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Abstract. Availability of extensive genetics data across multiple indi-
viduals and populations is driving the growing importance of graph based
reference representations. Aligning sequences to graphs is a fundamental
operation on several types of sequence graphs (variation graphs, assem-
bly graphs, pan-genomes, etc.) and their biological applications. Though
research on sequence to graph alignments is nascent, it can draw from
related work on pattern matching in hypertext. In this paper, we study
sequence to graph alignment problems under Hamming and edit distance
models, and linear and affine gap penalty functions, for multiple variants
of the problem that allow changes in query alone, graph alone, or in both.
We prove that when changes are permitted in graphs either standalone
or in conjunction with changes in the query, the sequence to graph align-
ment problem is NP-complete under both Hamming and edit distance
models for alphabets of size ≥ 2. For the case where only changes to the
sequence are permitted, we present an O(|V | + m|E|) time algorithm,
where m denotes the query size, and V and E denote the vertex and
edge sets of the graph, respectively. Our result is generalizable to both
linear and affine gap penalty functions, and improves upon the run-time
complexity of existing algorithms.

1 Introduction

Aligning sequences to graphs is becoming increasingly important in the context
of several applications in computational biology, including variant calling [22, 6,
7, 9], genome assembly [2, 33, 8], long read error-correction [28, 32, 34], RNA-seq
data analysis [4, 13], and more recently, antimicrobial resistance profiling [27].
Much of this has been driven by the growing ease and ubiquity of sequencing at
personal, population, and environmental-scale, leading to significant growth in
availability of datasets. Graph based representations provide a natural mecha-
nism for compact representation of related sequences and variations among them.
Some of the most useful graph based data structures are de-Bruijn graphs [25],
variation graphs [23], string graphs [19], and partial order graphs [14].

Decades of progress made towards designing provably good algorithms for
the classic sequence to sequence alignment problems serves as the foundation for
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mapping tools currently used in genomics, and similar efforts are necessary for
sequence to graph alignment. To address the growing list of biological applica-
tions that require aligning sequences to a graph, several heuristics [12, 16, 15, 11,
9] and a few provably good algorithms [29, 26, 31] have been developed in recent
years. In addition, sequence to graph alignment has been studied much earlier
in the string literature through its counterpart, approximate pattern matching
to hypertext [17]. Since then, important complexity results and algorithms have
been obtained for different variants of this problem [1, 20, 30].

Many versions of the classic sequence to sequence alignment problem were
considered in the literature, e.g., different alignment modes – local/global, scor-
ing functions – linear/affine/arbitrary gap penalty, and so on [21]. The list further
proliferates when considering a graph-based reference. This is because the na-
ture of the problem changes depending on whether the input graphs are cyclic
or acyclic [20], and whether edits are allowed in the graph, or query, or both [1].

In this paper, we present new complexity results and improved algorithms
for multiple variants of the sequence to graph alignment problem. Consider a
query sequence of length m and a directed graph G(V,E) with string-labeled
vertices, over the alphabet Σ. We make the following contributions:

• The problem variants that allow changes to the graph labels are shown to
be NP-complete [1], via proofs that assume |Σ| ≥ |V |. To date, tractability
of these problems remains unknown for the case of constant sized alphabets,
which is an important consideration when aligning DNA, RNA, or protein
sequences to corresponding graphs. We close this knowledge gap by proving
that four variants of the problem, characterized by changes to graph alone or
both graph and query, under the Hamming or edit distance models, remain
NP-complete for |Σ| ≥ 2.

• Allowing changes to the query sequence alone makes the problem polyno-
mially solvable. For graphs with character-labeled vertices, we propose an
algorithm that achieves O(|V |+m|E|) time bound for both linear and affine
gap penalty cases, superior to the best existing algorithms (Table 1). An
important attribute of the proposed algorithm is that it achieves the same

Linear gap penalty
Affine gap penalty

Edit distance Arbitrary costs
Amir et al. [1] O(m(|V | log |V |+ |E|)) O(m(|V | log |V |+ |E|)) -

