
LinkShare: Device-Centric Control for Concurrent
and Continuous Mobile-Cloud Interactions

Bo Hu
Yale University

New Haven, USA

Wenjun Hu
Yale University

New Haven, USA

ABSTRACT
Mobile applications have become increasingly sophisticated.
Emerging cognitive assistance applications can involve mul-
tiple computationally intensive modules working continu-
ously and concurrently, further straining the already limited
resources on these mobile devices. While computation offload-
ing to the edge or the cloud is still the de facto solution, ex-
isting approaches are limited by intra-application operations
only or edge-/cloud-centric scheduling. Instead, we argue that
operating system level coordination is needed on the mobile
side to adequately support the prospects of multi-application
offloading. Specifically, both the local mobile system resource
and the network bandwidth to reach the cloud need to be allo-
cated intelligently among concurrent offloading jobs.

In this paper, we build a system-level scheduler service,
LinkShare, that wraps over the operating system scheduler
to coordinate among multiple offloading requests. We further
study the scheduling requirements and suitable metrics, and
find that the most intuitive approaches of minimizing the end-
to-end processing time or earliest-deadline first scheduling
do not work well. Instead, LinkShare adopts earliest-deadline
first with limited sharing (EDF-LS), that balances real-time
requirements and fairness. Extensive evaluation of an An-
droid implementation of LinkShare shows that adding this
additional scheduler is essential, and that EDF-LS reduces the
deadline miss events by up to 30% compared to the baseline.

ACM Reference Format:
Bo Hu and Wenjun Hu. 2019. LinkShare: Device-Centric Control
for Concurrent and Continuous Mobile-Cloud Interactions. In The
Fourth ACM/IEEE Symposium on Edge Computing (SEC 2019),
November 7–9, 2019, Arlington, VA, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3318216.3363303

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SEC 2019, November 7–9, 2019, Arlington, VA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6733-2/19/11. . . $15.00
https://doi.org/10.1145/3318216.3363303

1 INTRODUCTION
Mobile-cloud computing has been a cornerstone of the mo-
bile landscape in the last decade. This ranges from offloading
energy-hungry computation to the cloud, speeding up compu-
tation using more computing power on the cloud, leveraging
more storage space on the cloud, to benefiting from more
elaborately trained models for learning based applications.

Existing mobile-cloud interactions tend to be cloud-centric,
since the mobile side is less powerful. Consider, for example,
typical workloads involving computation offloading to the
cloud. While different applications might interact with distinct
backend servers, implicitly it is assumed that there is only
one active mobile-cloud interaction session at a time.

However, mobile applications are becoming increasingly
sophisticated, enhancing our interaction with the environ-
ment or providing cognitive assistance (Section 2). Some
scenarios might involve multiple concurrent applications or
modules working together (Google Tango [3], Gabriel [22]
and DeepEye [33]), where these modules are individually
computationally intensive and require computation offload-
ing. Worse, these applications embody a vision of continuous
operations, further straining the already limited resources on
the mobile devices. These represent canonical examples of
multiple concurrent and continuous mobile-cloud sessions.

Although there has been a multitude of computation of-
floading work over the past fifteen years [13, 15, 17–21, 28–
30, 32, 35, 36, 41], existing approaches are limited by intra-
application operations only or cloud-centric scheduling.

Instead, the emerging multi-application scenarios can ex-
hibit a heterogeneous network and server execution model,
involving different server backends. This suggests different
perceived network latencies and server processing capabili-
ties across applications. Further, they need to share the wire-
less interfaces, which can only be controlled at the device.
Cloud-centric management is no longer sufficient in this con-
current mobile-cloud interaction paradigm. We need to shift
the control to a device-driven paradigm. In other words, some
operating system level coordination is needed on the mobile
side to adequately support the prospects of multi-application
offloading.

An analysis of the current mainstream offloading mecha-
nisms suggests that the main consideration is scheduling the
network transfer to enable remote computation. In particular,

https://doi.org/10.1145/3318216.3363303
https://doi.org/10.1145/3318216.3363303

SEC 2019, November 7–9, 2019, Arlington, VA, USA Bo Hu and Wenjun Hu

the bottleneck is often the transfer along the first wireless hop.
This is important given the advent of mobile edge computing
promising to bring the remote server closer. However, the
combination of application workloads, network transfer time,
and the server processing time complicates the picture. Most
of the canonical applications have soft real-time constraints
for user interaction. This requires a balancing act between
minimizing the end-to-end processing time and meeting dead-
lines.

For example, the most intuitive approaches of minimizing
the end-to-end processing time (Shortest Job First, or SJF)
and earliest deadline first (EDF) scheduling both turn out to
be inadequate. The former (SJF) gives no guarantee about
meeting deadlines and can cause fairness issues (and even
starvation). This is because minimizing processing times can
penalize a job as a result of another job using a less powerful
backend. EDF, on the other hand, cannot handle heavy-tailed
network transfer time distribution. Section 3 analyzes this in
detail and suggests adding limited sharing to EDF (EDF-LS).
Essentially, when we detect a large network transfer, we serve
the next two jobs queued in a round-robin fashion.

Following the above study, we build a system-level sched-
uler service, LinkShare (Section 4) and implement it on An-
droid (Section 4.3). LinkShare wraps over the operating sys-
tem scheduler to coordinate among multiple offloading re-
quests, incorporating the EDF-LS algorithm.

Using benchmark applications representing face recogni-
tion, optical character recognition, speech recognition, and
license plate recognition, we find that this additional sched-
uling decision is essential, and EDF-LS reduces the deadline
miss rate by up to 30% compared to the baseline EDF (Sec-
tion 5). When the workload is light, EDF-LS hardly incurs
penalty from sharing, and in fact often outperforms EDF.
Even if the network bandwidth increases, the deadline con-
cern does not disappear, especially alongside improved server
capability.

Although the specific system is motivated by multiple mo-
bile offloading jobs, the issues discussed and the system
architecture are generic to concurrent mobile-cloud inter-
actions. In fact, any concurrent, inter-application network-
bound requests could benefit from the LinkShare service.
More broadly, LinkShare as a framework is also applica-
ble when the “offloading” destination is an edge server or a
nearby device instead. It is also amenable to other scheduling
algorithms as warranted by the application requirements. We
believe LinkShare represents a first step towards coordinating
an IoT ecosystem tethered to the mobile device.

In summary, this work studies concurrent and continuous
mobile-cloud interactions involving different server backends
and argues for a device-centric control mechanism. Specifi-
cally, our contribution is three-fold.

First, we analyze the scheduling complexity arising from
concurrent offloading workloads. Our study points to the
need to balance between meeting application deadlines and
avoiding blocking heavy workloads. We adopt limited sharing
in addition to Earliest Deadline First.

Second, we build a general framework as a system-level
service, LinkShare, that extends the operating system sched-
uler for concurrent inter-application network-bound requests
and incorporates the above scheduling algorithm.

Third, extensive evaluation of an Android implementation
of LinkShare confirms the importance of this additional sched-
uler and shows that EDF-LS achieves the balancing goal.

2 MOTIVATION
2.1 Emerging Application Scenarios
Mobile Augmented Reality (AR) Games. Mobile AR games
have been showing their potential on mobile platforms. One
example is the dominoes game included in the Google Tango [3]
project. Instead of getting a set of dominoes at hand, users
can place virtual dominoes in the real world and arrange them
through their mobile phones. It requires the application to
understand the user’s surroundings, remember the exact loca-
tions of the dominoes already placed, and display the virtual
dominoes on the screen in the meantime. To enable all these
functions, motion tracking, depth perception, area learning
and video rendering modules are needed. The first two mod-
ules help with understanding the environment, while area
learning helps with remembering the previous operations and
video rendering concurrently displays the virtual dominoes.
All these modules coordinate with one another to make the
dominoes game work correctly.
Wearable Cognitive Assistance. Wearable devices for cogni-
tive assistance have been suggested for more than a decade [37].
More recently, Gabriel [22] provides interactive cognitive as-
sistance using Google Glass to help people suffering from
cognitive decline, such as those with Alzheimer’s disease. The
patients are often unable to remember the names of friends or
remember to perform daily tasks. When looking at a person
that the user might know, the assistant will tell the user the
name of the person immediately. When looking at his/her
plants, it will remind him/her to water them. These two sce-
narios require face recognition and object recognition respec-
tively. As we cannot predict when the user may meet with a
friend or walk around his/her garden, these two modules must
run continuously and simultaneously.
Smart Video Surveillance. Smart home has become a pop-
ular concept in recent years, and smart video surveillance is
a key technology to ensure the security in smart homes. Ac-
cording to [24], the key to security is situation awareness. The
system needs to keep track of "who are the people in a space?"

