EarEcho: Using Ear Canal Echo for Wearable Authentication

YANG GAQO, University at Buffalo, State University of New York, USA

WEI WANG, University at Buffalo, State University of New York, USA

VIR V. PHOHA, Syracuse University, USA

WEI SUN, University at Buffalo, State University of New York, USA
ZHANPENG JIN, University at Buffalo, State University of New York, USA

Smart wearable devices have recently become one of the major technological trends and been widely adopted by the general
public. Wireless earphones, in particular, have seen a skyrocketing growth due to its great usability and convenience. With
the goal of seeking a more unobtrusive wearable authentication method that the users can easily use and conveniently
access, in this study we present EarEcho as a novel, affordable, user-friendly biometric authentication solution. EarEcho takes
advantages of the unique physical and geometrical characteristics of human ear canal and assesses the content-free acoustic
features of in-ear sound waves for user authentication in a wearable and mobile manner. We implemented the proposed
EarEcho on a proof-of-concept prototype and tested it among 20 subjects under diverse application scenarios. We can achieve
arecall of 94.19% and precision of 95.16% for one-time authentication, while a recall of 97.55% and precision of 97.57% for
continuous authentication. EarEcho has demonstrated its stability over time and robustness to cope with the uncertainties on
the varying background noises, body motions, and sound pressure levels.
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1 INTRODUCTION

Biometrics using traditional human physiological and behavioral characteristics, like fingerprints, faces, voices,
and touch, have been widely applied on state-of-the-art mobile devices for user identification and authentication.
Recently, as the advances of wearable technologies, a wide variety of smart wearable devices have been proposed
and adopted by the general public, such as smart watches, smart wristbands, and wireless earphones. Looking
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forward, this new trend is expected to continue and may also bring new opportunities of more convenient and
secure authentication solutions.

Fingerprint is probably the most widely used biometric modality given its great usability and accuracy. However,
it has also been criticized for its vulnerability to spoofing attacks [55]. Voice is another biometric modality which
has low hardware requirement and good usability, but meanwhile it cannot achieve a high level of accuracy and
robustness as a sole authentication method. Voice is also highly susceptible to noise. Recently, face recognition
has emerged as a more popular way to verify the user’s identity on smartphones, such as the “FaceID” by Apple
[4]. Although multi-level sensors (including a dot projector, a flood illuminator, and an infrared depth camera)
have been integrated to enhance the security of FacelD, it has been proven that FacelD is still not safe enough
and the depth and IR camera could be possibly deceived [10].

In addition to those popular biometric authentication approaches, various bio-electrical signals of human
body (e.g., electrocardiograph (ECG) and electroencephalograph (EEG)) have also been explored as biometric
identifiers for authentication purpose. A smart wristband named “Nymi Band” that used ECGs to authenticate
user identity and any conceivable device has been used for wearable credit card payment [1]. With the increasing
popularity of Virtual Reality (VR), researchers have integrated EEG electrodes into the VR headset to collect
the user’s brainwave signals as the continuous authentication credentials [37]. However, those solutions either
require additional gestures to implement authentication or are not suitable for long-time wearing. Thus, we
ask a question: is there a more unobtrusive wearable authentication method or biometric modality that the users
can easily use and conveniently access? In the communities of audiology and clinical otolaryngology, the unique
physiology and dimension of ear canal has been a widely accepted fact [66], as claimed in [30] that "A real ear
will also have a unique eardrum impedance, as well as unique ear canal dimension." This finding is even considered
as the main obstruction and challenge to the diagnosis and treatment of ear diseases such as otitis externa [41]. In
addition, taking advantage of the recent growth of voice assistants and extended battery capacity, among those
smart wearable devices, wireless earphones (especially those true wireless earbuds with smaller form factors)
have seen a skyrocketing growth in the consumer electronics market recently, which is probably faster than
anything else [57]. It was reported that [54] the global earphones and headphones market is expected to grow at
a CAGR of 7.31% during 2017-2023 with 20 billion dollars in revenue by 2023. Thus, the increasing popularity and
pervasiveness of wireless earphones brings a potential entrance of human-computer interface, and moreover, a
new modality of user authentication.

In this paper, we focus on the wireless earphones which have grown dramatically in recent years, and propose
a novel user authentication system — EarEcho — that packs a small microphone into the earphone (containing
the original earpiece speaker). The design has low requirements of form factor and cost, and thus can be easily
deployed on most existing earphone products. In general, EarEcho extracts the unique features by comparing the
original sound emitted from the earpiece speaker and the sound propagating, reflected, and absorbed through
the ear canal which can be recorded by the built-in microphone. The comparison and authentication will take
place on the mobile device with which the earphones are connected through Bluetooth. With the popularization
of wireless earphones, more and more users are getting used to wearing earphones while working, studying
or strolling. As shown in Fig. 1, existing popular mobile and wearable authentication solutions (e.g., Face IDs,
voiceprints, or fingerprints) usually have two major limitations in terms of demanding active interactions with
devices and being easy to be stolen or spoofed. Those biometric traits (e.g., faces, voices, fingers) are widely
exposed to the public and the Internet, which increases their vulnerability to spoofing threats. To provide a more
secure and usable authentication solution, we propose the EarEcho that enables a passive authentication channel
while a user is wearing the earphones. Given an acoustic stimulus, our EarEcho captures the uniqueness of the
user’s ear canal morphology, and the entire authentication process occurs in the user’s auditory canal which is
relatively isolated and concealed. Compared with face IDs, fingerprints and voiceprints, the EarEcho presents a
more unobtrusive authentication approach with great usability potentials. For example, EarEcho could be used as

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 81. Publication date: September 2019.



EarEcho: Using Ear Canal Echo for Wearable Authentication « 81:3

Existing Biometric Modalities Design Considerations EarEcho

Need Interactions Fo ]
L

"
(ar'.‘w A
e : of WP s N 4m -
sl
L R BAA
(a) (b)

Face ID Voiceprint  Fingerprint “» Weak Strong «"

Fig. 1. Application scenarios of EarEcho. For example, (a) Once the user is wearing the earphones, EarEcho can perform
authentication without requiring the user to making additional tasks (e.g., pressing the thumb, or facing to the camera). (b)
Only by listening, a user can verify his identity during the entire phone call (i.e., bank call preventing from the fraud), or
verify the mobile payment through voice assistants (e.g., Siri, Google, Alex) without worrying privacy information leakage.

a potential ubiquitous authentication method including unlocking personal mobile devices (i.e., smartphones),
authorizing over-the-phone payments, and verifying identities during sensitive remote conversations.

