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Abstract
Mobile and IoT scenarios increasingly involve interactive
and computation intensive contextual recognition. Existing
optimizations typically resort to computation o�oading or
simpli�ed on-device processing.
Instead, we observe that the same application is often

invoked on multiple devices in close proximity. Moreover,
the application instances often process similar contextual
data that map to the same outcome.
In this paper, we propose cross-device approximate com-

putation reuse, which minimizes redundant computation by
harnessing the “equivalence” between di�erent input values
and reusing previously computed outputs with high con�-
dence. We devise adaptive locality sensitive hashing (A-LSH)
and homogenized k nearest neighbors (H-kNN). The for-
mer achieves scalable and constant lookup, while the latter
provides high-quality reuse and tunable accuracy guarantee.
We further incorporate approximate reuse as a service,

called FoggyCache, in the computation o�oading runtime.
Extensive evaluation shows that, when given 95% accuracy
target, FoggyCache consistently harnesses over 90% of reuse
opportunities, which translates to reduced computation la-
tency and energy consumption by a factor of 3 to 10.
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1 Introduction
The vision of the Internet of Things has gradually transi-
tioned into reality, with solutions for smart scenarios and
new IoT devices entering the mainstream consumer mar-
ket. Many of these upcoming applications revolve around
interacting with the environment [5], providing personal
assistance to the device user [35], and/or automating what
used to be labor-intensive tasks [79].
For example, speech recognition based assistance is now

common on smartphones (e.g., Siri, Cortana) and in homes
(e.g., Alexa and Google Assistant). These applications sense
the environment, process the data on the local device or
a backend server, and then act on the result. Since contex-
tual sensing and speech/image recognition are often the key
steps for these applications, on-device processing tend to be
computationally expensive and energy-hungry in order to
achieve su�cient accuracy. While o�oading to a server [20]
addresses these two issues, latency becomes a concern given
the real-time nature of the applications. Much prior e�orts
have investigated mechanisms to improve speci�c process-
ing logic of either local computation [49] or o�oading [19]
of individual applications.
Instead, we pursue an orthogonal avenue. A closer look

at these applications suggests there is redundancy in such
computation across devices. The same applications are used
by multiple devices over time, often in a similar context (e.g.,
common locations). Redundancy elimination across devices
can then simultaneously achieve low latency and accurate
results. This is a promising optimization technique indepen-
dent of the speci�c processing logic. Note that this does not
replace or favor either local computation or o�oading. The
goal is to avoid unnecessary computation, either locally or
remotely, as opportunities arise.

However, there is a de�ning di�erence between our cases
and traditional redundancy elimination.We do not have exact
matches between the input-output relations. Instead, the
most common input types, i.e., images, speech, and sensor
reading, come from analog sources. The input values are



rarely exactly identical, but correlated temporally, spatially,
or semantically, and mapped to the same output.

In other words, we need to gauge the reusability of the pre-
vious output based on the similarity of the input. We refer to
this paradigm as fuzzy redundancy and highlight the notion
of approximate computation reuse. Section 2 discusses such
redundancy in detail in the context of several motivating
scenarios. While traditional, precise redundancy elimination
is well studied and widely employed in storage systems [24],
networking [70], and data analytic systems [33, 65], existing
techniques are ill-suited to the IoT scenarios at hand due to
the computation and the approximate matching involved.

Approximate computation reuse involves several steps and
challenges: capturing and quantifying the input similarity in
a metric space, fast search for the most similar records, and
reasoning about the quality of previous output for reuse.

Step one is straightforward. Existing, domain-speci�c tech-
niques can already turn these raw input values into feature
vectors, and we can then de�ne a metric to compute the
distance between them, for example, the Euclidean distance.
There are two implications, however. First, leveraging these
feature extraction techniques decouples the application spe-
ci�c processing from generic system-wide procedures appli-
cable to any such applications. Second, the app developer can
use well-established techniques and libraries, and there is
no need to manually annotate or manage the input features.

The other two challenges arise from two fundamental con-
straints regardless of the underlying scenario: (i) The input
data distributions are dynamic and not known in advance,
and (ii) similarity in the input does not directly guarantee
the reusability among the output.
To address (i), we propose a variant of locality sensitive

hashing (LSH), which is commonly used for indexing high-
dimensional data. The standard LSH is agnostic to the data
distribution and does not perform well for skewed or chang-
ing distributions. Therefore, our adaptive locality sensitive
hashing (A-LSH) dynamically tunes the indexing structure as
the data distribution varies, and achieves both very fast and
scalable lookup speed and constant lookup quality regardless
of the exact data distribution.

For (ii), we propose a variant of the well-known k nearest
neighbor (kNN) algorithm. kNN is a suitable baseline since it
makes no assumptions about the input data distribution and
works for almost all cases. However, kNN performs poorly
in a high-dimensional space due to the curse of dimension-
ality, insu�cient amounts of data and skewed distribution
in the data [10]. Our homogenized kNN (H-kNN) overcomes
these hurdles to guarantee highly accurate reuse and pro-
vides control of the tradeo� between the reuse quality and
aggressiveness.

We then incorporate approximate computation reuse as a
service, called FoggyCache, and extend the current compu-
tation o�oading runtime. FoggyCache employs a two-level
cache structure that spans the local device and the nearby

server. To maximize reuse opportunities, we further opti-
mize the client-server cache synchronization with strati�ed
cache warm-up on the client and speculative cache entry
generation on the server.
FoggyCache is implemented on the Akka cluster frame-

work [2], running on Ubuntu Linux servers and Android
devices respectively. Using ImageNet [67], we show that
A-LSH achieves over 98% lookup accuracy while maintain-
ing constant time lookup performance. H-kNN achieves the
pre-con�gured accuracy target (over 95% reuse accuracy)
and provides tunable performance. We further evaluate the
end-to-end performance with three benchmarks, simpli�ed
versions of real applications corresponding to the motivating
scenarios. Given a combination of standard image datasets,
speech segments, and real video feeds, and an accuracy tar-
get of 95%, FoggyCache consistently harnesses over 90% of
all reuse opportunities, reducing computation latency and
energy consumption by a factor of 3 to 10.

In summary, the paper makes the following contributions:
First, we observe cross-device fuzzy redundancy in upcom-

ing mobile and IoT scenarios, and highlight eliminating such
redundancy as a promising optimization opportunity.
Second, we propose A-LSH and H-kNN to quantify and

leverage the fuzzy redundancy for approximate computation
reuse, independent of the application scenarios.
Third, we design and implement FoggyCache that pro-

vides approximate computation reuse as a service, which
achieves a factor of 3 to 10 reduced computation latency and
energy consumption with little accuracy degradation.

2 Motivation
2.1 Example scenarios

Smart home.Many IoT devices connected to a smart home
service platform [22] run virtual assistance software that
takes audio commands to control home appliances. The intel-
ligence of such software is supported by inference functions,
such as speech recognition, stress detection, and speaker
identi�cation [1]. Statistics [8] show that a small set of pop-
ular audio commands, e.g., “turn on the light”, are often re-
peatedly invoked. Say two household members issue this
command to their respective device in di�erent rooms. Cur-
rently, each command triggers the entire processing chain.
However, processing both is unnecessary, as the two com-
mands are semantically the same. It would be more e�cient
if one could reuse the processing output from the other.
Cognitive assistance apps. Google Lens [5] has become
very popular, which enables visual search by recognizing
objects in the camera view and rendering related information.
Key to the app is the image recognition function. Consider a
scenario where the tourists near a famous landmark search
for its history using the app. Clearly, it is redundant to run the
same recognition function repeatedly on di�erent devices for



the same landmark. Although the devices capture di�erent
raw images, semantically the images are about the same
landmark. If the recognition results can be shared among
nearby devices, e.g., by a base station, we can avoid the
redundant processing on individual devices.
Intelligent agriculture. Robotic assistance has been de-
ployed to automate agricultural tasks. As an example [79], a
�eet of autonomous vehicles move along pre-de�ned routes
to measure and maintain the health of the crops, e.g., wa-
tering the crops if they appear dehydrated. Each vehicle
captures images and other sensor data (for ambient light
intensity, humidity, and temperature) every few meters, rec-
ognizes the crop status, and then acts accordingly in real time.
The vehicles on adjacent paths record signi�cantly correlated
data, and running the same processing function on these cor-
related sensor data will largely produce the same results.
Such repeated processing is unnecessary if the processing
outputs can be shared among the vehicles, e.g., through the
command center of the robots.