Navarro [20] O(m(|V |+ |E|)) - -

HybridSpades [2] O(m(|V | log(m|V |) + |E|)) O(m(|V | log(m|V |) + |E|)) -

V-ALIGN [31] O(m|V ||E|) O(m|V ||E|) O(m|V ||E|)
Rautiainen and
Marschall [26]

O(|V |+m|E|) O(m(|V | log |V |+ |E|)) O(m(|V | log |V |+ |E|))

This work O(|V |+m|E|) O(|V |+m|E|) O(|V |+m|E|)

Table 1. Comparison of run-time complexity achieved by different algorithms for the
sequence to graph alignment problem when changes are allowed in the query sequence
alone.
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time and space complexity as required for the easier problem of sequence
alignment to acyclic graphs [17, 20], under both scoring models.

2 Preliminaries

Let Σ denote an alphabet, and x and y be two strings over Σ. We use x[i] to
denote the ith character of x, and |x| to denote its length. Let x[i, j] (1 ≤ i ≤ j ≤
|x|) denote x[i]x[i + 1] . . . x[j], the substring of x beginning at the ith position
and ending at the jth position. Concatenation of x and y is denoted as xy. Let
xk denote string x concatenated with itself k times.

Definition 1. Sequence Graph: A sequence graph G(V,E, σ) is a directed graph
with vertices V and edges E. Function σ : V → Σ∗ labels each vertex v ∈ V with
string σ(v) over the alphabet Σ.

Naturally, path p = vi, vi+1, . . . , vj in G(V,E, σ) spells the sequence σ(vi)
σ(vi+1) . . . σ(vj). Given a query sequence q, we seek its best matching path
sequence in the graph. Alignment problems are formulated such that distance
between the computed path and the query sequence is minimized, subject to
a specified distance metric such as Hamming or edit distance. Typically, an
alignment is scored using either a linear or an affine gap penalty function. The
cost of a gap is proportional to its length, when using a linear gap penalty
function. An affine gap penalty function imposes an additional constant cost to
initiate a gap.

3 Complexity Analysis

3.1 Asymmetry of Edit Locations

An alignment between two sequences also specifies possible changes to the se-
quences (e.g. substitutions, insertions, deletions) to make them identical, with
alignment distance specifying the cumulative penalty for the changes. The changes
can be individually applied either to the first or the second sequence, or any com-
bination thereof. Such a symmetry is no longer valid when aligning sequences
to graphs [1]. This is because alignments can occur along cyclic paths in the
graph. If the label of a vertex in the graph is changed, then an alignment path
visiting that vertex k times reflects the same change at k different positions in
the alignment. On the other hand, a change in one position of the sequence only
reflects that change in the corresponding position in the alignment. As such,
optimal alignment scores vary depending on whether changes are permitted in
just the sequence, just the graph, or both (see Figure 1 for an illustration). This
characteristic leads to three different problems, with each potentially resulting in
a different optimal distance.

Consider the sequence to graph alignment problem under the Hamming or
edit distance metrics. For each distance metric, there are three versions of the
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Sequence:   AGAG
 
Graph:

AGAG

AGAG
or

Sequence I:    AGAG   
Sequence II:   ACAC

ACAC

ACAC

ACAC
or

AGAG

Input:

Alignment:

CA

CA GA

Fig. 1. Asymmetry w.r.t. the location of changes in sequence to graph alignment il-
lustrated using Hamming distance. Two substitutions are required in the sequence,
whereas just one is sufficient if made in the graph.

problem depending on whether changes are allowed in query alone, graph alone,
or both in the query and graph. Consider the decision versions of these problems,
which ask whether there exists an alignment with ≤ d modifications (substitu-
tions or edits), as per the distance metric. Restricting substitutions or edits to
the query sequence alone admits polynomial time solutions [1, 20, 26]. In the pi-
oneering work of Amir et al. [1] in the domain of string to hypertext matching,
it has been proved that the other problem variants which permit changes to
graph are NP-complete. The proofs provided in their work assume an alpha-
bet size ≥ |V |. To date, tractability of these problems remains unknown for the
case of constant sized alphabets (e.g., for DNA, RNA, or protein sequences). In
what follows, we close this knowledge gap by showing that the problems remain
NP-complete for any alphabet of size at least 2.

