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ABSTRACT

Despite extensive investigation of job scheduling in data-intensive
computation frameworks, less consideration has been given to
optimizing job partitioning for resource utilization and efficient
processing. Instead, partitioning and job sizing are a form of dark
art, typically left to developer intuition and trial-and-error style
experimentation.

In this work, we propose that just as job scheduling and resource
allocation are out-sourced to a trusted mechanism external to the
workload, so too should be the responsibility for partitioning data
as a determinant for task size. Job partitioning essentially involves
determining the partition sizes to match the resource allocation at
the finest granularity. This is a complex, multi-dimensional problem
that is highly application specific: resource allocation, computa-
tional runtime, shuffle and reduce communication requirements,
and task startup overheads all have strong influence on the most ef-
fective task size for efficient processing. Depending on the partition
size, the job completion time can differ by as much as 10 times!

Fortunately, we observe a general trend underlying the tradeoff
between full resource utilization and system overhead across dif-
ferent settings. The optimal job partition size balances these two
conflicting forces. Given this trend, we design Libra to automate
job partitioning as a framework extension. We integrate Libra with
Spark and evaluate its performance on EC2. Compared to state-of-
the-art techniques, Libra can reduce the individual job execution
time by 25% to 70%.
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1 INTRODUCTION

With the wild popularity of distributed data-intensive computation
frameworks (e.g., MapReduce [17], Hadoop [1] and Spark [47]) and
services [2], recent years have witnessed considerable amounts of
investigation on how jobs should be scheduled within a distributed
system. Despite all the efforts, relatively less attention has been
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paid to exactly what the most appropriate schedulable entity should
be to optimize for resource utilization. We have seen proposals at
both ends of the spectrum, ranging from running an end-to-end
job entirely on a single core [35] to running massive numbers of
very small jobs [39] on a server cluster. However, little formal
consideration has been invested in studying the tradeoffs involved
in effectively partitioning the work into tasks that happens in a
schedulable job. Instead, partitioning and task sizing are a form of
dark art, typically left to developer intuition and trial-and-error
style experimentation.

In this work, we argue that task sizing should be an indepen-
dent engine, just as job scheduling and resource allocation are
out-sourced to a trusted mechanism external to the workload. The
reasons are two folds: task sizing could greatly impact job perfor-
mance (by more than 10X times in our experiments), and it could
help people decide the right level of parallelism for running the job.

As an illustration of how important task sizing is to job perfor-
mance, Figures 1 and 2 show how the completion time varies with
task size. The minimum point on each curve corresponds to the
optimal size. Not only do the optimal task sizes vary significantly
across applications or even different parts of the same application
workload, the completion time can vary by as much as 10 times!
Section 2 further analyzes the most significant factors that should
be considered in performing partitioning.

However, we observe that this is a complex, multi-dimensional
problem that is highly application specific: resource allocation,
computational runtime, shuffle and reduce communication require-
ments, and task startup overheads all have strong influence on the
most effective task size for efficient processing (Section 3.2).

Despite the complexity involved in optimal task sizing, we have
two key insights from extensive experiments (Section 2). First, we
observe a general trend of the job completion time variation with
the task sizes resembling a U-shaped curve across applications (Fig-
ures 1 and 2). This trend reflects the tradeoff between full resource
utilization and system overhead (such as the task initialization
overhead, metadata management overhead, and task scheduling
delay) [35]. The optimal task size balances these two conflicting
forces. Given this trend, we can employ an adaptive mechanism to
find the optimal size dynamically, using a small number of probes
from the early portion of the job. This contrasts sharply with the
current practice of repeatedly running and profiling entire jobs
many times [24, 28].

Second, while the trend is noisy in practice, the same adaptation
technique still applies as long as we can filter out enough noise
from the probe results (Section 3).

Our goal is to provide a dynamic, automatic, pluggable task
sizing engine. It should be able to dynamically adjust task sizes to
address the runtime variances during job execution. Also, it has
to work automatically without user intervention. Lastly, it needs
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Figure 1: Normalized stage comple-
tion time varies with task sizes.

to be a pluggable engine, which can easily integrate with existing
systems without requiring changes to existing codebase.

Libra is designed based on the above insights (Section 4). We
implement Libra on Spark [47] (Section 5) and evaluated the system
on EC2 under a range of setups (Section 6). Compared to state-of-
the-art techniques, Libra reduces the job completion time by 25%
to 70%.

With Libra, we make the following contributions:

First, we highlight the importance of optimizing task sizes, the
challenges involved, and argue for framework level support.

Second, we observe a well-defined, general trend underlying
the variation of the job completion time with the task size. This
lends to a simple optimization mechanism, using a small number of
automatic probes, in contrast to the current practice of repeatedly
running and profiling entire jobs many times.

Third, we employ an effective adaptation framework following
the above insights and integrate it with Spark. The logic is con-
ceptually complementary to existing programming models and
independent of specific frameworks. Our implementation shows
simple extensions to Spark deliver significant performance benefit.

2 THE ELUSIVE OPTIMAL TASK SIZE

2.1 Parallelism in data analytic frameworks

The execution flow for an analytics job is often expressed as a
directed acyclic graph (DAG), where each node indicates specific
processing logic and the directed edges indicate the flow of data.
Several programming models [17, 25, 37, 38, 47] for data analytics
systems have been proposed to provide different DAGs to express
diverse application semantics. Further, the runtime frameworks im-
plementing these programming models support parallel execution
based on the DAGs in an application-independent manner, though
at the granularity of nodes (often referred to as stages) in a DAG.

However, existing framework-level parallelism support does not
specify how to optimally parallelize the per-stage execution. A stage
is typically further divided into tasks by partitioning the input data
for that stage, with each task processing a portion of the input
data. Tasks within a stage are run in parallel on multiple servers.
The developer is free to request resources and partition the job
accordingly to fully utilize the available resource. Unfortunately,
this also places the burden of optimizing job partitioning on the
framework user.

