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Abstract

Behavioral biometrics have been long used as a com-
plementary method to the traditional one-time authentica-
tion system. Mouse dynamics, representing an individual’s
unique patterns of mouse operations, possess a great poten-
tial to bridge the security gap between two one-time authen-
tications on the computer. In this paper, we propose a con-
tinuous authentication approach by combining the device-
independent, angle-based mouse movement features and the
wrist motion features. Based on a Random Forest Ensem-
ble Classifier (RFEC) and the Sequential Sampling Analysis
(SSA), the identity of the user can be continuously verified.
Experimental results, based on 26 subjects, show that the
proposed approach can reach the False Accept Rate (FAR)
of 1.46% and 4.69% for impostors and intruders respec-
tively and a False Reject Rate (FRR) of 0%. Moreover,
the proposed approach is proven to be more effective in
timely authentication (i.e., making an authentication deci-
sion within only 9 to 12 mouse clicks), compared with con-
ventional methods solely based on the mouse geometry and
locomotion features.

1. Introduction

Traditional one-time authentication approaches, like
password and fingerprint biometrics, have been extensively
studied and proven to be effective in preventing unautho-
rized access to the system. However, given the fact that
these authentication processes take place only once before
granting access, they lack the capability of monitoring the
system on the fly to protect against an adversary’s access in
the middle of computer operations. So there is a profound
need for an authentication system which can continuously
monitor, evaluate, and verify the identity of the current user.
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Specifically, continuous authentication takes place both be-
fore granting access and continuously through the entire du-
ration of the user’s operation to maintain the granted access.

Generally, there are three types of biometrics that can
provide solutions for the continuous authentication — soft
biometrics, bio-signal biometrics, and behavioral biomet-
rics. Soft biometrics, which is defined as human char-
acteristics providing individually classifiable information,
such as body weight, skin color, and facial marks [2, 7],
is a popular method for continuous authentication. How-
ever, it “lacks the distinctiveness and permanence to suf-
ficiently differentiate any two individuals” [7]. Moreover,
most of the soft biometric feature acquisition processes re-
quire real-time camera monitoring, which is more intrusive
to the users and may result in privacy concerns. Bio-signals,
such as electrocardiograph (ECG), represent another type
of biometrics that can be naturally used for continuous au-
thentication. However, most bio-signal biometric systems
need tedious perpetual wire connections with the sensors
and the conductive gel applied onto the skin, which are in-
convenient and less user-friendly. The third category —
behavioral biometrics — involves an individual’s uniquely
measurable behavioral patterns such as gait, voice and sig-
nature. When accessing and securing a computer system,
mouse and keystroke dynamics are the two most suitable
behavioral traits for continuous authentication, which are
non-intrusive and hassle-free, in terms that people can use
their computers as usual. Recently, many research efforts
have explored the intrinsic characteristic patterns of mouse
operations for continuous authentication [17, 18, 28, 29].

In this paper, we propose and develop an enhanced
mouse-based continuous authentication system by incorpo-
rating the dynamics of wrist motions. With the increas-
ing advances and popularity of wearable devices, such as
wristbands and smartwatches, human wrist motion behav-
iors [11] can be recorded and associated with the corre-
sponding mouse operation activities. Compared with the



traditional mouse-based authentication, our wrist motion
enhanced, pattern-free mouse operation approach can pro-
vide higher efficiency and accuracy for continuous authenti-
cation, without sacrificing user experience or involving ex-
tra overhead. In addition to the non-intrusiveness and low
cost, the proposed method has the following characteristics:

e Most prior research on mouse-based continuous au-
thentication collects mouse dynamics data from differ-
ent computers or even different mice [17, 28], which
however, may diminish their validity due to the poten-
tial electrical and physical differences among differ-
ent mouse units and different computer configurations.
In this study, our mouse dynamics data are solely col-
lected from the same mouse and the same computer.

e Leveraging the one-vs-all Random Forest Ensemble
Classifier (RFEC), the proposed system can effectively
detect both the imposters (a subject who belongs to
the training database and whose identity is labeled as
the attacker) and the intruders (a subject of other cases
who does not belong to the database).

e Instead of using fixed, empirical thresholds, we pro-
pose to use the Sequential Sampling Analysis (SSA)
to allow continuous monitoring and real-time evalua-
tion of the mouse dynamics of the user based upon a
dynamically evolving threshold setting.

e The wrist motion behavioral patterns captured by the
wrist-worn smart devices (e.g., smartwatches or wrist-
bands) can significantly improve the detection accu-
racy of imposters and intruders and also reduce the de-
tection latency (i.e., the number of mouse clicks re-
quired to verify the identity of a user).

e Personalization on the feature sets by RFEC can boost
the detection performance for unauthorized users and
significantly reduce the computation overhead.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the state of the art of mouse dynamics
based authentication. Section 3 formulates the threat mod-
els and research problems. In Section 4, technical details
including the angle-based mouse dynamics features, wrist
motion features, feature fusion, RFEC classification, and
SSA method are well described. Section 5 presents the ex-
perimental setting and protocol. A comprehensive analysis
on experimental results is discussed in Section 6. Section 7
concludes this research and foresees the future work.