3.2 Alignment using Hamming Distance

Theorem 1 The problem “Can we substitute a total of ≤ d characters in graph
G and query q such that q will have a matching path in G?” is NP-complete for
|Σ| ≥ 2.

Proof. The problem is in NP. Given a solution, the set of substitutions can
be used to obtain the corrected graph and query. Next, we can leverage any
polynomial time algorithm [1, 20, 24] to verify if the corrected query matches a
path in the corrected graph.

To show that the problem is NP-hard, we perform a reduction using the
directed Hamiltonian cycle problem. Suppose G′(V,E) is a directed graph in
which we seek a Hamiltonian cycle. Let n = |V |. We transform it into a se-
quence graph G(V,E, σ) over the alphabet Σ = {α, β} by simply labeling each
vertex v ∈ V with αn (Figure 2). Note that the graph structure remains un-
changed. Next, we construct query sequence q. Let token ti be the sequence of
n characters αn−i−1βαi. We choose query q to be the n2(2n+ 2) long sequence:
(t0t1 . . . tn−1)2n+2. We claim that a Hamiltonian cycle exists in G′(V,E) if and
only if q can be matched after substituting a total of ≤ n characters in G(V,E, σ)
and q.

Suppose there is a Hamiltonian cycle in G′(V,E). We can follow the cor-
responding loop in G(V,E, σ) from the first character of any vertex label. To
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match each token in the query q, we require one α→ β substitution per vertex.
Thus, the query q matches G(V,E, σ) after making exactly n substitutions in
the graph.

Conversely, suppose the query q matches the graph G(V,E, σ) after making
≤ n substitutions in the query and the graph. Consider the following substring
qsub of q: t0t1 . . . tn−1t0t1. Note that there are n+1 non-overlapping instances of
qsub in q. Even if all the n substitutions occur in the query, at least one instance
of qsub must remain unchanged. As a result, qsub must match to a path in the
corrected G(V,E, σ).

Case 1: qsub starts matching from the first character of a vertex label. Note that
the first n tokens qsub[1, n] = t0, qsub[n+1, 2n] = t1, . . ., qsub[n

2−n+1, n2] = tn−1
are all unique followed by qsub[n

2 + 1, n2 + n] = t0. Therefore, this requires a
Hamiltonian cycle in G(V,E, σ). Accordingly, there is a Hamiltonian cycle in
G′(V,E).

Case 2: qsub starts somewhere other than the starting position within a vertex
label. Let qsub[k] (1 < k ≤ n) be the first character that matches at the beginning
of the next vertex on the path matching q. Similar to the previous case, the
following n sequences qsub[k, n + k − 1], qsub[n + k, 2n + k − 1], . . . , qsub[n

2 −
n + k, n2 + k − 1] are unique due to the spacing between β characters in qsub.
Therefore, the matching path must yield a Hamiltonian cycle.

Corollary 1 The problem “Can we substitute ≤ d characters in graph G such
that q will have a matching path in G?” is NP-complete for |Σ| ≥ 2.

Proof. The setup used in the proof of Theorem 1 can be trivially extended to
prove the above claim. Alternatively, we can simplify the proof by using the
query sequence q = (t0t1 . . . tn−1)2 since only one instance of the substring qsub
in q is needed for the subsequent arguments. This is because substitutions in the
query sequence are not permitted.

Using the above two results, we conclude that Hamming-distance based de-
cision formulations of sequence to graph alignment problems are NP-complete
when substitutions are allowed in graph labels, for |Σ| ≥ 2. In fact, it can be
easily shown that |Σ| ≥ 2 reflects a tight bound. Using |Σ| = 1, all the problem
instances can be decided in polynomial time using straightforward application
of standard graph algorithms.