2.2 Fuzzy redundancy

Common to all three scenarios above, the application logic
revolves around recognition and inference. There is redun-
dancy in the processing of each application, even when pre-
sented with non-identical input data. We refer to this as fuzzy
redundancy. This is due to the similarity in the input data,
the error tolerance of the processing logic, and the repeated
invocations of the same functions.

Input similarity stems from the same contextual informa-
tion being captured, such as major landmarks, ambient noise,
and road signs. For such information, there is (i) temporal
correlation between successive samples (e.g., frames in a
video feed), (ii) spatial correlation between what nearby de-
vices observe, and (iii) common objects involved (e.g., tra�c
lights at each intersection).
Error tolerance arises from a common input-output map-

ping process, i.e., the input values that are “close” enough
are often mapped to the same output. A large number of
workloads exhibit this property, where high-dimensional
input values (e.g., images of handwritten digits) are mapped
to lower-dimensional output values (e.g., “0”, “1”, ..., “9”), and
therefore the possible output values are constrained to a
�nite set. Learning-based workloads (e.g., recognition, clas-
si�cation, and AI agent) and graphics rendering [55] both
exhibit such resilience, and increasingly they have been run
in mobile scenarios.
Repeated invocations are manifested in three ways. (i)

Given the popularity of some mobile apps, the same app
(e.g., Google lens and PokeMon) can be launched by the
same device or across devices repeatedly. (ii) Signi�cant cor-
relation exists in spatio-temporal contexts and smartphone
usage [78]. For instance, IKEA Place [6], an augmented real-
ity furnishing app, is mostly run by shoppers in IKEA stores.
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Figure 1. Device density distribution from trace [13].

Table 1. Proportion of redundant scenes (%).

Setting Device density (# devices / 100m2)
0-10 10-20 20-30 > 30 Average

Indoors 49.63 74.43 99.57 100 64.14
Outdoors 61.01 85.76 99.51 100 82.67

(iii) Mobile applications often rely on standard libraries. This
is very common for computer vision (OpenCV [17]), graph-
ics (OpenGL [81]), and deep learning (Model Zoo [3]), which
means even di�erent applications can invoke the same li-
brary functions.

2.3 Quantitative evidence
To gauge the extent of fuzzy redundancy, we estimate the
amount of correlated processing for landmark recognition
in the aforementioned cognitive assistance scenario. This
is measured with the proportion of input images showing
semantically equivalent scenes across mobile devices.
First, we estimate the mobile device density distribution

by leveraging a WiFi trace from CRAWDAD [13]. Mobile
devices frequently scan WiFi access points (APs) to switch
or renew their association, by broadcasting a probe request
every few seconds. The trace contains probe requests from
clients within range of di�erent APs over three months. The
AP locations include auditoria, o�ce buildings, malls, and
scenic spots. We select the traces at two types of locations,
scenic spots and o�ce buildings, for an outdoor and an in-
door scenario respectively. The device density (i.e., number
of devices per 100m2) is calculated by counting the number
of distinct devices sending probe requests within a 30-second
window. Figure 1 shows the device density distribution at
these two locations.
Next, we use Google Streetview API [4] to download

streetviews and create an “outdoor input image set” as per-
ceived by a phone camera. The number of images selected is
proportional to the corresponding device density distribu-
tion measured above. For the sampled images, we count the
number of images capturing the same scenes (i.e., buildings,
landmarks, and tra�c signals) and convert that to a percent-
age of all images to quantify the amount of fuzzy redundancy.
Similarly, we use the NAVVIS indoor view dataset [43] for
indoors and repeat the above procedures to estimate the
portion of redundant scenes.
Table 1 shows the proportion of redundant scenes given

di�erent device density. On average, around 64% and 83% of
the images exhibit fuzzy redundancy for indoor and outdoor



scenarios respectively. The amount of redundancy increases
signi�cantly with the device density. This highlights sub-
stantial redundancy elimination opportunities to optimize
the performance of these contextual recognition based ap-
plications.

3 Approximate Computation Reuse
To eliminate fuzzy redundancy, we follow the philosophy
for conventional computation reuse, i.e., caching previous
outputs and later retrieving them instead of computing from
scratch every time. However, existing precise reuse tech-
niques cannot handle the approximation we need.
Problems with precise computation reuse. Conventional
reuse [44, 77] determines the reusability of a previous compu-
tation output on the basis of hash-based exact input matching.
Unfortunately, this is too restrictive for fuzzy redundancy,
where the input values are correlated but rarely identical.
We need to relax the criterion such that computation records
are reusable if the input values are su�ciently similar.
Challenges for approximate computation reuse. Extend-
ing exact reuse is non-trivial and requires solving several
problems: (i) embedding application-speci�c raw input data
into a generic metric space, (ii) fast and accurate search
for the nearest-match records in a high-dimensional metric
space, and (iii) reasoning about the quality of reuse among
the potential search outputs. Challenge (i) can be addressed
with well-established domain-speci�c feature extraction ap-
proaches (Section 3.1). To address (ii) and (iii), we propose
adaptive locality sensitive hashing (A-LSH, Section 3.2) and
homogenized k nearest neighbors (H-kNN, Section 3.3).
Reuse process. Armed with these techniques, approximate
computation reuse proceeds on a per-function basis. We al-
ways turn function input into feature vectors to serve as
cache and query keys. Once an inference function is actu-
ally executed, a key-value pair is added to the A-LSH data
structure. The value is simply the function output. When an
application invokes a particular function, this triggers a reuse
query for that function. We retrieve several key-value pairs
from the A-LSH whose keys are the nearest-match to the
query key (i.e., a feature vector from the new function input).
Among the values of these key-value pairs, we then select
the �nal query result (i.e., the new function output) with
H-kNN. Section 3.4 discusses the generality of this process.
Crucially, while the input matching is approximate, the

ideal output identi�ed for reuse is precise, the same as the
result from the full-�edged computation, due to the error
tolerance discussed earlier (Section 2.2).
Terminology. Thoughout the paper, “input” refers to the
raw input data to the inference function or the corresponding
feature vectors serving as the cache or query key, while
“output” refers to the previously computed results, the cached
value matching a cache key or the reuse query result.
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Figure 2. Distance distribution between feature vectors of
the same and di�erent semantics.