Compared with existing mobile and wearable authentication solutions (i.e., fingerprint, facelD, voiceprint),
EarEcho possesses the following advantages. (1) Ubiquitous: Microphones and earpiece speakers are two basic
components for wireless earphone designs with small form factor and low cost. (2) User-friendly: EarEcho
doesn’t require active authentication operations (i.e., facing the front camera or pressing fingertips on the
fingerprint sensor). It is capable of automatically processing the authentication requests while the user is
wearing the earphones. (3) Unobtrusive: Spoofing is one of the major concerns for fingerprint and face based
mobile authentications due to the low-effort illegitimate acquisition of users’ information. However, when it
comes to EarEcho, because the data collection and authentication process is conducted in a more unobtrusive
and unnoticeable manner, it is very hard for malicious attackers to steal the enrolled user’s ear (physical and
physiological) information through side-channel attacks. (4) Reliable: EarEcho has demonstrated its stability over
time and robustness to cope with the uncertainties on the varying background noises, body motions, and sound
pressure levels.

Specifically, we make the following contributions in this work:

o We develop the acoustic signal processing techniques for universal noise interference cancellation of echoes
through the ear canal.

e We propose an end-to-end system framework, including a context-free acoustic feature generative model
by using transfer functions between the emitted and reflected signals, and the final authentication model.

e We design the prototype that packs a commercial earphone with a microphone, and perform extensive
experimental evaluations about the system robustness under diverse application scenarios.

To the best of our knowledge, EarEcho is the first to leverage the unique ear canal geometry and acoustic
features propagating in the ear with context-free audible signals for mobile and wearable authentication. It has
been demonstrated that EarEcho has robust performance without any specific usage requirement and additional
sensor, and possesses superior advantages of effectiveness, unobtrusiveness, ease-of-use, and cost-effectiveness.

The rest of this paper is organized as follows. In Section 2, we review the state of the arts of existing wearable
and acoustic-based authentication solutions. We present our application scenarios and design considerations in
Section 3. In Sections 4 and 5, we elaborate the design overview and rationale of EarEcho. Then we describe our
implementation of an earphone prototype in Section 6, and present the performance evaluation of our solution
with human subjects in Section 7. We discuss the limitations and conclusions in Sections 8 and 9.
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2 RELATED WORK
2.1 Mobile and Wearable authentication

Existing authentication solutions on mobile and wearable devices can be generally divided into three major
categories: knowledge, physiological characteristics, and behavioral characteristics.

Knowledge. Personal Identification Numbers (PINs) and graphical passwords/patterns are the most traditional
and still the primary solutions for mobile authentication. Despite the simplicity and popularization, the vulnerabil-
ity to eavesdropping makes PINs and patterns the most unsafe identifiers. Some researchers have also explored the
vulnerability of credential information leakage from side-channel attacks including vibration, acoustics, thermal
information, and even Wi-Fi signals. TapPrints [47] sensed the letters typed on the smartphone with QWETRY
keyboard using the built-in accelerometer and gyroscope. PatternListener [72] cracked the user’s smartphone
locking pattern by analyzing signals recorded from the built-in speaker and microphone. Abdelrahman et al. [2]
leveraged the thermal camera to capture thermal residues on the touchscreen to infer the most possible PINs
and patterns pressed on mobile devices. Li et al. [36] proposed a new potential threat by eavesdropping user’s
passwords using Channel State Information (CSI) of Wi-Fi signals transmitted from the user’s smartphone.

Physiological Characteristics. Compared with the traditional knowledge-based solution, physiological bio-
metrics are more secure and user-friendly and thus become the new trend for mobile and wearable authentication
such as fingerprints [53, 58], iris [65], face [17, 23], ear shape [13, 52], Photoplethysmography (PPG) [24, 51],
ECG [19, 28], and EEG [22, 37]. Fingerprint sensors can achieve very high precision and are prevailing on many
commercial smartphones, but fingerprint’s static characteristics make sensors easy to be spoofed. Given an
optical fingerprint dataset, a malicious user is able to generate MasterPrint [55] which is a synthetic or real
partial fingerprint that serendipitously matches one or more of the enrolled templates for a significant number of
users. Arteaga-Falconi et al. [5] proposed an ECG-based authentication method with a two-electrodes sensor
attached at the back of smartphones. Wang et al. [68] proposed to use the smartphone to capture the user’s chest
vibration corresponding to each heartbeat as a biometric characteristic for the mobile authentication. Zou et
al. [73] designed the BiLock which extracted the dental occlusion biometric while user performs an occlusion
gesture using the smartphone.

Behavioral Characteristics. Instead of extracting subject’s physiological uniqueness, behavioral biometrics
can represent the identity of an individual through a sequence of the subject’s activities which may include
keystrokes, finger gestures on the touchscreen [14, 59], voice [18], breath [27], and gestures [35]. Liu et al. [38]
proposed a robust and multi-expert based gesture recognition for mobile authentication. VibWrite [39] provided
a low-cost and tangible finger-input authentication solution which leveraged the unique physical vibration on
any solid surface for smart access systems. Hoang et al. [26] presented a gait-based authentication system on
mobile devices by analyzing the smartphone’s accelerometer data and employing a fuzzy commitment scheme.
BreathPrint [12] caught the public attention by capturing the acoustic features hidden in three daily breath
behaviors including sniff, normal breath, and deep breath to verify the legitimate user.