Fundamentally, task sizing reflects resource allocation at the
finest granularity. When the tasks are too small, the performance is
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Figure 2: Optimal task sizes for differ-
ent stages of PageRank.
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Figure 3: Per-task average overhead
breakdown for PageRank.

dominated by various system overhead, such as the task initializa-
tion time and scheduling delay; when the tasks are too large, the
performance is bottlenecked by the amount of resource available,
such as the number of CPU cores and the memory. The completion
time for a stage could vary by as much as 10 times depending on
the task size (Figure 2). While existing resource allocation solutions
abound, they typically address issues such as fairness [10, 20], job
performance prediction [21, 43, 44], and guaranteeing the service
level objectives [19, 26]. None has optimized the task sizes according
to the resource specification.

Existing job partitioning techniques [28, 31, 39, 49] instead ad-
dress skewness. However, [28, 31, 49] are application-specific tech-
niques while [32, 39] will incur high overhead. Again, none of
these techniques optimizes for the tradeoff between full resource
utilization and low system overhead.

The most commonly used dataflow frameworks Hadoop [1] and
Spark [47] currently provide generic guidelines about using a task
size of 128 MB, which is the block size of the HDFS (Hadoop dis-
tributed file system). Furthermore, Spark recommends a minimum
task size that would correspond to at least 100 ms execution time
in order to avoid high scheduling overhead.

2.2 Motivating experiments

Consider a simple application, Sort, with only two stages, map
(spreading input data across available CPU cores in parallel) and
reduce (collecting and merging all intermediate results from the
previous stage). Intuitively, one should simply partition the input
data into equal-sized portions to take advantage of the parallelism
in the system. However, this turns out to be non-trivial even on a
single machine dedicated to this workload.

We ran several applications individually on Spark on a single
workstation with 4 “executors” (Java virtual machines) in parallel,
each given 1 CPU core and 1 GB of memory, with minimal inter-
fering background activity on the machine. These applications are
drawn from the HiBench benchmark suite (see Section 6 for detail).
We partition each workload into different numbers of fixed-sized
tasks at the beginning of each run!. We run the experiments mul-
tiple times, and show the results as the average of multiple runs,
though the errors were small.

Figure 1 shows how the normalized stage completion time varies
with the set task sizes for PageRank (2.9 GB initial input, third
stage), Scan (17.4 GB input, first stage), Sort (13.3 GB input, first
n Spark, the data at each stage, whether the initial input data or the intermediate data

generated from the previous stage, are partitioned into the same number of portions,
which is set in the configuration file.
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Figure 4: Number of I/O operations
for different stages of PageRank.

stage), and Bayes (5.7 GB input, second stage). We see a U-shaped
trend for all four cases, but the exact shape varies by application.
Figure 2 further shows a distinct U-curve for each stage of PageRank.
This follows from Figure 1 since different stages typically involve
different operations.

2.3 Observations and analysis

First, very small task sizes may be suboptimal. This is because the
various overhead will dominate for small tasks. For each task, its
completion time includes significant contributions from the system
overhead incurred, such as the scheduling overhead and the task
thread startup overhead.

We find that the task scheduling delay is the main overhead
within the task execution span. Figure 3 plots the average per-task
scheduling delay and net execution time for PageRank stage 1.
We see that the per-task scheduling delay is roughly constant for
different task sizes, since the operations involved in scheduling are
independent of the task itself. The net execution time per task is
roughly constant for sizes from 0.8 MB to 2 MB before increasing
exponentially. This is because small tasks cannot maintain high
CPU utilization and are more susceptible to other OS overhead.
Smaller task sizes also correspond to a larger number of tasks and
hence a higher overall scheduling delay and execution time.

Second, very large task sizes are also undesirable. This is because
the performance is then bottlenecked on the dominant resource. We
can see this more clearly in Figure 4, which plots the number of I/O
operations in each stage of PageRank. When the task size exceeds
148.5 MB (297 MB and larger), the number of total I/O operations
increases sharply for stages 1 to 3. This is correlated with each task
being allocated 1 GB memory in our experiments. Based on the
Spark default configuration [3], only 60% of (heap space - 300 MB) is
used for execution and storage, and the remaining space is reserved
for Spark internal metadata, safeguarding against out-of-memory
issues. Within the 420 MB memory for execution and storage, by
default half of that amount is reserved for caching data, so only
about 210 MB memory is really dedicated to execution. Therefore,
a task size of 148.5 MB falls within the allowance, while a size of
297 MB triggers virtual memory swapping to the disk.

For stage 4 of PageRank, the total number of I/O operations
decreases when the task size reaches 297 MB. This is because that
stage of the application mainly writes the final data to HDFS, which
involves little computation but mostly disk I/O operations, and
large task sizes can benefit from batch processing.
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Figure 5: Task processing rate natu-
rally fluctuates during a run.
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Figure 6: Normalized per-machine
task processing rate over time.

Third, Figures 1 and 2 both show convex functions, each with
roughly a single optimal point and suggests a well-defined perfor-
mance optimization goal. This is because of the inherent tradeoff
between the performance bounded by the dominant resource (the
memory in these cases) at full utilization and the per-task overhead.

Fourth, this optimal task size is specific to a particular experi-
ment setting (application logic, execution environment, and so on),
and the optimal number of tasks is not determined by the apparent
parallelism (measured in the number of executors or cores) in the
system. For example, Figure 1 shows that the optimal number of
tasks for PageRankis 800 (the PageRank job size divided by the
optimal task size), but there are only 4 cores available in our ex-
periments. Also, it is worth noting that we observed the U-curve
behavior in Hadoop jobs as well.