3.1 Application-speci�c feature extraction
Di�erent contextual recognition applications vary by their in-
put data type (such as images, audio, and text) and inference
logic. Therefore, the �rst step is to embed heterogeneous raw
input data into a generic representation while preserving
the notion of similarity.
There are two implications from this step. First, it de-

couples application-speci�c processing from general reuse
procedures. Second, it obviates the need for app developers
to manually annotate data features.
Assessing similarity is far more challenging than check-

ing for equality. Fortunately there are well established tech-
niques to map raw data to multi-dimensional vectors in a
metric space. We can then compute the Euclidean distance
between vectors to gauge their similarity.
Domain-speci�c approaches. For images and videos, their
local and global characteristics can be captured in feature
vectors such as SIFT [54] and GIST [61], which have been
shown [40] to e�ectively measure image similarity. For audio,
MFCC [53] and PLP [38] are widely used to capture acoustic
features in compact vectors for speech applications [47].
Autoencoding. More generally, recent Autoencoder tech-
niques [39, 83] use deep neural networks to automatically
learn state-of-the-art feature extraction schemes for various
data sources, including text, images, and speech.
Examples. Figure 2 shows that we can indeed quantifying
data similarity with the distance between feature vectors
mapped from the raw images and audio samples. The data
are randomly selected from three arbitrary classes from Ima-
geNet [67] and the TIMIT acoustic dataset [27]. We use SIFT
to turn 256⇥256 images into 1000-dimension vectors and
MFCC to convert 30-ms speech segments (sampled at 16 kHz,
16-bit quantization) to 39-dimension vectors. Figures 2(a) and
2(b) plot the distribution of the distance between pairs of
feature vectors, for the image and audio data respectively.
The distances are normalized in their respective scale space.
We can see that the feature vectors for the same scene (or
utterance) are geometrically “closer”.

3.2 Adaptive Locality Sensitive Hashing
After turning the raw input data into high-dimensional fea-
ture vectors, we need a mechanism to index them for fast
and accurate lookup.
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Figure 3. Locality sensitive hashing.

Table 2. Lookup speed comparison (10,000 entries)
Dimension R-Tree (ms) LSH (ms)
4 0.018 0.002
64 2.279 0.009
128 6.342 0.011
1024 87.504 0.010

Locality sensitive hashing (LSH) as a strawman. LSH [12]
is widely used to search for the nearest matches in a high-
dimensional space [28]. The data structure consists of mul-
tiple hashtables, each of which employs carefully selected,
distinct hash functions and a set of buckets. The hash func-
tions will map similar data to the same bucket in their cor-
responding hashtables with high probability. The buckets
convey a sense of “locality”.
Figure 3 shows LSH operations for three clusters of data,

represented by three shapes. Ideally, each cluster should be
mapped to a distinct, corresponding bucket across hashtables.
When searching for the nearest matches, LSH �rst locates
the bucket corresponding to the query input within each
hashtable. The entries in all these buckets form a candidate
set, from which the �nal output is selected based on its
distance to the query input.

The time complexity for retrieving the nearest neighbors
using LSH is O(n� logn), where n is the number of data
records indexed and � is a variable far smaller than one. In
comparison, other spatial indexing data structures such as
R-Tree, KD-Tree, and VP-Tree [14, 69, 82] are not as practi-
cal or e�cient as LSH when dealing with high-dimensional
data such as images or audio. R-tree hasO(2d logn) complex-
ity, where d refers to the index key dimension. The factor
2d signi�cantly limits its usage in high-dimensional scenar-
ios. Table 2 shows the lookup speed using di�erent data
structures when given random high-dimensional vectors as
keys. While LSH consistently caps the lookup time at around
0.01 ms, that time for R-tree increases exponentially, to 87 ms,
with the number of dimensions.
Limitation of LSH. The standard LSH is statically con�g-
ured, however, limiting its performance.
Recall that each hashtable in the LSH leverages a set of

hash functions h : Rd ! N. Each hash function maps a
vectorv to an integer by hi (v) = b ai ·v+b i

r c, where ai , bi are
random projection vectors and the parameter r captures the
granularity of the buckets, i.e., how well buckets di�erentiate
among dissimilar entries. The concatenation of the j integers

together forms a bucket, < h1(v),h2(v), ...,hj (v) >, within
the hashtable.

Thus, con�guring r is crucial for LSH performance. Lookup
is both fast and accurate when the hash bucket granularity
matches the distribution of the cache keys.
The rightmost part of Figure 3 shows two examples of

parameter miscon�guration. The star represents the query
input, and should ideally be hashed to a bucket containing
all the squares but only squares. When the buckets are too
coarse-grained, the hashing di�erentiation is weak. Many
dissimilar keys are hashed to the same bucket. Searching
through a large bucket is slow, but we can be con�dent that
all relevant entries are in the bucket and the best match
can be found. Conversely, �ne-grained buckets contain few
entries each and are quick to search through, but might not
contain the best match.
In practice, a major challenge is that the distribution of

the input data is unknown and often time-varying. The per-
formance of the standard LSH is thus at the mercy of the
data distribution. This necessitates an algorithm to tune the
LSH con�guration during run time.
Adaptive LSH (A-LSH). In the LSH query complexity ex-
pression O(n� logn), we aim to keep the parameter � con-
stantly low for optimal lookup performance.
Analytically, � is determined by r [21]: �(r ) = logpr p1,

pr = 1 � 2�(�r/c) � 2p
2� r/c (1 � e�(r

2/2c2)), and p1 is simply
pr when r = 1. �(·) is the cumulative distribution function
of the standard normal distribution, N ⇠ (0, 1).
c is in fact called the locality sensitivity factor. Its ideal

value should divide the entire data set into disjoint subsets,
such that the variance is small within each subset but large
across di�erent subsets. The bucket granularity (r ) can then
be determined based on the intra-subset variance. Therefore,
to obtain the optimal �, we �rst estimate the value of the
data-dependent parameter c in the previous formula and then
optimize the parameter r accordingly.

Since c varies with the current cached key distribution but
no assumptions can be made in advance, we approximate
c with the statistics of the key distribution. Speci�cally, for
each cache key, we �rst �nd its kth nearest neighbors, where
k is a pre-selected constant (Section 3.3). The distance to
this kth neighbor, Dk , measures the radius of the immediate
neighborhood cluster of the cached key. Across all cached
keys we then have a distribution of Dk . Then, we calculate c
as the smaller of 5⇥mean(Dk ) and the 95th percentile within
the distribution of Dk . This is an empirical rule we learned
from experiments, covering a wide variety of data. Finally,
we can tune r to reach the local minimum of the function
�(r ) during the run time, leveraging existing optimization
methods such as gradient descent [16].



3.3 Homogenized k Nearest Neighbors

After retrieving several “closest” cached records, we need to
determine the reuse output from these records. Intuitively,
we want to reuse aggressively as opportunities arise, but also
conservatively to ensure the reused result would be identical
to a newly computed result. This requires balancing the reuse
quality and aggressiveness.
k nearest neighbors (kNN) as a strawman. Selecting a
reusable record can be modeled as a data classi�cation prob-
lem, so we �rst consider kNN [10], an algorithm most widely
used for this purpose. The algorithm �nds k records closest
to the query input, identi�es the cluster label associated with
each, and then returns themode of the cluster labels through
majority voting. When applied to the cached key-value pairs
for our reuse scenario, step one above is based on matching
keys, while the “cluster label” is the value �eld of each pair.
The primary advantage of kNN is its non-parametric na-

ture, namely, no data-speci�c training is needed a priori.
Despite the simple idea, kNN has been proved to approach
the lowest possible error rate when given su�cient data [75].
State-of-the-art improvements, such as weighted kNN [51],
assign di�erent weights to the nearest records to further
improve the kNN accuracy.
Problem with native kNN. The ideal situation for native
kNN is when the k records form a single dominant cluster
that truly matches the query key. The value associated with
this cluster is then unambiguously the correct result for
reuse. In practice, however, neither condition is guaranteed.
Therefore, native kNN and its variants cannot always ensure
accurate reuse. Nor do they give much control over the reuse
quality or the aggressiveness. The limitations are manifested
in both the input and output processing.
First, existing kNN variants cannot always assess input

similarity accurately. The Euclidean distance between high-
dimensional vectors (i.e., the cache keys) becomes less infor-
mative with increased dimensionality and fails to re�ect the
similarity in the keys. The curse of dimensionality causes the
noise in certain dimensions to disproportionally skew the
overall distance measurement [10].
Second, a dominant value cluster is often absent due to

insu�cient data or a skewed data distribution, and existing
kNN variants provide inadequate tie-breakers between mul-
tiple clusters. As an example, suppose an input key K1 is
located at the intersection of two clusters, corresponding to
the computation outputs V1 and V2 respectively. Among the
nearest keys of K1, half of their values are V1, and the rest
are V2. In this case, either V1 or V2 can be valid, and it is im-
possible to select one correctly without further information.