2.2 Sensing on Mobile and Wearable Devices

2.2.1 Acoustic Sensing on Smartphones. Acoustic sensing has been mostly used on mobile and wearable devices
as a solution for distance approximation and floor plans estimation [70]. Mao et al. [45] developed an acoustic
imaging system using the speaker and microphone in the smartphone. To mimic the Synthetic Aperture Radar
(SAR), they moved a smartphone with a pre-defined trajectory around the object to obtain the acoustic image. Even
though many studies have been conducted to leverage the built-in microphone and speaker in the mobile device
as a sensing technique, only a few works investigated the potential of authentication. EchoPrint [71] utilized the
acoustic and vision sensors on a commodity smartphone to verify the user’s face with a well-designed acoustic
emitted signal from the earpiece speaker. Compared with commercial products (e.g., faceID), this technique had
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the strict requirement for face alignment, and as the authentication was exposed by the public environment, it
may get affected by the strong background noise. Lu et al. [42] proposed a lip-reading based mobile authentication
solution, they utilized pre-defined ultrasonic acoustic signal to capture the unique Doppler profiles caused
by user’s mouth movement when the user is speaking the same passphrase. Machto et al. [43] leveraged a
pre-tuned probe signal within the audible frequency range and ultrasound to authenticate the user’s identity
using microphones and ultrasound speakers built in earphones. However, since ultrasound is inaudible to human,
users might have potential safety risk if being exposed to the airborne ultrasound with 120 dB or higher in a
unconscious manner [33].

2.2.2 In-Ear Sensing. Recent advances in wearable devices and IoTs have brought great potentials [31] to monitor
and sense human physiological functions (e.g., PPG, EEG) [20, 67] and behaviors (e.g., jaw movements, eating
habits, eye gestures, facial expressions) [8, 44, 46, 48] out of the clinic and in people’s daily lives. Park et al. [50]
designed a Piezoelectric sensor measuring the pressure variances of the ear canal surface, and those variances
can be used to estimate the heart rates. Bi et al. [9] developed “Auracle”, a wearable earpiece that can recognize a
user’s eating behaviors by capturing and analyzing the sound patterns of chewing through the bone and tissue of
the head. Laput et al. [32] proposed the “SweepSense” that used the reflected swept-frequency ultrasonic to detect
whether the earphone was in ear or not. Goverdovsky et al. [21] proposed the “Hearables,” an earpiece with
multimodal sensors including EEG electrodes and a microphone, which can measure the user’s brain, cardiac and
respiratory activities.

3 THREAT MODEL
3.1 Attack Scenarios

In this section, we briefly introduce two major attack scenarios for off-the-shelf mobile and wearable authentication
schemes.

Side-channel Attacks. PINs or lock patterns could be easily stolen through eavesdropping [64]. As the
existing knowledge-based authentication process is mostly conducted in an open space (i.e., typing passwords
on the touchscreen), the malicious attackers have a higher chance to eavesdrop those credential information by
various side-channel attacks (e.g., vibration, acoustic, thermal information, and wireless signals).

Replay Attacks. Some biometric authentication identifiers (e.g., fingerprint, face, voice, ECG) might be too
complex to be directly inferred by side-channel attacks, there still are possibilities of information leakage under
other occasions that hackers can utilize to implement replay attacks. For example, researchers claimed that they
can spoof the wearable ECG authentication system by linking the ECG captured by the wearable sensor and the
ECG templates stored in the hospital even if they were recorded from different body locations [15]. Fingerprints
were also proved to be not safe. German defence minister’s fingerprints were faked by hackers with only a few
high-definition photographs of her hand [25].

3.2 Design Considerations

To design EarEcho as a qualified authentication identifier, we make the following considerations.

Ubiquitous. Considering the wireless earphones are more prevailing on the market due to the small form
factor and low cost, we propose to pack a small and cheap microphone into an off-the-shelf earphone, so that it
can be easily deployed by large manufacturers with minimum hardware costs.

Unique. Ear could be used as a passive biometric modality according to some recent studies [6]. It is also
claimed that ear is more stable than face because it is less affected by users’ emotions and ages [16]. Some
existing image-based authentication systems [7, 56] captured the shape of the outer ear and took advantage of
the uniqueness of the geometry for authentication purpose. However, this technique might not be effective for
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Fig. 2. The methodological flow of EarEcho authentication system. EarEcho uses the transfer function between the played
audio and the recorded echo to extract acoustic features. An SVM classifier is trained to verify a registered user.

mobile authentication scenarios because the performance could be largely affected by the alignment and quality
of the captured ear pictures.

Unobtrusive. To relieve the risk of information leakage and guarantee the authentication in a user-friendly
manner, a qualified biometric trait should be processed during the daily use (e.g., user is making the phone call,
listening to the radio or music) without specific interruptions. Thus, we choose to leverage the echos that travel
through the ear canal with the context-free input audio signals to represent the in-ear morphological uniqueness.

Robust. Robustness is an indispensable design factor for any reliable authentication systems. The existing
acoustic-based mobile authentication approaches, such as EchoPrint and BreathPrint, were exposed in an open
environment and thus easier to be affected by surrounding noises. Our EarEcho utilizes the acoustic propagation
in a near hermetic space formed by the eardrum, ear canal, and the accessorial silicone tips of the earphones
which can largely isolate the environmental noises.

4 OVERVIEW

EarEcho aims at verifying the identity of the user while wearing the earphones. It utilizes the earpiece speaker
and microphone in the earphone for acoustic sensing. It extracts acoustic features from the played audio file and
the recorded echos using transfer function estimation. Fig. 2 shows the overview of the system design, which
consists of three major components: acoustic sensing, signal pre-processing, and user authentication.

In the acoustic sensing phase, the built-in microphone captures the sound emitted by the earpiece speaker that
propagates through the user’s ear canal.

In the pre-processing phase, the actual output sound from the earpiece speaker is estimated by the Adaptive
Gain Control (AGC) module based on the frequency selectivity of target earpiece speakers. EarEcho detects the
high power-density acoustic activity and filters out undesired noisy segments. The detected audio segments are
fed into the interference cancellation process to reduce the influence of direct-path propagation from the earpiece
speaker to the microphone within the earphone cavity. In addition, a low-pass filter is designed to remove the
high frequency (>6 kHz) noises.

In the authentication model phase, the transfer function based features are extracted based on the estimated
output sound and the noise-removed echo. Then a two-class SVM is trained to distinguish between legitimate
users and unauthorized users. During the authentication, the user doesn’t need to do any additional action and
just keeps listening to the earphones as usual. The acoustic features are extracted from the played audios and the
recorded echos, and fed into the trained SVM classifier for final authentication.
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Fig. 3. An illustration of the simplified sound wave modelling for the acoustic propagation and reflection in the ear canal
with the proposed earphone design. P is the direct propagation of the sound wave, P; denotes the incident sound wave, P,
represents the reflected sound wave.