In general, the memory resource is always scarce in data ana-
lytic frameworks. When a larger amount of memory is available,
it will only shift the bottom of the U-curve to a larger task size. If
the task size increases beyond a certain value, the amount of I/O
time will dominate. On the other hand, if the task size (say, the
recommended 128 MB) is smaller than the optimal task size, the
framework overhead will dominate.

Figure 4 shows that the resource consumption behavior varies
during job lifespan, another reason why the exact shape of the
U-curve varies by stage. This is further studied in [40] as well.

When the resource allocated to a workload varies, the exact shape of
the U-curve will change accordingly. However, existing data analytics
systems usually employ static resource allocation, and therefore
the corresponding U-curve remains the same during the run.

Given the U shape, using different task sizes could produce very
different performance, and the completion time can vary by as
much as 10 times. (Figure 2)! From Figure 1, we estimate that the
completion time for the particular stages of PageRank, Bayes, Sort,
and Scan could be reduced by up to 55%, 74%, 44%, and 65% respec-
tively. Though approximate, these estimates suggest significant
room for improvement.

2.4 Summary

To summarize, task sizing has a significant impact on the job com-
pletion time, and the optimal task size should be individualized per
(stage of a) workload and per resource allocation to minimize the
job completion time.

However, the optimal size is difficult to pre-determine purely
from the application semantics. Even if we found it, it hardly re-
mains the ideal one throughout the job execution, since these jobs
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are typically sharing resource on a cluster. Therefore, we should
dynamically achieve this U-curve minimum via adaptation.

3 RIGHT-SIZING TASKS WITH LIBRA

3.1 Intuition for task size adaptation

Fortunately, our analysis above provides some intuition for an
adaptive mechanism.

The U-curve suggests a well-defined optimization goal that is
agnostic to the specifics of the application or the run time envi-
ronment, even though the exact shape of the curve is application
dependent. Therefore, the adaptive mechanism should be provided
at the framework level. Further, we only need a small number of
measurements during the run time to identify the optimal size
corresponding to the U-curve minimum. Since the optimal task
size varies by stage, we need to reset and restart the adaptation
whenever a new stage starts.

Task processing rate. Intuitively, task size adaptation within a
job run should be based on the observed processing rate of the
earlier portion of the job. The processing rate can be defined as
the amount of data already processed divided by the time taken to
process the data®.

The starting point. If given a particular task size by itself, we have
no clue whether the next task size should be increased or decreased.
Therefore, we always start the adaptation sequence with a small
task size, and increase the size after each task completes, until the
observed task processing rate starts to drop.

Further, since the U shape varies by the stage within an applica-
tion (Figure 2), it is difficult to customize the start task size statically
based on the application semantics. Therefore, we simply adopt a
fixed start size across applications (and stages).

3.2 Bracing for Real-World Complexity

In practice, the exact U-curve is fuzzier than shown in Figures 1 and
2 for many reasons: random fluctuation and data skewness even
on a single machine, and differences across machines (static due to
heterogeneous hardware or dynamic due to contention for the same
resource). Much work so far has shown that it is non-trivial to deal
with even a single issue, let alone their combined effects. Even in
these two figures (obtained under ideal machine conditions), each
point shows the average of multiple runs, though the errors were
small.

Our key insight is that, whatever the cause for the inaccuracy,
if all the processing rates are measured under roughly the same
conditions, they can be compared directly to indicate the direction
to go on the U-curve towards the optimal task size. Our main
challenge is to ensure these processing rates are comparable, per
machine and across machines.

Guarding against estimation noise per machine. Figure 5 plots
the task processing rate for each task during first stage of PageRank,
and they fluctuate a lot. So we want to average over multiple tasks
to filter out noise.

2In other words, this measures the processing throughput, different from the “processing
rate” definition (the proportion of the task already completed) in [48].
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There are two main sources of noise. First, the normal fluctu-
ation due to measurement accuracy. It can be filtered out with
exponentially weighted moving average.

Second, there might be two types of skewness. In a JOIN work-
load, for example, a skewed task may generate much more output
than others due to the uneven distribution of keys. This is data
skewness. The other case is commonly seen in graph algorithms,
where a high-degree node may incur more computation than other
nodes. This is computation skewness. There are several proposed
skewness mitigation techniques [28, 31, 32, 42, 49], and we want to
have a pluggable design to easily integrate these techniques into
our system.

The machine factor. Data analytics jobs are usually run in parallel
on multiple virtual machines of some form (JVMs, Linux containers,
etc.), called executors on Spark. These executors are given the same
resource specification and thus will see the same U-curve. Therefore,
we should collect data points across machines.

Unfortunately, the physical machines hosting the executors may
be heterogeneous due to either static hardware capability differ-
ences or different utilization levels induced dynamically at run time,
the latter especially the case in the face of multiple co-locating
applications sharing and contending for the same resource [18].
Therefore, we need to ensure the executors are comparable before
comparing data samples from different executors. If an executor is
unusually slow (often referred to as a straggler [48]), we can simply
skip it in favor of another.

Slow executors can be detected by assessing how their process-
ing rates deviate from the average among the executors. If we group
tasks by executor and plot one line per executor, most lines should
more or less overlap while the straggler line should be lower than
others, as shown in Figure 6. There are 2 executors in the figure,
processing a large PageRank job. One of the executors has a con-
current job contending for CPU added from the beginning to 300 s,
shown by the lowest line initially. The rises and drops in the figure
represent different stages of PageRank.

Interaction between the job and the executors. In practice,
skewness and slow executors are present simultaneously. They
can both be detected by assessing the processing rate deviation
from the average, across tasks per executor and across executors
respectively. These two effects interact, so the detection is relative
to the average condition across tasks and across machines. This
requires per-executor “noise filtering” and executor selection to
work together.