Consequently, the perceived input similarity does not guar-
antee output reusability, and it is hard to gauge the con�dence
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Figure 4. Calculating the homogeneity factor � .
level of correct reuse merely from the cache keys. Unfortu-
nately, native kNN and variants make decisions based on the
keys but not the cached values.
To address the above limitations, we propose a novel re-

�nement, called homogenized kNN (H-kNN). It utilizes the
cached values to remove outliers and ensure a dominant clus-
ter among the k records initially chosen. This lets us improve
and explicitly control the quality of reuse.
Homogeneity factor � .Observe that the kNN performance
issues arise from the lack of a suitable mechanism to assess
the dominance of the clusters from the k records, hence
the correctness of reuse. We therefore de�ne a metric, the
homogeneity factor (� ), for this purpose.
From the k key-value pairs, we �rst prepare a frequency

vector ÆN = [N1,N2, ...,Nk ], where each element Ni records
the frequency of the ith distinct value. Then,� ( ÆN ) = Nmax/| | ÆN | |2,
where Nmax = max(Ni ),8 i 2 [1,k]. Figure 4 shows an
example. 12 nearest keys correspond to 3 distinct values.
Therefore, we derive ÆN = [7, 3, 2], and � = 7/

p
72 + 22 + 32.

A geometric interpretation gives an intuition behind � .
Cached records (key-value pairs) with the same value form a
cluster. Each cluster is mapped to a distinct dimension in ÆN ,
and the cluster size mapped to the length of the projection
onto that dimension. The homogeneity factor� is actually the
cosine distance between ÆN and its longest projection. A small
cosine distance implies the existence of a large dominant
value cluster, i.e., a high level of homogeneity among the
k records selected. In that case, we can be highly con�dent
that this dominant value is the correct result for reuse.

This de�nition of� applies to discrete output values, which
covers most classi�cation scenarios. If, instead, the output
values are continuous, � can simply be de�ned to be inversely
proportional to the variance of the k values and normalized
to the proper scale.
Homogenized kNN (H-kNN). With the homogeneity fac-
tor, we can then set a threshold �0 to control the reuse quality.
Algorithm 1 describes the operations of H-kNN. The intu-
ition behind our re�nement is to �rst remove outliers from
the k records initially chosen and then assess the homogene-
ity of the remaining records. Reuse proceeds only if there is
a dominant cluster. Note thatmean(Dk ) is the average kth
nearest neighbor distance Dk (also used when adapting the
LSH parameters in Section 3.2).
The value of �0 simultaneously a�ects the correctness of

the returned results and the proportion of non-null query



Algorithm 1: Homogenized kNN
// quer�Ke� and k are arguments

1 Select k nearest neighbors with native kNN, get
List<record> neighborList;

2 neighborList.�lter {record ) distance(record.key,
queryKey) < mean(Dk )};

3 Calculate ÆN and � from neighborList;
4 if � > �0 then
5 return value corresponding to Nmax ;
6 end
7 return null;

outputs, the latter of which can be interpreted as the aggres-
siveness of reuse. Therefore, with H-kNN, the quality of reuse
can be enhanced and explicitly controlled by adjusting �0.
A lower �0 permits more reuse but potentially less accurate
results. �0 can be set empirically by default (discussed in
Section 6.3.1) or dynamically by the application according
to its preference for the aggressiveness of reuse.
Bounding accuracy loss. For H-kNN, �rst note the reuse
accuracy is tunable through �0. Next, we investigate the error
inherent in the H-kNN algorithm.
For an input x , the error probability of reuse can be de-

noted by error (reuse) = Px⇠C (reuse(x) , compute(x)), where
C is the input distribution. According to the Probably Approx-
imately Correct (PAC) learnability framework [48], for each
given constant values of � and � , the error rate is bounded
by � with at least 1 � � probability, when the number of
participating samples, n, exceeds the value of the polyno-
mial p( 1� , 1

� ,n,dim(f )). n in our case is the total number of
the cached records that are usable by H-kNN. dim(f ) is a
factor determined by the intrinsic complexity of the learning
task. For native kNN, dim(f ) quanti�es how well the nearest
neighbor data points can be unambiguously clustered (i.e.,
the VC dimension of a local sphere constituted by the nearest
neighbour data [45]).

In other words, we can bound the potential accuracy loss
of kNN with a speci�ed con�dence level by tuning the bucket
granularity of the records stored in A-LSH, i.e., the parameter
r mentioned in Section 3.2. As H-kNN improves on kNN, the
reuse error can be reduced by further factor determined by
the intrinsic VC dimensionality of the cached values.

3.4 Generality
We emphasize that the approximate reuse algorithms (A-LSH
and H-kNN) are applicable to di�erent applications.
Application-agnostic process. A-LSH and H-kNN are ag-
nostic to the application logic because they operate at the
granularity of individual functions (e.g., an image recogni-
tion method) instead of an application as a whole (e.g., the
Google Lens app). If an application successively calls image

recognition and speech recognition, say, two separate reuse
queries will be issued.
A learning-based application typically executes in three

stages: (i) acquiring and preprocessing the input, (ii) invoking
relevant machine learning pipelines, and (iii) combining the
outputs to generate the �nal result.
For example, the cognitive assistance app (Section 2.1)

might acquire an image from the camera view, run image
recognition to identify a landmark label, search for the land-
mark on the Internet, and �nally display a selected page to
the user. Depending on the input image quality, additional
preprocessing can be employed, e.g., illumination correction,
noise removal, and segmentation. Similarly, the �nal output
generation steps, e.g., combining outputs from multi-modal
learning pipelines, searching for related information and ren-
dering on the screen, would be distinct for each speci�c case.
However, the core machine learning functions, i.e., image
recognition, are common across invocations of the app.

Stages (i) and (iii) vary by application and potentially even
between di�erent runs of the same application. In contrast,
Stage (ii) only varies by the type of learning operations but
not the speci�c application contexts. Operating only on stage
(ii) enables A-LSH and H-kNN to be application-agnostic.
Beyond classi�cation. Although we have used classi�ca-
tion examples throughout this section, the reuse framework
is broadly applicable to di�erent types of machine learning
functions. A-LSH is designed for fast and accurate nearest
neighbour lookup upon high-dimensional data, and hence is
generic to machine learning models. H-kNN can be applied
to learning tasks with either discrete output (i.e., classi�ca-
tion) or continuous output (i.e., regression, prediction), as
explained in Section 3.3. A su�cient condition of H-kNN is
local smoothness of the model, which is shown to be satis�ed
by a majority of the machine learning techniques [25, 32].

4 FoggyCache
The techniques discussed in the previous section are generic
to any approximate computation reuse scenarios. In this
section, we discuss how to implement these techniques as a
service for cross-device reuse outlined in Section 2. We target
contextual based recognition and inference applications.

Mobile computing paradigms today typically require coor-
dination between the smart devices, nearby edge servers [42],
and the remote cloud. An essential component in such sys-
tems is an o�oading runtime, such as MAUI, Odessa, and
Comet [20, 31, 66]. The runtime dynamically partitions the
processing pipeline into �ne-grained tasks and places their
execution locally on the device or remotely on a server.