LinkShare: Device-Centric Control for Concurrent
and Continuous Mobile-Cloud Interactions SEC 2019, November 7–9, 2019, Arlington, VA, USA

and "what are the subjects in the space doing?". To answer
these questions, learning techniques like face recognition, ob-
ject recognition, activity tracking are widely employed. To
quote one report [1], “one of the biggest factors assisting mar-
ket growth" is the real-time access and monitoring capability.
All the above modules need to run concurrently to generate
comprehensive real-time alerts.
Observations. Common across these examples, they are all
computation intensive and latency sensitive, and have a con-
tinuous flavor. More important, there are multiple modules
either within a single application or across multiple applica-
tions. Take the face recognition module as an example, the
average execution time on Google Glass, a Samsung Galaxy
Android smartphone, and a remote server are 2912, 537, and
41 ms respectively [14]. To maintain a high refresh rate for
an interactive face recognition application, it is impractical
for all these modules to run entirely on the local device.

2.2 Limited Execution Model Currently
The de facto approach to handling computation-intensive mo-
bile applications is to offload computation to the cloud (or,
more recently, to the edge). However, the current execution
model typically focuses on only one computation-intensive
workload running at a time, and most optimizations are ap-
plied within a single application. This single-workload model
does not suit the emerging applications described above,
whether commercialized applications like Google Tango (mul-
tiple modules running concurrently within the same applica-
tion), or research prototypes such as Gabriel (multiple appli-
cations running concurrently within a single device), Deep-
Eye [33](multiple deep vision models running concurrently),
and MCDNN [25] (multiple deep neural network applications
running concurrently, sharing the same library).

Instead, system-level cross-application coordination sup-
port is needed to manage simultaneous execution of these
applications, but existing approaches are still limited to spe-
cific scenarios and do not address concurrently offloading to
different backend servers. Tango takes a hardware approach
without offloading. MCDNN operates at the DNN library
level, aiming to process jobs locally as much as possible.
DeepEye limits its use cases to multiple deep vision appli-
cations. Gabriel is currently designed for concurrent mobile
applications supported by a common backend server and takes
a cloud-centric approach.

2.3 Towards device-centric scheduling
The entire offloading job involves local processing and/or data
transfer to the remote server followed by remote processing.
Therefore, we need to consider sharing and scheduling for
each component.

With concurrent offloading, different apps may use distinct
backend servers, due to either technical or business-related
reasons. For an example of the latter, consider the two main-
stream public cloud platforms: Amazon EC2 and Google
Compute Engine (GCE). Price-wise, for the same server com-
putation capacity, GCE is cheaper than Amazon EC2. How-
ever, the EC2 deployment covers more datacenters around
the world (22 total, 7 in the US) compared to GCE (21 to-
tal, 6 in the US). Therefore, a cost conscious developer who
only needs to provide regional service may opt for a server
on GCE, while another developer aiming for a better service
coverage worldwide may favor EC2.

We now face a new situation where the control needs to
be shifted to the mobile device. Since the concurrent applica-
tions and their backend servers are likely heterogeneous, such
device-driven control really matters.

Complicating the picture even further, applications have
different service requirements, manifested in deadlines for
real-time user interactions [40]. On-device scheduling can
make a huge difference. Even a simple reordering of the
offloading requests could dramatically improve the perfor-
mance of one module without hurting the others. We will
study specific examples next.

3 SCHEDULING OFFLOADING JOBS
3.1 What to schedule on-device
The anatomy of an offloading job. The processing of a job
involving offloading includes several components: potentially
some local processing on the mobile device, transferring the
data to the cloud, and processing on the remote server(s). The
second component can be further split into transfer on the
wireless access link and on the wired path to the server. The
split between local and remote processing is specific to the
offloading mechanism adopted in the application.

Within these components, the first component is tradition-
ally managed by the operating system scheduler and access
to the wireless link is also initiated by the mobile device.
The remaining components, transfer on the wired path and
the server processing, are beyond the control of the mobile
device. Therefore, the main scheduling decision in our con-
text concerns sharing the wireless link between concurrent
offloading workloads.
Offloading mechanism and scheduling. Existing main-stream
offloading mechanisms are method-based [15, 17] or, simi-
larly, based on small execution units [36]. In other words, the
whole application process can be divided into many execution
units, and each unit is run either locally or remotely.

Consider face recognition. The recognition function is
treated as a standalone method in MAUI [17]. Invoking this
method on a single frame from the video feed comprises an

SEC 2019, November 7–9, 2019, Arlington, VA, USA Bo Hu and Wenjun Hu

0 50 100 150
Processing Time (ms)

0

20

40

60

80

100
N

et
w

or
k

Tr
an

sf
er

 T
im

e
(m

s)

speech

face

plate

ocr

Figure 1: Processing Time Breakdown

speech face plate ocr
0

20

40

60

80

100

120

Pr
oc

es
si

ng
 T

im
e

(m
s) s1

s2

Figure 2: The impact of server capacity

execution unit. When this application operates on a video
feed, each frame is processed in its entirety either locally or
remotely. Therefore, we can decouple the decision between
local vs remote and how to order the remote ones.

To summarize, an offloading scheduler needs to make two
decisions: how many jobs to process locally (then leave to the
OS to schedule), and how to order the offloading jobs. Since
the first problem has been studied extensively [13, 18, 19, 28,
30, 32, 35, 41], we focus on the second problem in this paper.

3.2 The complexity of offloading
The offloading performance is affected by multiple factors.
The server capability determines the remote processing time.
The server’s physical location along with the network condi-
tions affect the data transfer time. In particular, wireless links
are susceptible to interference and multipath fading.

Figure 1 shows the processing time breakdown of our
benchmark applications, assuming a 10 Mbps network upload
speed. For each application, the point on the left shows the
remote processing time, while the point on the right shows
the end-to-end processing time (i.e., with data transfer time
added to the remote processing time). The timing results are
averaged over 500 runs per application. The application and
experiment setups are detailed in Section 5.1.

We can see that plate recognition is clearly computation
bound, whereas optical character recognition (OCR) is net-
work bound. While face recognition, plate recognition and

OCR are expected to operate on the same image frame1, face
recognition does not need the entire frame, locally or remotely.
The built-in face detection function in the vision library can
narrow down the region of interest before handing the recogni-
tion application a subset of the frame containing these regions
only. Therefore, the input size for face recognition is much
smaller than the entire frame.

We then measure the processing times on two different
servers, S1 and S2. S1 has an Intel Core i5-4570 processor
(Quad Core, 6 MB Cache, 3.2 GHz) and 8 GB 1600 MHz
DDR3 Memory. This is the same server used for the previous
figure and in our evaluation throughout. S2 is a workstation
with an Intel Core i5-4430 Processor (Quad Core, 6 MB
Cache, 3.0 GHz) and 16 GB 1600 MHz DDR3 Memory.
We randomly select 500 data samples from the input dataset
and Figure 2 shows the processing times of the benchmark
applications on the two servers.

Although the server specifications appear similar, the pro-
cessing time for face recognition and plate recognition differ
by almost 25%. For face recognition, the processing time
difference is comparable to the data transfer time.

Since the processing times across applications differ any-
way, offloading the same application to distinct servers is
analogous to offloading different applications to the same
server. Therefore, we implicitly capture the offloading com-
plexity mentioned above by studying a suite of applications.

One issue remains, however. The benchmark applications
are representative of the continuous applications described
in Section 2, for which there is an implicit deadline require-
ment for processing to ensure smooth user interaction. Meet-
ing deadlines can be more important than optimizing for the
end-to-end processing time, though the latter is an essential
contributing factor to the former. We next explore suitable
scheduling metrics to capture desirable performance goals.

3.3 Scheduling metrics and algorithms
Recall that our main goal is to schedule data transfer and
hence order the offloading requests. Scheduling is a well-
studied topic. Common metrics and criteria include fairness,
minimizing job time (in our case, this means the shortest
network transfer time, or minimal network queuing delay),
and deadline-awareness for real-time jobs. We consider these
metrics and the associated standard algorithms in turn. Note
that there are multiple definitions for fairness. Since we are
concerned with a wireless link, we use the common notion of
slot-based fairness, which is also consistent with round-robin
in the OS.