2. Related Work

Mouse dynamics have been extensively studied and used
as a behavioral biometric approach. Most of the related re-
search have relied on the distance or speed related features
of mouse dynamics [1, 12, 15, 18, 23, 24]. For instance,
features were extracted from the perspectives of geometry

and locomotion, such as travel distance of pixels, elapsed
time during actions, movement speed, acceleration and di-
rection of movement [1]. With a definition of action types
of move & click, regular move, and drag & drop, Lin et
al. [12] implemented a distance-based feature extraction
on file-related mouse operations and tested the system us-
ing the support vector machine SVM, decision trees and
k-nearest neighbor (kNN) classifiers. Mondal et al. [18]
also utilized the distance-based features and evaluated the
mouse-based continuous authentication with multiple ma-
chine learning algorithms and a dynamic score model on
the database containing 49 subjects [1].

Although the geometry- and locomotion-based features
have been proven to be effective in representing the mouse
operational behaviors, they are all subject to the device-
dependent limitations. That is, the mouse dynamics may
be affected by the inherent physical differences among var-
ious mouse units or among the different computer config-
urations. For example, either optical resolutions or pointer
speeds could significantly influence the extracted features.

Another popular feature extraction approach is to use
device-independent, angle-based measures [5, 29]. Hin-
barji et al. [5] used the curvature features with a back
propagation neural network as the classifier to reach an
EER of 5.3% on 10 subjects. Such fine-grained (point-
by-point) angle-based metrics of mouse movements were
unique enough for distinguishing the mouse operators and
independent from the specific hardware. However, these
angle-based metrics were based on statistical distributions,
resulting in a sliding window of 20 move&click for ev-
ery authentication decision. Such fixed-window size ap-
proaches are not optimal for continuous authentication pur-
pose, and not adaptable towards the user’s own behaviors.

Furthermore, as the recent advances of wearable sensors
and smart devices, many studies have explored the use of
wearable sensor data for authentication and security pur-
pose. For example, similar to the techniques that utilize
mouse dynamics for static authentication [20, 22, 25], re-
searchers have used the motion sensor data from the smart-
watches to access computers through some pre-defined arm
movement gestures [19, 27]. Other researchers have also
used the motion sensor data from the smartwatches to infer
the specific keystroke actions and even what the user is typ-
ing [13, 21, 26]. Mare et al. [16] explored how to utilize the
motion sensor built in the bracelet to analyze people’s typ-
ing characteristics for continuous authentication purpose.
All related work above have shown the significance and us-
ability of wrist motion behaviors in characterizing a specific
individual. However, to the best of our knowledge, there
appears to be little existing work that has explored the use
of wearable sensors to enhance the mouse dynamics based
continuous authentication.
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Figure 1. Flow digraph of the wrist motion enhanced, mouse dynamics based continuous authentication.

3. Threat Model

We consider an adversary who aims to gain unauthorized
(and extended) access to the target system when the legiti-
mate user is away from the computer while leaving the ter-
minal open. Most existing computer systems typically do
not possess any mechanism to verify that the user originally
authenticated is the user still in control of the computer. It is
a common scenario in which the user does not exercise ad-
equate vigilance after initially authenticating at the console,
such as forgetting to log-out when stepping away or staying
nearby while focusing on other tasks (e.g., talking to some-
one or grabbing a coffee). Given this security threat, we
propose a system that can continuously validating the iden-
tity of the user based on mouse dynamics and wrist motion
behaviors when the user is operating the system.

3.1. Assumptions

For the threat model and our proposed defense scheme
discussed above, we make the following assumptions:
Assumption 1: We assume that each individual user (in-
cluding the legitimate users and the attackers) will wear a
wearable smart device (e.g., a wristband or a smart-watch)
on the wrist that has been paired to the computer system
during the operation of dragging and moving the mouse.
Assumption 2: The wrist-worn device must contain the
accelerometer and the gyroscope which are the most com-
mon built-in sensors for wearable devices.

3.2. Objectives

As an effective user authentication system, we consider
three different roles of users, which are defined as follows:
- Genuine User: The only authorized person who can
access the system. Each time only one subject is ran-
domly chosen as the genuine user to train the classifier.
- Impostors: The people who attempts to illegally ac-
cess the system and whose data has been partially
known by the classifier.

- Intruders: The people who attempts to illegally access
the system but whose data is entirely unknown by the
classifier.

Also, in this paper, we aim to address the following de-
sired objectives:

Continuity: The proposed system can monitor the user’s
mouse operations and wrist motion behaviors continuously,
unless the user involuntarily stop the mouse movement dur-
ing the course of operating the computer.

Real-time: The proposed system can evaluate every
mouse moving and clicking action and thus verify the iden-
tity of the current user in a near real-time manner, according
to the dynamically evolving thresholds reflecting the user’s
accumulated performance.