3.3 Alignment using Edit Distance

We next show that edit distance based decision problems that permit changes
in graph labels are NP-complete if |Σ| ≥ 2. Similar to our previous claims,
allowing edits in the graph makes the sequence to graph alignment problem
intractable. Proofs used for Hamming distance do not apply here as edits also
permit insertions and deletions. Length of vertex labels can grow or shrink using
insertion and deletion edits respectively.
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q: (αααβ  ααβα  αβαα  βααα)10

α8 β8 α8

G'(V, E)

α4 α4

α4 α4

α8 β8 α8

α8 β8 α8 α8 β8 α8

(Theorem 1) (Theorem 2)

q: (α8αβ7 α8      α8 βαβ6 α8 
….α8β2αβ5 α8  α8 β3αβ4 α8)10

Fig. 2. The constructs used for reductions in proofs of Theorems 1 and 2.

Theorem 2 The problem “Can we perform a total of ≤ d edits in graph G and
query q so that q will match in G?” is NP-complete for |Σ| ≥ 2.

Proof. Clearly the problem is in NP. We again use the directed Hamiltonian
cycle problem for reduction. Given an instance G′(V,E) of the directed Hamilto-
nian cycle problem, we design an instance G(V,E, σ) using Σ = {α, β}. Let n =
|V |. Label each vertex v in V using a sequence of 6n characters α2nβ2nα2n (Fig-
ure 2). Let token ti be a sequence of length 6n: α2n βiαβ2n−1−i α2n. Using such
tokens, we build a query sequence q of length 6n2(2n+ 2) as (t0t1 . . . tn−1)2n+2.
We claim that a Hamiltonian cycle exists in G′(V,E) if and only if we can match
the sequence q to the graph G(V,E, σ) using ≤ n total edits.

If there is a Hamiltonian cycle in G′(V,E), we can follow the same loop
in G(V,E, σ) to align q. The alignment requires one substitution per vertex.
To prove the converse, suppose query q matches graph G(V,E, σ) after mak-
ing a total of ≤ n edits in q and G(V,E, σ). Consider the substring qsub of q:
t0t1 . . . tn−1t0. Note that there are n+ 1 non-overlapping instances of qsub in q,
at least one of which must remain unchanged. Accordingly, the substring qsub
must match corrected G(V,E, σ).

For the token ti, let ki = βiαβ2n−1−i be its kernel sequence of length 2n.
It follows that ti = α2nkiα

2n. We show that a kernel must be matched entirely
within a vertex in G(V,E, σ) using the following two arguments. First, since
any vertex label cannot shrink from length 6n to < 5n, a kernel cannot be
matched to an entire vertex after the edits. It implies that a kernel must match
to ≤ 2 vertices. Second, if a kernel aligns across two vertices, (2n− 1) β’s must
be required in place of α’s at the two vertex ends, thus requiring > n edits.
Therefore, a kernel can only be matched within a single vertex label. Finally, it
is easy to observe that any vertex label after ≤ n edits cannot be matched to
more than one kernel. When combining these arguments with the fact that all
n consecutive kernels in qsub are unique, we establish that the alignment path
of qsub must follow a Hamiltonian cycle in G(V,E, σ). Accordingly, there is a
Hamiltonian cycle in G′(V,E).

Corollary 2 The problem “Can we perform ≤ d edits in graph G so that q will
match in G?” is NP-complete for |Σ| ≥ 2.
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Proof. The setup used to prove Theorem 2 can be trivially extended to prove
the above claim.

It is straightforward to prove that other problem variants, e.g., with linear
gap penalty or affine gap penalty scoring functions are at least as hard as the
edit-distance based formulations. Therefore, the sequence to graph alignment
problem remains NP-complete even on constant sized alphabets for these classes
of scoring functions also if changes are permitted in the graph.

4 Sequence-to-Graph Alignment with Edits in Sequence

The sequence to graph alignment problem is polynomially solvable when changes
are allowed on the query sequence alone [1, 20]. Here, we improve upon the
state-of-the-art by presenting an algorithm with O(|V | + m|E|) run-time. Our
algorithm matches the run-time complexity achieved previously by Rautiainen
and Marschall [26] for edit distance, while improving that for linear and affine
gap penalty functions. In addition, it is simpler to implement because it only
uses elementary queue data structures. Note that edit distance is a special case
of linear gap penalty when cost per unit length of the gap is 1, and substitution
penalty is also 1. We first present our algorithm for the case of a linear gap
penalty function, and subsequently show its generalization to affine gap penalty.
From hereon, we assume that the sequence graphG(V,E, σ) is a character labeled
graph, i.e., σ(v) ∈ Σ, v ∈ V . This assumption simplifies the description of the
algorithm. Note that it is straightforward to transform a graph from string-
labeled form to character-labeled form, and vice versa.