3.3 System overview

Following from the above discussion, the primary component of
Libra is dynamic task sizing (DTS). The basic idea is to start with a
small task on each executor (i.e., a container) as a probe, collects task
completion time and task size> when it finishes, adapt and converge
to the optimal task size as the job progresses. Furthermore, Libra
will filter out the observation noises in task completion time along
the run. Libra also has a secondary component, dynamic executor

3For map tasks, it is input partition size; for reduce tasks, it is the size of the aggregated
intermediate results sent to one reduce task.
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Figure 7: Libra System Architecture

selection (DES), to detect contention issues across executors and
proactively switch to a better one if contention detected.

Libra is a simple add-on to JobManager? in existing data analytics
frameworks, such as Hadoop and Spark. Figure 7 shows the sys-
tem architecture. The boxes outside the dashed region are generic
components seen in these data analytics frameworks, while the
shaded boxes illustrate the operations of Libra. At the start of the
job, we expect the native framework scheduler to allocate resource
in terms of some number of executors, each given some CPU cores
and memory. This allocation stays the same throughout the job run,
as is current practice. DTS then takes over. The initial task size is
set to a predefined value. When a task finishes, it will report its size
and completion time to the job manager. The task processing rate
can then be calculated, which DTS uses to determine the “right”
task size for each executor. The average processing rate is also
monitored on all machines. If a slow executor is detected, DES will
be triggered to find a better executor. When DES switches to this
new executor, the task size will be set to the latest size calculated
by DTS for fast ramp-up.

Libra represents a pluggable control framework that adapts in a
intra-job manner to the allocated resource. Further, it simplifies the
configuration and user sophistication in an application-agnostic
manner. The adaptation logic in Libra involves collecting infor-
mation and making decisions local to each job. DTS extends the
functionality of a traditional job partitioner, while DES augments
cluster-wide scheduling with local adaptation.

“4For example, in YARN it is ApplicationMaster daemon, and in Spark it is Scheduler-
Backend daemon.

4 LIBRA DESIGN DETAILS

4.1 Preprocessing

Figure 5 shows that task processing rates tend to be noisy due
to measurement accuracy and other fluctuations, so we use expo-
nential smoothing [4] to filter out the noise. More specifically, we
record the processing rates of X tasks, R;,t = 1,2, ..., X. These X
tasks must have the same size S; (S; is the amount of data processed
by each task, e.g., 20MB). We calculate the filtered task processing
rate Cs, corresponding to size S;:

Cs,=axCs,_, +(1-a)XRs,t=12,...X(0<a<1)

Currently X is set to max(3, 10% of parallelism).

a is the smoothing factor, and through experiments across many
jobs, we found that setting o to be 0.6 yields good results across
the board.

Similarly, if task i with processing rate R; is executed on executor
Jj, we will update the filtered executor throughput as:

Cj=0lXCj+(l—0()><R,'

4.2 Dynamic Task Sizing

Strawman solution. As discussed in Section 3.1, Figure 1 and
Figure 2 exhibit U-curve pattern, which suggests a well-defined
optimization goal. We can use Gradient Descent to solve the opti-
mization problem.

More specifically, all executors start with the same task size Sy
at the beginning. When task k finishes (size Sk, filtered processing
rate Cs, ), the gradient of the task size is calculated as

Sy = Csi = Cspy
Sk = Sk-1
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Then, the next task size is updated as (¢, 4, is the learning rate
of gradient descent algorithm):

Sk+1 = Sk + Aeqrn X dSk

However, the solution above suffers from multiple issues. Firstly,
measurements with larger gradient dSy will have unfairly higher
impact on new task size. This may cause the algorithm miss the
optimal point. Secondly, noisy gradient dSy. could add randomness
to Sy 1- Thirdly, it cannot guarantee convergence.

Refinements. To solve the above issues, we use ADAM tech-
nique [30] to improve the gradient descent algorithm. The main
idea is to normalize dSi’s effect on Sg,q. Also, dSi needs to be
exponentially filtered to remove the noise.
my = f1 Xmp_1 + (1 — f1) X dSg
Ok = P2 X vp_q + (1 - P2) X dS
mg
Sk+1 =Sk + o X ——
k+1 k k Vi + €
We use vy to characterize the size of the gradient dSy, and counter-
act its effect on next task size Sy, with ‘/%_k To guarantee accel-
eration, we let the learning rate a; decay by ﬁ in each iteration,
ie., ap = % € is used to avoid division by zero.

We set f1 to 0.9, f2 to 0.999, ap to 0.001 and € to 1078, as is
recommended by [30].

Discussion. DTS is initialized and applied per stage of an applica-
tion workload. This is different from Hadoop or Spark, which only
sets the task size at the beginning of each job, for all stages. DTS
does not affect the number of stages run, and we leave it to the
application to determine the number of stages needed.

Further, the DTS operations at different stages are independent.
Therefore, we only need to consider the input data size to each
stage, whether these are the initial input to the entire job (for the
first stage) or the intermediate data from the previous stage. The
amount of output data generated by each task only affects the
DTS operations of the next stage. A particular stage of a workload
might be completed with different numbers of tasks from one run
to another, and the task sizes could vary within a run and across
runs, depending on the machine conditions. Different applications
and stages are typicially completed with different numbers of tasks
of variable sizes.

4.3 Dynamic Executor Selection

To address the machine factor, DES module will detect and remove
the contended executors, ensuring that the processing throughputs
between executors are comparable, i.e., all executors see a similar
U-curve, so that DTS can work efficiently.

The input to DES is a sequence of executor processing through-
puts, and DES will run outlier detection algorithm to identify and
remove the contended containers.

When each task i completes on executor j, DES checks con-
tainer’s filtered processing throughput C;, and compares it to C,
the exponentially weighted moving average of the task processing
rate across all executors.