Non-intrusiveness: The proposed system does not inter-
rupt or interfere with the user’s regular computer operation
tasks. All data recordings and authentication analysis will
be performed in the background.

Accuracy: The proposed system should be capable of
capturing the most distinguishable features in mouse dy-
namics and wrist motion behaviors and correctly accepting
or rejecting an individual identity with rather low matching
errors (e.g., false acceptance rate and false rejection rate).

4. Continuous Authentication Using Mouse
Dynamics

The general structure of the proposed continuous authen-
tication system mainly consists of four parts as shown in
Figure 1. The collected raw mouse action data and wrist
motion data were first fed into the feature extraction module
to obtain the angle-based mouse movement features and the
acceleration & gyroscope features. Through a feature fu-
sion model, two kinds of features are fused together. Then
the RFEC uses these features to generate confidence scores.
Based on these confidence scores, SSA calculates the trust
scores and corresponding thresholds for acceptance or de-
nial. A final authentication decision will be made if the cur-
rent trust score is beyond any of the two thresholds.

4.1. Feature Extractions
4.1.1 Angle-based Feature Extraction

The adopted features in the proposed system are based on
three types of angle metrics, as shown in Figure 2. The
first metric is the direction, which is the angle x between

B? and the horizontal. The second metric is the angle



\\ X :\‘-C-_

\\ __________

Figure 2. Example of angle metrics

ll
{0
mémmmémmémm@

0.9 N
P seses BB
!

o
®
o
o}
0

CDF(normalized)
o
~
NN
0
%G}

<
=

Q? — & —Subject No.4 on Computer 1

05F ,O/‘g" — * —Subject No.4 on Computer 2 | 4

[ —© —Subject No.1 on Computer 1

9 — * —Subject No.1 on Computer 2
I I

0.4

0 10 20 30 40 50
Curvature Distance[relative value, no unit]

Figure 3. Example of curvature distance cumulative distribution

of curvature which is the angle between ﬁ and B? de-
noted as ZABC'. The last metric is the curvature distance,
representing the ratio between the distance from point B to

AC and the length of E . These three types of metrics are
inter-related and complementary to shape a triangle. Prob-
ability distributions were further calculated for these three
metrics respectively. For the direction, 360 features were
extracted on the probability distribution among 1 to 360 de-
gree. For the curvature angle, 180 features were extracted
on the probability distribution from 1 to 180 degrees. 35
features were extracted on the probability distribution for
the curvature distance with a range from 0 to 0.35.

As the extracted features should represent the distinc-
tiveness of the different mouse operation behaviors from
each individual, not the uniqueness resulted from settings
such like pointer speed or hardware configurations. Com-
pared with the traditional distance-based features, angle-
based features are more robust and less sensitive to the spe-
cific model or setting of the device. Figure 3 depicts the
cumulative distributions of the curvature distance of two
subjects on different configurations. Both subjects operate
the mouse to click on the same points randomly displayed
on the screen repeatedly. It is observed that, this feature can
precisely distinguish the difference between different indi-
viduals instead of different environmental settings.

This preliminary study showed that the angle-based
probability distribution features are device-independent and
thus can represent the uniqueness of mouse operational be-

haviors among different people, on the same device.

In order to achieve real-time monitoring and authenti-
cation, probability distributions are calculated upon each
move & click trajectory, instead of being extracted for ev-
ery 20 move & click trajectories, as implemented in [29].

Wrist Torsion

Mouse Trajectory

Figure 4. Overview of the two observations combining the mouse
trajectory and the wrist torsion. Rotation angel «, (3, and 6 are
pitch, roll, and jaw respectively.

The interval to separate two different trajectories was set to
100 ms [6, 8]. The software we used to record mouse tra-
jectories can output the pointer location in the plane (hori-
zontal and vertical dimensions) with the corresponding time
stamp in ms and its action type as “move” or “click”. In
this way, the data can be divided into a lot of trajectory seg-
ments with two action types - regular move (all data points
in this trajectory are labeled as the “move” actions) or move
& click (i.e., the last data point of this trajectory segment
is “click,” while all previous data points are “move”). Be-
cause the “move” action’s curvature characteristics could
be quite arbitrary and thus are not representative in describ-
ing an individual’s mouse operational behaviors. Therefore,
in our study, we only use the move & click trajectories to
extract the features. After segmentation, the entire angle-
based feature set F,for the 7th move & click trajectory can
be depicted as follows:

]:a(z) = {PDFdirection (Z): PDFdistance(i)’ PDFangle(i)} (1)

where PD Fyirections PDFyistance, and PDFy,, 1 denote
the probability density functions (PDF) of the three angle
metrics discussed above, direction, curvature distance, and
the curvature angle, respectively.