1As explained in Section 5.1, we cannot train in real time, so the applications
are fed with synthetic video feeds. The input data for plate recognition and
OCR are different, hence the transfer times differ.

LinkShare: Device-Centric Control for Concurrent
and Continuous Mobile-Cloud Interactions SEC 2019, November 7–9, 2019, Arlington, VA, USA

Fair sharing vs serial execution. Perhaps one of the sim-
plest scheduling approaches is to serve all jobs in parallel, i.e.,
serving the data transfers from all offloading jobs simultane-
ously using technique like parallel TCP [23]. Each application
can get the same share of the bandwidth, which is referred to
as fair sharing. Instead, we argue for sequential offloading (as
adopted by First-Come-First-Serve, or FCFS) instead of fair
sharing.

Under blocking-based offloading scenarios, a remote exe-
cution process cannot make progress until it has received all
the data. Consider a scenario where the concurrent offload-
ing tasks are from speech recognition and plate recognition,
the former arriving first. Figure 3a compares the end-to-end
processing time for each task (the sum of the network trans-
fer time and the computation time) between fair sharing and
FCFS, the latter clearly outperforming the former. This is
mainly because fair sharing incurs higher queuing delay for
each task and hence a much higher average network transfer
time of 84 ms, 30% more than that of FCFS. This in fact
reconfirms that fairness often does not align with optimal
performance [39].

Therefore, serial execution can achieve better average ap-
plication processing times by reducing the average network
transfer times.

To pre-empt or not to. The next question is whether to pre-
empt any jobs. Devices are not limited to relatively powerful
mobile phones, and could be embedded devices with limited
memory and high context-switching overhead. For these situ-
ations, the cost of moving state between memory and storage
to pre-empt one process and bring in the next could be pro-
hibitive. Therefore, we focus on non-pre-emptive scheduling
techniques that can be applied across a range of devices.

Processing throughput vs deadline. To optimize for perfor-
mance, perhaps the most intuitive approaches are minimizing
the job completion time and meeting job deadlines (in our
case, bounding the end-to-end processing time). Correspond-
ingly, the canonical scheduling algorithms are Shortest Job
First (SJF) and Earliest Deadline First (EDF).

In particular, it might appear natural to minimize the end-
to-end processing time, since this could be directly achieved
with SJF and appear to lead to meeting deadlines. However,
this approach can unintentionally penalize one offloading
job as a result of another job using a less powerful backend.
Therefore, the SJF decision should be based on minimizing
the network transfer time alone. For example, if we offload
OCR and plate recognition concurrently, according to the
processing time breakdown in Figure 1, the scheduler based
on the shortest end-to-end processing time will schedule plate
recognition first, and produce 179 ms average end-to-end
processing time, while that of the shortest network transfer

time will choose the reverse order of offloading, which will
produce 160 ms end-to-end processing time.

Consider the scenario of concurrent speech recognition and
plate recognition jobs again. Figure 3b shows that, regarding
the average end-to-end processing time, SJF outperforms
EDF by only 6%. However, if both had a 150 ms processing
deadline requirement, both meet the deadlines under EDF,
while only plate recognition manages so when using SJF.

Therefore, the scheduling decision should primarily de-
pend on the network transfer time instead of the end-to-end
processing time; further, if the main scheduling concern is
deadline-awareness, minimizing the average processing time
with SJF does not work well even in the simplest two-app
scenarios. This is despite the fact that a low end-to-end pro-
cessing time is essential to meet the deadline.
The tale of the tail. So far, EDF appears to be a winner. How-
ever, one consequence of its non-pre-emptive nature is tail
latency. EDF is not tail-robust [34], i.e., its performance will
suffer when the network transfer times of different applica-
tions follow a heavy-tail distribution.

Now consider a face recognition job and an OCR job in
the queue. Figure 3c shows that both meet their deadlines
(150 ms, marked by the vertical dashed line) under both fair
sharing and EDF. However, the average end-to-end perfor-
mance of face recognition suffers under EDF. This is mainly
because the network transfer time of OCR is disportionately
large compared to that for face recognition. Although OCR
should be prioritized given the EDF policy, it appears that fair
sharing is the right approach instead. Lack of tail-robustness
manifests when the heavy workload essentially blocks the
light workload due to non-preemptive scheduling.

Therefore, EDF suffers when the network transfer time
follows a heavy-tail distribution, but sharing can mitigate this
problem.
Summary. To conclude this study, the winning scheduling
objective appears to be prioritizing meeting deadlines but also
trying to be tail-robust at the same time.

3.4 EDF with Limited Sharing
To balance the requirements of meeting application deadlines
and avoiding a long tail-latency for network transfer, we aug-
ment Earliest Deadline First with Limited Sharing (EDF-LS).
The idea is very simple. EDF-LS starts with EDF as the base-
line while dynamically determining whether to multiplex the
shared link between several transfers. To simplify further, we
only consider two consecutive transfer tasks.

Suppose the two consecutive tasks in the queue, T1 and T2,
are already ordered based on EDF. Their estimated network
transfer times are N1 and N2 respectively. The limited sharing
will be enabled if and only if the following condition holds:
N1 > S · N2. S captures how much the heavy-transfer task is

SEC 2019, November 7–9, 2019, Arlington, VA, USA Bo Hu and Wenjun Hu

0 50 100 150 200
avg end-to-end processing time (ms)

speech

plate

Shared
FCFS

(a) Fair sharing vs FCFS

0 50 100 150 200
avg end-to-end processing time (ms)

speech

plate

SJF
EDF

(b) SJF vs EDF

0 50 100 150
avg end-to-end processing time (ms)

face

OCR

EDF
Shared

(c) EDF vs Sharing

Figure 3: The impact of scheduling algorithms on the end-to-end processing time

affecting the other, hence whether sharing is waranted. We
set S = 5 empirically (Section 5.4).

This way, our scheduling algorithm can perform like EDF
when the network transfer distribution is short-tailed. When a
large transfer task arrives, however, the sharing enabled can
allow small tasks to make progress as well. Note that sharing
carries a cost, and therefore limiting sharing is essential to
ensure the overall performance.

3.5 Discussion
The choice of offloading destination. Although the above
scheduling algorithm is set in the specific context of cur-
rent mobile offloading practice, many issues to consider are
generic to multiple concurrent offloading sessions. The des-
tinations can be a nearby (edge) server, the cloud, or even
another nearby mobile device. For example, we can envisage
offloading from a phone to a pad, such as offloading graphics
rendering for multi-party gaming. There can also be more
complicated link sharing mechanisms. The above expressions
can be adjusted to reflect more general offloading scenarios.
Intra-application dependencies. So far we have assumed
that the individual modules within an application are indepen-
dent from one another. It is conceivable that two modules to
be offloaded may instead be logically correlated. For example,
one module may need to wait for the result from another mod-
ule. We believe such correlation should be managed by the
application itself by setting appropriate per-module deadlines
to reflect the correlation, and therefore we do not consider
such dependencies in this paper.
Fending off greedy applications. Another implicit assump-
tion in our discussion is that each application will suggest
reasonable deadlines for their offloading requests. If instead,
a greedy (or malicious) application wants to game the system,
it can intentionally set a tight deadline to gain more network
resource. One solution to counter this is to track the variance
of the end-to-end processing time distribution of each appli-
cation and infer whether any application had been favored
throughout.

Figure 4: LinkShare architecture.

4 LINKSHARE AS A SERVICE
We next build a system level service, LinkShare, that coor-
dinates multiple offloading jobs. Fundamentally, LinkShare
is an extension to the operating system scheduler. It takes
into account the wireless link bandwidth, remote processing
capability, application processing deadline requirements and
their effects on the actual end-to-end processing times. To
support the central goal of making scheduling decisions, it
collects information of past runs, estimates future execution
times, and computes an appropriate schedule.

LinkShare sits between the applications and the operating
system. Figure 4 shows the system architecture. There are two
control paths: application driven scheduling and background
monitoring. We describe the individual modules next.

Note that our system architecture is independent of the
exact scheduling algorithms. Different scheduling algorithms
can be substituted if needed.