5 ECHO SENSING

Echoes propagating through the ear canal are highly unique: i) the echoes are sensitive to the relative emitting
direction of the sound source. The varieties of people’s external acoustic meatuses or concha sizes would result
in a user-preferred earphone wearing behavior for each individual, which might affect the relative position of the
earphone in the ear canal. ii) Each ear canal is a unique closed space consisting of many different reflection and
absorption surfaces that make echoes in the ear more distinctive [62].

5.1 Acoustic Sensing Modeling

Sound emitted by the earpiece speaker propagates within the ear which is reflected and attenuated by the canal
wall. Essentially, given the wave equation describes the propagation of acoustic waves through material medium,
which is defined as: ,
Ch oy B

where V? is the spatial Laplacian, p is the acoustic pressure, and c is the wave speed.

We model sound waves travelling within the ear canal as two major behaviors: propagation and reflec-
tion/absorption, as shown in Fig. 3. For the direct propagation, let p be an acoustic scalar function p = p(x, y, z; t)
in three space dimensions, so we get:

2 2 2 2
Ip _ 20 9P O @)
ot? ox?  Jy*  0z?

In a small space such as the ear canal, we can consider the air medium is isotropic, and ¢ is a constant which
equals to 343 m/s in the 20°C environment. For the reflection/absorption, it may significantly vary given the
specific texture of the surface (i.e., ear canal wall). Some energy will be absorbed, and some energy will be

scattered or reflected. Thus, we have:

B Irpleien 3
pi
where |, is the sound reflection coefficient with respect to the surface material and roughness, o represents the
phase difference between P; and P,.

In general, we use C = {c1, ¢z, ..., ck} to denote the user’s ear canal characteristics, and ¢; represents each

independent attribute such as the auditory canal geometry size, surface property, earphone relative placement.
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Fig. 4. Two layout designs of the earphone prototype; (a) paralleled placement of microphone and earpiece speaker, and (b)
sequential placement of microphone and earpiece speaker. The blue line indicates echoes containing ear canal information,
and the red lines represent interference acoustic from the earpiece speaker without propagation through ear canal.

Let O = {01, 03, ..., 0m } represent the set containing emitted sound rays from the earpiece speaker, and ¢g(.) is
the general transfer function from the earpiece speaker to the microphone, including wave propagation and
reflection. Thus, we have the recorded acoustic set P defined as:

P ={p1 < g1(01,C), p2 < g2(02,C), ... pm ¢ Gm(0m, C)} 4)

5.2 Earpiece Speaker and Microphone Design

Typically, the average diameter of adult human ear canal is about 0.75 ¢m [60], an off-the-shelf microphone
diameter is around 0.60 cm and the diameter of earpiece speaker in the earphone is around 0.3 to 0.5 cm. It is hard
to directly fit both microphone and earpiece speaker in the cross-section area of ear canal without customization.
Fig. 4 shows two different layout designs for the commercial microphone and earpiece speaker built in the
earphone. Fig. 4(a) describes a paralleled placement for microphone and earpiece speaker in the earphone cavity.
As the regular earphone speaker is not directional, the emitted sound waves will not only travel trough the
silicone tip and the ear (as shown by those blue lines), but also be directly reflected by the cavity wall and recorded
by the microphone (as indicated by the red dash lines). Those reflected sound waves will be mixed with the
echoes containing the user’s ear canal information and captured by the microphone, which would largely affect
the echo quality.

In this paper, we adopt the second layout design as shown in Fig. 4(b), the microphone and earpiece speaker
are sequentially located, facing the ear canal. The emitted sound waves from the loudspeaker will pass through
the empty space (hollow holder) around the microphone, propagate in the ear canal, and be reflected back. This
will significantly reduce the interference noises caused by massive cavity reflections. Even though this layout
(i-e., the microphone is placed in front of the loudspeaker.) will slightly block and attenuate the sound from the
speaker, it can provide the user with a better wearing experience and the echo’s quality.

5.3 Feasibility Analysis

Given the theoretical modeling of the acoustic propagation in the ear canal, in this section, we will verify the
uniqueness of users’ ear canals by analyzing recorded echoes. We test two types of sound stimuli: single tone and
conversation.

Single Tone. Fig. 5(a) shows the result when we use a 200 Hz sinusoidal tone as the input stimulus and test
among 4 different human subjects, which validates the uniqueness of echoes corresponding to users’ ear canal
information. We asked four subjects to wear the same earphone with comfort, and play the same probe signal.
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Fig. 5. The power spectrum (0-1500Hz) of five trails from four users under two sound stimuli. (a) Input stimulus: a 5-second
single sinusoidal tone at 200 Hz; (b) Input stimulus: a 10-second conversation.

Then we extracted the power spectrum over the frequency domain from the recorded echoes. We repeated the
process for 5 times and calculated the corresponding power spectrum. It is observed that different subjects’
spectrums show some certain levels of difference around 200 Hz. However, a stimulus of one single frequency
can’t provide sufficiently distinguishable uniqueness among all subjects (e.g., subject 1 and subject 4). Hence, a
stimulus containing more frequency information (e.g., conversation) is needed to elicit more clear distinctions of
the ear canal echo. Note that the patterns above 400 Hz are caused by several high-frequency harmonics and
noises from the microphone.

Conversation. To further validate our hypothesis about the uniqueness of in-ear acoustic characteristics and
improve the stimulus’s frequency information, we also evaluated using a short period of conversation that was a
mix of numerous tones including voices, laughs, and background noises. As shown in Fig. 5(b), over the dominant
frequency range of the conversation stimulus (50 Hz - 550 Hz) and the harmonics high-frequency range (1000 Hz
- 1500 Hz), different subjects’ echo spectrums clearly demonstrate observable distinctions.

6 METHODS
6.1 Acoustic Pre-processing

6.1.1 Adaptive Gain Control. It is known that, given a certain volume level, the frequency response of output
sound is controlled and amplified by the Automatic Gain Control (AGC) module in smart devices(e.g., smartphones,
smart speakers). However, those smart devices are mostly frequency selective [34], which means that different
loudspeakers might have different frequency responses given the same audio stimulus and volume setting. To
eliminate the front-end gain interference caused by hardware, we measure the frequency selectivity of our
prototype earpiece speaker using a chirp signal. Based on the measured frequency response and the audio’s
volume, for each echo recording, we estimate the output sound from the earpiece speaker by compensating the
digital audio file.

