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ABSTRACT 

Despite extensive investigation of job scheduling in data-intensive 

computation frameworks, less consideration has been given to 

optimizing job partitioning for resource utilization and efficient 

processing. Instead, partitioning and job sizing are a form of dark 

art, typically left to developer intuition and trial-and-error style 

experimentation. 

In this work, we propose that just as job scheduling and resource 
allocation are out-sourced to a trusted mechanism external to the 

workload, so too should be the responsibility for partitioning data 

as a determinant for task size. Job partitioning essentially involves 

determining the partition sizes to match the resource allocation at 

the finest granularity. This is a complex, multi-dimensional problem 

that is highly application specific: resource allocation, computa­
tional runtime, shuflle and reduce communication requirements, 

and task startup overheads all have strong influence on the most ef­

fective task size for efficient processing. Depending on the partition 

size, the job completion time can differ by as much as 10 times! 

Fortunately, we observe a general trend underlying the tradeoff 

between full resource utilization and system overhead across dif­

ferent settings. The optimal job partition size balances these two 

conflicting forces. Given this trend, we design Libra to automate 
job partitioning as a framework extension. We integrate Libra with 
Spark and evaluate its performance on EC2. Compared to state-of­

the-art techniques, Libra can reduce the individual job execution 

time by 25% to 70%. 
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1 INTRODUCTION 

With the wild popularity of distributed data-intensive computation 

frameworks (e.g., MapReduce [17], Hadoop [1] and Spark [47]) and 

services [2], recent years have witnessed considerable amounts of 
investigation on how jobs should be scheduled within a distributed 

system. Despite all the efforts, relatively less attention has been 
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paid to exactly what the most appropriate schedulable entity should 

be to optimize for resource utilization. We have seen proposals at 

both ends of the spectrum, ranging from running an end-to-end 

job entirely on a single core [35] to running massive numbers of 

very small jobs [39] on a server cluster. However, little formal 

consideration has been invested in studying the tradeoffs involved 

in effectively partitioning the work into tasks that happens in a 

schedulable job. Instead, partitioning and task sizing are a form of 

dark art, typically left to developer intuition and trial-and-error 
style experimentation. 

In this work, we argue that task sizing should be an indepen­

dent engine, just as job scheduling and resource allocation are 

out-sourced to a trusted mechanism external to the workload. The 
reasons are two folds: task sizing could greatly impact job perfor­

mance (by more than 10X times in our experiments), and it could 

help people decide the right level of parallelism for running the job. 

As an illustration of how important task sizing is to job perfor­

mance, Figures 1 and 2 show how the completion time varies with 

task size. The minimum point on each curve corresponds to the 
optimal size. Not only do the optimal task sizes vary significantly 

across applications or even different parts of the same application 

workload, the completion time can vary by as much as 10 times! 

Section 2 further analyzes the most significant factors that should 

be considered in performing partitioning. 

However, we observe that this is a complex, multi-dimensional 

problem that is highly application specific: resource allocation, 

computational runtime, shuffle and reduce communication require­

ments, and task startup overheads all have strong influence on the 

most effective task size for efficient processing (Section 3.2). 

Despite the complexity involved in optimal task sizing, we have 

two key insights from extensive experiments (Section 2). First, we 
observe a general trend of the job completion time variation with 

the task sizes resembling a U-shaped curve across applications (Fig­

ures 1 and 2). This trend reflects the tradeoffbetween full resource 
utilization and system overhead (such as the task initialization 
overhead, metadata management overhead, and task scheduling 

delay) [35]. The optimal task size balances these two conflicting 

forces. Given this trend, we can employ an adaptive mechanism to 
find the optimal size dynamically, using a small number of probes 

from the early portion of the job. This contrasts sharply with the 

current practice of repeatedly running and profiling entire jobs 
many times [24, 28]. 

Second, while the trend is noisy in practice, the same adaptation 

technique still applies as long as we can filter out enough noise 

from the probe results (Section 3). 

Our goal is to provide a dynamic, automatic, pluggable task 

sizing engine. It should be able to dynamically adjust task sizes to 
address the runtime variances during job execution. Also, it has 

to work automatically without user intervention. Lastly, it needs 
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