4.1 Linear Gap Penalty

Alignment Graph In the literature on the classic sequence to sequence align-
ment problem, the problem is either formulated as a dynamic programming
problem or an equivalent graph shortest-path problem in an appropriately con-
structed edge-weighted edit graph or alignment graph [18]. However, formulating
the sequence to graph alignment problem as a dynamic programming recursion,
while easy for directed acyclic graphs through the use of topological ordering,
is difficult for general graphs due to the possibility of cycles. As it turns out,
formulation as a shortest-path problem in an alignment graph is still rather
convenient, even for graphs with cycles [1, 26]. The alignment graph, described
below, is constructed using the given query sequence, the sequence graph and
the scoring parameters.

The alignment graph is a weighted directed graph which is constructed such
that each valid alignment of the query sequence to the sequence graph corre-
sponds to a path from source vertex s to sink vertex t in the alignment graph,
and vice versa (Figure 3). The alignment cost is equal to the corresponding path
distance from the source to the sink. Note that the alignment graph is a multi-
layer graph containing m ‘copies’ of the sequence graph, one in each layer. A



8 Jain et al.

A C G T

A 0

C 0 1

T 1

Sequence graph

A C G T

A C G T

A C G T

source 

sink 

du
m

m
y 

ve
rti

ce
s

Alignment graph

Q
ue

ry
 s

eq
ue

nc
e

(alignment cost)

Layer 1 

Layer 2 

Layer 3 

s

t

Fig. 3. An example to illustrate the construction of an alignment graph from a given se-
quence graph and a query sequence. Multiple colors are used to show weighted edges of
different categories in the alignment graph. The red, blue and green edges are weighted
as insertion, deletion and substitution costs respectively.

column of dummy vertices is required in addition to accommodate the possibil-
ity of deleting a prefix of the query sequence. Edges that emanate from a vertex
are equivalent to the choices available while solving the alignment problem. A
formal definition of the alignment graph follows:

Definition 2. Alignment graph: Given a query sequence q, a sequence graph
G(V,E, σ), linear gap penalty parameters ∆del, ∆ins, and a substitution cost pa-
rameter ∆sub, the corresponding alignment graph is a weighted directed graph
Ga(Va, Ea, ωa), where Va =

(
{1, . . . ,m} × (V ∪ {δ})

)
∪ {s, t} is the vertex set,

and ωa : Ea → R≥0 is the weight function defined as

ωa(x, y) =



∆i,v x = (i− 1, u), y = (i, v) 1 < i ≤ m & (u, v) ∈ E
∆ins x = (i, u), y = (i, v) 1 ≤ i ≤ m & (u, v) ∈ E
∆del x = (i− 1, v), y = (i, v) 1 < i ≤ m & (v, v) /∈ E
min(∆del, ∆i,v) x = (i− 1, v), y = (i, v) 1 < i ≤ m & (v, v) ∈ E

for source and sink vertices:

∆1,v x = s, y = (1, v) v ∈ V
∆del x = s, y = (1, δ)

0 x = (m, v), y = t v ∈ V ∪ {δ}

for dummy vertices:

∆del x = (i− 1, δ), y = (i, δ) 1 < i ≤ m
∆i,v x = (i− 1, δ), y = (i, v) 1 < i ≤ m & v ∈ V

Edges (x, y) ∈ Ea are defined implicitly, as those pairs (x, y) for which ωa is
defined above. ∆i,v = ∆sub if q[i] 6= σ(v), v ∈ V , and 0 otherwise. ∆sub denotes
the cost of substituting q[i] with σ(v).

