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ABSTRACT
Modern software executes a large amount of code. Previous tech-
niques of code layout optimization were developed one or two
decades ago and have become inadequate to cope with the scale
and complexity of new types of applications such as compilers,
browsers, interpreters, language VMs and shared libraries.

This paper presents Codestitcher, an inter-procedural basic block
code layout optimizer which reorders basic blocks in an executable
to benefit from better cache and TLB performance. Codestitcher
provides a hierarchical framework which can be used to improve
locality in various layers of the memory hierarchy. Our evaluation
shows that Codestitcher improves the performance of the origi-
nal program by 3% to 25% (on average, by 10%) on 5 widely used
applications with large code sizes: MySQL, Clang, Firefox, Apache,
and Python. It gives an additional improvement of 4% over LLVM’s
PGO and 3% over PGO combined with the best function reordering
technique.

1 INTRODUCTION
For large applications, instruction misses are the main culprit for
stalled cycles at the processor front-end. They happen not just in
the instruction cache, but also in the unified cache at lower levels
and in the TLB. Increasing the cache and TLB capacities or their
associativities results in lower miss rates, but also increases their
access latencies. In particular, the on-chip L1 instruction cache and
TLB are required to have very low hit latencies (1–4 cycles). As a re-
sult, they have experienced only slight increase in capacity and as-
sociativity. For example, from the Pentium II to the Nehalemmicro-
architecture, the L1 instruction cache doubled in capacity (16KB
to 32KB), but it retained its associativity of 4. From Nehalem to
Haswell, it has retained its capacity, but doubled in associativity (4
to 8). Since Haswell, and until the most recent micro-architecture,
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Coffee Lake), the L1 instruction cache has not seen any improve-
ment in capacity, associativity, or the block size [Intel Corporation
2016].

Table 1: Code size growth for MySQL and Firefox, in terms
of LOC (lines of C/C++ code), and text size.

application version release year LOC text size

MySQL 6.2.16
7.5.8

2008
2017

0.9M
2.1M

3.6MB
13.6MB

Firefox 1.0.1
52.0

2004
2017

2.4M
7M

7.2MB
41.7MB

In the meantime, modern software is growing in code size and
complexity. Table 1 shows the increase in code size in terms of lines
of code (LOC) and the program’s binary size, for two applications:
MySQL and Firefox. Assuming a fixed yearly rate in code growth,
MySQL has grown by 10% in code size each year, while Firefox has
grown by 9%. However, as language constructs become more com-
plex each year, the yearly increase in LOC translates to a larger
rate of increase in text size: MySQL and Firefox have grown re-
spectively by 16% and 14% in text size, every year.

For code, longer cache lines seem more profitable as code is im-
mune to false sharing and is more likely to be sequential. However,
using a longer cache line only for code is not practical because of
the inclusive, unified caches at lower levels. In modern architec-
tures, hardware prefetching and stream buffers exploit the spatial
locality beyond a single cache line.

Considering the slow rate of improvement in capacities of on-
chip caches, it is natural to wonder how we can utilize them in
an optimal way. An important factor is code layout. It affects the
instruction cache performance in several ways. First, cache lines
that are shared between unrelated code segments (functions or ba-
sic blocks which do not execute together) may result in lower uti-
lization of the cache. Second, when these code segments are stored
consecutively in memory, prefetching may fill the cache with use-
less code. Third, in a set-associative cache, code blocks that are
mapped to the same set may result in conflict misses. Finally, un-
related code segments which reside in the same page may inflict
pressure on instruction TLB.

Profile-guided code layout optimization has been carefully stud-
ied in the past. An influential solution was proposed by Pettis and
Hansen [Pettis and Hansen 1990] (called PH in short). PH con-
sists of function splitting, intra-function basic block chaining, and
global function ordering. For Function splitting, PH separates the
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hot code from the cold code by splitting every function into these
two parts. Next it performs basic block chaining to coalesce the
hot part of every function. These function parts are then passed to
the function reordering stage where PH finds an optimal ordering
based on a greedy heuristic.

For over two decades, code layout optimization techniques have
mainly followed the three-step framework suggested by PH. The
research has primarily been focused on suggesting new heuristics
for the function reordering stage. The main two shortcomings of
prior techniques are as follows.

(1) The coarse-grained hot-cold function splitting limits the scope
of the layout optimization.

(2) Function reordering heuristics are not based on precise spa-
tial distance between related code segments.

To overcome these shortcomings, we introduceCodestitcher, a
new framework for inter-procedural basic block reordering. Unlike
prior techniques, Codestitcher splits functions into as many parts
as necessary to expose all opportunities for placing related code
segments together inmemory.More importantly, Codestitcher uses
the layout distance between related instructions as a parameter to
incrementally construct the overall layout. Using this parameter,
code collocation proceeds hierarchically, maximizing its benefits
within successive layers of the memory hierarchy.

The main contributions of this paper are as follows:
• We identify the locality improvement opportunities that an
inter-procedural basic block layout can offer, compared to a
per-function layout.

• Wepresent a new solution for basic block chaining, based on
maximum cycle cover. Unlike prior techniques, our solution
offers a theoretical guarantee.

• We formally define the distance-sensitive code layout prob-
lem. Then, we present a hierarchical framework which al-
lows us to optimize code locality in all layers of the mem-
ory hierarchy, by successively solving the distance-sensitive
code layout problem for various distance parameters.

• We present a careful investigation into how we can choose
the distance levels for a typical hardware platform. We also
give insights into the implications of using large pages for
code.

• We showhowbranch prediction is affected by inter-procedural
basic block layout and why branch directions should not
hamper locality optimizations.

• Wepresent two implementations of Codestitcher; an instrumentation-
based version and a version based on Linux perf utility.

• Finally, we present an evaluation of both implementations
of Codestitcher on five widely-used programs with large
code sizes, and on two hardware platforms. We also analyze
separately, the effect of using large pages, and code layout
granularity (function vs. basic block).

The rest of the paper is organized as follows. Section 2 describes
the design of Codestitcher and motivates its design. Section 3 dis-
cusses our prototype implementation of Codestitcher in LLVM. Sec-
tion 4 presents our evaluation on a set of five widely-used pro-
grams, besides explaining the implementation of the perf-based
Codestitcher. Section 5 discusses related work, and Section 6 con-
cludes.

2 DESIGN
2.1 Overview

basic block 
chaining

hierarchical 
code 

collocation

profile

optimized 
binary

LLVM 
bitcode

instrumented binary 
or 

baseline binary + perf

Figure 1: High-level overview of Codestitcher

Figure 1 gives a high-level overview of Codestitcher. The source
code is first compiled to obtain LLVM bitcode files and the instru-
mented binaries. Profiles are then collected by running the instru-
mented program. Alternatively, Codestitcher can skip instrumen-
tation and use the Linux perf utility to sample profiles from the
execution of a symbolized version of the baseline program.

After collecting the profiles, Codestitcher performs Basic Block
Chaining based on the profile data, to minimize the number of un-
conditional jumps that the program executes. The result of this
step is a sequence of inter-procedural basic block (BB) chains. A
BB chain is a sequence of basic blocks which terminates with an
unconditional branch or return, but such instructions cannot hap-
pen in the middle of a BB chain. In this paper, functions calls are
not considered to be unconditional jumps.

