
Verifying rLTL formulas: now faster than ever before!

Tzanis Anevlavis, Matthew Philippe, Daniel Neider and Paulo Tabuada

Abstract—Robust Linear Temporal Logic (rLTL)
was crafted to incorporate the notion of robustness
into Linear-time Temporal Logic specifications. Ro-
bustness is ubiquitous in control systems and trans-
lates the intuitive notion that "small" violations of
environment assumptions should only lead to "small"
violations of system guarantees. This notion was for-
malized in the logic rLTL via 5 different truth values
and it led to an increase in the time complexity
of the associated model checking problem. In this
paper we identify and analyze a fragment of rLTL for
which the model checking problem can be solved using
generalized Büchi automata with at most 3∣ϕ∣ states
where ∣ϕ∣ denotes the length of an rLTL formula ϕ.
This is a substantial improvement over the previously
known bound of 5∣ϕ∣ and close to the tight upper bound
2∣ϕ∣ for LTL.

I. Introduction
Robustness is widely recognized in the control com-

munity as an essential ingredient of any feedback control
loop. However, as we move from control problems that
can be described by differential equations to control
problems where software plays a more dominant role,
such as in Cyber-Physical Systems (CPS), identifying the
“correct” notion of robustness has remained a challenge
[3], [14], [16]. Steps in this direction were given in [8],
[9, Chapter 7], by using models that combine continuous
with more discrete behavior. A different approach was
given in [4]–[6], [12] by introducing a logic enabling
reasoning over real-valued signals.

Two of the authors proposed an alternative in [17]
where the notion of Input-to-State Stability (ISS) in-
spired a new semantics for Linear-time Temporal Logic
(LTL) resulting in a new logic termed robust Linear-time
Temporal Logic (rLTL). To understand how ISS was at
the genesis of rLTL, consider the system ẋ = f(x, u) that
we assume to be ISS and let us take the initial condition
to be x(0) = 0. The assumption that the disturbance u is
always equal to zero implies that x(t) = 0 for all t ∈ R+0 :

u(t) = 0⇒ x(t) = 0.

Robustness comes into play when we weaken the assump-
tion to limt→∞ u(t) = 0. In this case we can no longer

This work was partially supported by the NSF grant 1645824 and
by the Army Research Laboratory under Cooperative Agreement
W911NF-17-2-0196.

Tzanis Anevlavis, Matthew Philippe and Paulo Tabuada are
with the UCLA Electrical and Computer Engineering Department,
Los Angeles, CA 90095 {janis10, matphilippe, tabuada}
@ucla.edu

Daniel Neider is with the Max Planck Institute for Software
Systems, Kaiserslautern, Germany neider@mpi-sws.org

ensure that x(t) = 0 for all t ∈ R+0 but we still have its
weakened version limt→∞ x(t) = 0:

lim
t→∞

u(t) = 0⇒ lim
t→∞

x(t) = 0.

This simple observation, that weakening the assump-
tions (antecedent of the implication) leads to a weakened
version of the guarantees (consequent of the implication),
does not hold in LTL. The LTL semantics renders:

ϕ⇒ ψ,

semantically equivalent to:

¬ϕ ∨ ψ.

When ϕ does not hold, nothing can be said about the
truth value of ψ. Not even if “ϕ is close to being satisfied”.

To encapsulate this, rLTL adopts a 5-valued semantics:
the truth value of an rLTL formula is interpreted as
corresponding to true or to different shades of false. For
example, the LTL formula □p is true if p occurs at every
time step and false otherwise. The robust version of the
always operator, ⊡, is five valued and its truth value is:
1) 1111 if p holds at every time step, i.e., the LTL

formula □p holds.
2) 0111 if p is violated only finitely many times, i.e.,

the LTL formula ◇□ p holds.
3) 0011 if p is both satisfied and violated infinitely

many times, i.e., the LTL formula □◇ p holds.
4) 0001 if p holds at most finitely many times, i.e., the

LTL formula ◇p holds.
5) 0000 if p is always violated, i.e., the LTL formula
□¬p holds.