6.1.2  Event Detection. During the earphone’s daily usage, there are always short intermissions during audio’s
playing. For example, music have short intervals of silence, or there are scattered pauses during a speech. To
eliminate the effects of the low SNR segments and to increase the energy efficiency especially for the continuous
authentication scenarios, we adopt a Likelihood Radio Test (LRT) and Hidden Markov Model (HMM)-based event
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Fig. 6. Example of event detection in a recorded echo from a playback conversation and the corresponding event occurrence
probability.

detection module to filter out undesired low-power density echo segments [61]. Given that:

Hy : event absence : X = N
5
H; : event presence : X = N + S ©)
where S, N, X are Discrete Fourier Transform (DFT) coefficient vectors of audio, noise, and noisy audio, with
their kth elements Sk, Ni, and Xk, respectively.
The probability density functions conditioned on Hy and H; are given by:

i < T X[
p(x] w-QW(k)exp{— o)
L-1 ) (6)
1 | Xkl

PO =| | S s P e+ 2!

where An(k) and Ag(k) represent the variances of Nj and Sk. The likelihood ratio for the kth frequency band is

a PXk|Hr) 1 exp{ Yiék )
T pOGlH)  1+& P&

where & and yy are called prior and posterior Signal-to-Noise Ratios (SNR’s). The decision rule is obtained from
the average likelihood ratio for each band, which is given by

™)

1 L-1 H
logh = = > logAx 2 7 ®)
L k=0 Ho

As shown in Fig. 6, given a raw echo signal collected by the microphone, we will first calculate the event
probability for every frame, and then filter out the noise segments with lower probability.
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Fig. 7. The chirp signal used for interference cancellation that sweeps over the mostly used audible frequency bands from 20
Hz to 6 kHz.

6.1.3 Interference Cancellation. This step is designed to remove interferences of the direct sound transmission
between the earpiece speaker and the microphone. In our prototype design, the earpiece speaker is placed behind
the microphone. Once the earpiece speaker plays the sound, some of the sound waves will directly propagate to
the microphone and reach the membrane. There are also a small amount of echoes that are reflected only in the
earphone cavity without traveling into the ear canal. To achieve a better interference cancellation, we record
the direct transmission by putting the earphone in a clean space, where no major reflector is within one meter
distance in front of the microphone. We design a chirp probe signal that ranges between 20 Hz to 6 kHz which
covers most of the frequency range of human voice and music, as shown in Fig. 7. By analyzing the transfer
function between the played probe audio and the received audio, we can obtain the features from the direct path
interference. When we authenticate the user’s identity, we estimate the interference noise of the played audio
from the direct path and subtract it from the entire received echo.

6.1.4 Low-pass Filter. As the classical theorem of music and speech, the frequency covers from 20 Hz to the
highest tone C8 at 4,186 Hz [3]. We thus design a Butterworth low-pass filter with stop frequency at 6 kHz and
feed the interference cancelled signal into the low-pass filter to remove undesired high-frequency noises.

6.2 Authentication Model

6.2.1 Feature Extraction. As discussed in Section 5.1, the relationship between the emitted acoustic signal and
the recorded echo signal is dominated by the geometry information of the user’s ear canal, and can be modeled
as a linear, time-invariant system. Given the input x as the estimated earpiece speaker sound and the output y as
the noise-removed recorded echo, in the frequency domain, we have Y(f) = H(f)X(f). For a single-input (i.e.,
the earpiece speaker) and single-output (i.e., the microphone) system, the H; estimate of the transfer function is
given by

Pyx(f)
Pyex(f)

Hi(f) = ©)
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Fig. 8. The averaged feature vectors of two users given five different stimuli.

where P, and Py are the cross power spectral density of x and y respectively, and can be estimated using
Welch’s averaged, modified periodogram method [69] as follows:

Pry(@) = D Rey(m)e 7™ (10)

m=—oo

And the cross-correlation sequence Ry, (m) is defined as

ny(m) = E{anrmy;;} = E{xnyjzfm} (11)

where x,, and y, are jointly stationary random processes, and E{.} is the expected value operator. This estimate
assumes that the noises including system noises and background noises are not correlated with the system input.
Based on the played acoustic signal (input) and the recorded echo (output), we extract the feature with 2,048
Discrete Fourier Transform (DFT) points and a Hann sliding window (window length 150 ms; overlap length 100
ms). And we obtain the feature set G = {H;(f1), H1(f2), ..., Hi(fx)} where H;(fx) represents the transfer function
estimate of the kth frequency band (fx < 6 kHz). As shown in Fig. 8, given different input audio stimuli played
by the speaker in earphones (i.e., five 2-minute long conversation episodes), it is observable that the extracted
features are highly correlated and context-free for the same subject, and distinctive for different subjects.

6.2.2 Classifier. The nature of mobile and wearable authentication is typically considered as a classification
problem to distinguish legitimate and illegal users. We adopt a two-class SVM classifier with Radial Basis
Function (RBF) kernel in our EarEcho design, due to its relatively high computational efficiency. The prohibitive
computational complexity and costs make many advanced classifiers (e.g., deep neural networks) less beneficial
for resource-constrained mobile devices. During the real-world usage, EarEcho needs to collect samples from the
legitimate users combined with stored benchmark impostors’ samples to train the SVM classifier.

7 EVALUATIONS
7.1 Experimental Setup

We implemented EarEcho on a earphone prototype to evaluate the uniqueness of acoustic behaviors in the ear
canal.

Hardware. We embedded the MS-TFB microphone into the Bose SoundSport in-ear headphone, which has a
high sensitivity of -32 dB and can capture a maximum sound pressure level of 115 dB. To ensure a good noise
isolation and comfortable fit, we used the Bose silicone earbud tips with user-specific sizes. Also, we used a 3.5
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Fig. 10. Performance of different classifiers. The box plot shows the median, quartiles, and error ranges.

mm Jack cable adapter to merge the record channel and the play-back channel and connect it to the MacBook
Pro laptop with a 2.5 GHz Intel i7 CPU and 16GB memory.

Stimuli. To ensure the diversity and representativeness of stimulus signals, we collected 5 different conversation
audio records from a popular American podcast “West Wing Weekly”, with respect to content, speakers’ genders,
pitch, and speech speed, as shown in Fig. 9. It can emulate the real cases when the user is picking up a phone-call
or is listening to the radio or music. Each audio trail lasted for 2 minutes and was sampled at a rate of 44,100 Hz
for a full coverage of human audible frequency range (20 Hz to 20 kHz).