The constructed basic block chains are then passed to theHierar-
chical Code Collocation stage, where Codestitcher iteratively joins
them together to form longer sequences of basic blocks (basic block
layouts). Conceptually, in this stage, Codestitcher iterates through
a number of code distance parameters. For each distance param-
eter, Codestitcher collocates code segments in order to maximize
spatial locality within that distance.

2.2 Motivations
2.2.1 Inter-Procedural Basic Block Layout. We use a contrived

example to show intuitively why an inter-procedural basic block
layout can deliver higher improvements compared to a per-function
layout. Consider the inter-procedural control flow graph in Fig-
ure 2 where function M calls function A 100 times during the pro-
gram execution. The entry basic block of A (A0) ends with a condi-
tional branch. The branch jumps to A1 80 times ands jumps to A2
20 times. A1 calls function B but A2 calls function C.

A per-function layout for this problem requires merging all ba-
sic blocks of A before function reordering. PH, for example, per-
forms BB chaining to form the layout A0-A1-A2 for A. Next,
PH processes the call frequency edges in decreasing weight order.
When processing each edge, PH joins together the layouts con-
nected by that edge. A possible final layout is shown below.

Layout 1. M A0-A1-A2 B C

The quality of a code layout can be evaluated with locality mea-
sures. A simple measure for code locality within one function is
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Figure 2: Weighted inter-procedural control flow graph of
a program, over a hypothetical execution. Every circle rep-
resents a function. Control flow edges are represented by
dashed lines and call edges are represented by solid lines.

sequential code execution. Similarly, as a simple inter-procedural
metric, we can look at how often control transfers between adja-
cent basic blocks.

In our example program, a total of 300 control transfers happen
between 6 basic blocks and via 5 call and control flow edges. In lay-
out 1, only two edges (M→A0 and A0→A1) run between neigh-
boring blocks (a total of 180 control transfers). Evidently, forming
a single code segment for A has led both calls in A to separate from
their callees (B and C).

On the other hand, an inter-procedural basic block layout can
benefit from a finer grain splitting for A. In particular, if A is split
into hot code paths ( A0→A1 and A2 ), all function entries can
be attached to their caller blocks, as shown in the layout below.

Layout 2. M A0→A1 B A2 C

With Layout 2, all edges except A0→A2 run between adjacent
blocks. This gives a total of 280 control transfer between adjacent
blocks, which is an increase of about 55% over PH.

2.2.2 Layout Distance Between Related Instructions. Common
procedure reordering heuristics follow a bottom-up approach. Start-
ing with an initial set of code segments (hot function parts in PH),
they iteratively join code segments together to form longer code
segments. At each step, the heuristic makes two choices: which
two code segments to join and in which direction. For instance, PH
joins the code segments which are most heavily related by call fre-
quency edges. In our example program in Figure 2, PH first joins M
with A to form the layout M A0-A1-A2 . This layout then joins
with B to form M A0-A1-A2 B . Finally, connecting this layout
with C gives the optimal PH layout. The three steps are shown in
Figure 3.

At the last step, when M A0-A1-A2 B and C join together,
PH faces a choice between different merging directions (as shown
in Figure 3(a)). The PH heuristic focuses on the merging points
and chooses the direction that results in the largest number of
calls between the merging points. In this example, no calls hap-
pen between the merging points (C vs. M and B). Therefore, PH
treats both directions equally beneficial. However, we notice that
the lower orientation (also shown in Layout 1) forms a closer dis-
tance between A2 and C, which means a larger improvement in
code locality.

Strikingly, the layout distance between related instructions (in-
structions connected by control flow edges) can guide us inmaking
the best choice at every iteration. With each (ordered) pair of code
segments, and every code distance level, we can attribute a value

M A0-A1-A2 B C

M A0-A1-A2

M A0-A1-A2 B

M A0-A1-A2 BC

M A0-A1-A2 B C

M
100−−−→ A

A
80−−→ B

A
20−−→ C

(a) possible
final layouts

Figure 3: Pettis-Hansen function reordering, applied on the
program in Figure 2

which indicates the number of control transfers which would hap-
pen within that distance if those two code segments join with each
other. Then rather than solely focusing on calling frequencies, we
can maximize the total number of control transfers which happen
within close distances.

2.2.3 Basic Block Chaining via Maximum Path Cover. Reorder-
ing the program’s basic blocks may require inserting jump instruc-
tions to conserve the control flow. Clearly, this is not the case for
a function layout. This means function reordering can easily be
implemented in a linker. For instance, the Darwin linker supports
function ordering via the command line flag -order_file. How-
ever, as we argued in Section 2.2.1, inter-procedural basic block lay-
outs disclose new opportunities for improving code locality. The
challenge is how to split functions without adding extra jumps.

The execution cost of unconditional jumps in modern proces-
sors is minimal thanks to the deep execution pipeline. However,
additional jumps increase the instruction working set, which in
turn increases the pressure on instruction cache and other layers
of the memory hierarchy. As a result, minimizing the number of
executed unconditional jumps is the first step towards finding the
optimal layout.

Minimizing the number of executed unconditional jump instruc-
tions is equivalent tomaximizing the number of fall-throughs. That
is, the total number of times execution falls through to the next ba-
sic block. We formalize the fall-through maximization problem as
follows.

Definition 2.1 (Fall-ThroughMaximization Problem). Given
the control flow graphG for the whole program, along with frequen-
cies of each control flow edge in G, find a decomposition of G into
a set of disjoint chains L which maximizes the total frequencies of
edges in L.

This problem is equivalent to the problem ofmaximumweighted
path cover in control flow graphs. The general maximumweighted
path cover problem is NP-hard. The simple greedy approach used
by PH is the most well-known heuristic for solving this problem.
This solution does not give any theoretical guarantee, but has a
quick running time of O(m lgn) on a graph with m edges and n
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vertices. On the other hand, a direct 1/2-factor approximation al-
gorithm exists for this problem. It is described as follows.

Given the weighted directed graph G(V ,E), we first remove all
self-loops from G. Then we add zero weight edges for all non-
existing edges in the graph (including self-edges) and find a maxi-
mum cycle cover in the resulting graph. A maximum cycle cover is
a set of disjoint cycles which covers all vertices and has the max-
imum weight among all cycle covers. The maximum cycle cover
can be reduced to the problem of maximum matching in weighted
bipartite graphs. Thus, for a function with n hot basic blocks and
m hot edges, we can use the Hungarian algorithm [Kuhn 2010] to
find the maximum cycle cover in time O(n2m).

After finding the maximum cycle cover, we convert it to a path
cover by dropping the lightest edge from each cycle. It is easy to
verify that the weight of the resulting path cover is at least within
a factor 1/2 of the optimal path cover.

We further improve the approximate path cover solution using
the same idea as the greedy approach. That is, after finding the
approximate path cover, we consider the control flow edges in de-
creasing weight order, and add them to the path cover if they con-
nect the tail of one path to head of another.

The approximate solution has a theoretical bound but is not al-
ways guaranteed to deliver a better path cover than the greedy so-
lution. In our experiments, we find that although the total number
of fall-throughs for the whole program is higher for the approx-
imate solution, the greedy solution outperforms the approximate
for some functions. Therefore, we combine the two solutions to
generate one that beats each individual solution.