If Cj < (1 — threshold)C, executor j is potentially too slow. The
threshold is a multiple of the standard deviation of C. We suspend
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executor j, launch the next d tasks (1 partition each) on d “backup
executors” (called idle executors). These executors are initialized
at the beginning of the job but do not run any specific tasks until
activated. They both execute the task and serve as the probe, lever-
aging the power-of-d choices [36]. We use a small size for the probe
tasks for fast feedback.

When all the probe tasks finish, the executor with the highest
processing rate is selected as the new active executor in place of
Jj. We wait for all executors to finish before making the selection.
Since d is usually very small (around 4 based on our experiments)
and the executor selection process is typically not on the critical
path of the next task launch, the delay incurred waiting for all
executors to finish is negligible.

After a new machine is selected, we set the task size of the new
machine to be the latest size calculated by DTS, as stated earlier.
DES then moves j to the idle list, resets its history, and randomly
shuffles idle executors before probing again. When doing shuffling,
we do not physically move the idle executors, but permute the
indexes to them.

The switching action ensures that the job does not consume any
extra physical resource. Further, the cluster-side resource manager
can impose policies by constraining the idle executor placement.

4.4 Discussion

DTS and DES run concurrently and work together. DTS assumes
that DES has maintained machines of comparable capability, and
therefore collects data samples across machines to make adapta-
tion decisions quickly; DES assumes DTS does not induce task
processing rate deviation, hence an outlier indicates an unsuitable
machine, most likely due to contention. When a new stage starts,
the processing rate history is cleared, and both DTS and DES start
afresh.

The above description assumes that we want to optimize for
faster job completion, but the exact decision processes and the con-
trol parameters in DTS and DES can be modified to accommodate
other QoS requirements. For example, DTS can be extended to re-
peat a task that may have failed, DES can give high priority tasks
more freedom to switch machines, etc.

5 IMPLEMENTATION
We implement Libra on Spark [5].

5.1 Job execution on Spark

On Spark, tasks are executed in executors, with a fixed amount of
resource at the beginning of each job run. When a job is submitted,
the static job partitioner (DAGScheduler) will divide it into multiple
stages, each stage then statically partitioned into parallel tasks.

The SchedulerBackend manages the executors and launches a
new task when an executor emerges with available resource.

Map stage tasks read data from HDFS, while reduce stage tasks
read from the output in the previous stage, which are hashed into
a few buckets, and one reduce stage task will read one bucket of
data.
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5.2 Libra additions to Spark

Libra mainly adds two modules, DTS and DES, to the SchedulerBack-
end. A Contention Detector keeps track of the executor capability
variation. When a task completes and therefore frees up an executor,
the SchedulerBackend will first check if this executor experiences
contention. DES will select a new executor if needed. Otherwise,
DTS computes the right size for the next task on this executor.

Calculating task processing rates. When a task completes, it
sends a status update (including task size and execution time) to
the SchedulerBackend. The SchedulerBackend then divides task
size by execution time to compute the raw task processing rate.

Dynamic Task Sizing. For map stage tasks, we change task size
by allowing the task to read multiple consecutive partitions from
HDEFS. For reduce stage tasks, we hash each stage output into a
large number of buckets, and assign various number of buckets to
reduce stage tasks to change their sizes.

Dynamic Executor Selection. SchedulerBackend runs the DES
algorithm. In order to reduce the JVM launch overhead, we launch
a few idle executors at the start of the job. The idle executors only
add a small amount of maintenance overhead and slight memory
overhead. In our setting, they do not consume CPU resource until
activated.

Patches to the Spark API and HDFS. The Spark API assumes a
static, fixed-size data partition for each task, and we replace that
with a call to obtain a variable-size partition. We also modify HDFS
API to enable merging multiple physical chunks stored in HDFS.

6 EVALUATION
6.1 General setup

Cluster. We run all experiments on EC2. Small-scale experiments
use 8 m4.xlarge VMs and large-scale experiments use 100 m4.2xlarge
VMs. All the microbenchmarks are run on the small-scale cluster for
easy control and comparison, since we need to manually introduce
contention in several experiments.

Given the possibility of performance variation across EC2 VMs,
we always run comparative experiments in quick succession on
the same VMs. We ran the experiments repeatedly and the results
were consistent. Therefore, error bars are omitted from the plots
for legibility.

Workloads. We use application benchmarks from the HiBench
suite [6]°, using Sort, Scan, PageRank (implemented on GraphX),
and Bayes as representative workloads for batch processing, data-
base queries, graph computation, and machine learning based appli-
cations respectively. The first two are I/O intensive, while the other
two are CPU intensive. PageRank is the most prone to skewness,
while Scan the least. The other applications in the HiBench suite
behave in similar ways to the representative in their respective
category.

The input data are generated by HiBench following suitable Zipf
distributions and show skewness.

In most experiments, we run both a long job and a short job for
these applications. Long jobs typically mean PageRank with 4.6 GB
data, Bayes 10.52 GB, Scan 17.4 GB, and Sort 29.8 GB. The sizes are
chosen to ensure similar job completion times across workloads.
Short jobs vary in size, and will be stated for individual experiments.
We also tried different data sizes, but the results are qualitatively
similar to those under “long jobs” and “short jobs” correspondingly.

Default Spark setup. We use the spread-out mode, allocating
enough memory to avoid out-of-memory issues. The number of
executors launched decides job parallelism. Unless otherwise stated,
each executor is given 1 CPU core and 1 GB of memory °.

The current Spark documentation recommends setting the task
size to be either at least 100 ms long or 128 MB, the HDFS block
size. Therefore, “default Spark” in later experiments means the task
size is 128 MB.

Performance metrics. We measure the overall job completion
time in most experiments, and sometimes overhead in terms of the
scheduling latency.

Baselines. In the following experiments, we compare our system
(DTS, DES or DTS+DES) with vanilla Spark unless specified oth-
erwise. For task sizing microbenchmakrs, we also compare with
TinyTask [39].

