
Libra and the Art of Task Sizing in Big-Data Analytic Systems

Rui Li, Peizhen Guo, Bo Hu, Wenjun Hu
Yale University

rui.lee92@gmail.com, {peizhen.guo, b.hu, wenjun.hu}@yale.edu

ABSTRACT

Despite extensive investigation of job scheduling in data-intensive

computation frameworks, less consideration has been given to

optimizing job partitioning for resource utilization and efficient

processing. Instead, partitioning and job sizing are a form of dark

art, typically left to developer intuition and trial-and-error style

experimentation.

In this work, we propose that just as job scheduling and resource
allocation are out-sourced to a trusted mechanism external to the

workload, so too should be the responsibility for partitioning data

as a determinant for task size. Job partitioning essentially involves

determining the partition sizes to match the resource allocation at

the finest granularity. This is a complex, multi-dimensional problem

that is highly application specific: resource allocation, computa­
tional runtime, shuflle and reduce communication requirements,

and task startup overheads all have strong influence on the most ef­

fective task size for efficient processing. Depending on the partition

size, the job completion time can differ by as much as 10 times!

Fortunately, we observe a general trend underlying the tradeoff

between full resource utilization and system overhead across dif­

ferent settings. The optimal job partition size balances these two

conflicting forces. Given this trend, we design Libra to automate
job partitioning as a framework extension. We integrate Libra with
Spark and evaluate its performance on EC2. Compared to state-of­

the-art techniques, Libra can reduce the individual job execution

time by 25% to 70%.

KEYWORDS

Data-analytic Systems, Automatic Task Sizing, Big Data Systems

ACM Reference Format:

Rui Li, Peizhen Guo, Bo Hu, Wenjun Hu. 2019. Libra and the Art of Task

Sizing in Big-Data Analytic Systems. In ACM Symposium on Cloud Com­

puting (SoCC '19), November 20-23, 2019, Santa Cruz, CA, USA. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3357223.3362720

1 INTRODUCTION

With the wild popularity of distributed data-intensive computation

frameworks (e.g., MapReduce [17], Hadoop [1] and Spark [47]) and

services [2], recent years have witnessed considerable amounts of
investigation on how jobs should be scheduled within a distributed

system. Despite all the efforts, relatively less attention has been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acrnorg.

SoCC '19, November 20-23, 2019, Santa Cruz, CA, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6973-2/19/11 ... $15.00
https:/ /doi.org/10.1145/3357223.3362720

paid to exactly what the most appropriate schedulable entity should

be to optimize for resource utilization. We have seen proposals at

both ends of the spectrum, ranging from running an end-to-end

job entirely on a single core [35] to running massive numbers of

very small jobs [39] on a server cluster. However, little formal

consideration has been invested in studying the tradeoffs involved

in effectively partitioning the work into tasks that happens in a

schedulable job. Instead, partitioning and task sizing are a form of

dark art, typically left to developer intuition and trial-and-error
style experimentation.

In this work, we argue that task sizing should be an indepen­

dent engine, just as job scheduling and resource allocation are

out-sourced to a trusted mechanism external to the workload. The
reasons are two folds: task sizing could greatly impact job perfor­

mance (by more than 10X times in our experiments), and it could

help people decide the right level of parallelism for running the job.

As an illustration of how important task sizing is to job perfor­

mance, Figures 1 and 2 show how the completion time varies with

task size. The minimum point on each curve corresponds to the
optimal size. Not only do the optimal task sizes vary significantly

across applications or even different parts of the same application

workload, the completion time can vary by as much as 10 times!

Section 2 further analyzes the most significant factors that should

be considered in performing partitioning.

However, we observe that this is a complex, multi-dimensional

problem that is highly application specific: resource allocation,

computational runtime, shuffle and reduce communication require­

ments, and task startup overheads all have strong influence on the

most effective task size for efficient processing (Section 3.2).

Despite the complexity involved in optimal task sizing, we have

two key insights from extensive experiments (Section 2). First, we
observe a general trend of the job completion time variation with

the task sizes resembling a U-shaped curve across applications (Fig­

ures 1 and 2). This trend reflects the tradeoffbetween full resource
utilization and system overhead (such as the task initialization
overhead, metadata management overhead, and task scheduling

delay) [35]. The optimal task size balances these two conflicting

forces. Given this trend, we can employ an adaptive mechanism to
find the optimal size dynamically, using a small number of probes

from the early portion of the job. This contrasts sharply with the

current practice of repeatedly running and profiling entire jobs
many times [24, 28].

Second, while the trend is noisy in practice, the same adaptation

technique still applies as long as we can filter out enough noise

from the probe results (Section 3).

Our goal is to provide a dynamic, automatic, pluggable task

sizing engine. It should be able to dynamically adjust task sizes to
address the runtime variances during job execution. Also, it has

to work automatically without user intervention. Lastly, it needs

0.5 1 2 4 8 16 32 64 128 256 512 1024 2048

Task size (MB)

0

0.2

0.4

0.6

0.8

1

Scan
Sort
PageRank
Bayes

0.5 1 2 4 8 16 32 64 128 256 512 1024
Task size (MB)

0

0.2

0.4

0.6

0.8

1

stage 1
stage 2
stage 3
stage 4

0.8 1.2 2 3.7 5.9 14.8 148 297

Task size (MB)

100

102

104

106

Scheduling Delay
Execution Time

0.5 1 2 4 8 16 32 64 128 256 512

Task size (MB)

0

0.2

0.4

0.6

0.8

1
stage 1
stage 2
stage 3
stage 4

0 20 40 60 80

Task ID

0.6

0.7

0.8

0.9

1

DTS DES

0 50 100 150 200 250 300

Task ID

1
2
3
4
5
6

1
3
5
7

Rate
Size

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Switching threshold

28

28.5

29

29.5

30

30.5

31

4

4.5

5

5.5

6

6.5

7

Pagerank
Scan

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Detection threshold

0

1

2

3
Scan
Pagerank

0.94 1.18 1.57 2.36 4.71 9.42 47.1

Initial Task Size (MB)

0.2

0.4

0.6

0.8

1

Default
DTS

2 4 8 16 32 64

scheduling delay (ms)

0

0.2

0.4

0.6

0.8

1

Default
Libra

Scan Sort PageRank Bayes
0

0.2

0.4

0.6

0.8

1 DTS
TinyTask
Default
DTS w/o
TinyTask w/o

P+So P+B Sc+So P+B+Sc+So
0

10

20

30

40

50

60

Default Spark
DES

Pagerank Bayes Scan Sort
0

5

10

15

20

25

Default (same)
Default (different)
DES

Scan Sort Bayes Pagerank
0

0.2

0.4

0.6

0.8

1
One-by-one(w)
DES
Isolation

Short-job Large-job
0

0.2

0.4

0.6

0.8

1 One-by-one
One-by-one(w)
DES
Spreadout
Isolation

P+So P+B Sc+So P+B+Sc+So
0

0.2

0.4

0.6

0.8

1 Default
DES
Speculate

2 4 8 16 32 64 128 256 512

number of tasks

0

20

40

60

80
DTS
Default
Speculate
Libra

1G 5G 10G
0

0.2

0.4

0.6

0.8

1

Default
DTS
Libra

P+So P+B Sc+So P+B+Sc+So
0

10

20

30

40

Libra
Tiny+Speculate(w/o)
Tiny+Speculate(w)

0 50 100 150 200 250

Job completion time (s)

0

0.2

0.4

0.6

0.8

1

Default
Libra

Bayes Pagerank Scan Sort
0

0.2

0.4

0.6

0.8

1

Default

Libra