Existing definitions of the alignment graph [1, 26] did not include the dummy
vertices, and were incomplete. Using the alignment graph, we reformulate the
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problem of computing an optimal alignment to finding the shortest path in the
alignment graph. Even though the alignment graph defined by Amir et al. [1]
has minor differences, proof in their work can be easily adapted to state the
following claim:

Lemma 1 (Amir et al. [1]). Shortest distance from the source vertex s to
the sink vertex t in the alignment graph Ga(Va, Ea, ωa) equals cost of optimal
alignment between the query q and the sequence graph G(V,E, σ).

One way of solving the above shortest path problem is to directly apply
Dijkstra’s algorithm [1, 2]. However, it results in an O

(
m|V | log(m|V |) +m|E|

)
time algorithm. We next show how to solve the problem in O(|V |+m|E|) time.

Proposed Algorithm While searching for a shortest path from the source to
the sink vertex, we compute the shortest distances from the source to interme-
diate vertices Va\{s, t} in the alignment graph. An edge from a vertex in layer i
is either directed to a vertex in the same layer or to a vertex in the next layer.
As a result, the shortest distances to nodes in a layer can be computed once the
distances for the previous layer are known. This also makes it feasible to solve
for the layers 1 to m, one by one [20]. We use a two-stage strategy to achieve
linear O(|V |+ |E|) run-time per layer. Before describing the details, we give an
outline of the algorithm and its two stages.

Any path from the source vertex to a vertex v in a layer must extend a
path ending in the previous layer using either a deletion or a substitution cost
weighted edge. Afterwards, a path that ends in the same layer but not at v can
be further extended to v using the insertion cost weighted edges if it results in
the shortest path to the source. Roughly speaking, the first stage executes the
former task, while the second takes care of the latter. The two stages together
are invoked m times during the algorithm until the optimal distances are known
for the last layer (Algorithm 1). Input to the first stage InitializeDistance is an
array of the shortest distances of the vertices in previous layer sorted in non-
decreasing order. This stage computes the ‘tentative’ distances of all vertices in
the current layer because it ignores the insertion cost weighted edges during the
computation. It outputs the sorted tentative distances as an input to the second
stage PropagateInsertion. The PropagateInsertion stage returns the optimal dis-
tances of all vertices in the current layer while maintaining the sorted order for
a subsequent iteration.

The following are two important aspects of our algorithm. First, we are able
to maintain the sorted order of vertices by spending O(|V |) time per layer during
the first stage (Lemma 2). Secondly, we propagate insertion costs through the
edges in O(|V | + |E|) time per layer during the second stage by eluding the
need for standard priority queue implementations (Lemmas 3-5). Both of these
features exploit characteristics specific to the alignment graphs.

The InitializeDistance stage We compute tentative distances for each vertex in
the current layer by using shortest distances computed for the previous layer (Al-
gorithm 2). Because all deletion and substitution cost weighted edges are directed
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Algorithm 1: Algorithm for sequence to graph alignment

Result: The length of shortest path from s to t
1 PreviousLayer = [s];
2 s.distance = 0;
3 for i = 1 to m do /* Do the computation layer by layer */

4 CurrentLayer = [(i, v1), (i, v2), . . . , (i, vn), (i, k)];
5 x.distance =∞ ∀x ∈ CurrentLayer;
6 InitializeDistance(PreviousLayer,CurrentLayer);
7 PropagateInsertion(CurrentLayer);
8 PreviousLayer = CurrentLayer;

9 return Min(PreviousLayer.distance);

Algorithm 2: Algorithm to initialize and sort layer before insertion prop-
agation

Result: A sorted layer CurrentLayer with distances initialized using
PreviousLayer

1 Function InitializeDistance(PreviousLayer, CurrentLayer)
2 foreach x ∈ PreviousLayer do
3 foreach y ∈ x.neighbor & y ∈ CurrentLayer do
4 if y.distance > x.distance+ ωa(x, y) then
5 y.distance = x.distance+ ωa(x, y);

6 Sort(CurrentLayer);

from the previous layer towards the current, this only requires a straightforward
linear O(|V | + |E|) time traversal (lines 2-5). In addition, we are required to
maintain the current layer as per sorted order of distances. Note that vertices in
the previous layer are already available in sorted order of their shortest distances
from s. A vertex v in the previous layer can assign only three possible distance
values (v.distance, v.distance+∆sub, or v.distance+∆del) to a neighbor in the
current layer. By maintaining three separate lists for each of the three possibili-
ties, we can create the three lists in sorted order and merge them in O(|V |) time.
The relative order of vertices in the current layer can be easily determined in
linear time by tracking the positions of their distance values in the merged list.
As a result, the current layer can be obtained in sorted form in O(|V |) time and
O(|V |) space, leading to the following claim.