Therefore, we re-design the traditional o�oading runtime
by incorporating approximate reuse as a service called Foggy-
Cache, interposed between the application and the o�oading
runtime as an intermediate layer. FoggyCache intercepts the
application call to the o�oading runtime interface, as shown
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in Figure 5, to invoke approximate reuse regardless of where
the computation task is eventually executed.

4.1 System overview

FoggyCache follows a typical client-server architecture. The
FoggyCache client can be on a smartphone, tablet, or IoT
device. The FoggyCache server is a central point of coordi-
nation between the clients. Given the advent of mobile edge
computing for low-latency computation o�oading, edge
servers or cloudlets [71] are ideally suited to deploying the
FoggyCache server.
Server. The server-side FoggyCache consists of an A-LSH
cache gathering previous computation records (input & out-
put) of all clients, a service daemon handling reuse queries,
and a module that handles the client-server coordination.
Client. The client-side FoggyCache consists of an on-device
A-LSH cache and a service endpoint which interacts with
the server-side cache and the o�oading runtime or the appli-
cations. The local cache stores a subset of the computation
records from the server-side to minimize remote lookup.
Plugging FoggyCache in the o�loading runtime. To
avoid modifying the application, we retain the native in-
terface between the application and the o�oading runtime.
The FoggyCache client intercepts the o�oading call inside
the entry point to the o�oading runtime.
Take MAUI as an example. Once a method is declared

as remoteable, its invocation will prompt the standard of-
�oading runtime to schedule the code execution, locally or
remotely. With FoggyCache, the method invocation �rst
triggers the reuse pipeline before a scheduling decision is
made. If any previous results are reusable, these are returned
directly to the application without further computation. Oth-
erwise, the normal o�oading action resumes to schedule
and execute the task. The APIs are detailed in Section 5).
The FoggyCache server runs in its own process or container,
separately from the remote end of the o�oading runtime.
Challenge: two-level cache coordination.Both the server-
side and client-side caches adopt the least frequently used
(LFU) policy for cache entry replacement. However, coordi-
nation is crucial between the two levels of cache. As new

computation requests are initiated from the clients, yet cross-
device reuse is supported at the FoggyCache server side.
Therefore, how new computation records propagate from
the clients to the server and vice versa notably a�ects the
FoggyCache performance. Our solution has two parts, cor-
responding to the two directions of data �ow between the
client and the server, shown in Figure 5 by the arrows of
cache sync and speculative execution.

4.2 Client side cache management

Two mechanisms are needed to synchronize the client side
caches with the server side: client warm-up and cache miss
handling. The former is needed when a client appears in
the vicinity of the server for the �rst time to boot-strap
the service. The latter is triggered when no locally cached
outputs could be reused.
Client cache warm-up. Intuitively, the client cache should
receive broadly distributed entries to jump start the reuse
service and maximize the probability of a random reuse
query being matched with a reusable output from the cache.
Without relying on any assumptions on the input data

distribution, we adopt strati�ed sampling to generate a subset
of the server cache. The size of the subset is determined by
the client or follows a default value. Algorithm 2 details the
operations. The key idea is to �rst select as many types of
cached keys with popular cached values as possible, where
the popularity of a cached value is estimated based on the
number of cache keys mapped to this value. This ensures
a broad coverage of the records in the subset so that our
approximate reuse algorithms could proceed in most cases.
If space remains in the client cache after this �rst sampling
pass, the algorithm then proportionally samples from the rest
of the entire server cache. This algorithm achieves a dynamic
trade-o� between the subset coverage, the distribution of
the cache keys, and the limited client cache space.

Note that existing data-dependent prefetching techniques [62,
63] are orthogonal to our design. While we aim for reason-
able performance without prior knowledge, other prefetching
techniques could be adopted instead if prior knowledge about
the input data is known.
Cache miss handling. Cache miss handling is on the criti-
cal path of the application, and therefore the processing logic
and the data transmitted should be lightweight and minimal.

When the FoggyCache client does not carry reusable out-
puts, it sends a request to the server including the query
input and the homogeneity threshold �0. Di�erent clients
could therefore customize the tradeo� between time saving
and reuse accuracy by querying the same server cache with
di�erent thresholds �0.
The FoggyCache server executes the query and returns

the reused output along with k nearest records, the mini-
mum needed to carry out the H-kNN algorithm. This way, it
reduces a potential cache miss from a similar, future query



Algorithm 2: Initial cache warm-up algorithm
// Subset size s and num of nearest neighbors

k are inputs, subset is the output
1 Initialize empty subset[s];
2 Create inverted index Idx: {Value 7! List<Entry> lst}

from the cache;
3 Sort the Value from large to small in Idx w.r.t. lst.size();
4 Store the sorted Values into a List<Value> vlist;
5 while vlist is not empty && subset is not full do
6 Value v = vlist.get(0);
7 List<Entry> elist = Idx.get(v);
8 Sample min(k , elist.size(), subset.spaceLeft()) entries

from elist and append them to subset;
9 vlist.remove(v);

10 end
11 if vlist is empty then
12 Proportionally sample entries from the cache to �ll

up the subset;
13 end

on the client device. Meanwhile, k is small enough to avoid
incurring non-negligible communication overhead.

4.3 Server side cache updates

From the server perspective, it is desirable to collect newly
generated computation records from the clients in a timely
fashion for cross-device reuse. Intuitively, each FoggyCache
client can batch updates to the server periodically. However,
the cache entries might reach the server too slowly and un-
reliably this way, especially in the face of client mobility or
unstable network connectivity. Moreover, not all computa-
tion records are created equal. For instance, a computation
record with few nearest neighbour records stored in the
FoggyCache server could potentially bene�t all clients that
submit reuse queries with similar inputs, and hence should
be synchronized to the server as soon as possible. However,
only the FoggyCache server knows such information. There-
fore, we devise a speculative execution mechanism on the
FoggyCache server to speed up its updates proactively.
Speculative computation. Once a reuse query comes, the
server additionally estimates the importance (i.e., the prob-
ability of future reuse) of the computation task that corre-
sponds to the query. Based on this probability, the server
decides whether to speculatively execute the task and add
the input-output record to the cache for future reuse queries.
Although prediction-based speculative execution algo-

rithms are widely used [60, 74], they are not directly ap-
plicable. Due to the approximate nature, the importance of a
computation record is no longer solely decided by the access
statistics about the record itself.
Instead, the likelihood of a computation record being

reused in the future is jointly determined by three factors:

the average access frequency (Fk ), the average distance from
the reuse query (Distk ), and the homogeneity factor (�k )
among the k nearest neighbors of the query input. The
FoggyCache server also maintains the average access fre-
quency Fa�� , the average distance to k nearest neighbor
Dista�� among all cached records, and the default homogene-
ity threshold �0. We then calculate Pf = min(Fa��/Fk , 1),
Pd = min(Dista��/Distk , 1), and P� = min(�k/�0, 1), as
the corresponding normalized factors ranging in (0, 1] so
that they can be used as probabilities. Then, importance =
1�Pf ·Pd ·P� . The multiplication captures the independence
between these three factors. The FoggyCache server will
then invoke speculative computation for this query with a
probability equals to importance . The intuition behind the
importance value is that we �rst take access frequency Fk as a
baseline estimate, and then further consider the approximate
nature, where the input distribution (Diskk ) and the output
distribution (�k ) both play an important role in determining
the reused output (Section 3).

Note that the decision to proceed with speculative execu-
tion does not consider the load on the edge server. Basically,
we decide whether to speculatively compute a record based
on its importance, but we let the task scheduler on the edge
server to decide when to execute the speculation task. For
instance, the task can be separately assigned a low priority
to avoid it contending with latency-sensitive tasks.