4.1.2 Wrist Motion Feature Extraction and Fusion

In addition to the differences reflected in the angle-based
features of mouse dynamics, differences may also exist in
the wrist motion patterns. It has been demonstrated that
the statistical distributions of acceleration and angular ac-
celeration features captured by a smartwatch are individu-
ally unique [10] when the user is performing gesture-based
operations on smartphones. As illustrated in Figure 4, given
the observation that different individuals have their own
habits and preferences of moving and rotating hands when
they are operating the mouse. It is argued that the unique-
ness of each individual also exists in their wrist motion be-
haviors when operating a mouse. Moreover, it is worthy
to note that, the shape and size of the hands can effect and
influence the wrist motion behaviors.

In this study, we use the built-in motion sensors in a
smartwatch (i.e., SONY Smartwatch 3 SWR50) to cap-
ture the acceleration and angular acceleration data. We use
the same start and end points of click segmentations for
both angle-based features and wrist motion features. We
extract the probability distribution features of acceleration
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Figure 5. Estimated feature importance of two subjects

and angular acceleration data for each click action, accord-
ing to their amplitudes computed from the three axises as
m = /a2 + y2 + 22. The distribution features obtained
from the two motion sensors on the ith click segment is an-
notated as:
Fu (i) = {PDFace(i), PDFgyr (i)} 2
Finally, the angle-based feature set F,(¢) and the wrist
motion feature set F, (¢) of the ith click action can be con-
catenated and fused as:
F (i) = {Fa(i), Fu(d)} )
Apparently, not all the features extracted are significant
and useful for all subjects. An example of feature impor-
tance estimation of 4 different users is shown in Figure 5,
it indicates that different subjects have their own optimal
feature sets. To find the optimal features for all users, we
utilize the filtering and retraining model for Random Forest
Ensemble classifier similar to the gene selection in [4].

4.2. Random Forest Ensemble Classifier

Due to the large variance and high feature dimensionality
associated with mouse dynamics and wrist motions, classi-
fiers adopted need to be able to handle the high variance
data, be resistant to over-fitting and automatically select the
most important and suitable features. In this study, the Ran-
dom Forest Ensemble Classifier (RFEC) is used. It is an
aggregation of a number of base classifiers h(X, Oy), (k =
1,2,..., K). O is the parameter set for each individual de-
cision tree, and K represents the number of trees. Under the
condition that input data X is given, majority voting over all
base classifiers can be realized by function .

The fully growing of each decision tree makes RFEC ca-
pable of processing high dimensional features and the ma-
jority voting with wy, aggregation method makes it resis-
tant to over-fitting and effective in handling high variance
data. Based on the importance estimation of the random
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Figure 6. Example of Sequential Sampling Analysis

forest, the RFEC is iteratively trained. In each iteration, part
of the less important feature cells are discarded and then a
new RFEC is trained with the updated feature set. Through
the returned Out of Bag (OOB) error of each iteration, the
RFEC which performs the best and the corresponding fea-
ture set are kept as the optimal one for this specific user.

4.3. Sequential Sampling Analysis

With the goal of realizing dynamic thresholding on the
returned confidence results from RFEC, Sequential Sam-
pling Analysis (SSA) [14] is adopted and optimized to im-
prove the efficiency and stability of intrusion detection in
the proposed authentication system.

It is well recognized that the selection of proper thresh-
olds has significant influence on the performance of a bio-
metric authentication system. Especially for continuous au-
thentication, the threshold settings will affect not only the
authentication accuracy, but also the required time to iden-
tify the current user. For instance, a rather low rejection
threshold would not deny an attacker’s access until detect-
ing too many mismatched mouse activity patterns, while a
higher rejection threshold may result in frequent false re-
jections if the genuine user shows a few variant activity pat-
terns. To this end, the proposed SSA can dynamically deter-
mine and update the thresholds for acceptance and rejection,
based on the statistical analysis of all incoming data.

As shown in Figure 6, usually three regions are defined
in SSA: acceptance region, continuous region and denial
region, divided by the Acceptance Threshold (AT) and the
Denial Threshold (DT). The region above the AT is de-
fined as the acceptance region, the region between AT and
DT is the continuous region and that beneath DT is the
denial region. The sum of confidence scores is denoted
as S, = Y., s(i), where s(i) represents the confidence
score returned by RFEC for the ith click. The system will
accept the current user when his/her sum of scores reaches
the acceptance region and deny the user once it drops into
the denial region. When .S,, fluctuates in the continuous re-
gion, the SSA will keep watching new click actions by ac-



cumulating the incoming click score s(n+1) into S, 41 and
updating the AT and DT with a slope b. In order to properly
set the thresholds AT and DT, their climbing slope b and ini-
tial threshold [ are calculated based on the distribution mean
1 and standard deviation ¢ of the training data’s confiden-
tial scores. The AT and DT can therefore be calculated and
updated as follows:

AT =bn+11, DT =bn+12 @)

where slope b and initial thresholds /1, (2 are defined as:

2 2
po itz BT, A%
2 p1— p2 M2 — 1
The parameters A and B are defined as:
A=logl=® Boipgl=F (6)
B «

where « and (3 represent the error tolerances of false rejec-

tion and false acceptance in SSA (for a balanced FAR and
FRR, usually set « = (). A higher tolerance will result
in a wider continuous region, which will potentially lead
to higher decision accuracy, while demanding more mouse
clicks to identity the current user.