As illustrated with ⊡p, 1111 corresponds to true and the
remaining truth values correspond to different shades of
false. The truth values are ordered:

0000 ≺ 0001 ≺ 0011 ≺ 0111 ≺ 1111

with higher truth values being closer to 1111. Robust-
ness now enters the picture via the rLTL semantics
for implication that only provides the truth value 1111
for the rLTL formula ⊡p ⇛ ⊡q when □p implies □q,
and weakening the assumption □p to ◇□ p implies the
guarantee ◇□ q, and weakening ◇□ p to □◇ p implies
□◇ q, and weakening □◇ p to ◇p implies ◇q.
With an increase in the number of truth values comes

an increase in the complexity of verifying rLTL spec-
ifications. More precisely, verifying an LTL formula ϕ
requires the construction of a Generalized Büchi Au-
tomaton (GBA) with O(2∣ϕ∣) states, where ∣ϕ∣ is the

2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

978-1-5386-1395-5/18/$31.00 ©2018 IEEE 1566

number of subformulas in ϕ. However, an extension of the
technique to verifying rLTL formulas, see [17, Theorem
4.9], relies on constructing a GBA with O(5∣ϕ∣) states.
In this paper we aim at refining this complexity upper

bound for the rLTL verification problem. To do so,
we make use of temporal testers [10], [13] to efficiently
construct GBAs for model checking.

In particular, our main result states that for the rLTL
fragment1 of formulas of the form ψ1 ⇛ ψ2, where ψ1 and
ψ2 are rLTL formulas not containing robust implications
or robust releases, the number of states of the testers
involved in rLTL model checking is upper bounded by

2∣ϕ∣−k(ϕ)3k(ϕ),

where ∣ϕ∣ is the number of subformulas in ϕ, and k(ϕ)
is the number of robust always (⊡) operators it contains.
In the worst case, k(ϕ) = ∣ϕ∣ and the time complexity
is proportional to 3∣ϕ∣, a considerable improvement over
the bound 5∣ϕ∣ proved in [17] and closer to the tight LTL
bound 2∣ϕ∣.

The structure of the paper is as follows. In Section II,
we introduce concepts relevant to LTL model checking
and in Section II-B we compute tight bounds on the size
of temporal testers for LTL formulas. Section III intro-
duces the syntax and semantics of rLTL before utilizing
the results of Section II-B to compute complexity bounds
for rLTL model checking in Section III-A. Due to space
limitations, the proofs to our theorems are omitted.

II. LTL Model Checking
In this section we describe the syntax and semantics

of LTL, as well as the concept of temporal testers used
in LTL model checking.

A. LTL miscellanea
Definition 1 (LTL Syntax): Let P be a nonempty, fi-

nite set of atomic propositions. The set of all LTL formu-
las on P, written LTL(P), is the smallest set satisfying:

• P ⊂ LTL(P) and,
• if ϕ and ψ are elements of LTL(P), then ¬ϕ, ϕ∨ψ,
ϕ ∧ ψ, ϕ⇒ ψ, ○ϕ, □ϕ, ◇ϕ, ϕ R ψ and ϕU ψ are
elements of LTL(P) as well.

The length of a formula ϕ ∈ LTL(P), denoted by ∣ϕ∣, is
the number of subformulas it contains.

Given a set of atomic propositions P, (2P)ω is the set
of all infinite words σ = σ0, σ1, . . . with σi ⊆ P. For such
a word, we let σi,... be the infinite word σi, σi+1,
Definition 2 (LTL Semantics): The LTL semantics is

a mapping:

W ∶ (2P)ω × LTL(P)→ {0, 1},
defined inductively for p ∈ P and ϕ,ψ ∈ LTL(P)

1We found that more than 60% of the rLTL versions of the LTL
formulas available in [18] were in this fragment. In addition, our
fragment includes the GR(1) fragment for which efficient verifica-
tion and synthesis algorithms are known. Hence, we are dealing
with a practically significant and powerful fragment.

as follows:

• W (σ, p) = {0 if p ∉ σ(0),
1 if p ∈ σ(0).

• W (σ,¬ϕ) = 1 −W (σ, ϕ).
• W (σ, ϕ ∨ ψ) = max {W (σ, ϕ),W (σ, ψ)}.
• W (σ, ϕ ∧ ψ) = min {W (σ, ϕ),W (σ, ψ)}.
• W (σ,○ϕ) =W (σ1.., ϕ).
• W (σ,□ϕ) = infi≥0 W (σi.., ϕ).
• W (σ,◇ϕ) = supi≥0 W (σi.., ϕ).

• W (σ, ϕU ψ) = supj≥0 min{
W (σj.., ψ),
inf

0≤i<j
W (σi.., ϕ)} .