6.2 Control parameters

We first perform experiments to identify suitable values for the
control parameters.

SWe tune HiBench to generate jobs with different input sizes, but we do not change
the DAGs of the jobs across the run.

®Note that we make no claims about whether this is the most appropriate resource
specification for the workloads we run. The goal of Libra is to optimize for already
allocated resource, in terms of the number of executors and the resource for each, based
on whatever criteria deemed appropriate by the cluster wide resource manager.
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Table 1: Task Size Ramp-up Time (min/mean/max)
Rounds of tasks | Completed stage portion
PageRank 3/5/9 4.5% /9.4% / 13.2%
Sort 2/5/8 10.7% / 16.6% / 24.4%

Initial task size. Table 1 illustrates the ramp-up speed of the DTS
algorithm. We run PageRank and Sort with the initial task size
ranging from 1 MB to 30 MB. For each stage in each initial task
size setting, we record how many rounds of tasks are needed and
calculate the percentage of the stage (in the amount of input data
processed) already completed before convergence.

Figure 8 illustrates DTS in action in the third stage’ of an example
PageRank run. Each data partition size is 1 MB. Successive task
sizes will continuously adapt to achieve the optimal task size, and
the task processing rate will converge to a high value. Note that
our task size increments are discrete, and can only take integer
multiples of the initial partition size.

Since we leverage the static partitioner in Spark, the initial task
size is the same as partition size. While these two can be decoupled,
it is preferable to start with a small task anyway and then ramp up
the size. Given we also prefer to adjust task sizes in fine steps, we
set the intial task size (and the partition size) to a small number,
5 MB, in subsequent experiments, unless otherwise noted.

Executor switching threshold. We need a threshold to detect a
particularly slow executor. Intuitively, this should be a multiple
of the standard deviation of the processing rates across executors
to detect outliers. In practice, we find that a fixed fractional de-
viation suffices, defined as the reduction from the average rate
across executors. The ideal value should respond to slow executors
quickly without causing unnecessary executor switching. This is
especially important for small jobs for which there are few rounds
for adaptation.

We ran PageRank and Scan, using 8 executors on 8 VMs, each
executor given 1 core and 700 MB memory. In the first experiment,
a background workload is added to one VM via the Linux stress and
dd commands to simulate constant contention, and we measure
the job completion time as the detection threshold varies (Figure 9).
In the second experiment, there is no background contention, and
so any executor switching is considered a false positive and con-
tributes to the DES overhead. The false detection rate is calculated
as the number of executor switching instances during an entire run,
and plotted against the switching threshold (Figure 10, note the
small scales on the y-axis in that figure). Although an optimal value

7This stage involves both I/0 and some computation, so the processing rate is a mixture
of the I/O and computation throughput.

Detection threshold

Figure 10: False detection ratio vs ex-
ecutor switching threshold.

Initial Task Size (MB)

Figure 11: DTS vs default Spark under
various initial task sizes.

could be set per application, in general the performance appears
insensitive to a threshold larger than 0.3. This is because, with expo-
nential weighted moving average applied, the weighted processing
rates for successive tasks are generally within 10% of one another,
and so a detection threshold of 0.3 can always accurately distin-
guish contention from normal fluctuation. We therefore empirically
set it to 0.3 for all applications.

The number of executors to probe. We adopt power-of-d choices
in DES. Experiments show that the value of d affects the perfor-
mance less than the number of idle executors. Therefore, we omit
detailed results and set d to min(4, number of idle executors). Libra
favors at least 4 idle executors. We maintain idle executors instead
of initializing an executor on a new machine on demand, because
the JVM initialization takes around 1 s. The cost of maintaining idle
executors is low, including a few heartbeat messages and a little
memory overhead. There is no CPU overhead unless a probe task
is launched.

6.3 Task Sizing Microbenchmarks

We next run microbenchmarks for the task sizing component (DTS)
of Libra. The experiments in this section were run free of contention,
with DES disabled.

DTS scheduling overhead. Since DTS needs to calculate the task
sizes, we measure the task scheduling delay thus incurred. Figure 12
shows that Libra adds a median delay of around 4 ms in Libra
compared to default Spark from an example run. This delay is
independent of the application workload and negligible compared
with the task execution time.

The benefit of per-stage task sizing. Figure 2 shows each stage
of PageRank favors a distinct optimal task size, whereas the default
Spark sets the same size for all stages. Therefore, we compare DTS
and default Spark under various initial task sizes®. Figure 11 shows
the normalized PageRank completion times for both. DTS always
outperforms default Spark, even when default Spark approaches its
own optimal performance point. This confirms that DTS responds
to per-stage dynamics.

DTS vs TinyTasks and default Spark. In the literature, most task
sizing discussion revolves around skewness mitigation or some
application specific techniques (such as for graph computation).
TinyTask [39] made a case for small task sizes to mitigate skewness
in an application independent manner, although at the expense of

8by partitioning the input data into 100, 500,1000,2000,3000,4000 and 5000 pieces
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Figure 13: DTS performance vs Tiny-
Tasks and default Spark.
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generating a large number of tasks and incurring a high schedul-
ing overhead. We consider TinyTask without scheduling delay as
the state of the art regarding skewness mitigation. We therefore
compare DTS performance to TinyTasks and default Spark on the
8 VMs.

The TinyTask proposal did not explicitly recommend a task size,
while the Spark documentation suggests a minimum execution time
of 100 ms per task, or the overhead would dominate. Therefore, we
use the corresponding size (around 0.8 MB) for TinyTask. Since the
default Spark scheduler incurs high overhead when running tiny
tasks, we also compare the job completion time without including
the scheduling delay.