Leveraging this improved SSA mechanism, our pro-
posed system can continuously evaluate the operational be-
haviors of the current user based upon each mouse move
& click action. Consecutive “good (matching)” or “bad
(mismatching)” mouse operations can expedite the decision
making and thus accept or reject the user in a more timely
manner. In real-world scenarios, the proposed technique
can immediately lock out the system if the accumulated
score drops below DT. Otherwise, the continuous authen-
tication process will keep running in the background, if the
score remains in the continuous or acceptance regions.

5. Experimental Setup
5.1. Experimental Protocol

In the experiments, subjects were instructed to seat on
a chair in a natural and comfortable position and use the
mouse to click on a red block icon (100 px x 100 px)
that randomly showed up on the screen using a web-page-
style software. The target block icons would show up one
after another with the clicking behavior as the triggering
condition. Clicking mistakes were allowed, which meant
the subjects were free to retry if they hit the wrong place.
The Recording User Input (RUI) software [9] was used for
mouse data collection. Specific type of actions (i.e., click-
ing or moving) and the 2-dimensional mouse locations were
recorded along with timestamps. The sampling rate of RUI
was up to 100 Hz.

During the experimental sessions, all the subjects were
required to wear the same smartwatch (i.e., SONY SWR50
SmartWatch 3) on the wrist of their dominant hand (the
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hand they use to operate the mouse) to record the ac-
celerometer and gyroscope readings. All subjects involved
in the experiments were of right-handedness. The subjects
were seated on the same model of office chairs with a fixed
height (40 cm) during all the experimental sessions. To
demonstrate that our system is actually authenticating for
different people rather than different mouse/pointer settings
or computers, all the subjects were required to use exactly
the same mouse (i.e., Dell MS116p optical mouse) con-
nected to the same computer (with the screen resolution as
3440%1440). The clicking speed of mouse and the tracking
speed of pointer were set as the default values.

5.2. Data Structure

26 subjects (7 female, 19 male) of age from 23 to 33
were recruited to voluntarily participate in the experiments.
To mimic the real-world environment, which means that the
authentication system has limited training dataset compared
with many unknown adversaries’ attempts, in this work, we
assigned 8 out of 26 subjects as the genuine user or the im-
postors, and the rest 18 subjects were considered as the in-
truders. Each time, to train the classifier, one of 8 subjects
was randomly designated as the genuine user, and the rest 7
subjects were designated as the impostors. For the genuine
user and the impostors, the data collected from each subject
contained 1000 mouse clicks on average from five sessions
during a period of two weeks (1000 clicks are sufficient to
profile a user’s mouse behaviors well, according to [29]).
For each intruder, an average of 200 clicks were collected
from one session. The detailed training and testing dataset
allocation is shown in Figure 7.

6. Results
6.1. Metrics

Three performance indicators are used in the evalu-
ation, including the False Acceptance Rate (FAR), the
False Rejection Rate (FRR), and the average number of
clicks required for evaluation of the current user’s iden-
tity and make the authentication decisions (i.e., accep-
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tance/rejection). Specifically, in this study, FRR refers to
the percentage ratio between the mouse click samples of the
genuine user that are falsely classified and labeled as the ‘at-
tacker’ against the total number of click samples from the
genuine user. FAR is defined as the percentage ratio be-
tween the click samples of the imposters/intruders that are
falsely classified and accepted as the “true user” against the
total number of click samples from the imposters and in-
truders who intend to access the system. Based on the im-
plemented SSA mechanism which locks out any unautho-
rized user access or accept an authorized user when the ac-
cumulated score drops below the denial threshold or above
the acceptance threshold, the number of clicks required for
making the decision is recorded as an indicator of the ef-
ficiency of the proposed approach. It is manifest that less
number of required clicks will result in a much faster and
more timely acceptance of the genuine user or detection
of malicious attackers, which however, will potentially de-
grade the authentication accuracy in terms of FRR and FAR.

6.2. Parameter Settings

It was reported that [14] the reasonable value range of
parameters o and 3 in SSA should be from 10e — 20 to
10e —1. Smaller v and 3 will give the SSA higher tolerance
on FAR and FRR. To investigate the influence of parameter
settings, in this study we divided a and 3 into 20 levels. Due
to the reason that tuning « and 3 will not only affect FRR
and FAR but also change the efficiency of continuous au-
thentication (i.e., how many mouse clicks required for one
acceptance or denial decision), the scatter plot for the pairs
of FAR and FRR in Figure 8(a) is not as same as the reg-
ular ROC curve for binary classification which has a one-
to-one correspondence between FRR and FAR. However, it
can be observed that, based on the general trend of FAR and
TPR (True Positive Rate which also equals to 1-FRR) which
is plotted by the red line through the 7th-order polynomial
curve fitting, there is still clear trade-off between FAR and
FRR when we tune the parameters « and 3. Through brute-
force search among all the combinations of « and [ with
the 20 pre-defined levels, it is found that, when o = f3, the
pairs of FAR and FRR are located close to the upper left cor-
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Figure 9. Permanence of the proposed wrist+mouse continuous au-
thentication approach.
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ner (circled) and the system will yield the best performance
(i.e., low FAR and high TPR).

