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Abstract

To fulfill the increasing demands on authentication meth-
ods on the smart mobile and wearable devices with small
form factors and constrained screen displays, we introduce
a novel authentication mechanism, Body-Taps, which au-
thenticates a device based on the Tap-Code gestures in the
Jorm of hand movements captured through the built-in mo-
tion sensors. The Body-Taps require a user to set a Tap-
Code as an unlock code for the device by tapping the device
on the set anchor points on his or her own body. The tar-
get device is authenticated based on two criterion: (1) the
user’s knowledge of the set Tap-Code, and (2) the Body-
Tap gestures measured through the smart device’s built-in
motion sensors (accelerometer and gyroscope). Our ex-
periments show that the proposed Body-Taps system can
achieve an average authentication accuracy over 99.5% on
a dataset comprising of 230 Body-Tap samples from 23 sub-
Jjects, using Random Forest (RF), Neural Network (NNet),
and Linear Discriminant Analysis (LDA) classifiers. Our
work yields a light-weight, low-cost, and easy-to-use secure
authentication system that requires minimal efforts and of-
fers satisfactory usability.

1. Introduction

Smart mobile and wearable devices have seen incredi-
bly dramatic growth during the past ten years. It was pro-
jected that approximately 310.4 million wearable devices
were sold worldwide in 2017, which encompasses a variety
of device types including smartwatches, body-worn cam-
eras and head-mounted displays [22]. Along with this mar-
ket surge, there have also seen increasing concerns about se-
curity and privacy of those personal devices. That is, how to
properly protect and secure those devices against accidental
and malicious access. Traditional methods of authentication
on mobile devices using pins or passwords have a number of
shortcomings. For example, pins or passwords can be stolen
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Figure 1: Body-Taps for Tap-Code 1— > 2— > 3— > 4,
which can be any combination of arm and wrist movements
(indicated as arrows) between the body anchor Tap Points.

or leaked; complex pins or passwords are hard to remember
and easy passwords are readily guessed, etc. Another major
shortcoming is the difficulty of entering pins or passwords
on traditional devices for visually challenged people. Re-
cent work using hand and wrist movements for authentica-
tion on mobile or wearable devices has shown significant
promise and overcome some of the difficulties. However,
the authentication accuracy of those approaches are still not
up to the mark. To this end, in this study we introduce a new,
light-weight, user-friendly authentication technique based
on a series of body taps, typically four to six body taps at
key locations of the body, such as the shoulders and each
side of the waist (see Figure 1). The proposed approach is
specifically designed for those wearable and mobile devices
with small form factors or constrained screen displays.

Figure 1 shows an example of wrist movements for en-
tering Tap-Code 1— > 2— > 3— > 4. This involves a
sequence of movements; (1) tap the phone at the left shoul-
der (T'ap — Pointl), (2) tap the phone on the right shoulder
(Tap — Point2), (3) tap the phone on the left side of the
waist (T'ap — Point3), and (4) tap the phone on the right



Table 1: Anchor Points on the Users Body and the Corre-
sponding Tap Code.

Body Anchor Point Tap Code
Left Shoulder Tap - Pointl
Right Shoulder Tap - Point2
Left Waist Tap - Point3
Right Waist Tap - Point4

side of the waist (T'ap — Point4). Table 1 shows the anchor
body points used in our design and the corresponding Tap-
Code. Body-Tap gestures captured as the wrist movements
by the motion sensors built within the smart devices provide
us with a set of distinguishable features, which can be used
for verifying and authenticating the identity of the user.

Our method thus provides two distinct modes of authen-
tication: one consisting of a pin through body taps, and
the second characterizing the movement patterns between
body tap positions on the body captured through the built-in
motion sensors (i.e., accelerometer and gyroscope). People
may question and argue that the body taps can be observed
easily and the accuracy of the motion behavior based au-
thentication would not be sufficient to build a practical sys-
tem. In response, we would like to point out that, (1) one
can use different combinations of body taps, thereby pro-
viding different combinations of Body-Codes as the pins;
and the purpose of body taps at different locations of the
body is to provide a distinct sequence of flight patterns that
involves wrist and arm movements horizontally, vertically,
and diagonally. The security and vulnerability of pins or
passwords per say are not the focus of this paper although
they do provide a first layer of defense. (2) The discrim-
inability of the accelerometer and gyroscope based authen-
tication at its worst is comparable to those reported in the
literature and we posit that it will provide an enhanced secu-
rity level because of the anthropometric differences. Even if
the height and weight of an impostor is similar to the victim,
the arm length and the wrist movement involved in creat-
ing the Body-Taps will provide unique signatures. And, (3)
our method provides a much safer option for visually im-
paired people who may traditionally have difficulty of en-
tering pins or passwords or at worst may completely give
up the pins or passwords.