Participants. 20 subjects (age ranges 24-30 years old, 6 females and 14 males) were recruited in the experiments.
During the data collection, each subject was asked to wear the earphone prototype and listen to those 5 audio
records (each audio lasts for 2 minutes). Participants were asked to take out and put on the earphone between
each audio record. In addition, to mimic the daily usage scenario in real environments, we also asked participants
to perform different postures (e.g., sitting and standing) and body motions (e.g., mouse and head movements)
during the experiments. Also, in order to ensure the environment diversity, the data was collected under various
background noises (e.g., room, shopping mall, cafe, street). In total, we collected 11,900 samples (each sample was
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Fig. 11. Authentication performance for different time periods of collecting training data at 44,100 sampling rate.

Table 1. Authentication accuracy of the legitimate user and intruders with 1-second authentication window size

Mean | Median | Standard Deviation
Precision (%) | 95.16 | 97.56 5.78
Recall (%) | 94.19 | 96.30 6.63
F-score (%) | 94.46 | 95.35 4.53
BAC (%) | 9452 | 95.56 4.49

a one-second segment for 5 recordings with no overlap) from 20 subjects, and divided it into two parts, 80% for
model training and 20% for evaluation.

7.2 Classifier Performance

To evaluate the performance of the SVM classifier with the transfer function based features, We compare different
classifiers using the test dataset including K-Nearest Neighbor (KNN), Decision Tree (DT), Naive Bayesian (NB),
Support Vector Machine (SVM) and Multi-layer Perceptron (MLP). Fig. 10 shows the detailed error rates for
different classifiers. It is seen that SVM outperforms all other classifiers in both FAR and FRR, and also takes
shorter time for training (1.3 seconds compared with 12.8 seconds for MLP which has similar accuracy).

7.3 Authentication Performance

7.3.1  Precision, Recall, F-score, and BAC. In an authentication problem, we introduce the precision, recall, F-score,
and Balanced Accuracy (BAC) as the evaluation metrics. Given the true positive (TP), false negative (FN), and
false positive (FP), We define the precision and recall as below:

TP

Precision = —— (12)
TP + FP
TP
Recall = —— 13
T TPIEN (13)

where a high precision means that only the authorized users can successfully pass the verification, and a high
recall indicates that most legitimate users will not be rejected. Sometimes in an imbalanced testing set, precision
and recall may not perform well. Thus, we also introduce F-score and BAC which overcome this problem, and
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Fig. 12. Continuous authentication performance with different window sizes at 44,100 sampling rate.

Table 2. Continuous authentication accuracy of the legitimate user and intruders with 3-second window size

Mean | Median | Standard Deviation
Precision (%) | 97.57 100 3.96
Recall (%) | 97.55 | 100 3.40
F-score (%) | 97.49 | 97.50 2.75
BAC (%) | 9753 | 97.47 2.69
defined as:
precision - recall
F-score=2- ——————— (14)
precision + recall
TPR + TNR
BAC = — (15)

where TPR means the true positive rate, and TNR means the true negative rate.

In this evaluation, we train a two-class SVM model for each subject as the legitimate user and the rest 19
subjects are divided into two groups, 9 out of 19 subjects are selected as the imposters that are used for training,
and the rest 10 subjects are selected as the intruders that are used for unknown users testing. For each SVM
model, to achieve a better practicality with respect to context-free and a balanced training set, We choose four
conversation episodes’ data collected from the authorized user as the enrolled training data and randomly pick
one episode from other 9 imposter users as the benchmark training data. For the evaluation, the remaining
untrained episodes for the testing group are chosen as the testing data.

Fig. 11 shows the performance metrics along with increasing training data with fixed one-second authentication
window length. It is observable that, when we only collect a small amount of the user’s echo data, the captured
features corresponding to the user are underrepresented, and hold very low variance and large bias compared
with the true user’s feature distribution. Thus, it results in less false acceptance rate but generates more false
rejection cases. When we collect over 400 second echo data for training, the performance becomes stable at the
level of around 95%, which can provide a better user experience. The detailed performances are listed in Table 1.

7.3.2  Performance of Authentication Modes. We evaluate two authentication modes under different application
scenarios including the one-time authentication and the continuous authentication which covers the major two
authentication modes in the current IoT environment.
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Fig. 13. The impact of different background noises on the performance including FAR and FRR.

One-time Authentication. One-time authentication means that the users are asked for a single verification
request of their identities (e.g., typing password, scanning face, or swiping ID card). As a passive acoustic ear
authentication solution, it is not convenient for users to interrupt their on-going audios and stimulate a probe
signal for verification purpose. Thus, we randomly select one-second audio segments from untrained conversation
audios to mimic the scenario that users are requesting for verification while using earphones without interruption.
As discussed in Section 7.3.1, we can achieve accuracy of 95.16% and 94.19% for precision and recall respectively.

Continuous Authentication. For one-time authentication, the required time for authentication is always a
major concern and constraint from the perspective of user experience. However, for the long-term continuous
authentication solution that is conducted in a passive manner, we explore the performance with different
authentication times. As shown in Fig. 12, the window size starts from 1 second which is the default setting
for one-time authentication, then the accuracy increases with longer window sizes. This is because the longer
window size allows more data to be used for extracting features with a wider coverage of frequency range. When
the window size reaches 3 seconds, the accuracy gradually converges to the level of about 98%. Thus, we select
the window size of 3 seconds as an authentication cycle for the continuous authentication scenario and we can
achieve 97.55% recall and 97.57% precision (see Table 2).

7.4 Impact Quantification

In this section, we evaluate the robustness of EarEcho in terms of background noises, body motions, sound
pressure levels of audio, permanence, and wearing positions.

7.4.1  Background Noise. With the popularity and convenience of wireless earphones, people are wearing
earphones in more and more scenarios, However, acoustic sensing is also known to be sensitive to background
noises. Thus, we examine our EarEcho in four different environments: a quite room (40 dB), a normal cafe (55
dB), a crowded shopping mall (65 dB), and a noisy street (75 dB). To ensure the replicability and controllability
of the experiments, during the enrollment phase, we use data collected in the quite room for training and then
simulate the testing scenarios by playing background noises at the corresponding effective sound pressure levels
[11, 29, 49]. We use a smartphone to play the background sound as the noise source with 1 meter distance to
participants.