• W (σ, ϕ R ψ) = infj≥0 max
⎧⎪⎪⎪⎨⎪⎪⎪⎩

W (σj.., ψ),
sup

0≤i<j
W (σi.., ϕ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

LTL Model Checking is a fundamental problem [2],
[10], [11], [13], [15] in verification. Given a model of a
system, represented as a finite state machine, the ques-
tion is to decide whether or not all possible executions
of the machine satisfy an LTL specification.
We describe these models using Generalized Büchi Au-
tomata (GBA), see e.g. [7, Section 3], [17, Definition 4.2].
Problem 1 (LTL model checking): Given a set of

atomic propositions P, a set of words L ⊆ (2P)ω

recognized by a GBA AL, and ϕ ∈ LTL(P), compute
minσ∈LW (σ, ϕ).
Remark 1: The standard procedure for model check-

ing an LTL formula ϕ is as follows (see [1, Section
5.2]). Given a GBA AL recognizing L, we construct a
GBA A¬ϕ recognizing the words satisfying the formula
¬ϕ ∈ LTL(P). Let NLTL

¬ϕ , FLTL
¬ϕ be respectively the num-

ber of states and terminal conditions of that GBA.
Then composing AL with A¬ϕ we obtain GBA AL,¬ϕ,
which recognizes all the words of L that do not satisfy
the formula ϕ. Finally, we check the emptiness of AL,¬ϕ:
if the language recognized by AL,¬ϕ is empty, then L
satisfies ϕ.
If NL,¬ϕ is the number of states of AL,¬ϕ and ML,¬ϕ the
number of transitions, the complexity of this step is

O(NL,¬ϕ +ML,¬ϕ), (1)

where NL,¬ϕ = O(FLTL
¬ϕ N

LTL
¬ϕ), and ML,¬ϕ = O(N2

L,¬ϕ).
This motivates the task of trying to construct a GBA

A¬ϕ with the smallest possible number of states and
accepting conditions for rLTL. In this regard, classical
(and tight) bounds for LTL are

N
LTL
¬ϕ = O(2∣ϕ∣), FLTL

¬ϕ = O(∣ϕ∣). (2)

Hence, naturally we aim to approach the LTL bounds as
much as possible for the rLTL model checking problem.

B. Temporal Testers
Temporal Testers [10], [13] are discrete transition sys-

tems equipped with justice conditions that can be used
to obtain automata recognizing infinite words satisfying
an LTL formula ϕ ∈ LTL(P) by composing testers
recognizing its subformulas.

1567

In this subsection, we study elementary temporal
testers arising in the study of rLTL formulas. We show
that for any ϕ ∈ LTL(P), there exists a tester for ◇□ϕ
with at most 3 times the number of states of the tester for
ϕ. The operation ◇□ is central in the rLTL semantics,
and this result allows us to provide tight bounds for the
complexity of rLTL model checking in Section III.

A formal definition of a temporal tester, relying on
Just Discrete Systems, can be found in [13]. For the sake
of brevity and clarity, we provide a less formal, but more
direct and intuitive, definition below.
Definition 3: A temporal tester for an LTL formula

ϕ ∈ LTL(P) is a tuple T (ϕ) = (V,Θ, R,J) where
• V = {xψ ∣ ψ is a subformula of ϕ} is a set of
Boolean variables. The set of states of the tester is
Σ and each s ∈ Σ is an assignment of the variables
V to either 1 or 0, i.e., s(x) ∈ Σ ⊆ {0, 1}V .

• Θ is an assertion over V , i.e., it defines a subset of Σ.
The states s ∈ Σ satisfying this assertion are initial
states.

• R is an assertion over V ×V , i.e., it defines a subset
of Σ × Σ. If a pair of states s1, s2 ∈ Σ satisfies the
assertion, we say that s2 is a successor of s1.

• J is a set of justice requirements, where each J ∈ J
is an assertion on V , i.e., it defines a subset of Σ.

A computation of a tester is an infinite sequence of
states s = s0, s1, . . ., such that s0 is an initial state,
(si, si+1) satisfies R for i ≥ 0, and for every J ∈ J , s
contains infinitely many states satisfying J .
Remark 2 (Link with Generalized Büchi Automata):

As seen in Remark 1, most of the analysis of LTL model
checking relies on GBAs. The testers described here are
closely related to GBAs.
For any tester T (ϕ), there is a GBA such that:

• Its runs correspond to the tester’s computations.
• Its states are those of the tester. There are at most

2∣ϕ∣ states, but there could be less. The initial states
of the GBA are those of the tester. Each J ∈ J
defines an accepting condition for the GBA.