LinkShare: Device-Centric Control for Concurrent
and Continuous Mobile-Cloud Interactions SEC 2019, November 7–9, 2019, Arlington, VA, USA

4.1 Application driven scheduling
The application first decides whether to offload any workload
remotely using an existing offloading runtime or its custom
decision module, as discussed in Section 3.1. If offloading
is needed, it sends the request to LinkShare, along with the
deadline for completing the remote processing (e.g., in terms
of the longest permitted processing time). LinkShare then
determines the order to execute the offloading requests, in
terms of the order of data transfer to the offloading destina-
tions, using the Earliest Deadline First with Limited Sharing
(EDF-LS) detailed in Section 3.4.

All offloading requests from applications are first enqueued
in the network pending queue. Given our EDF-LS algorithm,
this is essentially a priority queue, where the network transfer
completion deadline (computed from the time instant at which
LinkShare receives the request from the application, the es-
timated remote processing time and the processing deadline
specified by the application) serves as the priority indicator.

The scheduler continues to empty the network pending
queue as long as there are pending offloading requests. Once
network transfer is completed, an offloading request is moved
from the network pending queue to the corresponding per-
application2 execution pending queue and remains there until
a response is received from the remote server.

4.2 Lightweight background monitoring
In the background, LinkShare tracks the states of each sched-
uled request, including the size of data transfer sd , and the
start and end time of the network transfer ts and te .
Remote processing time estimation. To assess whether an
application deadline can be met, it is essential to estimate
the remote processing time. The main challenge here is to
the intrinsic variability of processing times. Take popular
learning-base mobile applications as an example. The vari-
ability may arise from (a) caching, (b) using multiple models
simultaneously to speed up inference, (c) input variation, and
(d) other customized optimizations [16].

Given all the variability, we estimate the average processing
time (i.e., per-application) instead of the per-job processing
time (i.e., for each data transfer). This is for two reasons.

First, it simplifies the system implementation significantly
to be lightweight on a mobile device. In contrast, current
mainstream per-data-transfer processing time estimation tech-
niques are all learning based and incur high computation
complexity. [15]

Second, since the mobile applications of interest to us
usually have soft real-time requirements, an accurate estimate
of the average processing time is sufficient for our scheduling
goal of meeting deadlines.

2Strictly speaking, “per-application” refers to “per-module” in this section.

We adopt the exponentially weighted moving average (EWMA)
to estimate the average, per-application remote processing
time. The estimate Test is initialized to 0 and updated in an
event-driven manner. The completion of each offloading re-
quest at time tr triggers an update for Test based on the previ-
ous estimate and the observed processing time (Tcur = tr −te)
incurred by this completed request. Empirically, we set the
smoothing parameter λ to 0.3.

Test = Tprev−est · (1 − λ) + λ ·Tcur

Network bandwidth estimation. The sharing component of
EDF-LS is triggered based on the projected network transfer
times. Therefore, network bandwidth estimation is also essen-
tial to LinkShare. Since wireless link bandwidth is known to
fluctuate, we again resort to the classic EWMA. Triggered
when an offloading request completes its network transfer,
the bandwidth estimate is updated as follows:

B (t +T) = B (t) + α · (B (t) −
u (T)

T
)

Where B (t) is the estimated network bandwidth at time t ,T
is the interval between two updates, u is the number of bytes
sent over T , and α is the smoothing parameter. This way, we
can estimate the network bandwidth without incurring any
network overhead.

While these above estimation algorithms work well in our
evaluations, we realize that they represent a set of very simple
heuristics. More sophistication can be taken into considera-
tion to make these estimation more robust and accurate. For
example, when estimating remote processing time, the estima-
tion accuracy will increase if we can coordinate the real-time
workload information on remote servers. Similar argument
can be applied to network bandwidth estimation. We defer
these and other improvements to future work, and currently
choose to focus on the potential benefits brought by schedul-
ing of multiple offloading applications.
Security considerations. Tracking the variance of the end-
to-end processing time distribution of each application might
not be resistant to malicious applications that overclaim dead-
lines from launch time. Fortunately, proper access control can
efficiently protect our system from these applicaitons. This
can be achieved by incorporating a reputation system (such
as Credence [38]) into LinkShare. Each offloading request
can be tagged with its application source. The tracking of
end-to-end processing time of each offloading request can
help to establish a reputation record for each application. The
application whose deadline is always far beyond its end-to-
end processing time can be identified and barred from time to
time.

SEC 2019, November 7–9, 2019, Arlington, VA, USA Bo Hu and Wenjun Hu

4.3 Implementation details
We implement LinkShare as a background application level
service in Android Nougat OS with API version 24.

Since our scheduler runs in the user space, we enforce the
schedule computed by setting the priority of thread that pro-
cesses the scheduled request to Thread.MAX_PRIORITY,
using the Andriod API Thread.setPriority().
LinkShare APIs. LinkShare exposes the following APIs
to the applications: offloadRequest, decisionMade,
notifySent, and notifyComplete.
offloadRequest is used by an application to send an

offloading request to the scheduler, containing the module
name, input data size, process id, timestamp and the end-
to-end processing time deadline. Once a schedule has been
computed, the scheduler sends a decisionMade message
to all applications with pending requests, indicating the mod-
ule to be offloaded first.
notifySent is used by an application after completing

sending its data to the remote server. This is intended to notify
the scheduler to schedule the next offloading request in the
queue and trigger the network bandwidth estimator to update
the runtime bandwidth notifyComplete is used by an ap-
plication when a computation job is completed. This notifies
the scheduler to mark this scheduled request as completely
and trigger the remote processing time estimator to update the
estimated remote processing time for this specific application.

The following pseudocode shows code snippets for a face
recognition module to send an offloading job with and without
our scheduler service. The lines in bold indicate the code
patch needed to use our service. All changes are on the mobile
side, with little overhead.
Application code change. We opt to expose APIs to applica-
tions instead of making LinkShare transparent for two reasons.
First, the application needs to set the deadline requirement
explicitly anyway, since this cannot be inferred accurately.
The system can only track the processing times of past runs
and estimate the bounds (the shorest or the longest) on the
deadlines that can be met. Second, the scheduling framework
is not restricted to computation offloading. Therefore, we
highlight the APIs needed to coordinate multiple concurrent
network-bound applications in general.
Offloading framework for experiments. We also imple-
ment an offloading framework for experiments. This is in-
dependent from our scheduler service.

We define our own communication interface for service-
application communication using Android Interface Defini-
tion Language (AIDL [6]). AIDL makes it easy to handle
multi-threaded asynchronous inter-process communication.

The communication framework between our mobile device
and server is built on gRPC [7]. gRPC is portable and provides
a stream model, which we use to implement an asynchronous

// Conventional application code
if(offloadMode == true) {

asyncRemoteRecognition.sent(image);
while(!asyncRemoteRecognition.complete()) {
continue;

}
result = asyncRemoteRecognition.result;

}

// With the scheduler service
offloadRequest(modName, timeStamp, pid,

inputDataSize, deadline);

while(true) {
if(receive decisionMade) {

offloadMode = decision.offloadMode;
}

}

if(offloadMode == true) {
asyncRemoteRecognition.sent(image);
notifySent(modName, timeStamp);
while(!asyncRemoteRecognition.complete()) {
continue;

}
result = asyncRemoteRecognition.result;
notifyComplete(modName, timeStamp);

}

communication channel between a client and the server. The
client does not need to wait for server response before sending
another request.

5 EVALUATION
5.1 General setup
Application scenario, benchmarks, and test data. We em-
ulate a Gabriel [22] like scenario where multiple recognition
applications concurrently operate on the camera and audio
feeds from a phone and collectively provide assistance to
the phone user to interact with the environment. Each video
frame is processed simultaneously by one or more applica-
tions. We built four benchmark applications: face recognition,
plate recognition, speech recognition, and an optical char-
acter recognition (OCR) application. These mimic similar
commercial applications but are simplified to contain only
the most relevant library functions. They are also extensively
instrumented to provide the measurements we need, which
we cannot obtain from commercial applications.

The Face recognition module recognizes the faces in a
given video frame. We build the module using the Local Bi-
nary Patterns Histograms (LBPH) face recognizer in OpenCV [8].
The experiment data are taken from the unconstrained facial
images database [31], which is a set of real-world photographs
selected from the large photobank [10]. We use the cropped

LinkShare: Device-Centric Control for Concurrent
and Continuous Mobile-Cloud Interactions SEC 2019, November 7–9, 2019, Arlington, VA, USA

images dataset, where faces were automatically extracted
from the original photographs. This set contains images of
605 individuals, on average 7.1 images per person.