It is argued that, because of the anthropometric varia-
tions, such as the geometric dimensions of the body, specifi-
cally the torso, arm length, wrist, even the shape of the hand
and length of the fingers, of one individual from another, a
rich set of features can be captured through the motion sen-
sors (such as the accelerometer and gyroscope) when the
subject holds a phone and taps and moves the hand (and
wrist) between different parts of the body. Our results show
that it is possible to successfully authenticate based on hand
movement between body taps.

Moreover, as mentioned above, our method is also of
significant use to visually impaired people, because it re-
quires no explicit pin or password entries. In addition this
method is particularly suitable for the stand-alone authenti-
cation scenarios on smart mobile and wearable devices with
small form factors and constrained screen displays.

Contributions: Our work brings forth the following
contributions to the field of mobile devices’ security.

1. We proposed a new authentication mechanism, Body-
Taps, which requires minimal efforts and is suitable
for constrained screen devices. Design of the system
is such that it only requires a user to tap the phone at
key anchor points on his/her body. The system creates
a user specific template from the features which cap-
ture unique movement of the user’s phone movement
for each tap and in between two taps. System asks
the user to enter the previously set Tap-Code (training
phase) for the verification to gain access to the device.
If the matching score is higher than a set user specific
threshold, access is granted otherwise access is denied.

2. We designed, implemented, and rigorously evaluated
the Body-Taps system using an iPhone. In our exper-
iments on a dataset of 230 Body-Taps samples from
23 subjects, our method could achieve an average au-
thentication accuracy over 99.5% using Random For-
est (RF), Neural Network (NNet), and Linear Discrim-
inant Analysis (LDA) classifiers.

The rest of the paper is organized as follows. Section 2
presents the related work. The design of the experiments
with data collection and analysis are described in Section
3. We present the performance of our authentication in Sec-
tion 4. Finally, we draw our conclusions and discuss future
directions for the research in Section 5.

2. Related Work

The majority of user authentication methods are com-
posed of the characteristics that users possess, e.g., finger-
print, iris [1], palm print [1], gait [12, 23], and context based
behavior analysis [14, 27], what users know such as pins,
and passwords or a combination of both of the above that in-
cludes touch based authentication [2, 11], and speech recog-
nition [1]. These methods have practical limitations as they
require extensive computation power and can be very tax-
ing for mobile phone devices. On the contrary, accelerom-
eter and gyroscope based methods do not require excessive
computation to authenticate a device.

Researchers have explored a plethora of motion sensors
based authentication schemes that focus on improving the
usability, performance, and memorability to authenticate a
device [10, 16, 17, 21, 24, 26]. The methods based on mo-
tion gestures generally follow two different types of imple-
mentations: one relies on the analysis of the position of the



mobile device [6, 8, 13, 19], and the other focuses on the
position of the user’s hand [23]. Prior studies [8, 13, 18, 19]
have used the accelerometer data in short sessions from ei-
ther a customized device or a common Android device.

Kamil Burda [3] presented a new approach to authenti-
cate users based on the way they picked up a smartphone
on a table or in their front pockets, an activity performed
frequently every day, using the smartphones accelerometer
sensor. Conti et al. [4] proposed a new biometric measure
to authenticate the user of a smartphone: the movement the
user performed when answering (or placing) a phone call.
Luca et al. [5] presented Back of Device Shapes, an authen-
tication method for smartphones that uses the back of the
device for input. Feng et al. [7] proposed two novel meth-
ods, a Statistic Method to intuitively apply the classifier on
the statistic features of the data; and a Trajectory Recon-
struction Method to reconstruct the Mobile Device Picking-
up (MDP) motion trajectories and extract specific identity
features from the traces. Kunnathu [15] attempted to build
a statistical model to identify a user, based on how the user
picked up the phone and how he/she held the phone to the
ear. Lu er al. [20] proposed a finger-gesture-based authen-
tication method, where the in-air-handwriting of each user
was captured by wearable inertial sensors. Lee et al. [17]
proposed Secure Pick Up (SPU), to authenticate the users,
by implicitly observing the way they bend their arms when
they pick up a smartphone to interact with the device.

