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ABSTRACT. Let f: X --+ X be a dominant rational self-map of a smooth projective variety
defined over Q. For each point P € X (Q) whose forward f-orbit is well-defined, Silverman
introduced the arithmetic degree af(P), which measures the growth rate of the heights of
the points f™(P). Kawaguchi and Silverman conjectured that ay(P) is well-defined and
that, as P varies, the set of values obtained by a(P) is finite. Based on constructions of
Bedford-Kim and McMullen, we give a counterexample to this conjecture when X = P*.

1. INTRODUCTION

_ Let f: X --» X be a dominant rational map of a smooth projective variety defined over
Q. We let I denote the indeterminacy locus of f, and X(Q) denote the set of Q-points

of X whose forward f-orbit is well-defined, i.e. those P € X(Q) such that f"(P) ¢ I for
all n > 0. To each point P € X;(Q), Silverman [Sil14] introduced the following quantity
which measures the arithmetic growth rate of f™(P). Fix an ample divisor H on X and a
logarithmic Weil height function hy: X(Q) — R for H. Letting h},(P) = max(hg(P), 1),
consider the quantities
ay(P) = liminf hfy (f*(P))/", @ (P) = limsup Afy (f"(P))"".
n—oo n—oo

Kawaguchi and Silverman proved in [KSI16b, Proposition 12] that these quantities are in-
dependent of the choice of ample divisor H. When a,(P) = @;(P), the arithmetic degree
ayf(P) is defined to be the common limit. Kawaguchi and Silverman made the following
conjecture and proved it in the case when f is a morphism [KS16a, Theorem 3].

Conjecture 1 ([KS16b, Conjecture 6abc]). If P € X;(Q), then the limit ay(P) exists.
Moreover,

{o/(Q) ] Q € X;(Q)}

1s a finite set of algebraic integers.
We prove the following result which gives a counterexample to Conjecture
Theorem 2. Let f: P* -——» P* be the birational map defined by
(X;Y;Z,A;B] — [ XY + AX;YZ + BX; XZ; AX; BX].

Then there exists a sequence of points P, € X¢(Q) for which ay(P,) exists, and {as(P,)}n
s an infinite set.
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The strategy we use to prove Theorem [2| is actually inspired by another conjecture of
Kawaguchi and Silverman [KS16b, Conjecture 6d], namely that if P € X;(Q) and P has
Zariski dense orbit under f, then a¢(P) is equal to the first dynamical degree A;(f). Consider
a family 7: X — T and a dominant rational map f: X --» X which preserves fibers and
induces a dominant rational map f;: X; --+ X; on every fiber. For generic values of ¢, the
first dynamical degrees Ai(f) and A{(f;) agree, but it is possible to have a countable union
of subvarieties 7 C T such that A\ (f;) < A(f) for all t € T, and for which infinitely many
distinct values arise as A (f;). Suppose that for all ¢ € T we can find P, € X;(Q) whose
forward orbit under f; is well-defined and Zariski dense in X;. Then we would expect that
ap(P) = ap,(P) = M(fi). Since the set of A\i(f;) is infinite, this would achieve infinitely
many different values for ay.

There are a few issues one must handle in order to turn the above strategy into a coun-
terexample to Conjecture [II First, we must produce a suitable map f, and ensure that
there are points P, with dense orbit under f; and whose orbits avoid the indeterminacy of f.
Second, one would expect that ay, (P;) = A1(f:) but this requires a proof. The easiest way to
show this is to work in a case where [KS16b, Conjecture 6d] is already known to hold. For
this reason, we consider a family of surface maps with f birational and where f; extends to
an automorphism of a birational model of X, so that we can appeal to [Kaw08| [KS14], which
proves that ay(P) = A;(f) in this case. We implement this strategy based on constructions

of Bedford-Kim [BK06] and McMullen [McMO7].

2. PROOF OF THEOREM [2]

We begin by taking the strategy described in the introduction and codifying it as the
following result.

Proposition 3. Let X be a smooth projective variety over Q, and 7: X — T be a projective
morphism of Q-varieties with two-dimensional fibers. Let f: X --» X be a birational map

defined over T and suppose there is an infinite sequence of parameters t,, € T(Q) satisfying
the following:
(1) for each n, there ezists a birational model T, : th — X3, so that f;, extends to an
automorphism ]?tni )?tn — )?tn ;
(2) for each n, there exists a Q-point P, of X, , contained in the open set where T, is an
isomorphism, and with well-defined f-orbit that is Zariski dense in Xy, ;
(3) the set of values A\i(f:,) is infinite.

Then the set of values of af(P,) is infinite.

Proof. Fix an ample divisor H on X. Since H restricts to an ample on X;, we see af(P) =
ay, (P) for all P € X;(Q) such that the arithmetic degree is well-defined. So to complete the
proof, it is enough to show ay, (P,) = A (ft,)-

Let P, be the unique point of X, with 7, (B,) = P,. We have ag,, (Pn) = ag, (P) by
[MSS17, Theorem 3.4], and A1 (f,) = Ai(f.,) by [Danl7, Theorem 1.(2)] and the discussion

that follows it. Since f;, is a surface automorphism and P, has dense orbit, [KS14, Theorem
2c] tells us that aj (P,) = Ai(ft,), completing the proof. O

We next use a construction due in various guises to Bedford-Kim [BK06] and McMullen
[McMO7]. The relation between these two constructions is explained in the introduction of
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[BKO9] as well as their remark on page 578. We collect the relevant facts from these papers
in the following proposition.