4.4 Additional consideration

Incentives: Various approaches [18, 26, 59] have been pro-
posed to incentivize participation in decentralized systems.
FoggyCache follows the “give and take” approach to incen-
tives, similar to the proposal in [26]. Each FoggyCache client
is allocated free credits at the beginning, while additional
credits are given proportional to the number of computation
outputs it contributes. The credits are used to query reusable
computation from the server. The exact numerical value of
the proportion parameters vary based on the global balance
of queries and contributions under each speci�c scenario.
Security. The main security concern for FoggyCache arises
from malicious devices polluting the cache with false com-
putation outputs. To address this, we can incorporate exist-
ing object-based reputation system (e.g., Credence [80]) in
FoggyCache with negligible additional overhead. Each com-
putation record is additionally labelled with an anonymous
identity of the contributing client. Clients implicitly vote on
cached records while running the reuse query. Speci�cally,
if a cached record is selected by Step 2 of the H-kNN but its
output is not chosen in the end, this constitutes a negative
vote. Conversely, a successful reuse is a positive vote.
Privacy.Good enough privacy could be achieved by anonymiz-
ing participating devices when reporting data to the server.
Since FoggyCache targets locality-based scenarios, the raw
input of the approximate reuse is mostly local contextual



information. Such information is meant to be collected by all
nearby entities and hence public by nature. Location privacy
is less of a concern here. Moreover, the FoggyCache client
does not have to store and operate on raw input data. This
means that di�erent applications or vendors can employ
their custom encryption schemes to protect the raw data
without a�ecting cross-device reuse, as long as they feed the
feature vectors extracted to FoggyCache.

5 Implementation
5.1 Architecture

We implement FoggyCache following a typical client-server
model. A two-level cache structure that spans the edge server
as well as the local device serves as our storage layer. The
communication layer builds on the Akka [2] framework.
Cache layout. The two-level storage adopts the same layout.
The highest level of each cache structure is a Java HashMap,
which maps a function name (String) to an in-memory key-
value store, where an A-LSH is generated from the key region
among computation records of this function collected from
all the clients. Additionally, the server side cache system
includes utility functions to serialize and deserialize its data
partially to disk.
Concurrency. FoggyCache is built using the Akka toolkit,
which adopts the actor model [9] to handle concurrent in-
teractions between system components. Each function mod-
ule is implemented in a separate class extending the Akka
AbstractActor class. Concurrency is managed implicitly
by the Akka framework via message passing. We further
leverage the Akka cluster module to provide a fault-tolerant,
decentralized membership service.

5.2 APIs and patches

FoggyCache APIs. As much as possible, FoggyCache aims
to make the processing logic transparent to the o�oading
runtime and applications. Therefore, three intuitive APIs are
exposed: ConfigFunc(func_name, config),
QueryCompOutput(func_name, input, params),
and AddNewComp(func_name, input, output). The �rst
speci�es reuse con�gurations for each native function (e.g.,
serialization, feature extraction, and vector distance calcula-
tion). The latter two trigger reuse queries and feed the native
processing outputs back to FoggyCache.
Application or library patches. To interact with Foggy-
Cache, short patches should be applied to the o�oading
runtime, or the application code when no runtime is used.
No more than 10 lines of code is needed to wrap around
the native pipeline. QueryCompOutput and AddNewComp are
added to the native code within a conditional statement to
determine whether to invoke the native processing pipeline.
ConfigFunc enables on-demand customizations.

Table 3. Data correlation in di�erent settings.
Setting Avg norm distance
ImageNet (same synset) 1.00 +/- 0.15
Video (10 frames apart) 0.31 +/- 0.04
Video (30 frames apart) 0.53 +/- 0.27

6 Evaluation
6.1 General setup

Application benchmarks. Following the motivating exam-
ples in Section 2, we build three stripped-down versions of
real applications as benchmarks, two for image recognition
(plant and landmark detection) and one for speaker identi�-
cation. These are implemented in Java, using the DL4J [3],
OpenCV [17], and Sphinx [7] libraries. The workload set-
tings follow those in related papers [30, 47], using the same
pre-trained neural network models that are widely adopted
by real applications. Compared to the real applications, our
benchmarks skip supporting functionalities such as the user
interface, since they can interfere with the timing and en-
ergy measurements of the core computation modules. Our
benchmarks can also be instrumented easily for various mea-
surements, which is di�cult with proprietary applications.
Datasets.Weuse two standard image datasets, ImageNet [67]
and Oxford Buildings [64], an audio dataset, TIMIT acous-
tics [27], and several real video feeds.
The ImageNet plant subset includes over 4000 types of

labeled plant images, taken from di�erent viewpoints under
various lighting conditions. The Oxford Buildings dataset
consists of 5000 images of 11 speci�c landmarks in Oxford,
hand-picked from Flickr. The TIMIT acoustic dataset [27]
contains broadband recordings of 630 speakers of eight major
dialects of English, and we use it for speaker identi�cation.
For end-to-end performance evaluation, we also use several
10-minute real video feeds, taken on a university campus
and in a grocery store, multiple times at either location.
Table 3 compares the average feature vector distance be-

tween two images from the same syntax set in ImageNet and
two frames from a video feed. The distance is signi�cantly
larger (by more than 50%) for ImageNet than for successive
video frames, because no spatio-temporal correlation exists
between images in ImageNet.
Therefore, we mainly use the standard image and audio

datasets in our evaluation. Although they appear less realistic
than real audio or video feeds, they present more challenging
cases for computation reuse and help us gauge the lower-
bound performance of FoggyCache.
Hardware setup. With a 64-bit NVIDIA Tegra K1 proces-
sor, Google Nexus 9 is one of the most powerful commodity
Android mobile devices. Thus, we use the tablet (running
Android OS 7.1) as the client side device to assess the poten-
tial bene�t from saving computation with FoggyCache. The
FoggyCache server runs on a Ubuntu (14.04) Linux desktop
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Figure 7. Reuse precision of H-kNN and alternatives.
server with a quad-core 2.3 GHz Intel Xeon CPU and 16 GB
of memory.

6.2 Microbenchmarks

A-LSH performance. We �rst select a subset from Ima-
geNet, optimize the parameter r for the default LSH, and cal-
culate the average kth nearest neighbor distance (mean(Dk )
in Section 3.2). Recall that this distance captures the density
of the data in the LSH (a large distance indicates a low den-
sity and vice versa). Then, we select other subsets of images
where their average kth nearest distances range from 1/8 of
the Dk to 8⇥. These subsets serve as the input to the default
LSH and A-LSH. k is set to the default value 10. The lookup
quality is measured by the F1 score, the harmonic mean of
precision (the correct rate of the results) and recall (the per-
centage of the correct results found), ranging from 0 (the
worst) to 1 (the optimal).

Figure 6(a) shows that the lookup quality of the default
LSH �uctuates dramatically given di�erent data densities,
whereas A-LSH consistently maintains an F1 score over 0.98.
The default LSH only achieves a high lookup quality when
the data distribution matches the pre-determined value of
r . Figure 6(b) further shows that the lookup time for A-LSH
remains constant. However, there is no guarantee for the
default LSH, especially when the data are densely stored and
thus highly clustered into the same few hash buckets. Note
that although LSH appears to incur a lower lookup time for
sparsely populated data, the corresponding lookup quality is
low. Together the �gures show that A-LSH accurately adapts
the parameters to the dynamics of the input data distribution,
and consistently achieves a near-optimal balance between the
lookup quality and speed.
H-kNNperformance.We compare H-kNNwith naive kNN
and a state-of-the-art variant, weighted kNN [51]. The perfor-
mance metric is the reuse precision, which is upper-bounded
by 100%.
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Figure 8. Client cache hit rates and server cache sampling
strategies.