3. Data Collection and Feature Analysis
3.1. Data Collection

With the approval of our university’s Institutional Re-
view Board (IRB), we collected experimental data from 28
volunteer participants. The participants were informed that
their phone movement patterns would be collected while
they entered the chosen Body-Tap-Code by tapping the
phone at the set anchor points on their bodies. We des-
ignated the anchor points corresponding to a Tap-Code as
shown in Figure 1. Table 1 details the body anchor points
and corresponding Tap-Code.

All the participants in our data collection study were uni-
versity students, faculty, or staff. We developed an iOS-
based application to record the accelerometer and gyro-
scope readings. Data recording rate was set to 60 Hz. We
collected data in three different sessions; (1) a pre-training
session, (2) a training session, and (3) a testing session.

3.1.1 Pre-training Session

We collected a dataset comprising of 5 different users for
a pre-training analysis. We asked each participant to create
Body-Taps for a set of three fixed Tap-Codes. These Tap-
Codes were designed to cover all the possible combinations

Table 2: Average and Standard Deviation of the Time Taken
by the Participants to Enter Body-Tap-Codes.

Tap-Code Swing Type 1\’/[11::;11:! (Zikrllsizef;)
Tapl to Tapl or T'ap2 to T'ap2 1.11 0.14
Tap3 to T'ap3 or Tapd to Tapd 1.23 0.08
Tapl to Tap2 or T'ap2 to T'apl 1.40 0.17
Tap3 to Tap4 or Tap4d to T'ap3 1.35 0.23
Tapl to T'ap3 or Tap2 to Tapd 1.69 0.27
Tap3 to Tapl or Tapd to T'ap2 1.93 0.31

of the tap points in our study, i.e., all possible combinations
of taps 1, 2, 3, and 4. Following are the fixed Tap-Codes
that we provided to the participants.
1)1->2—>3—>4->3—->2—>1
2).1—->3—>1—>4—>2—>4—>1
31->1->2—>2—>3—>3—>4—>4

Every participant created Body-Taps corresponding to
the given Tap-Codes, 10 times each. We recorded the ac-
celerometer and gyroscope readings while user created the
Body-Taps.

3.1.2 Training Session

We recruited 23 different volunteer participants to collect a
training dataset. We asked each participant to chose a Tap-
Code and create Body-Taps for the chosen Tap-Code (see
Figure 1). Although we did not provide any direction for
the length of the Tap-Code, majority (61%) of the partic-
ipants chose a tap code of the length 4. Choice of Tap-
Code of length 6 was the second highest majority (35%) in
our dataset. The rest 5% participants chose the Tap-Code
of other lengths. We believe that the observed Tap-Code
lengths in our dataset are consistent with the users’ pref-
erences of choosing a pass code for their mobile devices.
Please note that many mobile devices on the market use the
standard four or six digit unlock codes.

3.1.3 Testing Session

We invited the same 23 participants, 3 to 5 days after their
first participations in the training session, and asked them to
create Body-Taps for the previously chosen Tap-Code. We
again recorded the accelerometer and gyroscope readings as
our testing dataset.

Each data collection session was preceded with a prac-
tice session with the goal to make participants familiarize
with the device and the chosen Tap-Code. We explained
the process of entering the chosen Tap-Code (i.e., creating
the Body-Taps) and allowed each participant to practice en-
tering Body-Taps for the chosen Tap-Code for 2-3 minutes
before the recorded session.
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Figure 2: Tap Point Identification. Figure show the ac-
celerometer and gyroscope signal components z,.. and
Tayr (top), vertical green lines show the selected peaks of
the signals, identified as Tap-Points (mid), and different
Swings separated into short windows (bottom). Start and
End part of the signal (grey shadowed) is discarded for fur-
ther processing and features extraction steps.