In addition to considering the accuracy performance, ef-
ficiency is another important metric we need to assess when
we tune the parameters. Based on the assumption of o = /3,
Figure 8(b) presents how FRR, FAR and the correspond-
ing number of mouse clicks needed for each authentica-
tion decision vary along with the increasing error toler-
ance (i.e., the decreasing parameters « and ). Unsurpris-
ingly, the authentication accuracy improves (i.e., FRR and
FAR), and the efficiency is degrading (i.e., more mouse
clicks are needed for each decision). In order to achieve
an optimal performance balance, in this study we chose
a = 8 = 10712 as the parameter settings (the red spot in
Figure 8(a)) for our SSA process, which can generate rela-
tively low FRR and FAR with only 9 to 12 mouse clicks for
continuous authentication decision-making.

6.3. Performance

Tables 1 and 2 present the performance of the two dif-
ferent continuous approaches — the wrist motion enhanced
method and the mouse-only method — when randomly se-
lecting and assigning one subject (out of Subjects 1-8) as
the genuine user.

It is observed that from Table 3, the wrist+mouse ap-
proach can achieve an FRR of 0%, FAR (imposters) of
1.46% and FAR (intruders) of 4.69% on average, while de-
manding only 9-12 mouse clicks to make an authentication
decision. Under the same parameter setting, very similar
accuracy levels can still be achieved by the mouse-only ap-
proach, which however, requires much more mouse clicks
in order to make an authentication decision and thus re-
sults in a degraded time efficiency. A comparison of these
two approaches shows that, our proposed wrist motion and
mouse dynamics based feature fusion approach can reach
nearly the same accuracy, while with a significantly im-
proved authentication efficiency: 24.4% for detection of the
genuine user detection, 31% for detection of the imposters,
and 49% for detection of the intruders. Compared with the
performance reported in [29], both of our approaches (i.e.,
wrist+mouse and mouse-only) can reach a similar accuracy



Table 1. Performance of the wrist motion enhanced, mouse dynamics based continuous authentication

Genuine FRR FAR Avg # of Clicks for Detection of Attacks
Users Imposters | Intruders All True User | Imposters | Intruders All
Subjectl | 0.00% 1.56% 3.05% 1.95% 14.0 6.8 8.1 7.5
Subject2 | 0.00% 3.01% 2.60% 2.90% 8.9 7.1 8.1 7.5
Subject3 | 0.00% 1.29% 6.93% 2.77% 12.9 10.6 13.0 11.3
Subjectd | 0.00% 0.19% 1.84% 0.67% 9.9 5.7 6.0 6.0
Subject5 | 0.00% 0.37% 4.39% 2.51% 11.8 8.0 9.9 8.7
Subject6 | 0.00% 1.24% 1.10% 1.20% 17.4 10.2 13.0 11.3
Subject7 | 0.00% 2.59% 6.05% 3.54% 11.6 12.3 14.2 12.7
Subject8 | 0.00% 1.45% 11.53% 4.27% 10.0 9.2 10.4 9.6
Avg 0.00% 1.46% 4.69% 2.48% 12.1 8.7 10.3 9.3

Table 2. Performance of the mouse-only continuous authentication

Genuine FRR FAR Avg # of Clicks for Detection of Attacks
Users Imposters | Intruders All True User | Imposters | Intruders | All
Subjectl | 0.24% 1.74% 5.02% 2.24% 18.5 8.9 22.8 14.7
Subject2 | 0.00% 4.53% 3.37% 421% 12.9 11.8 18.9 16.8
Subject3 | 0.00% 2.21% 7.62% 3.48% 15.6 13.9 22.6 18.8
Subject4 | 0.00% 0.15% 3.90% 1.35% 12.3 9.6 16.6 12.3
Subject5 | 0.07% 0.92% 4.29% 2.76% 14.9 12.5 18.9 14.8
Subject6 | 0.00% 2.89% 3.62% 3.06% 22.8 19.9 25.7 22.6
Subject7 | 0.00% 4.66% 8.60% 5.48% 15.5 12.7 17.4 15.7
Subject8 | 0.53% 5.54% 14.11% 7.72% 15.8 11.2 19.0 15.6
Avg 0.11% 2.83% 6.32% 3.79% 16.0 12.6 20.2 16.4

Table 3. Performance comparisons of the proposed wrist+mouse
approach and the mouse-only scheme