• There is a transition in the GBA between states s
and s′ if the pair (s, s′) satisfies R. The label on that
transition is the set {p ∈ P ∣ s′(xp) = 1}, where
s
′(xp) is the value assigned to p by the state s′.

A tester allows to detect if any computation satisfies ϕ
or ¬ϕ.
To obtain the GBA Aϕ recognizing the words satisfying
ϕ from T (ϕ), it suffices to remove the states of the tester
where xϕ = 0 from the set of initial conditions Θ.
Example 1 (The Until Tester): The definition of the

tester for ϕ U ψ, where ϕ and ψ are LTL formulas, is
as follows (see [13, Section 6.2]):

T (ϕU ψ) ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V ∶ V ars(ϕ,ψ) ∪ {xϕUψ},
Θ ∶ 1,
R ∶ xϕUψ = [xψ ∨ (xϕ ∧ x′ϕUψ)],
J ∶ {¬xϕUψ ∨ xψ}.

(3)

xϕ, xψ, xϕUψ x̄ϕ, xψ, xϕUψ

xϕ, x̄ψ, x̄ϕUψ

xϕ, x̄ψ, xϕUψ

x̄ϕ, x̄ψ, x̄ϕUψ

Fig. 1. Tester T (ϕU ψ). We list in each state the variables set to
1. For a subformula β, we write x̄β = 1 to denote xβ = 0. All states
are initial. The thicker states satisfy the justice requirements.

In the above, V ars(ϕ,ψ) is a set of one variable xβ
for each subformula β involved in ϕ and ψ. At any state,
variables are assigned Boolean values, indicating which
(sub)formulas hold true at that state.
If ϕ and ψ are atomic propositions, the tester can be
represented as an automaton with 5 states, see Figure 1.
In the general case, where ϕ and ψ are not simply

atomic propositions but rather LTL formulas, one can
construct T (ϕ U ψ) by composition of the testers for
their subformulas. The following is obtained from [10,
Section 3.2] and [13, Section 7].
Definition 4 (Composition of Temporal Testers): The

synchronous parallel composition of two testers is

(V,Θ, R,J) = (V1,Θ1, R1,J1) 9 (V2,Θ2, R2,J2),
where V = V1 ∪ V2, Θ = Θ1 ∧ Θ2, R = R1 ∧ R2 and
J = J1 ∪ J2.
1) For a unary LTL operator op, the tester T (op(ϕ1)) is

Tp←ϕ1(op(p)) 9 T (ϕ1),
where we replace every instance of the variables xp and
xop(p) of the first tester by the variables xϕ1 and xop(ϕ1).
2) For a binary LTL operator op, the tester
T (op(ϕ1, ϕ2)) is

Tp←ϕ1,q←ϕ2(op(p, q)) 9 T (ϕ1) 9 T (ϕ2),
where we replace every instance of the variables xp, xq
and xop(p,q) of the first tester by the variables xϕ1 , xϕ2

and xop(ϕ1,ϕ2) respectively.
Since for every p ∈ P,◇p = trueUp and □p = ¬◇¬p,

we construct the testers for these formulas from that of
pU q. By composing them, we obtain the tester of □◇p.
These are represented in Figures 2, 3 and 4.

xp, x◇p x̄p, x◇px̄p, x̄◇p

Fig. 2. Tester T (◇p). All states are initial, thicker states satisfy
the justice requirement.

x̄p, x̄□p xp, x̄□pxp, x□p

Fig. 3. Tester T (□p). All states are initial, thicker states satisfy
the justice requirement.

1568

xp, x□p, x◇□p

xp, x̄□p, x̄◇□p

x̄p, x̄□p, x◇□p xp, x̄□p, x◇□p

x̄p, x̄□p, x̄◇□p

Fig. 4. Tester T (◇□ p), with two disjoint components. All states
are initial, thicker states need to be visited infinitely often.

Definition 5 (Number of states in a Tester): Given a
tester T (ϕ), ϕ ∈ LTL(P) and i, j, k ∈ {0, 1}, let

• ∣T (ϕ)∣ be its number of states,
• ∣T (ϕ)∣i be the number of states where xϕ = i.

For any formulas ϕ,ψ ∈ LTL(P),
• for any unary operator op, ∣T (op(ϕ))∣i,j is the
number of states where xϕ = i, xop(ϕ) = j,

• for any binary operator op, ∣T (op(ϕ,ψ))∣i,j,k is the
number of states where xϕ = i, xψ = j, xop(ϕ,ψ) = k.