3.2. Data Preprocessing and Feature Analysis

3.2.1 Data Analysis

We collected the three-axis accelerometer (Tqce, Yace, Zace)
and the three-axis gyroscope (Zgyr,Ygyr, Zgyr) readings
from the phone while user entered the chosen Tap-Code.
We computed the magnitude, m,.., for the accelerom-
eter and magnitude mg,, for the gyroscope which we
referred as the fourth component of the accelerometer
and the gyroscope signals, respectively. mg.. is de-
fined as, \/22.. +y2., + 22.. and mg,, is defined as,

2 2
\/xg?/'f + ygyr + Zgyr’

The recorded signals were very noisy and hence we per-
formed data smoothing. We used simple moving average
(SMA) with a window size of 5 points for all four com-
ponents of the accelerometer and gyroscope signals as a
smoothening process.

Algorithm 1: Tap Point Identification Algorithm.

Input: Sensor Signals, Zqcc(t) and z gy, (t).
Output: {trappoints|] | ti-7=1,2,...,(N — 1)},
where N is the length of the Body-Tap-Code.

1 for (if at time t;, zqcc(t;), and gy (t;) exist) do
2 lfzacc( 17— 1) < Zacc(t )AND Zacn( z+1) <
Zace(ti) AND x4y, (ti—1) < Tgyr(t;) AND
xgyr(tHl) < xgyr( ) then
tC’andidateH — t

‘ //Do Nothing
end

3
4 else
5
6

7 end

8 for ﬁj S tCandidate[] do
9 | if (41 —t;) < Threshold then

10 ‘ tTapPointsH < mal’(tj7 t_j+1)
11 else

12 ‘ tTapPointsH — tj

13 end

14 end

15 return trappoints|] //Final Tap Points

3.2.2 Tap Points Identification

We closely observed the phone tapping process by users in
our pre-training dataset and noted that a tap consists of the
following three action sequences: (1) the phone moves to-
wards the body anchor point, (2) the subject taps the phone
on the anchor point, and (3) the phone moves away from the
body anchor point. The sequence of these three actions also
possesses the unique behavior of movements as observed in
our pre-training dataset. The sensor readings show a clear
peak at the Tap Point. We also noted that the z,.. com-
ponent of the accelerometer readings and the x4, compo-
nent of the gyroscope readings were sufficient to locate the
Tap Points accurately, although there were signal peaks at
points other than the tap points. To identify the peaks corre-
sponding to a tap, we applied a threshold-based elimination
scheme. We observed the mean and standard deviation of
the time taken between two consecutive taps and set a sep-
arate threshold as an average for each swing type. Table 2
shows the overall mean and standard deviation of the time
taken in a swing. Based on the above observation, we de-
veloped a Tap Point Identification algorithm, Algorithm 1,
to identify the tap points in our dataset. Figure 2 shows an
example of the sensor signals, z4c., and x4y, correspond-
ing to a Body-Tap-Code entry. It can be clearly seen in the
figure that the sensor readings are at peak around the Tap
Points. The vertical lines in green color are marked as the
locations of the identified Tap Points.



Table 3: Features extracted from the accelerometer and gyroscope signals for each swing. Number in a cell is the Feature ID
corresponding to the respective feature and signal component. Feature rank is given inside (.) next to Feature ID.