The Plate recognition module recognizes the car license
plate in real time. We build this using the OpenALPR library
which is a popular open source plate recognition library [9].
We use the plate dataset from [4], which contains 500 images
of the rear views of various vehicles, the resolution of each
image is 640×480.

The Speech recognition module is built on the CMU Sphinx
speech recognizer [2]. This application can recognize a set
of spoken commands given by the users, including “open ap-
plication", “call home", “close application", “take a picture",
“tell me the location" and “tell me the time". The correspond-
ing input data are the voice recordings from different occu-
pants in our lab, 60 samples in total, 10 for each command.
Note that our speech recognition application is completely
processed on a remote server, like the main-stream speech
driven assistant Siri.

The OCR application is built on the tesseract open source
OCR engine [11]. It extracts text information from images.
This is to emulate a scenario where users go abroad and do
not understand the local language, so they use their phones to
extract the textual information from signposts and translate
it to familiar languages. We use the KAIST Scene Text Data-
base [27] as the input, which contains signposts and brands
under different light conditions.

Note that these applications all contain specific pre-trained
models. During the run time, they only perform inference
on any input data. This is because we cannot train these
applications in real time yet. Therefore, we emulate a video
feed using data from the test sets specified above to generate
4 parallel feeds3. For each application, we generate a long
sequence by randomly drawing data from the corresponding
test set and feed this sequence to the application. Across
applications, we make the corresponding frames similar in
size as much as possible.
Canonical testbed setup. We use a Samsung S9 smartphone
as the mobile device, with an octa-core (2.7 GHz quad-core
M2 Mongoose + 1.7 GHz quad-core Cortex A53) processor,
4 GB of RAM and 64 GB of internal storage. We use two
servers, each with an Intel core i5-4570 processor (Quad-core,
6 MB Cache, 3.2 GHz) and 8 GB 1600 MHz DDR3 Memory.

Unless otherwise stated, the network upload speed is 10 Mbps.
We use this as the baseline since the average wireless band-
width measured was 8.63 Mbps in a recent network report [5].

3While this approach may not fully mimic the inter-frame correlation in
a real video feed, it does not affect our current evaluation. In a real video
feed, we could leverage temporal correlation between frames and skip a few
runs for some applications as a further optimization, but this is orthogonal to
making scheduling decisions.

This is the perceived TCP transfer throughput, not the physi-
cal layer rate on the wireless link.

The network transfer is over the WiFi link from the phone
to the nearest access point. Since the WiFi networks in our
lab are usually faster than the reported average speed and
fluctuate between successive runs, we emulate a stable link at
a target upload speed by rate limiting the WiFi transfers. We
consider other network conditions later.

We also explored using other phones and server capabilities
(both the network latency to the server and the processing
capability). We find these do not change the qualitative obser-
vations. As long as the server is much more powerful than the
phone such that offloading is worthwhile, the performance
of our scheduler is indifferent to the phone processing capa-
bility. Further, the effects of server conditions are captured
in applications showing different combinations of the net-
work transfer and server processing times. Therefore, we only
report results based on the canonical setup.

Note that our application benchmarks are not fully opti-
mized, so local processing might take even longer than it
could be. To offset that, we also use less powerful servers.
This means that the effect of network transfer time overhead
in our setting is in fact less pronounced than in scenarios with
faster phones and servers. We will discuss this in the context
of upload speed scaling in Section 5.3.

5.2 Scheduler Performance
We aim to answer two questions: (a) is the additional schedul-
ing added by LinkShare essential? (b) How well does EDF-LS
perform in terms of meeting application deadlines? Both can
be addressed together by comparing the performance of sev-
eral scheduling algorithms.
Scheduling algorithms for comparison. We compare the
following algorithms: (a) Fair sharing: This algorithm achieves
slot-based fairness on the wireless link. (b) First come first
serve (FCFS): this is the most naive non-preemptive sched-
uling algorithm, as well as the default network scheduler;
therefore it is a proxy for the scheduling decision in the ab-
sence of LinkShare. (c) Shortest job first (SJF): this is the
algorithm that minimizes the network transfer time. (d) Ear-
liest deadline first (EDF): this is the optimal deadline-aware
algorithm among the non-idling non-preemptive scheduling
algorithms. (e) Earliest deadline first with limited sharing
(EDF-LS): our algorithm.
Workloads. Given the network transfer time distribution of
individual application benchmarks, we assemble two work-
loads, referred to as heavy-load and light-load.

The heavy-load includes all four benchmark applications
running concurrently. This is a general case, and likely more
common in future. The light-load setting involves only face,

SEC 2019, November 7–9, 2019, Arlington, VA, USA Bo Hu and Wenjun Hu

plate, and speech recognition offloading concurrently, with-
out OCR. This division is motivated by the network transfer
time disparity. On average, the network transfer time of OCR
is nearly the sum of the transfer times for the other three
applications.
Setting the processing deadline. Since the actual deadline
requirements of the commerical applications are proprietary,
we determine the deadline based on the tail of the processing
time for each application. We consider three options, using
the 90th, 95th and 99th percentile of all these applications to
determine their individual deadlines respectively.

Note that we assume the application deadline and the re-
quest sending interval are coupled together. This is reasonable
since these applications operate on continuous video feeds,
and the frame processing deadline partly arises from the need
to keep with the frame capture rate. Unless stated otherwise,
therefore, we will set the sending interval between two con-
secutive data frames in each application to be their individual
deadline.
Performance metric. We use the deadline miss rate to assess
deadline-awareness. This is defined as the ratio of the number
of data frames that miss the deadline to the total number of
data frames sent, turned into a percentage.
Light load. Here we set the deadline as 1.2× the 90th, 95th
and 99th percentile of the end-to-end processing time. Fig-
ure 5 shows the performance of different scheduling algo-
rithms performance given these deadline settings. We first
note that each application favors specific scheduling strate-
gies, and one often benefits at the expense of another.

FCFS vs EDF-LS: As we can see from all three figures,
FCFS suffers when considering face recognition (the least
bandwidth hungry in this case) but outperforms all the other
scheduling algorithms when considering plate recognition
(the most bandwidth hungry in this case). This is because the
offloading request arrival pattern determines the performance
of FCFS. As the request interval of face recognition is the
smallest among these three applications, the probability of
another application blocking the next data frame transfer is
the highest for face recognition among these applications.

Recall that FCFS is a proxy for not employing LinkShare
at all, i.e., managing offloading requests without adjusting the
network transfer order. Figure 5 clearly shows this additional
scheduling is essential.

Fair sharing vs EDF-LS: In contrast, fair sharing outper-
forms all the other scheduling algorithms for face recognition,
but performs the worst for the other two applications. This is
because, intrinsically, sharing is beneficial to the application
that is less bandwidth hungry. However, it is at the cost of
performance degradation of other applications that are more
bandwidth hungry.

SJF vs EDF-LS: When given tighter deadlines, SJF shares
similar performance to that of EDF-LS. When the deadline
requirements are relaxed to 1.2× the 99th percentile, EDF-
LS outperforms SJF for speech recognition application and
delivers similar performance to the other applications. The
main reason is SJF is that not aware of different deadline
requirements across applications. Speech recognition incurs a
slightly shorter network transfer time than plate recognition on
average. However, in terms of the network transfer deadline,
plate recognition has a much longer deadline than that of
speech recognition. This means transfer the data frame for
speech recognition before plate recognition is a better choice
in general, but making scheduling decisions based on the
network transfer time is a bad idea.

EDF vs EDF-LS: In the light workload scenario, EDF and
EDF-LS share similar performance across all applications.
This is expected, as light load rarely triggers sharing, and
the performance of EDF-LS should converge to that of EDF.
Sharing may incur a penalty in this case, as it slows down one
job without helping another job much.
Heavy load. We set the individual application deadline to be
1.5× the 90th, 95th and 99th percentile of the end-to-end pro-
cessing time of the respective application. We experimented
with factors ranging from 1.2 to 1.5, and found that 1.5 is a
suitable value to allow all these applications to mostly meet
their deadlines.