The number of states in a tester can be decomposed
as follows for any ϕ,ψ ∈ LTL(P):

∣T (op(ϕ))∣ =∑
i,j

∣T (op(ϕ))∣i,j

∣T (op(ϕ,ψ))∣ = ∑
i,j,k

∣T (op(ϕ,ψ))∣i,j,k.

Proposition 2.1: Let p, q be two atomic propositions
in P and ψ1, ψ2 ∈ LTL(P) be two LTL formulas. The
following holds:

∣T (op(ψ1))∣i,j ≤ ∣T (ψ1)∣i∣T (op(p))∣i,j , (4)

∣T (op(ψ1, ψ2))∣i,j,k ≤
∣T (ψ1)∣i∣T (ψ2)∣j∣T (op(p, q))∣i,j,k.

(5)

where op denotes an LTL operator.
Corollary 2.2 (Recursive Bounds): Consider a tester

∣T (ϕ)∣ for ϕ ∈ LTL(P).
• if ϕ ∈ P,

∣T (ϕ)∣ = 2. (6)

• if ϕ = ¬ψ,

∀i, j ∶ ∣T (¬ψ)∣i,j = ∣T (ψ)∣i if i ≠ j, 0 else. (7)

• for any unary operator (op ∈ {◇,□,○}), we have

∣T (op(ψ))∣ ≤ 2∣T (ψ)∣. (8)

• if ϕ =◇□ ψ we get

∣T (◇□ ψ)∣ ≤ 2 ⋅ ∣T (ψ)∣1 + 3 ⋅ ∣T (ψ)∣0,

≤ 3∣T (ψ)∣. (9)

• if ϕ = ψ1 ∧ ψ2 or ψ1 ∨ ψ2 or ψ1 ⇒ ψ2, we get

∣T (ϕ)∣ ≤ ∣T (ψ1)∣ ⋅ ∣T (ψ2)∣. (10)

• if ϕ = ψ1U ψ2 or ϕ = ψ1 R ψ2, we get

∣T (ϕ)∣ ≤ 2 ⋅ ∣T (ψ1)∣ ⋅ ∣T (ψ2)∣. (11)
Remark 3 (Growth of justice sets): For the elemen-

tary testers studied, the number of justice requirements
∣J ∣ is 1. By composition (Definition 4), the number of
justice requirements for a LTL formula ϕ is at most ∣ϕ∣.
The tester T (◇□p) in Figure 4 is peculiar in this regard
because it has been optimized. A direct application of the
definition leads to having two justice requirements:

J = {¬x◇□p ∨ x□p} ∪ {x□p ∨ ¬xp}.
The two justice requirements are met simultaneously at
the states (xp, x□p, x◇□p) and (x̄p, x̄□p, x̄◇□p). On this
ground, we use the single requirement J = {(xp ∧
x□p ∧ x◇□p)∨¬(xp ∨ x□p ∨ x◇□p)} while preserving the
computations of Tp←□p(◇p) 9 T (□p).
This allows us to focus on bounding the number of states
for testers involved in rLTL model checking.

We are now in position to tackle our main problem in
this paper, which is computing tight complexity bounds
for rLTL Model Checking.

III. rLTL Model Checking
As discussed in the introduction, the main goal of rLTL

is to embed a notion of robustness into LTL. With this in
mind, the syntax of rLTL closely resembles that of LTL
using robust versions of LTL operators.
Definition 6 (rLTL syntax): Let P be a nonempty, fi-

nite set of atomic propositions. The set of all rLTL
formulas on P, written rLTL(P), is the smallest set
satisfying

• P ⊂ rLTL(P) and
• if ϕ and ψ are elements of rLTL(P), then ¬ϕ, ϕ∨ψ,
ϕ∧ ψ, ϕ⇛ ψ, ⊙ϕ, ⊡ϕ, ⟐ϕ, ϕ R⋅ ψ and ϕU⋅ ψ are
elements of rLTL(P) as well.

The length of a formula ϕ ∈ rLTL(P) is denoted by ∣ϕ∣
and is the number of subformulas it contains.