Feature Id for Signal Component
Feature Name Accelerometer Gyroscope
Lace ‘ Yace ‘ Zacc ‘ Mace Tgyr ‘ Ygyr ‘ Zgyr ‘ Mgyr
Mean 1 (36) 19 (21) | 37(16) | 55(113) | 76 (29) 94 (31) 112 (23) | 130 (143)
Median 2(2) 20(32) | 38(27) | 56 (114) | 77 (14) 95 (5) 113 (1) 131 (144)
Variance 3(93) | 21(100) | 39 (104) | 57 (74) | 78 (79) 96 (52) 114 (135) | 132(57)
Standard Deviation 4(94) | 22(101) | 40 (105) | 58 (75) | 79(124) | 97 (130) | 115(136) | 133 (90)
Median Absolute Deviation | 5(95) | 23(67) | 41 (106) | 59(76) | 80 (125) | 98 (131) | 116 (137) | 134 (145)
Inter-Quartile Range 6(64) | 24(68) | 42(107) | 60 (47) | 81(126) | 99 (82) 117 (138) | 135(91)
Power 7(96) | 25(69) | 43(108) | 61 (115) | 82 (40) 100 (83) | 118 (139) | 136 (146)
Energy 8(97) | 26 (102) | 44 (109) | 62 (116) | 83 (127) | 101 (132) | 119 (140) | 137 (147)
Peak to Peak Amplitude 9(98) | 27(103) | 45(72) | 63 (117) | 84 (128) | 102 (84) 120 (88) 138 (58)
Autocorrelation 10 (65) | 28(45) | 46 (110) | 64 (77) | 85(80) 103 (85) | 121 (141) | 139 (148)
Kurtosis 11(44) | 29(38) | 47(111) | 65(48) | 86(51) 104 (86) 122 (54) | 140 (149)
Skewness 12(24) | 304 48 (28) | 66 (118) | 87(8) 105 (41) 123 (55) 141 (42)
Spectral Entropy 13(25) | 31(46) | 49(112) | 67(119) | 88 (81) | 106 (133) | 124 (89) | 142 (150)
Median Frequency 14(20) | 32(33) | 50(34) | 68(49) | 89(35) 107 (87) 125 (56) 143 (59)
Peak to RMS Ratio 15(99) | 33(70) | 51(73) | 69 (120) | 90 (129) | 108 (134) | 126 (142) | 144 (60)
Minimum 16 (66) | 34(3) 52 (6) 70 (78) | 91 (30) 109 (17) 127 (11) 145 (61)
Maximum 17(37) | 35(71) | 53(39) | 71 (121) | 92(9) 110 (53) 128 (12) 146 (62)
Number of Peaks 18 (26) | 36(13) 54(7) 72.(22) | 93 (15) 111 (10) 129 (18) 147 (19)

3.3. Feature Extraction

We first divided the smoothed signal into swings based
on the tap points identified in the previous step using Al-
gorithm 1. Entering a body tap code of length N creates
N — 1 swings (see Figure 2). For example, a body tap code
1- > 2— > 4— > 3 (length N = 4) would create the
following three swings; (1) 1— > 2, (2) 2— > 4, and (3)
4— > 3. In other words, the first swing is resulted from
the tap point T'ap1 to the tap point T'ap2, the second swing
is resulted from the tap point T'ap2 to the tap point Tap4,
and the third swing is resulted from the tap point T'ap4 to
the tap point T'ap3. We discarded the portions of the sig-
nal before the first tap point and after the last tap point in a
Body-Tap-Code entry. Figure 2 shows a data sample from
a user corresponding to a Body-Tap entry and the process
of dividing the signal into swings. First, it shows the whole
signal for the accelerometer component z,.. in red color
and for the gyroscope component x4, in blue color. Next,
the vertical lines in green color (in the middle window) in-
dicate the identified tap points. The bottom set of windows
show the Tap-Code divided into different swings. Note that
the first and last window (shadowed) is part of the Body-Tap
entry process but is not part of any swing. We discarded the
start and end signal for each Body-Tap entry signal.

We extracted 150 different features from each remaining
window (i.e., swing), and assigned a unique Feature ID, F},
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Figure 3: Correlation among the top 63 ranked features,
which is referred as Subset 63 F' in the paper.

to each feature. Table 3 lists all the features and the corre-
sponding F;4. For example, the feature with F;; = 1 is the
mean of .., the feature with F;; = 67 is the spectral en-
tropy of M., and the feature with F;; = 112 is the mean of
Zgyr- Feature ID F;q = 73,74,75 correspond to the DTW
between Zqce and Yacer Yace AN Zaces Tace aNd Zgee signals
respectively. Also, Feature ID F;; = 148,149, 150 corre-
spond to the DTW between x4, and Ygyr, Ygyr and 2gyr,
Zgyr and zg,, signals respectively. We refer to the features
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Figure 6: False Accept Rate (FAR) values

with their F}; in the rest of the paper.

3.4. Feature Ranking and Selection

We analyzed the extracted features and carried out a fea-
ture ranking and selection step so as to run our analysis with
a compact but informative feature set. This step is also im-
portant to optimize the resource consumption in the target
device to execute our authentication system on those de-
vices as they often have limited resources.