First, we select 1100 images from 4 types of syntax sets
in ImageNet. 1000 of them are fed into the cache, and the
other 100 images as inputs for H-kNN k and �0 (the homo-
geneity threshold) values vary. The solid and dashed lines
in Figure 7(a) represent the H-kNN and native kNN perfor-
mance, respectively. H-kNN outperforms native kNN by an
increasing margin as �0 increases, which con�rms that (i)
the homogenization process improves the reuse accuracy,
and (ii) the level of accuracy is indeed tunable through the
parameter �0. This means that applications can customize
the level of reuse based on desirable accuracy guarantees. The
value of k makes little di�erence, however. Based on the
results, we set k = 10 and �0 = 0.9 throughout this section.
More detailed tradeo� is shown in Figure 10(b).
Second, we investigate how H-kNN copes with two in-

tersecting clusters (the example against native kNN in Sec-
tion 3.3), by adjusting the proportion of cache keys at the
intersection of two clusters. Figure 7(b) indicates that H-
kNN maintains a consistent and high reuse precision regard-
less of the key distribution. Unfortunately, both native and
weighted kNN su�er, as predicted in Section 3.3, with the
reuse precision dropping by 40%.
Client cache warm-up. We next evaluate the bene�t of
strati�ed sampling for client cache warm-up (Section 4.2),
and compare that to randomly sampling server cache entries.

We generate di�erent key-value pairs from ImageNet data
to store in the FoggyCache server cache and also for reuse
queries. Then, we bootstrap the client cache with strati�ed
sampling and random sampling (as the baseline) respectively.
The performance of the algorithms is shown in terms of the
client cache hit rate.
First, we set the client cache size to 1000 entries, change

the number of syntax sets of images at the server, and ob-
serve the cache hit rates. We make two observations from
Figure 8(a). (i) When fewer than 100 types of images are
cached at the server, strate�ed sampling achieves over 50%
cache hit rate, which con�rms that popular images in Ima-
geNet are adequately prioritized. (ii) When more types of
images are cached at the server, the client cache hit rate from
random sampling drops to nearly zero, whereas strati�ed
sampling still manages over 25% hit rate, showing better type
coverage in the latter.
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Figure 9. Performance comparison of speculative execution
in FoggyCache and alternatives.

0 20 40 60 80 100
Proportion of reusable computation(%)

0

20

40

60

80

100

Ac
tu

al
 re

us
e 

ra
te

(%
) Reference86% accuracy

90% accuracy
94% accuracy
98% accuracy

(a) Reuse opportunities captured

0.4 0.6 0.8 1
Homogeneity threshold 3

20

40

60

80

100

Ti
m

e 
sa

ve
d 

& 
Ac

cy
 (%

)

Accuracy

Time saved

6000 entires
200 entries

(b) Reuse vs accuracy tradeo�

Figure 10. Tradeo� between captured reuse opportunities
and computation accuracy.

Then, we select 100 types of images from the server cache
and vary the client cache size. Figure 8(b) shows both strate-
gies achieve 80% hit rate, but strate�ed sampling requires
only a quarter of the cache space needed by random sam-
pling.
Speculative server cache updates. Finally, we gauge the
bene�t of incorporating speculative computation (Section 4.3)
in FoggyCache. We select a subset of ImageNet dataset to
create multi-device reuse query streams, where the frac-
tion of “new” computation (no reusable results exist at all)
ranges from 5% to 50%. We compare our speculative execu-
tion algorithm with two alternatives, random and no specu-
lation.Random means invoking speculative execution with
the same probability as in FoggyCache, but selecting inputs
randomly. The ideal reuse proportion is 100%.

Figure 9(a) illustrates that FoggyCache consistently caches
in around 90% of the reuse opportunities, whereas random
and no speculation cannot keep up as the fraction of “new”
computation increases, because FoggyCache accurately pre-
dicts the importance of a computation record for future reuse
and pre-emptively generates that record before the actual
reuse request. Figure 9(b) compares the fraction of compu-
tation that is speculatively executed in the ideal case (each
speculatively generated record is visited later) and in Fog-
gyCache, and our algorithm only triggers 10% unnecessary
computation at most compared to the ideal case.

6.3 FoggyCache performance

6.3.1 Tradeo� between reuse and accuracy

Accuracy. We run object recognition using ResNet50 [37]
on selected ImageNet images to assess the tradeo� between
the aggressiveness of reuse and the accuracy.

First, we quantify how well FoggyCache recognizes reuse
opportunities when the fraction of reusable queries in the

whole query stream varies. The dashed line in Figure 10(a)
shows the ideal case and serves as a reference. Any points
above indicate false negatives (missed reuse), while points
below the line indicate false positives (inaccurate reuse).

FoggyCache consistently captures the reuse opportunities
in all data combinations while maintaining high accuracy.
Both the false positive and false negative rates are below
10% (the 0% and 100% reuse points) while the reuse accuracy
exceeds 90%. Even if we reuse conservatively to ensure a 98%
accuracy, we only miss fewer than 30% of all reuse chances.
Second, we examine the trend of the total computation

time saved and the relative accuracy (compared to native
recognition accuracy), both as the homogeneity threshold
�0 varies. We run the experiments for various caching levels,
ranging from 200 to 6000 cached entries. For legibility only
the lines for 200 and 6000 entries are plotted. The other lines
fall between these two.

The dashed and solid lines in Figure 10(b) plot the relative
accuracy and the time saved respectively. We can see that
setting �0 to between 0.8 to 0.95 would ensure both higher
than 90% accuracy and less than 20% loss of the reusable op-
portunity. This con�rms that FoggyCache achieves a decent
balance between accuracy and computation time reduction.
User experience.We conduct an informal user survey among
students on our campus to gauge how approximate reuse
a�ects user experience. In the context of the cognitive as-
sistance application, students are asked whether they are
satis�ed with di�erent combinations of the percentage ac-
curacy loss and the reuse bene�ts (in terms of percentage
reduction of battery consumption and latency), with data
points taken from Figure 10(b). From 100 completed ques-
tionnaires, 92 are satis�ed with the user experience when
the accuracy loss is under 5%, and 80 satis�ed when the ac-
curacy loss is under 10%. FoggyCache performs well for both
cases. For more accuracy-sensitive applications, such as au-
tonomous driving and medical pill recognition, the accuracy
of FoggyCache can be tuned by carefully selecting the value
of �0 and the number of cached records.

6.3.2 End-to-end system performance

We investigate the end-to-end performance of FoggyCache
using the three aforementioned application benchmarks. We
separately consider two modes of execution for mobile ap-
plications, local processing on the mobile device and edge
o�oading. The real-time decision made by the o�oading
runtime between the two modes is orthogonal to the Foggy-
Cache behavior. The performance metrics are latency, energy
consumption, and accuracy. The latency is measured end-
to-end from the arrival of a request to its completion. The
accuracy is de�ned as the percentage of correct results. The
energy consumption is calculated based on the real-time bat-
tery status collected with the Android debugging API, adb
dumpsys batterystats.