Given a word σ ∈ (2P)ω and a formula ϕ ∈ rLTL(P),
the semantics of rLTL provides the degree to which σ
satisfies the LTL counterpart2 of ϕ. This is captured
by using a 5-valued semantics, with one truth value
corresponding to true and the others to different shades
of false.
Formally, the truth value of an rLTL formula is a 4-

tuple belonging to the set
B5 = {0000, 0001, 0011, 0111, 1111},

= {B5[0],B5[1],B5[2],B5[3],B5[4]},
where B5[n] ∈ B5, for 0 ≤ n ≤ 4, is the truth value with
n bits set to 1. The truth values are ordered as follows

0000 ≺ 0001 ≺ 0011 ≺ 0111 ≺ 1111, (12)

with 1111 corresponding to true and the remaining ones
corresponding to different shades of false. With respect

2The LTL counterpart of any rLTL formula is obtained by
removing all the dots or dashes superimposed on the operators.

1569

TABLE I
The Full Semantics of rLTL and the ltl operator.

Operator Symbol Semantics, for p ∈ P, ϕ,ψ ∈ rLTL(P).
Atomic Proposition ∀1 ≤ i ≤ 4 ∶ ltl(i, p) = p.
Negation ¬ ∀1 ≤ i ≤ 4 ∶ ltl(i,¬ϕ) = ¬ltl(1, ϕ).
Disjunction ∨ ∀1 ≤ i ≤ 4 ∶ ltl(i, ϕ ∨ ψ) = ltl(i, ϕ) ∨ ltl(i, ψ).
Conjunction ∧ ∀1 ≤ i ≤ 4 ∶ ltl(i, ϕ ∧ ψ) = ltl(i, ϕ) ∧ ltl(i, ψ).

Robust Implication ⇛
∀1 ≤ i ≤ 3 ∶ ltl(i, ϕ⇛ ψ) = (ltl(i, ϕ)⇒ ltl(i, ψ)) ∧ ltl(i + 1, ϕ⇛ ψ),

ltl(4, ϕ⇛ ψ) = (ltl(4, ϕ)⇒ ltl(4, ψ)).
Next ⊙ ∀1 ≤ i ≤ 4 ∶ ltl(i,⊙ϕ) = ○ltl(i, ϕ).

Robust Always ⊡

ltl(1,⊡ϕ) = □ltl(1, ϕ),
ltl(2,⊡ϕ) =◇□ ltl(2, ϕ),
ltl(3,⊡ϕ) = □◇ ltl(3, ϕ),
ltl(4,⊡ϕ) =◇ltl(4, ϕ).

Robust Eventually ⟐ ∀1 ≤ i ≤ 4 ∶ ltl(i,⟐ϕ) =◇ltl(i, ϕ).
Robust Until U⋅ ∀1 ≤ i ≤ 4 ∶ ltl(i, ϕU⋅ ψ) = ltl(i, ϕ)U ltl(i, ψ).

Robust Release R⋅

ltl(1, ϕ R⋅ ψ) = ltl(1, ϕ) R ltl(1, ψ),
ltl(2, ϕ R⋅ ψ) =◇□ ltl(2, ψ) ∨◇ltl(2, ϕ),
ltl(3, ϕ R⋅ ψ) = □◇ ltl(3, ψ) ∨◇ltl(3, ϕ),
ltl(4, ϕ R⋅ ψ) =◇ltl(4, ψ) ∨◇ltl(4, ϕ).

to the example ⊡p in the introduction, the truth value
B5[4] = 1111 corresponds to the LTL formula □p being
satisfied, B5[3] = 0111 corresponds to ◇ □ p, B5[2] =
0011 corresponds to □◇ p, B5[1] = 0001 corresponds to
◇p, and B5[0] = 0000 corresponds to □¬p.
Hence, a truth value in B5 can be viewed as a sequence

of 4 bits. In order to introduce the rLTL semantics, we
assign to each bit of an rLTL truth value an LTL formula.
The definition below is equivalent to that of [17].
Definition 7 (rLTL semantics): For a set of atomic

propositions P, we define the operator

ltl ∶ {1, . . . , 4} × rLTL(P)→ LTL(P) (13)

as in Table I. The rLTL semantics is defined as a function

V ∶ (2P)ω × rLTL(P)→ B5,

where for any σ ∈ (2P)ω, ϕ ∈ rLTL(P) and 1 ≤ i ≤ 4,
the ith bit Vi(σ, ϕ) of the valuation V (σ, ϕ) is given by:

Vi(σ, ϕ) =W (σ, ltl(i, ϕ)).
The difficulty of dealing with the 5-valued semantics of

rLTL formulas lies in the fact that the four bits of a truth
value are coupled by robust implications and negations.
Intuitively, a negation changes true to false and all shades
of false to true. This is done effectively through the first
bit of an rLTL formula and explains the coupling in the
evaluation of any bit. In a similar manner, each bit of
the robust implication, needs the value of the next less
important bit. The following example will provide good
intuition to this problem.
Example 2: Consider the rLTL formula

ϕ = ¬(a⇛ (b R⋅ c)),

where a, b and c are atomic propositions. To compute
for example the 4th bit of the rLTL valuation, one needs

to unfold the corresponding LTL formula. Using the
semantics in Table I, we obtain

ltl(4, ϕ) = ¬ltl(1, a⇛ (b R⋅ c)),
= ¬[ltl(1, a)⇒ ltl(1, (b R⋅ c))∧

ltl(2, (a⇛ (b R⋅ c)))],
= a ∧ ¬(b R c) ∨ ¬ltl(2, (a⇛ (b R⋅ c))).

Continuing unfolding the formula, we see that to check its
4th bit one needs to check a relatively large LTL formula.
A. The rLTL Model Checking Problem

The model checking problem for LTL asks whether or
not a model (set of words) satisfies an LTL specification.
In rLTL, the model checking problem is intuitively un-
derstood as the question "how much does a model satisfy
a specification"?
Problem 2 (The Model Checking Problem for rLTL):

Given a set of atomic propositions P, a set set of
words L ⊆ (2P)ω recognized by a Generalized Büchi
Automaton A, and ϕ ∈ rLTL(P), compute

b(L, ϕ) = min
σ∈L

V (σ, ϕ). (14)
Note that in (14), V (σ, ϕ) ∈ B5, and the minimum
follows from the ordering defined in (12).
Remark 4: In [17, Theorem 4.9], the authors provide

a technique for rLTL model checking that follows the
standard steps described in Remark 1.
There, given an rLTL formula ϕ, a GBA with N

rLTL
ϕ

states and F rLTL
ϕ accepting conditions, where

N
rLTL
ϕ = O(5∣ϕ∣), F rLTL

ϕ = O(∣ϕ∣) (15)

is constructed, and composed3 with the GBA recognizing
the language L.

3From there, one can deduce complexity bounds for rLTL model
checking by applying (1). Note that there is a typo in the statement
of [17, Theorem 4.9], where the authors omitted the quadratic terms
due to the presence of the number of transitions in (1).

1570

Data: A language L generated by a GBA A, a
formula ϕ ∈ rLTL(P).

Result: Computes b(L, ϕ) (see (14)).
for j = 0, . . . , 3 do

w ∶= infσ∈LW (σ, ltl(4 − j, ϕ)).
if w = 0 then

return B5[j]
end

end
return B5[4]
Algorithm 1: rLTL model checking algorithm.

The bound (15) on the number of states is already
non-trivial. Assume a formula ⊡p⇛ ⊡q, and we wish to
check V (σ, ϕ) = 0111 for every σ ∈ L. This is equivalent
to model checking
ltl(2,⊡p⇛ ⊡q) = (□◇ p⇒ □◇ q) ∧ (◇□ p⇒◇□ q)

∧ (◇p⇒◇q).
The original rLTL formula has length 5, and the LTL
formula above has length 20. Bound (15) dictates com-
plexity proportional to the 55 states of the GBA used,
which is an improvement over the 220 states from (2).

In this section, we show that for the fragment con-
sisting of formulas of the form ϕ ⇛ ψ for ϕ,ψ ∈ r̃LTL
(see below), rLTL model checking can be performed using
automata with at most

O(2∣ϕ∣−k(ϕ)3k(ϕ))
states, where k(ϕ) is the number of ⊡ operators in the
rLTL formula ϕ.
Definition 8 (r̃LTL): Given a set of atomic proposi-

tions P, define the fragment r̃LTL(P) ⊂ rLTL(P) as the
set of all rLTL formulas without operators ⇛ or R⋅ .
Remark 5: Our main result, considers a fragment

larger than r̃LTL, which allows one initial implication.
This fragment has the particularity that the truth

value for a bit i of a rLTL valuation is independent from
the bits j ≠ i (see Table I).
Lemma 3.1: Given a set of atomic propositions P, for

any ϕ ∈ r̃LTL(P), and for any 1 ≤ i ≤ 4,

∣T (ltl(i, ϕ))∣ ≤ 2∣ϕ∣−k(ϕ)3k(ϕ), (16)

where k(ϕ) is the number of operators ⊡ in ϕ.
For our main result, Theorem 3.2, we consider Algo-

rithm 1 for rLTL model checking.
Theorem 3.2: Consider a set of atomic propositions P,

a set L ⊆ (2P)ω recognized by a GBA A with N states.
Let ϕ be any formula in the rLTL fragment

r̃LTL(P) ∪ {ψ1 ⇛ ψ2 ∣ ψ1, ψ2 ∈ r̃LTL(P)}. (17)

