phase behavior. As
we can see, after the first 200 billion instructions (process
initialization), numerous points gather around the IPC levels of
1.4, 1.95, and 0.51, creating three visible lines. This indicates
that even though 649. foronik3d_s changes its behavior quickly,
but it does not change its behavior randomly. 649. foronik3d_s
mainly switches between limited “hot” regions, which give rise
to the three levels of IPCs. The idea is validated by Figure 3d,
where four clusters (11, 8, 0, 15) are more active than others.
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Fig. 5: Cache and TLB performance of 649.fotonik3d_s

Clusters 8 and 11 are used with very high frequency of usage
covering more than 70% of the execution. Figures 4 and 5
illustrate the L1 data cache misses, L2 cache misses and TLB
misses of 641.leela_s and 649. fotonik3d_s.

Based on the frequency of usage of the SimPoint clusters,
we divide CPU2017 benchmarks into three categories in Ta-
ble VI. “Uneven” means those benchmarks that have a few
high frequency clusters and then a few low frequency clusters,
(i.e., their distribution has a peaky nature). “Even” means
those benchmarks that need plenty of simulation regions, but

0



TABLE VI: Classification of SPEC CPU2017 benchmarks in
terms of the distribution of SimPoint cluster weights.

Uneven fotonik3d, gcc, bwaves, lbm, imagick
Medium mcf, perlbench, omnetpp, nab, x264
Even leela, deepsjeng, exchange2, xz

the frequency of usage (weights) is split somewhat evenly,
(i.e., their distribution is fairly flat). Other benchmarks with
a distribution in between the peaky and the flat behaviors go
to the “Medium” category. One observation is that all three
Artificial Intelligence programs have a flat distribution.

IV. RELATED WORK

Sherwood et al. [1] [15] developed the SimPoint method-
ology to find “hot” regions based on BBV analysis of large
program executions. They validated the SimPoint tool with
the Alpha binaries of SPEC CPU2000 [26]. Taking advantage
of the Pin tool [21] developed by Intel, and following the
approach of SimPoint, PinPoint [18] no longer relied on a sim-
ulator to extract the basic block vector information, which could
be really time-consuming. Finally, Carlson et al. developed a
Pin-based simulator called Sniper [27], where they simulated
the checkpoints for the “hot” regions of SPEC CPU2006 [24],
further validating the representative nature of the “hot” regions.
Nair et al. [16] compared SPEC CPU2000 and SPEC CPU2006
with focus on the simulation points.

V. CONCLUSION

In this paper, we study the phase behavior of the SPEC
CPU2017 benchmarks, using SimPoint approach and perfor-
mance counter based sampling. The results of our experiments
indicate that CPU2017 benchmarks have distinct phases with
distinguishing behaviors, and multiple simulation regions are
needed to represent the different behaviors of a benchmark.
Our analysis pairing the IPC time varying curve with the
region clustering time-line shows that those two are correlated.
Therefore, we can safely reach a conclusion that SimPoint
is still a useful approach to identify the representative phase
behaviors of emerging benchmarks.

VI. ACKNOWLEDGEMENT

This research was supported in part by National Science
Foundation (NSF-1745813 and NSF-1725743), and by Intel
Corporation, as well as by NSF of China (61602377), and by
International Collaborative Research of Shaanxi China under
grant 2018KW-006. Authors would also like to acknowledge
computational resources from Texas Advanced Computing
Center (TACC). Any opinions, findings, conclusions or recom-
mendations are those of the authors and not of the National
Science Foundation or other sponsors.

REFERENCES

[1] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proceedings of the
10th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS X, (New York, NY, USA),
pp. 45-57, ACM, 2002.

M. V. Biesbrouck, B. Calder, and L. Eeckhout, “Efficient sampling startup
for simpoint,” IEEE Micro, vol. 26, pp. 32-42, July 2006.

Y. Luo, Improving Sampled Microprocessor Simulation. PhD thesis, Univ.
of Texas at Austin, Austin, Aug. 2005.

[3]

77

(4]

[5

—

(7]

(8]
[9]

[10]

(1]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]
(23]

[24]
(25]

[26]
(27]

J. Chen and L. K. John, “Predictive coordination of multiple on-chip
resources for chip multiprocessors,” in Proceedings of the International
Conference on Supercomputing, ICS "11, (New York, NY, USA), pp. 192—
201, ACM, 2011.