Proposition 4. Let X = P? x A? and consider the map f: X --» X whose fiber over
(a,b) € A? is given in affine coordinates by fou(x,y) = (y+ a, L +b). There is a sequence
tn = (an, b,) € A%(Q) indexed by the integers n > 10 with the following properties:
(1) the first dynamical degree \(fy,) is given by the largest real root &, of the polynomial
" - 1)+t + 2?1

(2) the numbers §,, increase monotonically in n to 6, ~ 1.32472..., the real root of
- — 1;

(3) there is an f;, -invariant cuspidal cubic curve C, C P? with cusp qt,, which is invariant
under f,,;

(4) there is a birational model 7, : th — P2 such that f;, extends to an automorphism
of Xy, ; specifically, my, is a blow-up at n points in the smooth locus of Cy, ;
(5) the point q, is not contained in the indeterminacy locus of f;

(6) the derivative of fy, at g, is given in suitable coordinates by (5’32 593>.
Proof. First note that the indeterminacy locus of fis {(1:0:0),(0:1:0),(0:0: 1)} x A2

Let t, = (an,b,) be as on page 39 of [McMO7]. Let py = (0:0:1), po = (1:0:0),
ps = (0:1:0), and psy; = fi (an : by = 1) for 0 < i < n —4. By construction (see §7),
the p; lie in the smooth locus of a cuspidal cubic curve C},, and letting m, : )N(tn — P2 be
the blow-up at the p;, the map f;, extends to an automorphism f;, of )}tn Moreover, f;,
preserves an irreducible curve Y,, C )?tn in the complete linear system of the anti-canonical
bundle, and C;, = m, (Y,,). Since the cusp ¢, of C;, is not a smooth point of the curve, ¢,
is necessarily distinct from the p;. In particular, 7, is an isomorphism in a neighborhood of
qt, - Since Y, is preserved by ﬁn, we see g, is fixed by ﬁn and hence f;, . Finally, ¢ is not
in the indeterminacy locus of f as q;, ¢ {p1,p2,ps}. This handles statements (3])—(5]).

By equation (9.1) of [McMOQT7], the derivative of f;, at ¢;, has eigenvalues \;(/f;,) 2 and
A (f2,) 72 so () will follow upon showing Ai(f;,) = d, in (1).

Lastly, taking into account differences in notation explained in the remark on page 578
of [BK09], we see (an,b,) belongs to the locus V,_3 as defined in their equation (0.2).
Statements and then follow from [BKO06, Theorem 2] by taking o« = (a,0,1) and
B =(b,1,0). O

We now prove the main result.

Proof of Theorem [ We keep the notation of Proposition 4 By construction, f gives a
rational self-map of A* sending (z,y,a,b) to (y+a, £+4b,a,b). Taking projective coordinates
[X:Y; Z; A; B] on P*, our map extends to the birational map f : P* --» P* given by

(X;Y;Z,A;B] — [ XY + AX;YZ + BX; XZ; AX; BX].

To prove the theorem, we apply Proposition |3l Condition of the proposition is met by
virtue of Proposition , and condition follows from Proposition and . So we
need only find P, € X, (Q) whose forward orbit under f is well-defined and Zariski dense
in X; = P2 and for which P, lies in the locus where 7;, is an isomorphism.

IFor reference, McMullen denotes Cy,, thv and J}th by X,, Sn, and F,,, respectively.
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Notice that by Proposition and N, for each n > 10 we have A\ (f;,) = 6, > d10 > 1.
From [Danl7, Theorem 1.(2)], we see Ai(fi,) = A1(ft,) > 1. Theorem 1.1 (1) and Lemma

2.4 (1) of [Zhal0] then show there are only finitely many f; -periodic curves.

By Proposition and @, q:, is an attracting fixed point of f; . Fixing a metric d on
P%(C), we find that there exists an analytic open set U, C P?(C) containing ¢, for which
fi,(U,) C U, and for which there exists a constant C' < 1 so that for any w in U, we have

d(fi, (u),q,) <C d(u, q1,)- In particular, the set U,, does not contain any f;, -periodic point
other than ¢;,. By (4]) and . we can choose U, so that it avoids the indeterminacy locus
of f and such that m, : U, = m,. 1(U,) — U, is an isomorphism.

Let P, be any Q-point of U, \UC is Fon-periodic C, and P, = m, (P,). Notice that the f-orbit
of P, is contained in U,, so the orbit is well-defined and contained in the locus over which
7, is an isomorphism. By construction, P, is not contained in any ft -periodic curve. At
last, since P, lies in Un, it is not ftn periodic. Since P, is not . periodic and does not lie on

any ftn—perlodlc curve, it must have Zariski dense orbit under ftn, so that P, has dense orbit
under fi, . O

Remark 5. One can imagine various corrections to Conjecture [1| to circumvent the counter-
example of Theorem [2] For example, one might ask that the map f : X --» X does not
preserve any fibration. This does not seem sufficient, however. Indeed, the map g : P? --» P°
defined by

(X;Y;Z,A;B;C)— [XY + AX;YZ + BX;XZ;AX +CY; BX + CZ;C?

does not appear to preserve a fibration, but the hyperplane C' = 0 is g-invariant, and the
restriction of g to this hyperplane is the map f : P* ——» P* of Theorem 2] One might instead
attempt to correct Conjecture [1| by requiring either:

(1) There is no subvariety Z C X such that f|; preserves a fibration; or
(2) The points P, are of bounded degree over Q.

We know of no counterexamples in these settings.
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