2.3 Hierarchical Merging of Code Segments
Spatial locality is a multi-dimensional concept [Gupta et al. 2013],
defined as the frequent and contemporaneous use of data elements
stored in close storage locations. Two dimensions are time and space.
That is, how close in time the data elements are accessed, and
how close in memory the elements are stored. A third dimension
is frequency: how frequent those accesses are. The challenge in
data/code layout optimization is to respect the importance of all
three dimensions at the same time.

For code layout, unraveling the time and frequency dimensions
is more tractable, as the program execution precisely overlaps with
instruction accesses. Instructions within a basic block respect the
spatial locality. Therefore, code layout optimizations only focus on
control transfers across basic blocks (branches, calls, and returns).

The real challenge is the space dimension because it is affected
by code layout. The challenge becomes more significant in a finer
grain code layout. For example, the distance between branch in-
structions and their targets is fixed in a function layout, but can
vary in a basic block layout. The goal of code layout optimization
is to ensure that frequently executed control instructions travel a
smaller distance in the program binary.

Let us formally define the concept of layout distance. In our dis-
cussions below i and j always refer to basic blocks of the program.

Definition 2.2 (Layout Distance). We denote by dist(i, j) the
number of bytes from i to j in the code layout, including i and j them-
selves.

For a distance parameter d , and a control transfer i → j, we call
i → j a d-close transfer if dist(i, j) ≤ d . We also denote by f (i, j)
the number of times control transfers from i to j. If control never
transfers from i to j, f (i, j) = 0.

We now define the d-close Code Packing problem.

Definition 2.3 (d-close Code Packing). Order the program’s
basic blocks in a way that maximizes the total number of d-close
transfers. That is, ∑

i, j
dist (i, j)≤d

f (i, j).

Solving this problem for a specific distance d would result in
optimal spatial locality, but only in a limited distance. Given the
hierarchical design of memory systems, it is important to improve
spatial locality within different memory layers.

Codestitcher can follow this hierarchical design by successively
solving the d-close code packing problem for increasing distance
levels. At each distance level, Codestitcher gets as input an initial
partial layout. A partial layout is a set of BB sequences, where
each basic block appears in exactly one sequence. Codestitcher
then solves the code packing problem for this distance level and
passes the new partial layout to the next level.

The exact formulation of the problem Codestitcher solves at ev-
ery distance level is a bit different from Definition 2.3. Let us intro-
duce some terms that will help us in describing this problem and
its solution.

Partial Layout Distance. In a partial layout L, for any two ba-
sic blocks i and j, their partial layout distance, distL(i, j), is the
same as in Definition 2.2, except that if i and j belong to different
BB sequences, then their distance is∞.

Super-Layouts and Sub-Layouts. Let L1 and L2 be two partial lay-
outs. L2 is a super-layout for L1 if it can be derived from L1 by
joining some (or none) of the BB sequences in L1. In that case, L1
is called a sub-layout of L2. A proper sub-layout of L is said to be
of finer granularity than L.

d-close transfers in a partial layout. Let L be a partial layout. We
define td (L), the total number of d-close transfers in L, as

td (L) =
∑
S ∈L

∑
i, j ∈S

distL (i, j)≤d

f (i, j).

In other words, td (L) is the sum of d-close control transfers over
all BB sequences in L.

We now define the problem of d-close partial layout, the build-
ing block of Codestitcher.

Definition 2.4 (d-close partial layout). Let L0 be the initial
partial layout. Find the finest grain super-layout of L0 which has the
maximum number of d-close control transfers (td (L)).

The finer granularity constraint prevents joining BB sequences
unless doing so results in additional d-close transfers. Effectively,
it helps the next distance levels benefit from a larger number of
close transfers.
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2.4 Solving the d-Close Partial Layout Problem
Thed-close partial layout problem asks for an optimal super-layout
for L0, that is, a super-layout with the maximum number ofd-close
transfers. Let L be a typical super-layout for L0. Each BB sequence
S ∈ L is the result of joining some BB sequences in L0. Let I (S) be
the set of those sequences.

The initial partial layout is fixed. Therefore, maximizing td (L)
is equivalent to maximizing its additive value with respect to L0,
which is ∆td (L) = td (L) − td (L0). This value can be expressed as
follows.

∆td (L) =
∑
S ∈L

∑
Q,R∈I (S )
Q,R

∑
i ∈Q, j ∈R

distL (i, j)≤d

f (i, j). (1)

∆td (L) is the objective value of the d-close partial layout problem.
Its expression is intimidating, but easy to explain. The summation
goes over all pairs of basic blocks i and j which didn’t belong to
the same BB sequence in the initial layout (L0), but do in L.

We solve the d-close partial layout problem as follows.
For each BB sequence S and every basic block i ∈ S , we define

F (i), the forward position of i as the number of bytes from the
beginning of S to right after i . We also define B(i), the backward
position of i , as the number of bytes from the end of S to right
before i .

We now define a directed weighted graph G on the set of BB
sequences in L0. For each two BB sequences S,T ∈ L0, we set the
weight of the (S,T ) edge equal to the number of d-close transfers
between S and T when T is positioned right after S in the final
layout. More formally, we have

w(S,T ) =
∑

i ∈S, j ∈T
B(i)+F (j)≤d

f (i, j) + f (j, i). (2)

A super-layout for L is equivalent to a path cover for G. How-
ever, unlike the fall-throughmaximization problem, here, non-adjacent
BB sequences may contribute to value of td (L). (In equation 1, Q
andRmay be any two BB sequences in I (S), not just adjacent ones.)
Therefore, the weight of this path cover is only a lower bound on
∆td (L). Nevertheless, we can still use the graph formulation to com-
pute a greedy solution. We describe the algorithm as follows.

At every step, we find the heaviest edge inG. Let it be (S,T ). We
connect the instruction sequences corresponding to S and T , and
replace S andT with a new node representing the joined sequence
S .T . Then we insert edges connecting this new node to the rest of
the graph according to Formula 2. We continue this process until
the additive value cannot be further improved. In other words, all
edges in G become of zero weight.

Applying the greedy approach as explained above has a disad-
vantage. The heaviest edges in G are more likely to run between
longer instruction sequences. Joining these long instruction sequences
togethermay prevent higher gains in subsequent iterations and dis-
tance levels. To solve this problem, we set the weight of each edge
(S,T ) equal to w (S,T )

size(S )+size(T ) , where size(S) and size(T ) are respec-
tively the binary sizes of S andT . The new edgeweight formulation
allows us to join shorter instruction sequences before longer ones.

We implement this algorithm as follows. First, we compute the
inter-procedural control flow graph. That is, for each control flow

instruction, a list of instructions it can jump to, along with the fre-
quency of each control transfer. We use the control flow graph to
build the directed weighted graph G as we explained above. Then
we build a max heap of all edges ⟨S,T ⟩ ∈ G which have nonzero
weights. This max heap helps us efficiently retrieve the edge with
highest weight density at every iteration. At every iteration of the
algorithm, we use the control flow graph along with the current
location of instructions to updateG, while we also update the max
heap accordingly.