Algorithm 1 computes b(L, ϕ) = B5[`], 0 ≤ ` ≤ 4 by
performing min(`+1, 4) LTL model-checking steps, each
using an automaton of size at most

O (2∣ϕ∣−k(ϕ)3k(ϕ)) . (18)

IV. Conclusions
In this paper we have identified a fragment of rLTL for

which the time complexity of the model checking problem
approaches that of LTL. We believe this complexity
result combined with the syntactic similarity between
LTL and rLTL will motivate the widespread use of
rLTL to specify and verify robustness properties. To
further contribute towards this objective, the authors are
currently implementing the algorithms described in this
paper in a verification tool for rLTL.

References
[1] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of model

checking. MIT press, 2008.
[2] E. M. Clarke, O. Grumberg, and D. Peled, Model checking.

MIT press, 1999.
[3] E. Dallal, D. Neider, and P. Tabuada, “Synthesis of safety

controllers robust to unmodeled intermittent disturbances,”
in Decision and Control (CDC), 2016 IEEE 55th Conference
on. IEEE, 2016, pp. 7425–7430.

[4] A. Donzé and O. Maler, “Robust satisfaction of temporal
logic over real-valued signals,” in International Conference on
Formal Modeling and Analysis of Timed Systems. Springer,
2010, pp. 92–106.

[5] G. E. Fainekos and G. J. Pappas, “Robustness of temporal
logic specifications,” in Formal Approaches to Software Testing
and Runtime Verification. Springer, 2006, pp. 178–192.

[6] ——, “Robustness of temporal logic specifications for
continuous-time signals,” Theoretical Computer Science, vol.
410, no. 42, pp. 4262–4291, 2009.

[7] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple
on-the-fly automatic verification of linear temporal logic,” in
Protocol Specification, Testing and Verification XV. Springer,
1995, pp. 3–18.

[8] R. Goebel, J. Hespanha, A. R. Teel, C. Cai, and R. Sanfelice,
“Hybrid systems: Generalized solutions and robust stability,”
IFAC Proceedings Volumes, vol. 37, no. 13, pp. 1–12, 2004.

[9] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynami-
cal Systems: modeling, stability, and robustness. Princeton
University Press, 2012.

[10] Y. Kesten, A. Pnueli, and L.-o. Raviv, “Algorithmic veri-
fication of linear temporal logic specifications,” in Interna-
tional Colloquium on Automata, Languages, and Program-
ming. Springer, 1998, pp. 1–16.

[11] O. Lichtenstein and A. Pnueli, “Checking that finite state
concurrent programs satisfy their linear specification,” in Pro-
ceedings of the 12th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages. ACM, 1985, pp. 97–
107.

[12] R. Majumdar, E. Render, and P. Tabuada, “A theory of
robust omega-regular software synthesis,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 13, no. 3, p. 48,
2013.

[13] A. Pnueli and A. Zaks, “On the merits of temporal testers,”
in 25 Years of Model Checking. Springer, 2008, pp. 172–195.

[14] M. Rungger and P. Tabuada, “A notion of robustness for
cyber-physical systems,” IEEE Transactions on Automatic
Control, vol. 61, no. 8, pp. 2108–2123, 2016.

[15] P. Schnoebelen, “The complexity of temporal logic model
checking.” Advances in modal logic, vol. 4, no. 393-436, p. 35,
2002.

[16] P. Tabuada, S. Y. Caliskan, M. Rungger, and R. Majum-
dar, “Towards robustness for cyber-physical systems,” IEEE
Transactions on Automatic Control, vol. 59, no. 12, pp. 3151–
3163, 2014.

[17] P. Tabuada and D. Neider, “Robust linear temporal logic,”
arXiv preprint arXiv:1510.08970, 2015.

[18] Y.-K. Tsay, M.-H. Tsai, J.-S. Chang, and Y.-W. Chang, “Büchi
store: an open repository of büchi automata,” in International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2011, pp. 262–266.

1571