From Fig. 13, we can observe that the FARs of noisy environments would slightly increase compared with a
quite environment but the background noises’ sound pressure level (SPL) doesn’t have significant impacts on
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Fig. 14. The impact of different body motions (e.g., sit, head motions, mouth motions, walking, and running) on the
performance including FAR and FRR for both one-time and continuous authentication modes.

FARs. However, the FRRs indeed increase with higher SPLs. This is because the background noises can propagate
through the isolation layer (the earphone’s silicone tips) with some loss, then travel in the user’s ear canal and
mix with echos collected by the microphone. If the noise SLP is high enough, it can pass through the event
detection and affect the extracted transfer function features.

7.4.2  Body Motions. Besides the background noises, noises may also come from users’ activities during the
usage (e.g., listening to music while walking, yawning, tuning the head around while making a phone call). To
evaluate the robustness of our system, we test our EarEcho for multiple user body motions: head movement,
mouse motion, walking, and running. To best emulate the real-life scenarios, we ask the participants to perform
selected body motions with a high degree of freedom (e.g., randomly tuning head in vertical and horizontal
direction, walking at a common pace) while wearing the earphones.

Fig. 14 shows the performance of system robustness against various body motions. Except for running, other
activities only cause slight increases on FARs and FRRs (2% ~ 4%) for one-time authentication mode. In the
continuous authentication mode, the performance remains quite stable. This demonstrates that EarEcho is very
robust to moderate motion noises. The reason for more significant performance influence resulted from dramatic
motions like running is that, during the strenuous exercise, the soft interface will cause the earphone to have slight
displacement relative to the ear canal which would change the acoustic propagation characteristics. However, it
is worth noting that it represents an extreme scenario to have authentication requests during running.

7.4.3  Sound Pressure Levels of Stimuli. Volume is one of the major user preference settings for earphone usage.
Different users might have different comfort Sound Pressure Levels (SPLs), and SPLs are also content-environment-
dependent (e.g., people may prefer to raise the SPLs when listening to pop and rock music; SPLs are often set up
higher when walking on the street compared to staying in a quite room). A higher SPL means a better audio
quality which brings a higher Signal-to-Noise Ratio (SNR). To explore the impacts of SPLs on authentication
accuracy, we evaluate the testing dataset from the low volume (45 dB SPL) to the high volume (60 dB SPL) and
with different background noises. The default SPL for training and testing is 55 dB.

Fig. 15 shows the impacts of SPLs on both FAR and FRR. In Fig. 15(a), similar as background noises, given
different SPLs, the FARs don’t have significant variations. However, unsurprisingly, the higher SPLs result in the
lower FRRs especially in a noisy environment (e.g., mall and street).
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Fig. 15. Impacts of different stimulus sound pressure levels (dB) on the one-time authentication performance under different

environments.
Table 3. Recall performance of longitudinal study over one month

Recall (%) Reference | 1 day | 1 week | 1 month
One-time Authentication 95.0 94.3 93.6 91.4
Continuous Authentication’ 97.1 97.1 96.3 95.4

! The authentication window size for continuous authentication is 3 seconds.

7.4.4 Permanence. It is important to provide a stable performance for any biometric design. To evaluate the
permanence of our system, we randomly selected a sub-group consists of four subjects to participate in the
longitudinal study lasting for one month. This study had two phases: enrollment and testing. All participants
finished data collection for 10-minute audio on the first reference day. For the testing part, all subjects were asked
to collect data again for another 10-minute audio after a certain time duration (i.e., one day, one week, and one
month). The results of recall are shown in Table 3. After a period of one month, the recall has a slight drop of 2%
to 3% (which might be caused by the different levels of in-ear cleanliness). It is demonstrated that our EarEcho
can be considered as stable over a period of one month. In the real-world scenario, we can always augment the
new collected echos into the training dataset to update the slowly changing features for the enrolled user.

7.4.5 Earphone Wearing Positions. Putting on and taking out your earphone are two most common actions in
the daily usage of earphones. Each wear would cause a slight relative position change of the earphone in the ear
canal. Besides the permanence over time, we also evaluated the system performance in terms of the effects of
various earphone wearing behaviors including slightly varied positions of regular multiple wears and purposely
rotated wearing positions along the X-axis and Y-axis, as shown in Fig. 16(a).

Among the 20 participants, we chose a subgroup of 10 participants (3 females and 7 males) as the enrolled,
genuine users to investigate the effects of various earphone wearing behaviors. We designed two sessions,
named the regular multi-wear session and the irregular rotation session. For the multi-wear session, in the lab
environment, all ten participants were instructed to hear 5 audio records (2 minutes per record), and for every
20 seconds, participants needed to take out and put on their earphones repetitively. Thus, in total we collected
30 different wears for each participant. We used 20 of them to train the SVM classifier, and the rest 10 wears’
data was used for testing. In addition to the regular multi-wear behaviors, we further evaluated several irregular
earphone wearing behaviors including rotating the earphone by 15° along the X-axis and by 20°and 50° along the
Y-axis. Each participant was asked to listen to one test audio record (2 minutes) with all three different earphone
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Fig. 16. (a) Simulations of earphone wearing rotations. 61 ranges from 0 to 15°, 8 ranges from 0 to 50°. (b) Impacts of different
earphone positions on both one-time and continuous authentication recall performance.

rotation angles respectively (15° on the X-axis, 20° and 50° on the Y-axis ). Based on the classifier trained through
the data collected from the regular multi-wear session, we evaluated the recall for the same participant with
those irregular earphone wearing positions. As shown in Fig. 16(b), we can observe that regular multi-wear
behaviors would not significantly affect the system performance if we involve the multi-wear data into model
training. Irregular earphone rotation behaviors within a small range (e.g., 15° and 20°) would cause slight recall
drops. However, once the rotation angle along the Y-axis increases up to 50 °, it would cause a certain degree of
unfit interface between the earphone and the ear canal with noise leakage and volume change of inside cavity
(ear canal). The recall drops to 81.2% and 88.0% for one-time and continuous authentication scenarios. Therefore,
earphone displacement resulting from regular multiple wearing attempts would not affect the recall performance,
and some irregular wearing behaviors would cause different levels of recall drops depending on the degree of
rotation.