J. Chen, L. K. John, and D. Kaseridis, “Modeling program resource
demand using inherent program characteristics,” SIGMETRICS Perform.
Eval. Rev., vol. 39, pp. 1-12, June 2011.

W. L. Bircher, M. Valluri, J. Law, and L. K. John, “Runtime identification
of microprocessor energy saving opportunities,” in ISLPED ’05. Proceed-
ings of the 2005 International Symposium on Low Power Electronics and
Design, 2005., pp. 275-280, Aug 2005.

W. L. Bircher and L. K. John, “Analysis of dynamic power management
on multi-core processors,” in Proceedings of the 22Nd Annual Interna-
tional Conference on Supercomputing, ICS *08, (New York, NY, USA),
pp. 327-338, ACM, 2008.

“SPEC CPU2017.” https://www.spec.org/cpu2017.

R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a decade:
Did spec cpu 2017 broaden the performance horizon?,” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pp. 271-282, Feb 2018.

A. Limaye and T. Adegbija, “A workload characterization of the spec
cpu2017 benchmark suite,” in 2018 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pp. 149-158,
April 2018.

J. N. Amaral, E. Borin, D. R. Ashley, C. Benedicto, E. Colp, J. H. S.
Hoffmam, M. Karpoff, E. Ochoa, M. Redshaw, and R. E. Rodrigues,
“The alberta workloads for the spec cpu 2017 benchmark suite,” in 2018
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 159-168, April 2018.

“AMD EPYC™ SoC Consistently Sets World Records on SPEC CPU
2017 Floating Point Benchmarks.” https://www.amd.com/system/files/
2018-03/AMD-SoC-Sets- World-Records-SPEC-CPU-2017.pdf.

“Three World Record SPEC CPU2017 Benchmark Results for 8-
Processor ThinkSystem SR950.” https://lenovopress.com/lp0809.pdf.
“All SPEC CPU2017 Results Published by SPEC.” http://spec.org/
cpu2017/results/cpu2017.html.

T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in applications,”
in PACT, pp. 3-14, 2001.

A. A. Nair and L. K. John, “Simulation points for spec cpu 2006,” in 2008
IEEE International Conference on Computer Design (ICCD), pp. 397—
403, 2008.

“LCA github repository for Experiments with SPEC CPU 2017:
Similarity, Balance, Phase Behavior and SimPoints.” https:
/github.com/UT-LCA/Scalability- Phase- Simpoint-of-SPEC-CPU2017/
releases/tag/v1.0.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large intel® itanium ® programs
with dynamic instrumentation,” in 37th International Symposium on
Microarchitecture (MICRO-37°04), pp. 81-92, Dec 2004.

E. Perelman, G. Hamerly, and B. Calder, “Picking statistically valid
and early simulation points,” in 2003 12th International Conference on
Parallel Architectures and Compilation Techniques, pp. 244-255, Sept
2003.

R. E. Wunderlich, T. E. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts: Ac-
celerating microarchitecture simulation via rigorous statistical sampling,”
in Proceedings of the 30th Annual International Symposium on Computer
Architecture, ISCA *03, (New York, NY, USA), pp. 84-97, ACM, 2003.
“Pin - a dynamic binary instrumentation tool.” https://software.intel.com/
en-us/articles/pin-a-dynamic-binary-instrumentation-tool.

“Linux perf tool.” https://perf.wiki.kernel.org/index.php/Main_Page.
“Tuning and analysis utilities.” https://www.cs.uoregon.edu/research/tau/
home.php.

“SPEC CPU2006.” https://www.spec.org/cpu2006.

S. Song, Q. Wu, S. Flolid, J. Dean, R. Panda, J. Deng, and L. K. John,
“Experiments with spec cpu 2017: Similarity, balance, phase behavior
and simpoints,” Tech. Rep. TR-180515-01, LCA Group, Department of
Electrical and Computer Engineering, The University of Texas at Austin,
May 2018.

“SPEC CPU2000.” https://www.spec.org/cpu2000.

T. E. Carlson, W. Heirmant, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in SC, 2011.