FAR
FRR .
Features . (Avg. # of Clicks)
(Avg. # of Clicks) Impostors Intruders
Wrist + Mouse 0% (12.1) 1.46% (8.7) | 4.69% (10.3)
Mouse Only 0.11% (16) 2.83% (12.6) | 6.32% (20.2)

level with much better time efficiency.
6.4. Permanence

For biometric traits, the stability and invariability over
time (commonly called “permanence”) represent a critical
requirement. To demonstrate the permanence of the chosen
wrist motion and mouse dynamics features for continuous
authentication, we evaluated the behaviors of one genuine
user (Subject 7) in five different days and calculated the
similarity across those days. The experimental data record-
ings of Subject 7 spanned over 10 days, and specifically
we recorded the data on Day 1, Day 2, Day 6, Day 9 and
Day 10 respectively). In this study, Percent Residual Dif-
ference (PRD) metric is used to gauge such similarity. PRD
is a common quantitative measure that is used for the eval-
uation of differences between two distributions, which has
been widely used in the research of other biometric modal-
ities [3]. The formulation of PRD is defined as:

PRD = Z%(So(i) — 5l g0 )
Zj=1(50(i) — $0)?

where s,, is the enrolled distribution, which has /N data
points. sg is the test distribution. Lower PRD represents a

higher similarity between the enrolled distribution and the
test distribution. Figure 9(a) presents the PRD values (in
blue) between the distribution of Day 1 for Subject 7 and
the distributions of the other 4 days. Similarly, Figure 9(a)

also describes the PRD values (in red) between the distribu-
tion of Day 1 for Subject 7 and the averaged distributions of
all other subjects in the same day. It is shown that, Subject
7’s PRDs (in blue) slightly grows over time, which how-
ever, are still much smaller than the PRDs under different
subjects (in red). To further demonstrate the permanence
of wrist motion behaviors and mouse dynamics, for all the
subjects who participated in the experiments, PRDs of the
same subject (Subjects 1-8) cross different days and PRDs
of different subjects are calculated and represented in box
plot format in Figure 9(b). From this figure, we can see that
there is a clear and distinguishable separation between those
two groups of data, which further demonstrates the perma-
nence and stability of the proposed approach over time.

7. Conclusions

Given the increasing demands on continuous authenti-
cation in order to properly secure the system during the
course of operation, this study seeks to propose and inves-
tigate an effective approach capable of verifying the iden-
tity of the current user based on their wrist motion behav-
iors and mouse dynamics. Specifically, leveraging the Ran-
dom Forest Ensemble Classifier (RFEC) and the Sequen-
tial Sampling Analysis (SSA), our wrist motion enhanced,
pattern-free mouse operation approach can provide higher
efficiency and accuracy for continuous authentication, with-
out sacrificing user experience or involving extra overhead.

On the other side, this research is still in its early stage.
Future work will focus on combining this proposed ap-
proach with other behavioral biometric modalities such as
keystrokes to realize a comprehensive multi-modal contin-
uous authentication solution. Furthermore, the evaluations



of accuracy, efficiency, and permanence demand a larger
subject population and a longer long experimental duration.

Acknowledgment

This work was supported in part by the National Science
Foundation (NSF) under grants SaTC-1422417, SaTC-
1527795, and SaTC-1564046.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

(12]

[13]

A. A. E. Ahmed and I. Traore. A new biometric technology
based on mouse dynamics. [EEE Trans. Dependable Sec.
Comput., 4(3):165, 2007.

H. Ailisto, E. Vildjiounaite, M. Lindholm, S.-M. Mikel4,
and J. Peltola. Soft biometrics — combining body weight
and fat measurements with fingerprint biometrics. Pattern
Recognition Letters, 27(5):325-334, 2006.

A.D. Chan, M. M. Hamdy, A. Badre, and V. Badee. Wavelet
distance measure for person identification using electrocar-
diograms. IEEE Trans. Instrum. Meas., 57(2):248-253,
2008.

R. Diaz-Uriarte and S. A. De Andres. Gene selection and
classification of microarray data using random forest. BMC
Bioinformatics, 7(1):1, 2006.

Z. Hinbarji, R. Albatal, and C. Gurrin. Dynamic user authen-
tication based on mouse movements curves. In Int’l Conf. on
Multimedia Modeling, pages 111-122. Springer, 2015.

F. Hwang, S. Keates, P. Langdon, and J. Clarkson. A sub-
movement analysis of cursor trajectories. Behaviour & In-
formation Technology, 24(3):205-217, 2005.

A. K. Jain, S. C. Dass, and K. Nandakumar. Soft biometric
traits for personal recognition systems. In Biometric authen-
tication, pages 731-738. Springer, 2004.

S. Keates and S. Trewin. Effect of age and parkinson’s dis-
ease on cursor positioning using a mouse. In Proc. the 7th
int’l ACM SIGACCESS Conf. on Computers and accessibil-
ity, pages 68-75. ACM, 2005.