Table 4. End-to-end FoggyCache performance.
Workload Latency (ms) Energy (mJ)

Application Description O�. (w/o) O�. (w/) Without With Without With

Speaker
Identi�cation

Number of
speakers

4 28.1 8.4 13.1 4.2 30.4 9.8
8 28.1 11.8 13.1 5.5 30.4 13.3
16 28.1 12.1 13.1 5.9 30.4 13.7
32 28.1 13.2 13.1 6.4 30.4 15.0

Landmark
Detection

Types of
neural network

AlexNet [46] 24.6 16.3 37.1 19.5 365.9 39.5
ResNet50 [37] 32.8 17.7 102.4 27.9 1315 110.7
VGG16 [73] 53.8 21.4 269.6 57.3 3132 246.9

Video feed (campus) w/ VGG16 53.8 12.0 269.6 25.4 3132 114.2

Plant
Recognition

Types of
neural network

AlexNet 24.6 16.6 37.1 21.4 316.8 113.9
GoogleNet [76] 29.2 17.9 65.3 32.2 817.4 236.8
VGG16 53.8 27.9 269.6 99.8 3132 901.4

Video feed (grocery) w/ VGG16 53.8 16.5 269.6 30.8 3132 131.1
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(c) Plant recognition

Figure 11. The accuracy of the processing pipeline with and without FoggyCache.
Experiment settings.We use Nexus 9 tablets as the Foggy-
Cache clients, con�gured with a 15 MB local cache size. The
FoggyCache server is deployed on a Linux machine which
also serves as the edge o�oading destination. The network
latency between the clients and the server is around 20 ms,
a typical value for the edge setting [41]. We also tried lower
latencies but they only made FoggyCache perform better.

For Speaker identi�cation, we randomly select 3200 speech
segments from 4, 8, 16, and 32 speakers respectively from
the TIMIT dataset, add di�erent ambient noise, and extract
the PLP feature vectors We store the computation records
in the server cache, and populate 10% of them to the tablet
for client cache warmup. Another 200 speech segments are
selected from TIMIT and preprocessed the same way to serve
as the test inputs. The core computation of the workload
follows the same setting as for DeepEar [47].

For landmark detection and plant recognition, we take 5000
images each from the Oxford dataset and ImageNet and both
the campus and grocery store video feeds. The standard
datasets exhibit no spatio-temporal correlation between suc-
cessive inputs, while the real video feeds contain common
imperfections, e.g., motion induced or out-of-focus blur. We
extract feature vectors, warm up the client cache with 10%
of the data, and process another 1000 images as test inputs.
Four �ne-tuned neural network models (AlexNet, GoogleNet,
ResNet50, and VGG16) are used to evaluate the performance.

Performance. Table 4 records the performance in all the
experiments. “With” and “Without” refer to whether Foggy-
Cache is enabled, and “O�.” refers to cases where the actual
computation happens at the edge server instead of the local
device. The numbers in bold highlight the most remarkable
performance of FoggyCache. FoggyCache achieves a 50-70%
latency reduction for both local processing and edge o�oad-
ing for the standard image datasets. When using the real
video feeds, the processing latency could be reduced by 88%.
The energy consumption is only measured for local process-
ing. FoggyCache reduces the native energy consumption by a
factor of 3 for the standard datasets and 20 for the video feeds.
Figure 11 shows that FoggyCache caps the overall accuracy
penalty under 5% while achieving good performance. This
con�rms that A-LSH and H-kNN can ensure the reuse qual-
ity regardless of the speci�c settings. The accuracy penalty
for the video feeds is constantly under 1%, hard to tell from
the bars and thus not shown in the �gure.

To sum up, FoggyCache e�ectively reduces the latency and
energy consumption (for on-device processing) of the native
processing pipelines, and the bene�t is more pronounced
when the native logic is more resource intensive.

6.3.3 Large-scale experiment

Finally, we run the landmark detection benchmark and ex-
amine how the number of devices a�ects the overall compu-
tation reuse opportunities.
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Figure 12. Single- or cross-device reuse achieved with Fog-
gyCache, with or without speculation.

Each client device is supplied with 300 input images about
5 landmarks, randomly selected from the Oxford dataset.
This corresponds to feeding to the application a 10-second
video at 30 fps with no inter-frame correlation. The server
and clients caches are con�gured to be the same sizes as
in Section 6.3.2 but remain empty before the start, so that
the caches evolve solely with the reuse needs on all client
devices. We start with a single FoggyCache client, and then
increase the number of concurrent clients in successive runs.
Figure 12 compares the reuse opportunities captured in

several scenarios: reuse within the same device only (the
“single-device reuse” line), cross-device reuse with or with-
out speculative execution, and the theoretic upper bound
which quanti�es the intrinsic reuse opportunity within the
input dataset. The error-bars are obtained from 10 runs. As
the number of devices in the system increases, the percent-
age of successful reuse also climbs quickly. Once we have
more than 10 devices in the system, the reuse proportion
stays above 70%. Additional devices provide marginal bene�t,
given the upper bound is around 80%. The �gure also shows
that FoggyCache outperforms intra-device reuse by more
than 55% and FoggyCache without speculation by 25%.

7 Related Work
We are aware of little existing work exploring approximate
computation reuse algorithms in mobile scenarios. Further,
the FoggyCache system incorporates these approximate algo-
rithms into the existing execution runtime on mobile devices.
We discuss a few approaches closest to ours.
Precise redundancy elimination. Redundancy elimina-
tion (RE) is widely employed, e.g., in mobile applications,
data analytics [33, 44, 56, 65], networking [11, 70], and stor-
age systems [24]. However, existing schemes involve exact
matching while FoggyCache handles fuzzy redundancy.

Star�sh [52], MCDNN [36], and Flashback [15] all include
caching while accelerating computation-intensive mobile
applications. However, they either involve exact matching
with cache entries or consider only low-dimensional input
values within a pre-de�ned set. In contrast, FoggyCache
handles fuzzy input matching without prior knowledge of
the data distribution.

UNIC [77] targets security aspects of RE, which are orthog-
onal to our design and can be combined with FoggyCache.
Approximate techniques.Approximate caching techniques
such as Doppelgänger [57] and Image set compression [72]
leverage similarity between data pieces to reduce storage
overhead. Approximate computing techniques such as Ap-
proxHadoop [29] and Paraprox [68] selectively skip inputs
and tasks to reduce computation complexity with tolerable
errors. FoggyCache adopts similar insights such as exploiting
similarity and suppressing error propagation but approxi-
mates repeated computation using di�erent techniques.

Cachier[23] and Potluck[34] are the closest to FoggyCache.
Cachier alludes to the notion of approximate reuse but fo-
cuses on cache entry optimization, assuming certain query
patterns. Our own prior work, Potluck, experiments with
avoiding duplicated image recognition and augmented re-
ality rendering for single device. In contrast, FoggyCache
is more general, achieving high quality reuse and tunable
performance, without assumptions about the workload.
Cross-device collaboration. Collaborative sensing and in-
ference systems such as CoMon [50] and Darwin [58] re-
volve around multi-device coordination in the same context.
However, unlike FoggyCache eliminating fuzzy redundancy
between devices, these cross-device collaboration works fo-
cus on partitioning a big job into correlated or independent
subtasks, distributing them among the devices, and then
collecting the individually results.

8 Conclusion
In this paper, we argue for cross-device approximate com-
putation reuse for emerging mobile scenarios, where the
same application is often run on multiple nearby devices
processing similar contextual inputs. Approximate reuse can
simultaneously achieve low latency and accurate results, and
is a promising optimization technique.

We design techniques, adaptive locality sensitive hashing
(A-LSH) and homogenized k nearest neighbors (H-kNN), to
address practical challenges to achieve generic approximate
computation reuse. We then build FoggyCache, which ex-
tends the mobile o�oading runtime to provide approximate
reuse as a service for mobile edge computing. Evaluation
shows that, when given 95% accuracy target, FoggyCache
consistently harnesses over 90% of all reuse opportunities,
which translates to reduced computation latency and energy
consumption by a factor of 3 to 10. FoggyCache provides
tuning mechanisms to further improve the accuracy.
While FoggyCache is optimized for multi-device mobile

and edge scenarios, our reuse techniques A-LSH and H-kNN
are generic and have broader applicability. We will investi-
gate other approximate reuse paradigms in future work.
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