2.5 Choosing the Distance Levels
The initial partial layout for the collocation stage is the output
from basic block chaining. Effectively, basic block chaining can be
viewed as the 0-close partial layout problem. The precise equiv-
alence requires an alternative definition of layout distance. How-
ever, intuitively, BB chaining improves the spatial locality within
the zero distance (fall-throughs).

To maximize the locality improvement, the distance levels must
be chosen carefully. Next, we argue how we can obtain this list for
our hardware platform, with special care towards two of the most
important components of the architecture: cache and TLB.

The CPU fetches instructions by accessing the L1 instruction
cache and TLB. The L1 instruction cache is indexed by virtual ad-
dresses. This allows translation and cache lookup to be performed
in parallel. The L1 instruction cache uses a standard 32 KB, 8-way
set associative configuration with 64 byte lines. This means that
the 64 memory blocks in each (4 KB) page are mapped one-to-one
to 64 congruence classes in the cache. Therefore, we set the first
distance level equal to 4096, the size of a regular page. Increasing
close transfers within this distance level has two benefits.

• First, it minimizes the transfer of control between different
pages, thereby, improving the performance of the instruc-
tion TLB.

• Second, it reduces the conflict misses in instruction cache.
Specifically, if two instructions are less than 4 KB apart, they
are guaranteed to be mapped to different sets.

The L2 and L3 caches are respectively 256 KB and 3 MB, with as-
sociativities of 8 and 12. Therefore, they are respectively 32 KB and
256 KB “tall”1 (512 and 4096 congruence classes). One may wish to
apply Codestitcher at these distance levels. However, since these
caches are physically indexed, the virtual to physical address map-
ping implies that a virtual page could be mapped to any of the 8 (or
64) page-aligned set of congruence classes in the L2 (or L3) cache.
As a result, with 4 KB pages, such distance upper bounds (32 KB
and 256 KB) cannot guarantee that memory blocks will be mapped
to different cache sets. However, with 2MB pages, it is guaranteed
that instructions in a 32 KB (or 256 KB) chunk of code are not
mapped to the same L2 cache set. Thus applying Codestitcher on
these distance levels can help if 2MB pages are used.

In a similar fashion, we can capture the distance levels appropri-
ate for improving the TLB performance. The TLB hierarchy in the
Haswell architecture consists of a dedicated L1 TLB for instruction
and data caches, plus a unified TLB for L2. The L1 instruction TLB
has 128 entries for 4 KB pages, with an associativity of 4, along
with 8 fully associative entries for large pages. The L2 TLB (STLB)
1It is the aggregate size of a single cache way.
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has 1024 entries shared by 4 KB and 2 MB pages, and an associativ-
ity of 8. TLBs are always virtually indexed. Thus for TLBs we don’t
face the problem we discussed above. Focusing on small pages, a
distance upper bound of 128 KB guarantees that page translation
entries are mapped to different L1 TLB sets. Analogously, an upper
bound of 512 KB on instruction distance guarantees that the page
translation entries for those instructions are mapped to different
sets of STLB.

Overall, the distance levels are as follows.
• When using regular 4 KB pages: 4 KB, 128 KB, 512 KB.
• When using large 2 M pages: 4 KB, 32 KB, 256 KB, 2 MB.

In this paper, we perform separate evaluations when using regu-
lar and large pages for code. However, rather than generating sepa-
rate layouts for each of the distance level lists above, we construct
a single layout by combining the two. The combined distance level
list is 4 KB, 32 KB, 128 KB, 256 KB, 512 KB, 2 MB. With this list,
a distance parameters may not be beneficial for one page size, but
can give a sub-optimal solution for the next distance level (the next
memory layer). For instance, when using regular pages, code col-
location within a 32KB distance does not result in improvements
in L2 cache, but can improve the instruction TLB.

2.6 Interaction With Branch Prediction
Traditionally, the performance of branch prediction has had a less
significant impact on the design of code layout techniques, com-
pared to code locality.Moreover, the use ofmore informative branch
history tables has helped modern processors improve their branch
prediction performance, to the extent that code layout can only
impact the static branch prediction. That is, when branch history
information is not available.

We ran a microbenchmark to demystify the details of Intel’s
static branch prediction, which Intel does not disclose. Our mi-
crobenchmark consists of one test for every type of conditional
branch (forward-taken, forward-not-taken, backward-taken, and
backward-not-taken). For each type, we ran 1000 consecutive dis-
tinct branch instructions and counted the number of correctly pre-
dicted branches. Table 2 shows the result, averaged over 10 sep-
arate runs, on three CPU micro-architectures: Nehalem, Haswell,
and Kaby-Lake.

Table 2: Static branch prediction rate for 1K branch instruc-
tions, each executed once

branch type Kaby-Lake Haswell Nehalem
backward taken 76.3% 2.1% 99.9%

backward not-taken 96.1% 99.8% 0%
forward taken 0.6% 15.8% 0%

forward not-taken 95.3% 99.1% 99.3%

The results suggest that while the old processor (Nehalem) used
a direction-based branch prediction, the newer processors (Haswell
and Kaby-Lake) predict most branches as not-taken: a prediction
strategywhich favors spatial locality. In particular, backward branches
usually belong to loops, and therefore, are more frequently taken.
But Haswell often statically predicts them as not-taken. This strat-
egy can potentially hurt branch prediction, but has the advantage

that with good code locality, the wrong prediction path (not-taken)
is fall-through and incurs a smaller penalty. Overall, for Haswell,
code layout does not influence the branch prediction rate but better
code locality can result in lower penalties.

Interestingly, the prediction rate of backward branches is signif-
icantly improved in Kaby-Lake (from 2.1% in Haswell to 76.3%) at
the cost of a slight degradation in the prediction rate of the other
three branch types (total of 22.7% reduction in prediction rate).

For direction-based branch prediction (as used inNehalem), code
layout can influence the branch prediction rate. For instance, fre-
quently taken branches can enjoy a higher prediction rate if they
face backward. Similarly, infrequently taken branches are better
predicted if they face forward. On the other hand, as we argued
above, static branch prediction is of lower priority than locality.
Therefore, we must ensure that imposing such orderings between
branch instructions and their targets does not limit locality oppor-
tunities.

PH imposes these orderings after BB chaining and before func-
tion reordering, by joining the basic block chains of every function
in a specific direction. This can potentially result in joining code
segments which are not heavily related. Furthermore, the larger
code segments can limit the benefit in function reordering. Instead,
here we demonstrate that Codestitcher can impose such orderings
without unnecessarily joining basic blocks together.

To this end, we introduce a new stage between basic block chain-
ing and code collocation, called BB chain partial ordering. The role
of this stage is to identify an ordering among basic block chains
which is optimal for branch prediction. The code collocation stages
then explore locality opportunities within this partial ordering.

BB chain partial ordering uses a framework similar to code collo-
cation. First, it defines a directedweighted graph on the instruction
sequences. The weight of each edge (S,T ) indicates the branch pre-
diction benefit when S precedes T in the final layout. We explain
the precise formulation of edge weights in the next section. Codes-
titcher iteratively chooses the heaviest weight in the graph and
sets the ordering between its corresponding BB sequences. Then,
it updates the orderings between other BB sequences if their order-
ing is implied by transitivity via the newly inserted order. We omit
the details of edge weight formulation due to space limitations.