We used the correlation (see Figure 3) based attribute
evaluator to rank the 150 features in Table 3 and system-
atically select: (1) Feature Subset One (F'92) — the top 92
features, (2) Feature Subset Two (F'63) — the top 63 fea-
tures, (3) Feature Subset Three (F'43) — the top 43 fea-
tures, (4) Feature Subset Four (F'35) — the top 35 features,
and (5) Feature Subset Five (F'31) — the top 31 features.
The method heuristically assigned a high score to a fea-
ture attribute subset which had high correlation with the
class, and had low correlation with each other. Rank of

Avg. Accuracy (%)
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Figure 7: User Wise Accuracies obtained using feature sub-
set with top 31 features 31 F'.
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Figure 10: False Reject Rate (FRR) values

each feature is given in Table 3 inside brackets (.) next to
their Feature IDs. For example, the feature with F;; = 54
was ranked 7, and the feature with F;; = 125 was ranked
56 by our feature ranking algorithm. DTW features with
F;q = 73,74,75,148, 149, 150 were ranked 50, 122, 123,
43, 63, 92 respectively.

4. Performance Evaluation

We used various classifier implementations from Weka
[9] and R[25] to test the performance of our proposed user
authentication model. We computed the classification ac-
curacy while training the classifiers on our training samples



from the training dataset and supplied a test set from the
testing dataset!. Figure 4 summarizes the overall classifi-
cation accuracy obtained by our system using the Random
Forest (RF), k-Nearest Neighbor (k-NN)?, Neural Network
(NNet), Linear Discriminant Analysis (LDA), and Support
Vector Machine (SVM) classifiers. The figure shows the ef-
fects of the selected feature subsets on the performance of
classifiers. Note that the RF, and NNet based authentication
system has the best overall user classification accuracy in
our dataset. Also, we observed that there is no significant
change in the classification accuracy with a reduced feature
set.

We also measured F-score, Precision, and recall for each
of the system variations. Figure 8 shows the average F-
Score obtained by the system with each feature subset and
each classifier used. Figures 5 and 9 show the correspond-
ing precision and recall values obtained by the system.

4.1. User-Wise Performance

We evaluated the system performance for each individ-
ual user in our dataset. We trained the classifiers using the
genuine user samples from the training dataset while ran-
domly selected the impostor samples from other users in
the training dataset. For the testing samples, we used the
similar approach and created the testing samples for each
user. Figure 7 shows the user-wise accuracy obtained based
on our dataset of 23 users. Note that for most of the users,
the average accuracy obtained is higher than 99%. For more
than 50% of the users, we obtained the 100% authentication
accuracy using the RF, NNet, and SVM based system. The
users #15 and #20 have relatively low average authentica-
tion accuracy with 75% and 82% respectively using LDA
and kNN based systems. Also, the discussed users did not
perform well with all 5 tested classifiers. We believe that
these users might not be suitable for our authentication sys-
tem well and can be removed from the system under failure
to enroll policy.

4.2. Error Rates Evaluation

We evaluated our authentication system using the met-
rics of False Accept Rates (FARs), False Reject Rates
(FRRs), and Equal Error Rates (EERs). Figure 6 shows
the overall FARs for each classifier based system on each
feature subset. Also, Figure 10 shows the corresponding
FRRs of the system. Note that the average error rates are
under 1% for RF, and NNet based systems which are best
performing classifiers in our experiments.

Figure 11 show the mean EER and standard deviation in
EER value using all five classifiers- RF, kNN, NNet, LDA,

I'The training and test set both comprise of an average of ~ 200 bal-
anced genuine and impostor samples

2The value of k was empirically set to 10 to get optimum classification
accuracy in our experiments.
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Figure 11: Mean EER and standard deviation in mean EER
values using RF, kNN, NNet, LDA, and SVM classifiers.

and SVM in our experiments. Note that the mean EER value
lies between 0.13% to 0.8% for RF and NNet classifiers.
kNN and SVM did not perform well in our experiments (see
Figure 11(b) and (e)).

5. Conclusion and Future Work

In this paper, we have introduced a motion sensor-based
mobile device authentication model. The method leverages
the unique phone movements corresponding to a user cho-
sen Tap-Code. The method requires minimal efforts and
provides security to the devices and is robust against tradi-
tional pin or password stealing attacks. Based on the results
obtained from 230 Tap-Code samples of 23 different users,
we have demonstrated that our model can achieve a high ac-
curacy with minimal efforts required. Our model is of sig-
nificant use for visually impaired users as well as for con-
strained screen devices where it is very challenging to enter
the traditional pins and passwords on the screen. With the
increasing use of these devices and nature of usage for sen-
sitive transactions, our findings bring the area a step closer
to ensure the security of these devices.
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