7.5 Vulnerability Study

Similar as other mobile and wearable authentication solutions, it is critical to investigate the security vulnerability
of EarEcho. Even though the ear canal information is more hidden and hard to be stolen compared with fingerprints
and faces information, there still could be potential threats from spoofing attacks by presenting a fake ear-canal
anatomy model which has the similar geometry as the human ear canal. To imitate the spoofing attacks, we used
two fake models: a well-designed anatomy plastic model and a 3D-printed PLA-based model as shown in Fig.
17. Both models were fabricated with the normal size and an accurate canal design. To better investigate the
potential risks from spoofing attacks, we also slightly adjusted the placement of the earphone in the ear canal for
multiple times. We tested 720 attempts from the fake models for each enrolled subject, and we only obtained, on
average, 0.22% and 0.18% FARs for one-time and continuous authentication respectively. This result indicates
that our EarEcho authentication solution provides a high level of resistance to spoofing attacks. The reason is
that the material of ear canal inner surface also affects the acoustic propagation behaviors like absorption and
reflection. Even though the attacker obtains the enrolled user’s ear canal geometry information and designs a
fake model with high resolution. The difference of material between fake models (e.g., plastic, PLA, or silicone)
and human tissue still makes EarEcho hard to be spoofed.
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Fig. 17. Spoofing attack study using two fake ear models.

Table 4. Comparison with Existing Acoustic-based Mobile and Wearable Authentication Biometrics

Biometrics EarEcho | SilentKey[63] Vocal Resonance [40] EchoPrint [71] | BiLock [73]
Features acoustic acoustic acoustic acoustic+vision acoustic
No.subjects 20 50 29 45 50
Modes! Passive Active Passive Active Active
BAC? 94.5%-97.5% 78%-87% 94.2%-96.1% 93.75% 97%
Devices earphones | smartphones | throat-mounted microphones | smartphones | smartphones

1 The modes are categorized into two ways. Active means users need to perform certain actions to verify identities. Passive means the
authentication process is implemented in an unobtrusive way.
2 Balanced Accuracy.

8 DISCUSSIONS
8.1 Comparison with Other Mobile and Wearable Biometric Authentication Approaches

We compare the performance of EarEcho with other emerging acoustic-based biometrics deployed on mobile and
wearable devices including SilentKey [63] (mouth motions), Vocal Resonance [40] (body sounds), EchoPrint [40]
(face), and BiLock [73] (dental occlusion). As shown in Table 4, those active biometric solutions involve larger
group of participants with lower BACs. The performance of BiLock was evaluated based on only legitimate users
and imposters, without involving intruders (unknown new users). Compared with Vocal Resonance, EarEcho
aims to provide an accurate and also a ubiquitous solution that can be deployed in existing wearable devices of
large popularity.

8.2 Comparison with Ultrasound-based Ear Acoustic Continuous Authentication

Different from our proposed ear acoustic biometric using only audible frequency range, a hybrid system combining
the fixed audible sound (for initial authentication) and ultrasound (for continuous authentication) has been
explored by Machto et al. [43]. Particularly, under the long-term authentication modes, due to the high SNR
and resolution of ultrasonic sensing, it can achieve a higher accuracy than audible-based solution. However,
as claimed by the authors, ultrasonic sensing is too sensitive to the earphone displacements caused by body
motions. Compared with our system using only built-in regular earpiece speaker, the ultrasound-based solution
also requires additional ultrasound speaker that keeps emitting high frequency audios that would significantly
increase the power consumption of earphones. In addition, according to our survey, most users are concerned
about the potential health risk of long-term exposure to ultrasound. Lastly, it may also raise some security threats.
For example, users are unperceptive if earphones’ ultrasonic speakers are hacked by malicious attackers.
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8.3 Limitations

EarEcho is only a proof-of-concept prototype at the current stage and still far from a well-engineered product.
We list several main limitations as follows:

Earphone Wearing Position. In our current design, we adopt the commercial silicone tips as the interface
between the earphone and ear to provide a secure fixed position. As discussed as Section 7.4.5, regular multi-wear
behaviors would not affect the accuracy. However, excessive irregular rotations of the earphone and significant
body motions like running would still cause non-negligible changes of the earphone’s displacement. Therefore, a
mechanism for the alignment of varying earphone wearing positions is needed to address such a challenge.

Varying User Ear Canal Conditions. The current extracted features were trained based on a limited set of
data, far from sufficient to be robust against the user’s varying ear canal conditions (e.g., ear infection, earwax,
and other cleanliness states). Regularly retraining the SVM model with newly collected data could be an effective
way to adapt to those possible changes.

8.4 Future Work

Our EarEcho proposes a new potential way to verify the user’s identity in the mobile and wearable application
scenarios. To provide EarEcho with a better accuracy, attack resistance and usability, we are planning to improve
our design from the following aspects:

Earphone Position Alignment. As discussed in limitations section above, to achieve a higher true positive
rate and lower false negative rate, we will integrate the earphone with additional sensors (e.g., accelerometers and
gyroscopes) to estimate the irregular wearing position of the earphone in the ear canal. It may require the user to
adjust the earphone position for the initial authentication or compensate the acoustic feature variations caused
by body motions during continuous authentication. This will further improve the authentication performance.

Two-factor Authentication. Due to the rapid improvement on bio-signal based authentication (e.g., PPG,
ECG, EEG) which can provide the liveness detection and reliable performance in a noisy environment, our
EarEcho can be integrated with some other biometric sensors to enhance the robustness against acoustic noises
and replay attacks.

Large-scale and Mobile-platform Evaluation. We tested only 20 subjects in the current experiments. A
larger user group is needed to further validate the performance towards a finely engineered product. Moreover,
in our design, to reduce the computation complexity, we use the SVM-based authentication, we still need to
transplant our system to a smartphone platform to have a more precise evaluation on mobile power consumption
and computation latency.

9 CONCLUSION

In this paper, we propose a novel authentication scheme — EarEcho — which leverages the acoustic characteristics
in the user’s ear canal through the integrated microphone and loudspeaker on commodity earphones. We validate
that the extracted acoustic features between the emitted audios from the earpiece speaker and the received echoes
from the microphone can be used as a unique and reliable identifier for user authentication. After acoustic signal
pre-processing, the transfer function based features are feed into an SVM classifier for identity verification. Our
results show that EarEcho can achieve 97.55% recall and 97.57% precision.
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