3 IMPLEMENTATION
We implement Codestitcher using LLVM [Lattner and Adve 2004]
version 3.9. It can optimize x86 binaries (supporting other plat-
formswould be straightforward) and supportsmulti-threaded code
and multi-process applications. Shared libraries that are profiled
and compiled with Codestitcher are optimized as well. Our imple-
mentation includes a compiler and a runtime profiler library. As
a profile-guided optimization tool, Codestitcher has three stages:
compiling the program to generate the profiler, running the pro-
filer, and compiling the program to generate the optimized pro-
gram.

3.1 Instrumentation
To generate the profiler, the user passes a flag to the compiler in-
structing it to instrument every shared library and executable in
the program build tree by inserting calls to the profiler library.
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Codestitcher instruments the code at three places: function entries,
basic block entries, and after every call site. We implemented in-
strumentation as a link time optimization pass that transforms the
x86 machine code generated by the compiler during code gener-
ation. The compiler assigns an 8-byte unique identifier to every
basic block. The first two bytes identify the shared library or the
executable, based on the hash value of its name. The next four bytes
specify the function number, and the last two bytes specify the BB
number.

3.2 Profiler
We implemented our profiler to perform edge-profiling. Profiling
basic block frequencies (node-profiling) is more efficient but re-
quires static inter-procedural call graph analysis to estimate the
edge frequencies from node frequencies. We opted to use edge-
profiling as static inter-procedural call graph analysis is compli-
cated by the presence of function pointers.

The profiler performs edge-profiling via three main func-
tions: record_function_entry, record_bb_entry, and
record_callsite. At every point, the profiler stores the
previously executed basic block (prev_BB). Upon executing
record_function_entry(BB), the profiler increments the call
frequency between prev_BB (caller) and BB (callee). The function
record_bb_entry(BB) increments the jump frequency between
prev_BB and BB. The function record_callsite updates prev_BB,
but does not update any frequency. To support multi-threaded pro-
grams, our profiler’s run-time library uses thread-local storage to
maintain the edge-frequencies on a per-thread basis. Every thread
emits its profiles into a separate file upon its termination. After
the profiling run, profiles from different threads and processes are
combined to form a single profile for the program.

3.3 Layout Construction And Code Reordering
The runtime profiles along with static CFG information are passed
on to the layout constructionmodule. The layout constructionmod-
ule also gets as input a list of distance levels. At each distance level
d , the layout construction algorithm solves the d-close partial lay-
out problem for every shared library and executable, and passes
the generated partial layout on to the next distance level.

At the end of this stage, Codestitcher will have generated a par-
tial layout of all the hot code, consisting of instruction sequences
which are not related enough to be joined together. Codestitcher
generates a full layout by sorting these instruction sequences in de-
creasing order of their execution density. The execution density of
an instruction sequence S is defined as

∑
i∈S f (i)
size(S ) , where f (i) is the

number of times the instruction i has executed and size(S) is the
total size of S in bytes. This allows hotter instruction sequences to
appear closer to the beginning of the text section in the executable.

4 EXPERIMENTAL RESULTS
In this section, we evaluate Codestitcher within two testing frame-
works. First, we evaluate the instrumentation-based version of Codes-
titcher (as we explained above) on a machine with Haswell pro-
cessors. Then we present an alternative implementation of Codes-
titcher, based on Linux perf tool, which does not require instru-
mentation. We compare the perf-based Codestitcher with LLVM’s

default profile-guided optimization framework (PGO), and on ama-
chine with Kaby-Lake processors. Then, we discuss the overheads
of both Codestitcher versions and compare them against LLVM’s
PGO.

4.1 Experimental Setup
For the instrumentation-based Codestitcher, we use a test machine
which runs Ubuntu 16.04 and is powered by two dual core i5-4278U
Haswell processors running at 2.60 GHz. Using the getconf com-
mand, we determined that the processor has a 32 KB instruction
cache and a 256 KB second level unified cache private to each core.
Both caches are 8-way set associative. The last level cache is 3 MB,
12-way set associative, and is shared by all cores. We compile all
our benchmark programs with Clang 3.9 with second optimization
level (O2) and link time optimizations enabled with the -flto flag.

4.2 Benchmarks
We test a set of widely-used programs that have large code sizes:
a database server (MySQL cluster 7.4.12), a browser (Firefox 50.0),
a compiler (Clang 3.9), a complete Apache web server (httpd-2.4
along with PHP-7.0), and a python interpreters (Python 2.7.15). In
this section, we first discuss the code size and cache characteristics
of these programs and then describe the testing setup for each.

Our test suite includes a total of 7 tests over these 5 applica-
tions, as shown in Table 3. The programs contain between 15 MB
(MySQL) and 81 MB (Firefox) in the text section of their executa-
bles, except for Python whose text size is 2 MB (all code sizes are
rounded up to 1 MB). Two programs, Clang and Apache, occupy
multiple rows in the table, because they are tested on two configu-
rations. Other programs Firefox and Python havemultiple binaries.
The table shows the largest one.

Table 3: Code size and performance characteristics (MPKI
means misses per thousand instructions)

applications &
tests

I-Cache
MPKI

I-TLB
MPKI

binaries & their
.text size(MB)

MySQL 62.44 9.35 mysqld(15)

Clang
-j4
-j1

14.40
8.14

2.23
1.01

clang(50), gold(4)

Firefox 9.16 1.54 libxul.so(81)

A
pa
ch
e w/ opcache

w/o opcache
4.13
7.63

0.33
0.96

libphp7.so(14)
httpd(1)

opcache.so(1)
Python 3.40 0.19 python(2)

We use measure the I-Cache and I-TLB misses, because their
frequent misses lead to frequent stalls at the CPU front-end and
limit the ability of out-of-order execution. 2 The applications in
Table 3 are ordered by their I-Cache MPKI (misses per thousand
instructions), from the highest, 62 MPKI for MySQL, to the lowest,

2We use the ICACHE_64B:IFTAG_MISS and ITLB_MISSES:MISS_CAUSES_A_WALK
event hardware performance counter events to measure I-Cache and I-TLB misses.
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3.4 MPKI for Python. The cache performance does not always cor-
relate with code size directly. Firefox, the largest program on our
benchmark, trails Clang-j4, and MySQL in I-Cache miss rates.

The instruction cache performance correlates well with that of
the instruction TLB, shown by the I-TLB MPKI column. The TLB
performance is identically ordered among the applications from 9
MPKI for MySQL to 0.2 MPKI for Python.

The cache and TLB performance depend on the size and usage
of the executed code, which change in different applications and
in different runs of the same application. For Clang, the miss rates
almost double when moving from the -j1 test to the -j4 test. An-
other important factor is the degree of multi-threading. MySQL
and two Apache tests are multi-threaded, and more threads results
in higher pressure on the I-Cache and I-TLB.

Although all applications suffer from poor instruction perfor-
mance, there is a large variation among them. The highest and low-
est MPKIs differ by a factor of 18 times for the instruction cache
and 49 times for TLB.