U. Kukreja, W. E. Stevenson, and F. E. Ritter. RUI: Rec.ing
user input from interfaces under Windows and Mac OS X.
Behavior Research Methods, 38(4):656—-659, 2006.

W.-H. Lee and R. Lee. Implicit sensor-based authentication
of smartphone users with smartwatch. In Proc. the ACM
2016 Hardware and Architectural Support for Security and
Privacy, pages 1-8, 2016.

B. Li, H. Sun, Y. Gao, V. V. Phoha, and Z. Jin. Enhanced
free-text keystroke continuous authentication based on dy-
namics of wrist motion. In Proc. IEEE Int’l Workshop Inf.
Forensics and Security (WIFS), pages 1-6. IEEE, 2017.
C.-C. Lin, C.-C. Chang, and D. Liang. A new non-intrusive
authentication approach for data protection based on mouse
dynamics. In Proc. 2012 Int’l Symposium on Biometrics and
Security Technologies, pages 9—14. IEEE, 2012.

X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang. When good
becomes evil: Keystroke inference with smartwatch. In Proc.
22nd ACM Conf. Comp. Comm. Security (CCS), pages 1273—
1285, 2015.

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

W. Louis, M. Komeili, and D. Hatzinakos. Continuous au-
thentication using one-dimensional multi-resolution local bi-
nary patterns (IDMRLBP) in ECG biometrics. IEEE Trans.
Inf. Forensics Security, 11(12):2818-2832, 2016.

L. Ma, C. Yan, P. Zhao, and M. Wang. A kind of mouse
behavior authentication method on dynamic soft keyboard.
In Proc. IEEE Int’l Conf. Syst., Man, Cybern., pages 211—
216. IEEE, 2016.

S. Mare, A. M. Markham, C. Cornelius, R. Peterson, and
D. Kotz. Zebra: Zero-effort bilateral recurring authentica-
tion. In Proc. IEEE Symposium Security and Privacy, pages
705-720, 2014.

S. Mondal and P. Bours. Continuous authentication using
mouse dynamics. In Proc. IEEE 2013 Int’l Conf. of the Bio-
metrics Special Interest Group, pages 1-12. IEEE, 2013.

S. Mondal and P. Bours. A computational approach to the
continuous authentication biometric system. Information
Sciences, 304:28-53, 2015.

M. A. S. Mondol, I. A. Emi, S. M. Preum, and J. A.
Stankovic. User authentication using wrist mounted inertial
sensors. In Proc. 16th ACM/IEEE Int’l Conf. on Information
Processing in Sensor Networks, pages 309-310, 2017.

R. Muda, N. A. Hamid, S. D. M. Satar, M. Mohamad, N. A.
Mahadi, and F. Ghazali. Mouse movement behavioral bio-
metric for static user authentication. Advanced Science Let-
ters, 23(6):5050-5053, 2017.

A. Sarkisyan, R. Debbiny, and A. Nahapetian. Wristsnoop:
Smartphone PINs prediction using smartwatch motion sen-
sors. In Proc. IEEE Int’l Workshop Inf. Forensics and Secu-
rity (WIFS), pages 1-6, Nov 2015.

B. Sayed, I. Traore, I. Woungang, and M. S. Obaidat. Bio-
metric authentication using mouse gesture dynamics. /EEE
Systems Journal, 7(2):262-274, 2013.

C. Shen, Z. Cai, and X. Guan. Can it be more practical?
: Improving mouse dynamics biometric performance. In
Proc. 18th ACM Conf. Computer and Comm. Security (CCS),
pages 853-856. ACM, 2011.

C. Shen, Z. Cai, X. Guan, H. Sha, and J. Du. Feature anal-
ysis of mouse dynamics in identity authentication and moni-
toring. In Proc. Int’l Conf. Comm., pages 1-5. IEEE, 2009.
C. Shen, Z. Cai, X. Guan, and J. Wang. On the effectiveness
and applicability of mouse dynamics biometric for static au-
thentication: A benchmark study. In Proc. 5th IAPR Int’l
Conf. on Biometrics, pages 378-383. IEEE, 2012.

C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu. Friend
or foe?: Your wearable devices reveal your personal pin.
In Proc. 11th ACM Asia Conf. Comput. Commun. Security,
pages 189-200, 2016.

J. Yang, Y. Li, and M. Xie. Motionauth: Motion-based au-
thentication for wrist worn smart devices. In Proc. IEEE Int’l
Conf. on Pervasive Comp. Comm. Workshops, pages 550—
555. IEEE, 2015.

N. Zheng, A. Paloski, and H. Wang. An efficient user ver-
ification system via mouse movements. In Proc. 18th ACM
Conf. Comp. Comm. Security (CCS), pages 139-150, 2011.
N. Zheng, A. Paloski, and H. Wang. An efficient user veri-
fication system using angle-based mouse movement biomet-
rics. ACM Trans. Inf. Syst. Secur., 18(3):11, 2016.