Figure 6 shows the performance of different scheduling
algorithms given three different deadline settings. We mainly
discuss the comparison between EDF and EDF-LS in this
case, as the performance of the other scheduling algorithms
is similar to the situation under light load.

The main difference between EDF and EDF-LS can be seen
in the performance of face recognition and OCR. EDF-LS
largely outperforms EDF for face recognition, at the cost of
slight performance degradation of OCR. Specifically, the per-
formance improvement margin is 30% given a tighter deadline
(the 90th percentile case) and still 15% given a loose deadline
(the 99th percentile case). This highlights the importance of
mitigating head-of-queue blocking that would have originally
happened to EDF. In fact, this blocking issue is not restricted
to EDF. It also plagues other non-preemptive scheduling al-
gorithms like SJF and FCFS. By mitigating this with limited
sharing, we can reduce the missing rate of face recognition to
less than 3%.
Summary. The additional scheduling added by LinkShare
over the default OS scheduler is essential, and EDF-LS can
achieve up to 30% reduction in the deadline miss rate com-
pared to the baseline EDF.

LinkShare: Device-Centric Control for Concurrent
and Continuous Mobile-Cloud Interactions SEC 2019, November 7–9, 2019, Arlington, VA, USA

speech face plate overall
0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f d
ea

dl
in

e
m

is
s

Fair sharing
FCFS
SJF
EDF
EDF-LS

(a) 90th

speech face plate overall
0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f d
ea

dl
in

e
m

is
s

Fair sharing
FCFS
SJF
EDF
EDF-LS

(b) 95th

speech face plate overall
0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 o

f d
ea

dl
in

e
m

is
s

Fair sharing
FCFS
SJF
EDF
EDF-LS

(c) 99th

Figure 5: Deadline miss rate under light load at 10 Mbps

speech face plate ocr overall
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 o

f d
ea

dl
in

e
m

is
s Fair sharing

FCFS
SJF
EDF
EDF-LS

(a) 90th

speech face plate ocr overall
0

10

20

30

40

50

60

70

80
Pe

rc
en

ta
ge

 o
f d

ea
dl

in
e

m
is

s
Fair sharing
FCFS
SJF
EDF
EDF-LS

(b) 95th

speech face plate ocr overall
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 o

f d
ea

dl
in

e
m

is
s

Fair sharing
FCFS
SJF
EDF
EDF-LS

(c) 99th

Figure 6: Deadline miss rate under heavy load at 10 Mbps

5.3 Impact of Network Conditions
As network transfer is the major bottleneck in our system,
intuitively the link quality dictates the performance of EDF-
LS. We consider various bandwidths on steady links and two
real traces of fluctuating networking conditions.
Steady links. Since wireless networks continue to evolve, we
may expect increasingly higher bandwidth. We are therefore
interested to see whether the problem remains under better
network conditions.

We repeat the previous heavy-workload experiments under
two additional bandwidth settings, 15 Mbps and 20 Mbps,
as a proxy to show the system performance as the upload
bandwidth increases. Note that, as the network bandwidth
will affect the estimate of the end-to-end processing time, the
deadline under a higher network bandwidth will be tighter
than that under 10 Mbps.

Figures 7a and 7b show the performance with 15 Mbps and
20 Mbps upload speeds. These show that EDF-LS consistently
incurs the lowest miss rates for face recognition and similar
miss rate compared to EDF for other applications.

We see that the increasing network bandwidth has the
largest impact on the performance on fair sharing and FCFS.
This is because higher bandwidths reduce the network queu-
ing time and thus mitigate the effect of bad scheduling deci-
sions.

One interesting observation is that, for face recognition, the
performance of EDF and SJF hardly change even as the net-
work bandwidth goes up. The reason is that deadline misses
occur due to the blocking nature of these two algorithms (face
recognition is blocked from data transfer by a network-bound
job), not its own network transfer time. The blocking effect
remains even at higher network speeds.

More generally, even as the bandwidth increases further,
the scheduling problem is likely to remain, because the server
processing capacity is likely to increase in tandem. Funda-
mentally, the cause of missing deadlines in our context is the
relative network queuing delay, i.e., the absolute queuing de-
lay divided by the end-to-end processing time. This depends
heavily on the ratio between the network transfer time and
the remote processing time.
Fluctuating network conditions. Being aware of the poten-
tial influence of mobile network conditions to the evaluation
results, we next study the performance as the link condition
fluctuates.

We first measure WiFi and LTE bandwidths by running
iperf3, using our mobile phone as the client sending traffic
to one of our servers. Again, these are the TCP throughput
numbers, instead of the raw physical layer rates. The WiFi
trace is captured in a cafe near campus, while the LTE trace
is collected as one walks from the student dormitory to the

SEC 2019, November 7–9, 2019, Arlington, VA, USA Bo Hu and Wenjun Hu

speech face plate ocr
0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f d
ea

dl
in

e
m

is
s

Fair sharing
FCFS
SJF
EDF
EDF-LS

(a) 15 Mbps

speech face plate ocr
0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f d
ea

dl
in

e
m

is
s

Fair sharing
FCFS
SJF
EDF
EDF-LS

(b) 20 Mbps

Figure 7: Performance under differ-
ent network upload speeds

0 50 100 150
time (s)

0

5

10

15

20

25

30

35

ne
tw

or
k

ba
nd

w
id

th
 (M

bp
s)

real
estimated

(a) WiFi

0 50 100 150
time (s)

0

5

10

15

20

25

ne
tw

or
k

ba
nd

w
id

th
 (M

bp
s)

real
estimated

(b) LTE

Figure 8: Real WiFi and LTE traces

speech face plate ocr
0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f d
ea

dl
in

e
m

is
s

Fair sharing
FCFS
SJF
EDF
EDF-LS

(a) WiFi

speech face plate ocr
0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f d
ea

dl
in

e
m

is
s

Fair sharing
FCFS
SJF
EDF
EDF-LS

(b) LTE

Figure 9: Performance under real
WiFi and LTE network conditions

department building. We record the bandwidth every 0.5 sec-
ond, which is the minimal interval supported by iperf. Each
trace covers a 150-second period.

Figures 8a and 8b plot the bandwidth timeseries for the
WiFi and LTE traces captured respectively (the “real” lines).
The “estimated” lines in these two figures also show the es-
timated network bandwidth using the bandwidth estimation
module in LinkShare. Our module indeed manages to track
the trend of average network bandwidth changes.

We then replay these traces to evaluate the performance
under fluctuating network conditions. We assume the same
deadline and request sending interval settings (1.5 times the
99th percentile of the end-to-end processing time) as that in
the 10 Mbps, heavy-workload for both WiFi and LTE.

Figures 9a and 9b show the performance under WiFi and
LTE respectively. EDF-LS can still show similar performance
to that under steady links.

An interesting observation is that EDF-LS outperforms
EDF for all applications, not just face recognition. This is
especially pronounced for LTE. Similarly, fair sharing fares
much better over fluctuating links than steady links. The rea-
son for both observations is similar to what happened at in-
creasing network upload speeds. Sharing can intrinsically
benefit from a larger bandwidth. In a highly fluctuating net-
work, the network bandwidth spikes can be better used when
multiplexed between different applications.

5.4 Microbenchmarks
Finally, we performance several microbenchmarks to assess
the design and overhead of our scheduling algorithm.
Scheduler overhead. The scheduler overhead is mainly from
the scheduling decision time. This takes less than 2 ms.
Processing time estimation. We already assessed the accu-
racy of the network bandwidth estimation module in the pre-
vious subsection. Here we use face and speech recognition as
two examples to assess the accuracy of the processing time
estimation module, shown in Figure 10.

Face recognition is a representative application with rela-
tively stable processing time pattern, while speech recognition
represents a version with more fluctuation. OCR and plate
recognition share similar processing time patterns as that of
speech recognition. We run each application 500 times and
randomly selected input data from their respective dataset. As
we can see from the figure, our processing time estimation
module manages to track the trend of the average process-
ing time changes. Quantitatively, the root mean square errors
of the processing time for speech and face recognition are
2.56 ms and 1.54 ms respectively.
Sharing parameters. Recall that the sharing component of
EDF-LS is triggered based on a threshold, and the param-
eter S hints at the disparity between the projected network
transfer times between two consecutive offloading requests
(Section 3.4). Therefore, we need a suitable value for S .