In a recent study [Ottoni and Maher 2017], Ottoni and Maher
measured the instruction cache performance of 4 server applica-
tions used internally at Facebook, including the execution engine
that runs the Facebook web site [Ottoni and Maher 2017]. These
commercial applications are not available for our study. When we
downloaded the open-source version of one of their applications,
HHVM, we found that the program text after compilation is 24 MB,
much lower than 133MB, as reported by them. The baseline compi-
lation of HHVMwith Clang resulted in a broken binary. Therefore,
we were unable to test this program.

Compared to our test suite, these commercial applications have
larger code sizes, between 70 MB and 199 MB (compared to 2 MB
and 81 MB among our applications). They show similar ranges of
I-Cache MPKIs, from 5.3 to 67 (compared to 3.4 to 62), and I-TLB
MPKIs, from 0.4 to 3.1 (compared to 0.19 to 9.4), as the programs
in our test suite do. Our MySQL test is an outlier with its 9.4 I-TLB
MPKI, 3 times the highest number in the Facebook study.

Next we describe the testing setup for each program.

Python. For testing the Python interpreter, we use the apps bench-
mark group from Google’s Unladen Swallow Benchmark Suite [Un-
laden 2009] as input scripts. The apps benchmark group consists of
6 “high level” applicative benchmarks: 2to3, chameleon_v2, html5lib,
rietveld, spambayes, and tornado_http. The Unladen swallow bench-
mark provides a test harness which reports the average running
time along with the standard deviation. It also provides three op-
tions for the runtime duration: fast, regular, and rigorous. We use
fast for profiling and regular for testing. We report the improve-
ment over total wall-clock runtime of the 6 inputs.

Firefox. For Firefox, we use the tp5o benchmark fromTalos [Talso
2007], a performance testing framework used at Mozilla. The tp5o
benchmark tests the time it takes for Firefox to load 49 common
web pages stored on the local file system. For each web page, Ta-
los measures its load for 25 times, discards the first 5, and takes
the median of the remaining 20. It then reports a single score as
the geometric mean of these numbers over all web pages.

MySQL. For testing theMySQL server, we use the non-transactional
read-only test (oltp_simple) from the Sysbench benchmark suite.

We run both the Sysbench client and the MySQL server on the
samemachine. For both profiling and testing, we use 4 client threads
to read from a database pre-populated by 8 tables eachwith 100,000
records. Sysbench reports the total throughput (requests per sec-
ond) along with the average latency and tail latency (95 percentile)
of requests. We report the mean improvement in average latency
over 10 runs.

Apache. Our setup uses the Apache web server along with the
PHP7 interpreter module, the PHP bytecode cache module (OP-
Cache), and the MYSQL database server; we therefore have Codes-
titcher optimize all four executables.We set up an isolated network
between a single client and a single server using a 1 Gbps Ether-
net cable. Our test data is WP-Test [WPTest 2013], an exhaustive
set of WordPress [Wordpress 2003] test data. We test the server
with OPCache both being enabled and disabled. For testing, we run
Apachebench on the client side tomake a total of 10,000 requests to
the server over 50 concurrent connections. Apachebench reports
the throughput along with service time quantiles. We report the
90th percentile of service times.

Clang. Our Clang experiment optimizes both the Clang com-
piler and the Gold linker. We test Clang by compiling the appli-
cations in LLVM’s MultiSource test suite, which consists of 25 ap-
plications including sqlite3. For each compilation, the test suite re-
ports separate user times of compilation and linking. We measure
the total user time. We perform two separate experiments: in one
experiment, we run make -j 4 to build all applications using 4 par-
allel jobs. In the other, we use a single compilation job (make -j 1).
We repeat each experiment 10 times, aggregate the user times of
compilation and linking for each application, and report the total
user time of compilation over all 25 applications.

4.3 Comparison
Wecompare the improvements fromCodestitcher (CS) against three
code layout techniques.

• PH.BB: Pettis-Hansen’s full basic block reordering technique,
consisting of function splitting, basic block chaining, and
function reordering, implemented by us.

• PH: Pettis-Hansen’s function reordering adopted fromHHVM[HHVM
2011] (see the last paragraph of this section).

• C3: Function placement based on chain clustering as pro-
posed byOttoni andMaher [Ottoni andMaher 2017], adopted
from HHVM.

We also evaluate each of the four techniques (PH, C3, PH.BB,
and CS) when using large pages for code (resulting in the new
techniques PH+LP, C3+LP, PH.BB+LP, and CS+LP). Our implemen-
tation of large pages uses anonymous large pages for the hot code,
similar to that of Ottoni and Maher [Ottoni and Maher 2017].

C3 and PH have both been implemented as part of HHVM, an
open-source PHP virtual machine, developed at Facebook. The two
function reordering heuristics rely on the Linux perf utility to col-
lect profile data. The perf tool interrupts the processes at the spec-
ified frequency and records the stack trace into a file. After the pro-
filing run, hfsort reads this profile, builds the function call-graph,
and computes the function layouts for each heuristic.
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Figure 4: Performance improvement over baseline

4.4 Profiling
For function reordering methods (C3 and PH), we use the instruc-
tions hardware event to sample stack traces at the sampling rate
of 6250 samples per second. For each program, we profile over 5
iterations of our test run. Additionally, for each application, we de-
compose its profile into profiles for each of its constituent binaries
(those listed in Table 3). This allows us to separately optimize each
executable and shared library in the program.

For Codestitcher and PH.BB, we use the profiles generated by
our own profiler described in Section 3.2. Since our profiler collects
the full trace, we profile over shorter runs. For Clang, we compile
the multiSource benchmark only once. For Firefox, we load every
other web page from the list of 49 web pages in t5po. For Python,
we profile over the “fast” run of the inputs scripts. For Apache web
server, we use a lighter load of 100 requests over 4 concurrent con-
nections. We perform separate profiling runs for each OPCache
configurations (enabled and disabled) and combine the two profiles.
The MySQL tests are controlled by the execution time. Therefore,
we use the same configuration as the test run.

4.5 Results
Figure 4 shows the performance improvement by 8 optimization
techniques on all 7 tests. The programs are shown from left to right
in decreasing order of I-Cache and I-TLBMPKI (Table 3). Python is
only tested with regular pages because its hot code does not exceed
a single MB. Therefore, no large pages will be used and the large
page (LP) results will be the same as using regular pages.

It is evident that the higher I-Cache and I-TLB pressure (from
left to right) a program exhibits, themore effective code layout opti-
mization is, and the greater improvements we see in performance.

The speedups from CS range between 5.1% (for Apache with op-
cache) and 26.9% (for MySQL), with about half of the tests (3 tests)
gainingmore than 10% speedup. CS+LP delivers slightly higher im-
provements: from 5.0% for Python to 29.5% for MySQL. It improves
5 tests by more than 10% (all tests except Apache with opcache and
Python).

PH.BB is the best previous solution among these tests. CS out-
performs PH.BB in all tests except when using regular pages for
Python. Table 4 shows the geometric mean improvements across

Table 4: Geometric mean improvement across all tests (re-
placing LP results for Python with the regular page results)

PH C3 PH.BB CS
regular pages 0.2% 1.7% 10.1% 11.9%
large pages 2.4% 2.5% 11.4% 13.5%

all tests, for each of the 8 optimization techniques (We replace the
LP results for Python with the regular page results). We observe
that CS dominates other techniques bothwhen using regular pages
and large pages. On the other hand, if we take PH.BB as the base-
line technique, CS and CS+LP improve over PH.BB and PH.BB+LP,
respectively by 1.6% and 1.9%.