Figure 13 shows that DTS outperforms both default Spark and
TinyTasks by significant margins. This is because DTS tries to
operate at or near the optimal task size, whereas the other two
schemes do not, as per the U-curve behavior noted in Section 2. DTS
even outperforms TinyTasks without scheduling overhead. This is
consistent with Figure 3. TinyTasks performs the worst for Scan
and Bayes because both workloads involve substantial numbers of
1/0 operations, which favor large task sizes. Default Spark performs
the worst for Sort and PageRank because these workloads are most
susceptible to skewness, which can be mitigated by TinyTasks.

6.4 Executor Selection Microbenchmarks

Recall that DTS relies on DES to ensure the executors can achieve
comparable performance. We next study the executor selection
component (DES) of Libra through microbenchmarks to assess how
well it reacts to executor capability variation. The experiments are
run with static, fixed task sizes and various contention levels on
the executors, with the task sizing component disabled. Although
DES would use idle executors for execution, the total amount of
resource used by DES and the schemes compared against are the
same.

Figure 16: Job performance in differ-
ent machine sharing scenarios.
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Figure 17: Job performance in differ-
ent machine sharing settings.

DES in the face of contention. We ran the 4 large jobs in 16
executors on 8 VMs for all the experiments.

First, we launch pairs of applications (or all) simultaneously. Fig-
ure 14 plots the average job completion time across all workloads in
each run, and shows that DES reduces this by 40% to 60% compared
to the default Spark.

The exact reduction depends on the initial contention. Recall
that the four applications (PageRank, Scan, Sort, and Bayes) have
different resource usage profiles. When a pair is initially contending
with each other for the same type of resource, DES could bring
huge benefit by switching a workload to other executors to avoid
further contention. Even if the initial placement of the jobs does
not incur significant contention, it is possible that some level of
contention still appears mid-job, which can also be reduced by DES.

Second, we use the Linux stress command to generate controlled
background workloads, and compare the performance between
three cases: Default Spark with the same type of single-source
contention (CPU, memory, or disk I/O) across executors, Default
Spark with different single-source contention, and DES with the
same type of single-source contention (Figure 15). Default Spark
suffers most when the workloads contend for the same type of
resource, while DES actively rearranges co-locating workloads via
executor selection to avoid this contention.

This shows that even if a contending workload has different
resource usage profile than the foreground workload (e.g., an I/0
intensive foreground over a CPU-intensive background), contention
still happens. In other words, even if workloads are strategically
placed together based on prior knowledge of their overall behav-
ior, some contention is still inevitable. Therefore, it is essential to
activate DES during the run time. The performance improvement
from DES is not significant in this case because we only created
contention on one of the VMs to simplify the experiments.
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lative execution. performance.

Finally, we measure the overhead of DES without contention.
This arises from unnecessary executor switching due to misdetec-
tion and is very small, ranging from 5-7% for the four application
workloads.

DES vs isolating applications. Since DES reacts to contention by
using an alternative, which may also be contended, we assess how
it compares with enforcing resource isolation between applications.
Arguably, resource isolation provides the most stable performance.

In this set of experiments, we launch 4 executors on 4 VMs, and
launch applications in four ways: (i) The applications are launched
one at a time (“one-by-one”), each using all 4 VMs; (ii) The applica-
tions are evenly spread on 4 VMs, i.e., each VM sees all 4 applications
(“spreadout”); (iii) and (iv) Each application is confined to one dis-
tinct VM initially, but (iii) enables DES functionality, and allows
applications to switch to a different VM during the run, whereas
(iv) confines the application to the same VM throughout (“DES”
and “isolation” respectively). Case (i) enforces temporal isolation
between applications, whereas case (iv) enforces spatial isolation.
Figure 16 shows the individual job completion times for cases (iii)
and (iv), and Figure 17 shows the average job completion time
across all four applications in each case. For (i), we also calculate
the average completion time across jobs with the job launch latency
included, indicated by the “one-by-one (w)” bars in both figures.
The exact average time varies with the job launch order, but the
qualitative behavior stays the same.

As expected, DES outperforms the default Spark and spatial iso-
lation. The latter fails to efficiently utilize the available resource.
This suggests “spatial partitioning” [33] of resource can sometimes
be suboptimal. Case (iii), with no better machines available, is the
most challenging scenario for DES, but DES still provides benefit
by regrouping the contending applications. Compared to tempo-
ral isolation, while DES cannot achieve the same individual job
performance, it does reduce the wait time before job launches.

DES vs Speculative execution. The standard approach to miti-
gate stragglers is to speculatively launch a duplicate copy of the
task [17], proactively or reactively. When one copy finishes, the
unfinished copy is stopped. While speculation does not maintain
machine capability, it mitigates the effect of unpredictable dynam-
ics.

We run an emulation of speculative execution as a proxy for
the optimal performance® for DES for comparison. We run each
job twice, ensuring that a task is run on different VMs in the two

°Tt is impractical due to requiring 100% resource overprovisioning,

2 4 8 16 32 64 128 256 512
number of tasks

Figure 19: Comparison of short job

Normalized job completion time

Figure 20: Long PageRank job perfor-
mance.

runs. To compute the job completion time, we first find the shorter
execution time between the two runs per task and then take into
account parallelism. We emulate the scheduling process by always
assigning the next pending task to the executor which sees the
smallest accumulated task completion time. After scheduling all
pending tasks, we choose the shortest accumulated task completion
time as the overall job completion time. Note that this emulated pro-
cess strictly outperforms and upperbounds any actual speculative
execution schemes.

Figure 18 shows the performance for the regular large job work-
load, where the applications contend with one another to generate
variable machine conditions. DES usually achieves within 10% of
the speculation performance. This shows that, by minimizing con-
tention, DES achieves very good performance.

6.5 How DES helps DTS

Small jobs. We use 3 VMs for this experiment, launching 2 active
executors and 1 idle executor. Scan (174 MB) and Sort are run con-
currently, the latter intended to simulate a background application
contending for resource. Figure 19 shows that Libra performance is
generally optimal and stable, regardless of how many initial tasks
are launched.