To avoid the randomness due to the input stream, we first
run the heavy-load combination under the 99th percentile
deadline constraints with S = 3 and 10 Mbps network upload

LinkShare: Device-Centric Control for Concurrent
and Continuous Mobile-Cloud Interactions SEC 2019, November 7–9, 2019, Arlington, VA, USA

0 100 200 300 400 500
data frame

10

15

20

25

30

pr
oc

es
si

ng
 ti

m
e

(m
s)

real
estimated

(a) Face recognition

0 100 200 300 400 500
data frame

35

40

45

50

55

60

pr
oc

es
si

ng
 ti

m
e

(m
s)

real
estimated

(b) Speech recognition

Figure 10: Processing time estimation

speech face plate ocr
0
2
4
6
8

10
12
14
16
18
20

Pe
rc

en
ta

ge
 o

f d
ea

dl
in

e
m

is
s

EDF
EDF-LS-3
EDF-LS-4
EDF-LS-5
EDF-LS-6

Figure 11: The value of sharing parameter

bandwidth. We record the processing time and file size for
each data frame. Then, we replay the trace in simulation and
try different S values to assess its impact.

Figure 11 shows the results for S = 3, 4, 5, and 6. The
main difference comes from the performance of face recog-
nition and OCR. The higher the S value, the less benefit face
recognition gained from the limited sharing. A good trade-off
between respecting the deadline and mitigating heading-of-
queue blocking is achieved when the S value is around 4 to 5.

As S increases (i.e., requiring higher transfer time disparity
before enabling sharing), the performance of EDF-LS ap-
proaches that of EDF, which means limited sharing is rarely
activated. Based on this analysis, we set the sharing parameter
value to be 5.
Discussion. Another dimension of our algorithm is the choice
of the maximum number of workloads that can share the link
bandwidth. The optimal number is workload dependent. For
our workloads, sharing between two consecutive jobs appear
to be optimal and the most robust choice.

Another point worth mentioning is that, for now, the choice
of sharing parameter S aims at minimizing the average per-
centage of deadline missing across all workloads. That is to
say, implicitly, we treat all the workload applications the same.
However, the preference of different user might make the util-
ities of these workload applications different. We believe it
is an interesting future work if introducing utility of each
application as a factor when making scheduling decision.

6 RELATED WORK
For most of the last decade, the computation-intensive require-
ment from mobile applications has been met with computa-
tion offloading to a cloud server. New dedicated hardware
has also emerged in recent years. However, existing solutions
are limited as new applications are on the horizon, calling
for more inter-module or inter-application coordination. We
will discuss relevant resource management approaches in the
context of common offloading practice.
Dedicated Hardware. The Google Tango project [3] uses
dedicated hardware to power computation-intensive work-
loads locally. It does not depend on external resources and
simplifies application development. Resource management is
simply delegated to the operating system. However, the need
for additional hardware and often high power consumption
are ill-suited for wearable devices like Google Glass, which
generally require remote support.
Single-module Offloading. Computation offload to the cloud
has been explored extensively in the last 15 years [13, 18, 19,
28, 30, 32, 35, 41]. Several recent works [15, 17, 20, 21, 29,
36] focus on seamlessly partitioning the workload spanning
the mobile device and the remote server.

They assume only one foreground application at a time.
All other applications within the same device are treated as
background processes, with lower priorities. This is indeed
true for previous scenarios. However, emerging applications
are more sophisticated and all the modules concerned must be
served simultaneously, given the same priority. Single-module
offloading techniques are insufficient.
Multi-module Offloading. MCDNN [25] provides a com-
mon platform for multiple applications concurrently utilizing

SEC 2019, November 7–9, 2019, Arlington, VA, USA Bo Hu and Wenjun Hu

deep neural networks (DNN). When reasoning about the work-
load split between the device and the cloud for each DNN
application, MCDNN does coordinate on-device resource
usage between applications. However, the coordination is
specific to DNN applications run on MCDNN and integrates
decisions to trade off classification accuracy for less resource
usage.
Cloud-centric offloading. Gabriel [22], mentioned earlier,
offloads all its computation intensive workloads to the nearby
cloudlet, where both the control and computation units are
located. The underlying assumption is all of these applica-
tions can be processed on a single backend server. However,
even for Google Glass, apart from a handful of built-in ap-
plications like Google Now and Google Maps, most appli-
cations are from third-party developers, who may maintain
their own servers. It may be impractical to make all these
applications offload to the same destination. In that case, the
cloud-centric offloading scheme can not be applied. Instead,
a device-centric approach seems more promising.
Deadline-aware scheduling. Deadline-aware scheduling has
been studied extensively, most recently in data center net-
working [12, 26, 39]. [39] controls the network transfer rate
to meet the deadline, but rate control is difficult for mobile
scenarios. [26] pre-empts flows to approximate a range of
scheduling algorithms. However, we explain earlier that the
overhead of link switching in wireless is high.
Summary. Although there is a multitude of offloading schemes
to handle computation-intensive workloads on mobile devices,
none appears to provide the coordination needed between mul-
tiple offloading modules to serve the emerging applications
outlined above. LinkShare fills in this gap with a generic
on-device scheduling service for all applications interacting
with backend servers. LinkShare augments standard deadline-
aware scheduling to suit our needs.

7 CONCLUSION
In this paper, we investigated concurrent and continuous
mobile-cloud interactions in the form of simultaneous of-
floading jobs. These share the wireless link from the mobile
device but might involve different server backends. There-
fore, we need device-centric management, instead of the more
common cloud-centric control.

We build a system-level service, LinkShare, that wraps
over the operating system scheduler to coordinate among
multiple offloading requests. We study the scheduling require-
ments and suitable metrics, and find that the most intuitive
approaches of minimizing the end-to-end processing time and
earliest deadline first scheduling do not work well. Instead,
LinkShare incorporates limited sharing between consecutive
workloads in the case of heavy-tailed distribution. LinkShare
is implemented in Android. Extensive evaluation shows that

adopting this additional scheduler is essential and that EDF-
LS can achieve up to 30% reduction in the deadline miss rate
compared to the baseline EDF.

The issues we studied are not specific only to computa-
tion offloading to a remote cloud. Even with the advent of
edge computing, the same bottleneck remains. LinkShare as a
framework is also applicable when the offloading destination
is a nearby server or another IoT device instead. We believe
this is a first step towards coordinating an IoT ecosystem teth-
ered to the mobile device from the perspective of the mobile
frontend.

ACKNOWLEDGMENTS
We would like to thank all the reviewers and our shepherd Dr.
Landon Cox for their helpful comments and suggestions. This
work is funded by the National Science Foundation under
Grant No. CNS-1815115.

REFERENCES
[1] 2016. IP Video Surveillance and VSaaS Market by Type (IP camera,

Monitors, Storage, VMS, Video Analytics, Cloud Storage by prod-
uct software, Cloud storage by deployment, VSAAS, Hosted VSAAS,
Managed VSAAS, Hybrid VSAAS, Integration Services) and Applica-
tion (Banking & Financial, Retail, Healthcare, Government & higher,
security, Manufacturing & corporate, Residential, Entertainment &
Casino) - Global Opportunity Analysis and Industry Forecast, 2015 -
2022. https://www.alliedmarketresearch.com/IP-video-surveillance-
VSaaS-market

[2] 2017. CMUSphinx Project. https://cmusphinx.github.io
[3] 2017. Google Tango Project. https://get.google.com/tango/
[4] 2017. License Plate Detection, Recognition and Automated Storage.

http://www.zemris.fer.hr/projects/LicensePlates/english/results.shtml
[5] 2017. Speedtest Market Report in USA. http://www.speedtest.net/

reports/united-states/
[6] 2019. Android Interface Definition Language. https://developer.

android.com/guide/components/aidl.html
[7] 2019. gRPC. http://www.grpc.io
[8] 2019. LBPH Face recognizer. http://docs.opencv.org/trunk/df/d25/

classcv_1_1face_1_1LBPHFaceRecognizer.html
[9] 2019. OpenALPR. http://www.openalpr.com/cloud-stream.html

[10] 2019. Photo bank of the Czech News Agency. http://multimedia.ctk.
cz/en/foto/

[11] 2019. Tesseract Open Source OCR Engine. https://github.com/
tesseract-ocr/tesseract

[12] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. 2013. pfabric: Mini-
mal near-optimal datacenter transport. In ACM SIGCOMM Computer
Communication Review, Vol. 43. ACM, 435–446.