The relative I-Cache miss rates are shown in Figure 5.
The improvement in I-Cache miss rate is mostly governed by

the code layout granularity (basic block ordering vs. function or-
dering). However, CS still dominates PH.BB, in each of the 7 tests.

We also observe that regardless of the code layout technique be-
ing used, using large pages rarely leads to additional improvement
of the I-Cache miss rate. Especially for Clang-J4, using large pages
is detrimental for all techniques. Between PH.BB and CS, the high-
est win from large pages is observed when applying CS on MySQL
(2.1%). For PH.BB, the maximum improvement from large pages is
0.7% and happens for Clang-J1.

Figure 6 shows the I-TLB miss rates relative to the baseline.

Table 5: Geometric mean of relative L1 instruction cache, in-
struction TLB, L2, and LL cache MPKI, and branch mispre-
diction rate, across all tests (replacing the large page results
for Python with regular page results)

PH.BB PH.BB+LP CS CS+LP
relative L1-cache MPKI 55.7% 55.9% 50.6% 52.1%
relative I-TLB MPKI 69.1% 51.3% 64.5% 47.2%

relative branch misprediction rate 95.4% 94.9% 97.6% 97.5%
relative L2-cache MPKI 77.0% 77.6% 74.2% 75.0%

relative last level cache MPKI 87.3% 90.8% 86.4% 88.0%
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Figure 5: L1 instruction cache miss per 1K instructions, relative to the baseline.
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Figure 6: L1 instruction TLB miss per 1K instructions, relative to the baseline.

When using regular pages, ordering at basic block granularity
usually reduces the I-TLB miss rates compared to function granu-
larity. Significant differences can be observed for four tests (MySQL,
Clang-J1, and Apache, with and without opcache) among which
basic block ordering wins in three.

With large pages, the effect is mixed: basic block ordering re-
sults in significant degradation for two tests (Clang-J1, and Clang-
J4) while it improves Apache with opcache, and delivers compara-
ble results in the other three.We believe thatmispredicted branches
are to be blamed for this phenomenon. Specifically, in a basic block
layout, where function fragments are stored far from each other,
speculative long jumps across distant function fragments may re-
sult in inferior TLB-performance. Notably, this does not happen in
a function layout where every function is stored contiguously in
memory.

On the other hand, we observe that unlike I-Cache miss rate,
for every individual code layout technique, using large pages has
a consistent positive effect on the I-TLB miss rate.

For an overall comparison, we report in Table 5, the geomet-
ric mean of I-Cache and I-TLB miss rates across all 8 tests, along
with those of L2 and LL cache, and branch prediction. On average,
CS gives the lowest miss rates on all three cache levels. CS+LP is
the winner in I-TLB performance, beating CS by an absolute differ-
ence of 17.3%. Considering that CS+LP gives 1.6% higher overall
improvement than CS (Table 4), we infer that its superior I-TLB

performance dominates the effect of its slightly higher cache miss
rates. Branch prediction is the single weakness of CS, where it
trails PH.BB by at most 2.6%.

Finally, for function reordering, C3 outperforms PH in all tests
except one. The largest differences can be observed in Firefox (1.4%)
and Apache (up to 6%). For Apache, PH with regular pages always
degrades the performance, while C3+LP results in 9% improvement
for Apache without opcache. On average, C3 improves over PH by
a difference of 1.9%. Using large pages reduces this difference to
1%.

4.6 Codestitcher Without Instrumentation and
Comparison with PGO

In this sectionwe present and evaluate our alternative implementa-
tion of Codestitcher which does not require instrumentation. Dur-
ing compilation, we emit unique symbols at the beginning of every
basic block. Then we leverage the Linux perf utility to gather pro-
files by sampling the last branch record (LBR) stack. As the name
suggests, the LBR stack records the most recent instructions which
have caused a control transfer (conditional branches, jumps, calls,
and returns). Thus it includes all control transfers between basic
blocks except fall-throughs.

Fall-throughs can be inferred from the LBR stack as follows. For
every two consecutive branches in the LBR stack, all instructions
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between the target address of the first branch and the source ad-
dress of the second branch are executed contiguously, as no other
branches can execute in between. These contiguous instruction se-
quences include all fall-throughs between basic blocks.

We use the generated profiles to compute the sampled weighted
inter-procedural control flow graph. Then we apply the hierarchi-
cal code merging algorithm as we explained in Section 2.3, obtain
the optimal code layout and recompile the program according to
the new layout.

4.6.1 Comparison against PGO. Nowwe evaluate our perf-based
Codestitcher on a more powerful hardware platform and compare
it against LLVM’s default profile-guided optimization (PGO) frame-
work.

The new hardware platform runs Ubuntu 16.04 and is powered
by two quad-core i7-7700 Kaby-Lake processors running at 3.60GHz.
Similar to the Haswell micro-architecture, each core has a 32 KB
L1 instruction cache and a 256 KB L2 unified cache, each with as-
sociativity of 8. The shared last level cache is 8 MB and 16-way
set associative. The instruction TLB includes 64 entries for regu-
lar pages, with associativity of 8, and 8 fully-associative entries for
large pages. The shared L2 TLB contains 1536 with associativity of
6.

LLVM’s PGO works in multiple stages. First, the compiler in-
struments the program at IR level for edge-profiling. When the in-
strumented program runs, it generates basic block execution count
profiles. In the third stage, these profiles are fed into another com-
pilation phase to guide intra-function basic block placement and
inlining heuristics.

First, we use the PGO-instrumented program to perform a single
run of each profiling input and then use the emitted profiles to
build the PGO-optimized programs.

Since LLVM’s PGO optimization does not perform function re-
ordering, we complement its affect by subsequently applying each
of the two function reordering techniques in Section 4.3 (C3 and
PH) on the PGO-optimized programs. To do so, we perform a sec-
ond stage of profiling on PGO-optimized programs using HHVM’s
perf-based call-graph profiling infrastructure (as we described in
Section 4.3). The obtained profiles are then used to compute the
new PH and C3 function orderings and rebuild the programs with
such orderings. Effectively, these optimized programs achieve intra-
function basic-block reordering via PGO and function reordering
via PH and C3.

In a third stage, separate from the prior stages, we profile the
baseline program using our own perf-based profiling framework
(as we described in Section 4.6) to generate inter-procedural basic
block level profiles. Codestitcher then uses these profiles within
its hierarchical framework (as we described in Section 2.3) to con-
struct its optimal inter-procedural basic block layout. Furthermore,
we apply our reimplementation of Pettis-Hansen’s full basic block
reordering (PH.BB) as we described in Section 4.3, on the same
profiles.

In summary, we evaluate the following code layout techniques.