Large jobs. We then run PageRank with 1 GB, 5 GB, and 10 GB
input sizes on 8 VMs, adding contention to half of the VMs us-
ing the Linux commands. Figure 20 shows that Libra as a whole
outperforms DTS.

These figures show that DES is essential to DTS. This is because
DTS requires executor capability to be comparable, which is not
met in the presence of contention; DES restores the condition.

Libra vs combination of skewness and straggler mitigation.
Libra effectively jointly considers issues from the job side and
the machine side. Therefore, we compare it with a system naively
combining the state-of-the-art skewness and straggler mitigation
schemes, i.e., TinyTasks (without scheduling delay) combined with
speculation (using twice the resource)

Figure 21 shows that, for the large jobs, Libra with scheduling
overhead outperforms TinyTasks and speculation without schedul-
ing overhead by 25% to 33%, and more if the scheduling overhead
for the latter is included.

6.6 Large-scale performance

We run a large-scale experiment on 100 m4.2xlarge VMs. The work-
load is synthesized based on existing workload characterization



Libra and the Art of Task Sizing in Big-Data Analytic Systems

SoCC "19, November 20-23, 2019, Santa Cruz, CA, USA

r
£ 208 ’
3 g ,

g - g 08 ,

< [ Tiny+Speculate(w/o) 8 o4 '

g [ Tiny+Speculate(w) LDL E

g Q02

Qo

o
N
‘\

O
o

o
=)

e Default
= = Libra

o©
)

o

50

P+So P+B

Sc+So

P+B+Sc+So

Figure 21: Libra vs TinyTasks com-

bined with speculation. large cluster.

Table 2: Workload distribution on a large cluster

Bin | Tasks | Job Type | # of Jobs Run
1 1-10 Scan 85
2 11-50 | Pagerank 4
3 51-150 Sort 8
4 >150 Bayes 3

of the Facebook trace [14] as shown in Table 2, 85% of which are
small jobs, and 15% large jobs, covering the typical types of the ap-
plications seen in the original trace. Note that we cannot replay any
existing cluster traces, because Libra changes the task size during the
run, whereas those traces are based on static task size settings. We
generated a submission plan of 100 jobs whose inter-arrival times
are 14 s, so there is a range of interleaving between jobs during the
entire run.

Figure 22 plots the CDF of Scan completion times. Libra reduces
the median job completion time by more than 60%, and reduces
the tail job completion time by approximately 40%. For Libra, the
80th-percentile job completion time ranges from 25 s to 75 s, much
smaller than the 40 s to 180 s for default Spark. In other words,
Libra provides more stable performance across jobs.

Figure 23 plots the average job completion time for each type of
jobs. The median job completion time for Libra is a third of that for
the default Spark. The smallest improvement is still around 20%,
suggesting that Libraworks well in large-scale clusters.

7 RELATED WORK

Job partitioning. A lot of efforts have been made on graph parti-
tioning, typically partitioning the input graph statically at the be-
ginning of the execution [13, 22] or dynamically [24, 29]. However,
all these algorithms have to leverage the graph structure informa-
tion, and many leverage specific properties of the graph algorithm,
hence they are not suitable for more generic data analytics systems.

Naiad [37] includes a static, hash-based job partitioner. Adapt-
Stream [15] dynamically adjusts batch sizes specifically for stream-
ing workloads, mainly to prevent the data flow from blocking. In-
stead, Libra calculates the optimal task size dynamically regardless
of the workload characteristics.

Dynamic task management. Various works [7, 27, 34, 38] essen-
tially permit dynamically changing the DAG. Libra does not affect
the DAG, only how each node in the DAG is executed. DES is re-
lated to work stealing proposed in high performance computing [11],
although the trigger and work (task) migration mechanisms differ.

100

Job completion time (s)

Figure 22: Scan completion time on a
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Figure 23: Average job completion
time on a large cluster.

Performance profiling and tail reduction techniques. A few
studies characterize the performance bottlenecks or outliers [16, 23,
33, 40]. The causes of the tails are variously attributed to skewness
(job issue), stragglers (slow machines), and data locality issue, and
many solutions have been proposed to address these individually
(e.g., [28, 31, 32, 39, 42, 49] to mitigate skewness, and [8, 9, 12, 41,
45, 46, 48] to mitigate stragglers).

In contrast, Libra does not explicitly address skewness but em-
ploys proactive dynamic repartitioning of the job. The DES compo-
nent can mitigate stragglers. Libra optimizes the overall job com-
pletion performance, but may reduce performance tails as a side

effect.

Prediction techniques. Libra implicitly predicts job performance
based on earlier part of the same run following a data-light, control
theoretic approach, assuming the U-curve behavior. In compari-
son, other schemes (such as Wrangler [46] and Quasar [18]) adopt
general machine learning techniques, requiring comprehensive re-
source usage data (data-heavy) from previous completed runs of the
same job to make a one-time decision, without assumptions about
the application behavior. Ernest [43] is the closest to our system by
leveraging predictable structures in the job, though still following
a machine learning approach. The control approach is orthogonal
to the learning based approaches. Libra can incorporate learning
techniques to make more accurate decisions at each adaptation
step.

8 CONCLUSION

In this paper, we propose Libra, to auto-tune job partitioning in
data analytics systems. The key observation is that there is an
optimal task size per application (stage). This optimal varies by
the application logic, and so we need to dynamically determine
task sizes during run time. We can start with a small task size and
gradually increase the size until the task processing rate starts to
drop. Libra takes a control approach, collecting information and
making decisions local to a job on the fly.

We implemented Libra on Spark and showed Libra could reduce
job completion times by a significant margin compared to state-of-
the-art alternatives.
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