[13] Rajesh Balan, Jason Flinn, Mahadev Satyanarayanan, Shafeeq Sin-
namohideen, and Hen-I Yang. 2002. The case for cyber foraging. In
Proceedings of the 10th workshop on ACM SIGOPS European work-
shop. ACM, 87–92.

[14] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl,
and Hari Balakrishnan. 2015. Glimpse: Continuous, real-time object
recognition on mobile devices. In Proceedings of the 13th ACM Con-
ference on Embedded Networked Sensor Systems. ACM, 155–168.

[15] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. 2011. Clonecloud: elastic execution between mobile

https://www.alliedmarketresearch.com/IP-video-surveillance-VSaaS-market
https://www.alliedmarketresearch.com/IP-video-surveillance-VSaaS-market
https://cmusphinx.github.io
https://get.google.com/tango/
http://www.zemris.fer.hr/projects/LicensePlates/english/results.shtml
http://www.speedtest.net/reports/united-states/
http://www.speedtest.net/reports/united-states/
https://developer.android.com/guide/components/aidl.html
https://developer.android.com/guide/components/aidl.html
http://www.grpc.io
http://docs.opencv.org/trunk/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html
http://docs.opencv.org/trunk/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html
http://www.openalpr.com/cloud-stream.html
http://multimedia.ctk.cz/en/foto/
http://multimedia.ctk.cz/en/foto/
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract

LinkShare: Device-Centric Control for Concurrent
and Continuous Mobile-Cloud Interactions SEC 2019, November 7–9, 2019, Arlington, VA, USA

device and cloud. In Proceedings of the sixth conference on Computer
systems. ACM, 301–314.

[16] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency
Online Prediction Serving System.. In NSDI. 613–627.

[17] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman,
Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI:
making smartphones last longer with code offload. In Proceedings of
the 8th international conference on Mobile systems, applications, and
services. ACM, 49–62.

[18] Jason Flinn, Dushyanth Narayanan, and Mahadev Satyanarayanan.
2001. Self-tuned remote execution for pervasive computing. In Hot
Topics in Operating Systems, 2001. Proceedings of the Eighth Workshop
on. IEEE, 61–66.

[19] Huber Flores and Satish Srirama. 2013. Mobile code offloading: should
it be a local decision or global inference?. In Proceeding of the 11th
annual international conference on Mobile systems, applications, and
services. ACM, 539–540.

[20] Mark S Gordon, David Ke Hong, Peter M Chen, Jason Flinn, Scott
Mahlke, and Zhuoqing Morley Mao. 2015. Accelerating mobile appli-
cations through flip-flop replication. In Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and Ser-
vices. ACM, 137–150.

[21] Mark S Gordon, Davoud Anoushe Jamshidi, Scott A Mahlke, Zhuo-
qing Morley Mao, and Xu Chen. 2012. COMET: Code Offload by
Migrating Execution Transparently.. In OSDI, Vol. 12. 93–106.

[22] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan
Pillai, and Mahadev Satyanarayanan. 2014. Towards wearable cognitive
assistance. In Proceedings of the 12th annual international conference
on Mobile systems, applications, and services. ACM, 68–81.

[23] Thomas J Hacker, Brian D Athey, and Brian Noble. 2001. The end-to-
end performance effects of parallel TCP sockets on a lossy wide-area
network. In Proceedings 16th International Parallel and Distributed
Processing Symposium. IEEE, 10–pp.

[24] Arun Hampapur, Lisa Brown, Jonathan Connell, Ahmet Ekin, Nor-
man Haas, Max Lu, Hans Merkl, and Sharath Pankanti. 2005. Smart
video surveillance: exploring the concept of multiscale spatiotemporal
tracking. IEEE Signal Processing Magazine 22, 2 (2005), 38–51.

[25] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal,
Alec Wolman, and Arvind Krishnamurthy. 2016. MCDNN: An
Approximation-Based Execution Framework for Deep Stream Pro-
cessing Under Resource Constraints. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Ser-
vices. ACM, 123–136.

[26] Chi-Yao Hong, Matthew Caesar, and P Godfrey. 2012. Finishing flows
quickly with preemptive scheduling. In Proceedings of the ACM SIG-
COMM 2012 conference on Applications, technologies, architectures,
and protocols for computer communication. ACM, 127–138.

[27] Jehyun Jung, SeongHun Lee, Min Su Cho, and Jin Hyung Kim. 2011.
Touch TT: Scene text extractor using touchscreen interface. ETRI
Journal 33, 1 (2011), 78–88.

[28] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal. 2010.
Cuckoo: a computation offloading framework for smartphones. In Inter-
national Conference on Mobile Computing, Applications, and Services.
Springer, 59–79.

[29] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xin-
wen Zhang. 2012. Thinkair: Dynamic resource allocation and parallel
execution in the cloud for mobile code offloading. In Infocom, 2012
Proceedings IEEE. IEEE, 945–953.

[30] Gwangmu Lee, Hyunjoon Park, Seonyeong Heo, Kyung-Ah Chang,
Hyogun Lee, and Hanjun Kim. 2015. Architecture-aware automatic
computation offload for native applications. In Proceedings of the 48th

International Symposium on Microarchitecture. ACM, 521–532.
[31] L. Lenc and P. Král. 2015. Unconstrained Facial Images: Database for

Face Recognition under Real-world Conditions. In 14th Mexican Inter-
national Conference on Artificial Intelligence (MICAI 2015). Springer,
Cuernavaca, Mexico.

[32] Zhiyuan Li, Cheng Wang, and Rong Xu. 2001. Computation offloading
to save energy on handheld devices: a partition scheme. In Proceedings
of the 2001 international conference on Compilers, architecture, and
synthesis for embedded systems. ACM, 238–246.

[33] Akhil Mathur, Nicholas D Lane, Sourav Bhattacharya, Aidan Boran,
Claudio Forlivesi, and Fahim Kawsar. 2017. DeepEye: Resource Effi-
cient Local Execution of Multiple Deep Vision Models using Wearable
Commodity Hardware. (2017).

[34] Jayakrishnan Nair, Adam Wierman, and Bert Zwart. 2010. Tail-robust
scheduling via limited processor sharing. Performance Evaluation 67,
11 (2010), 978–995.

[35] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Her-
bert Bos. 2010. Paranoid Android: versatile protection for smartphones.
In Proceedings of the 26th Annual Computer Security Applications
Conference. ACM, 347–356.

[36] Moo-Ryong Ra, Anmol Sheth, Lily Mummert, Padmanabhan Pillai,
David Wetherall, and Ramesh Govindan. 2011. Odessa: enabling in-
teractive perception applications on mobile devices. In Proceedings of
the 9th international conference on Mobile systems, applications, and
services. ACM, 43–56.

[37] M Satyanarayanan. 2004. From the editor in chief: Augmenting cogni-
tion. IEEE Pervasive Computing 3, 2 (2004), 4–5.

[38] Kevin Walsh and Emin Gün Sirer. 2006. Experience with an Object
Reputation System for Peer-to-Peer Filesharing.. In NSDI, Vol. 6. 1–1.

[39] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.
2011. Better never than late: Meeting deadlines in datacenter networks.
ACM SIGCOMM Computer Communication Review 41, 4 (2011), 50–
61.

[40] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, and Michael J Freedman. 2017. Live Video
Analytics at Scale with Approximation and Delay-Tolerance.. In NSDI,
Vol. 9. 1.

[41] Wenzhang Zhu, Cho-Li Wang, and Francis CM Lau. 2002. Jessica2:
A distributed java virtual machine with transparent thread migration
support. In Cluster Computing, 2002. Proceedings. 2002 IEEE Interna-
tional Conference on. IEEE, 381–388.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Emerging Application Scenarios
	2.2 Limited Execution Model Currently
	2.3 Towards device-centric scheduling

	3 Scheduling offloading jobs
	3.1 What to schedule on-device
	3.2 The complexity of offloading
	3.3 Scheduling metrics and algorithms
	3.4 EDF with Limited Sharing
	3.5 Discussion

	4 LinkShare as a service
	4.1 Application driven scheduling
	4.2 Lightweight background monitoring
	4.3 Implementation details

	5 Evaluation
	5.1 General setup
	5.2 Scheduler Performance
	5.3 Impact of Network Conditions
	5.4 Microbenchmarks

	6 Related work
	7 Conclusion
	Acknowledgments
	References