Lemma 2. Time and space complexity of the sorting procedure in Algorithm 2
is O(|V |).

The PropagateInsertion Stage Note that the tentative distance computed for a
vertex is sub-optimal if its shortest path from the source vertex traverses any
insertion cost weighted edge in the current layer. One approach to compute opti-
mal distance values is to process vertices in their sorted distance order (minimum
first) and update the neighbor vertices, similar to Dijkstra’s algorithm. When
processing vertex v, the distance of its neighbor should be adjusted such that
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Algorithm 3: Algorithm to propagate insertions in the same layer

Result: A sorted layer CurrentLayer with optimal distance values
1 Function PropagateInsertion(CurrentLayer)
2 x.resolved = false ∀x ∈ CurrentLayer;
3 Queue q1 = ∅, q2 = ∅;
4 q1.Enqueue(CurrentLayer);
5 CurrentLayer = [ ];
6 while q1 6= ∅ or q2 6= ∅ do
7 qmin = q1.Front() < q2.Front() ? q1 : q2;
8 x = qmin.Dequeue();
9 if x.resolved = false then

10 x.resolved = true;
11 CurrentLayer.Append(x);
12 foreach y ∈ x.neighbor & y.layer = x.layer do
13 if y.distance > x.distance+∆ins then
14 y.distance = x.distance+∆ins;
15 q2.Enqueue(y);

it is no more than v.distance + ∆ins. Selecting vertices with minimum scores
can be achieved using a standard priority queue implementation (e.g., Fibonacci
heap); however, it would require O(|E|+ |V | log |V |) time per layer. A key prop-
erty that can be leveraged here is that all edges being considered in this stage
have uniform weights (∆ins). Therefore, we propose a simpler and faster algo-
rithm using two First-In-First-Out queues (Algorithm 3). The first queue q1 is
initialized with sorted vertices in the current layer, and the second queue q2 is
initialized as empty (line 4). The minimum distance vertex is always dequeued
from either of the two queues (line 8). As and when distance of a vertex is up-
dated by its neighbor, it is enqueued to q2 (line 15). Following lemmas establish
the correctness and an O(|E|+ |V |) time bound for the PropagateInsertion stage
in the algorithm.

Lemma 3. In each iteration at line 8, Algorithm 3 dequeues a vertex with the
minimum overall distance in q1 and q2.

Proof. The queue q1 always maintains its non-decreasing sorted order at the
beginning of each loop iteration (line 6) in Algorithm 3 as we never enqueue new
elements into q1. We prove by contradiction that q2 also maintains the order.
Maintaining this invariant would immediately imply the above claim. Let i be
the first iteration where q2 lost the order. Clearly i > 1. Because i is the first
such iteration, new vertices (say y1, y2, . . . , yk) must have been enqueued to q2
in the previous iteration (line 15), and the vertex (say x) which caused these
additions must have been dequeued (line 8). Note that the distance of all the new
vertices, the yi’s, equals x.distance+∆ins. Therefore, the vertex prior to y1 (say
ypre) must have a distance higher than y1. However, this leads to a contradiction
because if we consider the iteration when ypre was enqueued to q2, the distance



12 Jain et al.

of the vertex that caused addition of ypre could not be higher than the distance
of the vertex x.

Lemma 4. Once a vertex is dequeued in Algorithm 3, its computed distance
equals the shortest distance from the source vertex.

Proof. Lemma 3 establishes that Algorithm 3 processes all vertices that belong
to the current layer in sorted order. Therefore, it mimics the choices made by
Dijkstra’s algorithm [5].

Lemma 5. Algorithm 3 uses O(|V | + |E|) time and O(|V |) space to compute
shortest distances in a layer.

Proof. Each vertex in the current layer enqueues its updated neighbor vertices
into q2 at most once. Note that distance of a vertex can be updated at most
once, therefore the maximum number of enqueue operations into q2 is |V |. In
addition, enqueue operations are never performed in q1. Accordingly, the number
of outer loop iterations (line 6) is bounded by O(|V |). The inner loop (line 12) is
executed at most once per vertex, therefore the amortized run-time of the inner
loop is O(|V |+ |E|).

The above claims yield an O(m(|V | + |E|)) time algorithm for aligning the
query sequence to sequence graph. Assuming a constant alphabet, we can fur-
ther tighten the bound to O(|V | + m|E|) by using a simple preprocessing step
suggested in [26]. This step transforms the sequence graph by merging all ver-
tices with 0 in-degree into ≤ |Σ| vertices. As a result, the preprocessing ensures
that the count of vertices in the new graph is no more than |E|+ |Σ| without af-
fecting the correctness. Summary of the above claims is presented as a following
theorem:

Theorem 3 Algorithm 1 computes the optimal cost of aligning a query sequence
of length m to graph G(V,E, σ) in O(|V | + m|E|) time and O(|V |) space using
a linear gap penalty cost function.

It is natural to wonder whether there exist faster algorithms for solving the
sequence to graph alignment problem. As noted in [26], the sequence to sequence
alignment problem is a special case of the sequence to graph alignment problem
because a sequence can be represented as a directed chain graph with character
labels. As a result, existence of either O(m1−ε|E|) or O(m|E|1−ε), ε > 0 time al-
gorithm for solving the sequence to graph alignment problem is unlikely because
it would also yield a strongly sub-quadratic algorithm for solving the sequence
to sequence alignment problem, further contradicting SETH [3].

4.2 Affine Gap Penalty

Supporting affine gap penalty functions in the dynamic programming algorithm
for sequence to sequence alignment is typically done by using three rather than
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one scoring matrix [10]. Similarly, the alignment graph can be extended to con-
tain three sub-graphs with substitution, deletion, and insertion cost weighted
edges respectively [26]. The edge weights are adjusted for the affine gap penalty
model such that a cost for opening a gap is penalized whenever a path leaves
the match sub-graph to either the insertion or the deletion sub-graph (Appendix
Figure 4). The properties that were leveraged to design faster algorithm for linear
gap penalty functions continue to hold in the new alignment graph. In partic-
ular, the sorting still requires linear time during the InitializeDistance stage,
and insertion propagation is still executed over uniformly weighted edges in the
insertion sub-graph. As a result, the two-stage algorithm can be extended to
operate using affine gap penalty function in the same time and space complexity
as with the linear gap penalty function.

5 Conclusions and Open Problems

In this paper, we show that the sequence to graph alignment problem is NP-
complete when changes are allowed in the sequence graph, for any alphabet of
size ≥ 2. When changes are allowed in the query sequence alone, we provide a
faster polynomial time algorithm that generalizes to linear gap penalty and affine
gap penalty functions. The proposed algorithms use elementary data structures,
therefore are simple to implement. Overall, the theoretical results presented in
this work enhance the fundamental understanding of the problem, and will aid
the development of faster tools for mapping to graphs. The alignment problem for
sequence graphs is a rich area with several unsolved problems. For the intractable
problem variants, development of faster exact and approximate algorithms are
fertile grounds for future research. In addition, working towards robust indexing
schemes and heuristics that scale to large input graphs and different sequencing
technologies remains an important direction.
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6 Appendix
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Fig. 4. An example to illustrate the construction of an alignment graph for sequence
to graph alignment using affine gap penalty. The alignment graph now contains three
sub-graphs separated by the gray dash lines. The deletion and insertion weighted edges
in the alignment graph for linear gap penalty are shifted to deletion sub-graph and
insertion sub-graph, respectively. Their weights are also changed to the gap extension
penalty. Besides, more edges are added to connect the sub-graphs with each other. For
simplicity, we use the highlighted vertex as an example to illustrate how to open a gap
and extend it. The weight of magenta colored edges is the sum of gap open penalty
and gap extension penalty, and the weight of the black colored edges is 0.