• PGO: PGO-optimized program
• PGO.PH: Pettis-Hansen function reordering applied on top
of PGO

• PGO.C3: Call-Chain-Clustering function reordering applied
on top of PGO

• PH.BB: Global Pettis-Hansen basic block reordering using
our perf-based profiling framework, applied on top of base-
line

• CS: Codestitcher using our perf-based profiling framework,
applied on top of baseline

Additionally, we evaluate each of the code layout techniques
(except PGO) when large pages are used for hot code.

Our experiment features five tests: MySQL, Clang-J1, Firefox,
Apache without opcache, and Python. Our experimental setup is
slightly different from Section 4.2, as we discuss next.

Most importantly, we test every application on a completely dis-
joint set of profiling and testing inputs: for MySQLwe use the com-
bination of select, select_random_points, update_index, and insert
from sysbench for profiling and oltp_simple for testing. For Clang,
we usemultiSource applications for profiling andmultiSource bench-
marks for testing, and only test with one compilation job (-j1). For
Firefox, we use a combination of tests from Talos (a11yr, tsvgx,
tscrollx, tart, cart, kraken, ts_paint, tpaint, tresize, and sessionre-
store) for profiling and tp5o for testing. For Apache, we use a clean
installation of Drupal [Drupal 2000] for profiling andWP-Test [WPTest
2013] for testing, and only test with OPCache disabled. In addition,
and in contrast to the Apache tests in Section 4.2, we exclude the
optimization of MySQL from the Apache test. Finally, for Python,
we profile using the combination of etree and template scripts from
the unladen-swallow benchmark suite. For testing, we use the apps
scripts, as before.

For each application, we use the same profiling inputs across all
three profiling stages. We generate profiles over a single run for
the full-trace PGO profiling, and over five identical runs for the
other two perf-sampling-based profiling stages. For testing each
technique, we report the average improvement over 10 identical
runs of the test input, relative to the baseline program. Here, we
also report the standard deviation of the improvement.

We apply Codestitcher on two layout distance parameter: 4 KB
and 1 MB. The 4 KB parameter is the most important and will
include most of the control transfers in the optimized code. The
1 MB distance parameter intends to reduce the interference at L1
and shared TLBs besides reducing internal fragmentation for large
pages.

Finally, all programs are compiled using the “-flto -O3” flags.
Figure 7 shows the results. For Python and Apache, the hot code

in each of their executing binaries will not exceed a single MB.
Therfore, we do not evaluate the techniques with large pages on
these two programs. The other three applications are optimized
using each of the 9 optimization techniques as we described above.

We observe that CS significantly outperforms the other tech-
niques in the largest three applications (MySQL, Clang, and Fire-
fox). All techniques perform similarly well on Apache and Python.

We observe that applying function reordering on top of PGO
results in modest improvements. The highest improvements over
PGO by function reordering techniques are 2.6% on MySQL (by
PGO.C3+LP), 1% on Clang (by PGO.C3), and 2% on Firefox (by
PGO.PH).
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Figure 7: Comparison of PGO, PGO.PH, and PGO.C3 against our perf-based techniques (BB.PH andCS) in terms of performance
improvement over the baseline

Table 6: Geometric mean improvement across all 5 tests in
Figure 7 (Large page results for Python and Apache are re-
placed with the regular page results)

PGO PGO.PH PGO.C3 PH.BB CS
regular pages 5.8 6.1% 6.7% 8.4% 9.9%
large pages NA 6.0% 6.4 % 9.0% 10.1%

PH.BB is the second best technique, after CS. The larges differ-
ence betweenCS and PH.BB is seen inMySQL (almost 5%). For Fire-
fox, PH performs similiarly well as the function reordering tech-
niques. For smaller programs (Apache and Python) PH performs
marginally better than the other techniques (outperforms CS by
0.2% and 0.8%, respectively).

We also observe that overall, the use of large pages does not
lead to a significant improvement. In particular for Clang, using
large pages has a negative impact on both function reordering tech-
niques, resulting, respectively, in 1.5% and 2% reduction in the im-
provements from PGO.PH and PGO.C3.

For an overall comparison, Table 6 reports the geometric mean
improvements of all 9 techniques on the 5 tests.

4.7 Overhead
Each of the code layout optimization techniques have their own
costs and overheads. These overheads are categorized into three
types, each corresponding to one stage of the profile-guided opti-
mization framework:

• Profiling overhead: slowdown of the program due to profil-
ing

• Trace processing overhead: additional processing time to
compute the total node/edge counts from emitted profiles

• Layout construction and code reordering overhead: additional
processing and build time to compute the optimal layout
and reorder the program’s binary according to that layout

We report the profiling overhead for both the instrumentation-
based the perf-based Codestitcher frameworks, alongwith LLVM’s
PGO. In addition, we report the trace processing overhead and the
build overhead for the perf-based technique.

The overhead results are shown in Table 7.

The profiling overheads are measured differently, and in accor-
dance with our experimental setup: 90% tail latency increase in
Apache, average latency in MySQL, increase of total compilation
and link time for Clang, increase of the score reported by the talos
benchmark suite for Firefox, and increase of total wall-clock time
for Python.

The trace processing overheads for (perf-based) Codestitcher
are reported as the processing time relative to the length of the pro-
filing run. This processing reads all the sampled LBR stack traces
and builds theweighted inter-procedural CFG.Wehave implemented
this inside the Linux perf utility.

The layout construction and link overheads are reported as the
excess build time relative to the link time of the programs (given all
the LLVMbitcode files). For the perf-basedCodestitcher, our layout
construction library is prototypical and is implemented outside the
compiler and in Ruby.

Table 7: Overheads relative to baseline program, for three op-
timization frameworks: Codestitcher with instrumentation,
perf-based Codestitcher, and LLVM’s PGO.

MySQL Clang Firefox
Apache w/o
opcache Python

Codestitcher
(with instrumentation) profiling 14× 53× 64× 3× 62×

Codestitcher
(perf-based)

profile sampling 6.7% 5.3% 3.7% 7.2% 5.5%

trace processing 21% 10% 24% 23% 6%
layout construction
and code reordering 329% 54% 161% 91% 456%

LLVM PGO profiling 45% 149% 113% 142% 4%

The overhead results indicate that our perf-based Codestitcher
incurs the least slowdown among the three techniques. Further-
more, it requires no instrumentation for profiling (except for emit-
ting symbols in the program), and can be applied iteratively, while
inflicting the least interference with the program execution. Two
major drawbacks of the perf-based technique are the higher over-
head of layout construction and its storage overhead for traces. Our
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prototypical layout construction library can be significantly be op-
timized by reimplementation in the compiler or in the perf tool.
The storage overhead can be reduced by performing trace process-
ing in parallel with trace collection.

5 RELATEDWORK
Code layout is a form of cache-conscious data placement, which
has been shown to beNP-hard, even for an approximate solution [At-
tiya and Yavneh 2017; Lavaee 2016; Petrank and Rawitz 2002]. How-
ever, code layout is more tractable for two main reasons. First code
access patterns can be precisely captured from program execution.
Second, the less structured format of code allows code reordering
to be done with higher flexibility.

Ramirez et al. [Ramírez et al. 2001] specifically studied code lay-
out optimizations for transaction processing workloads. They im-
plemented PH in the Spike binary optimizer [Cohn et al. 1998], and
studied the impact of different stages of PH. Their implementation
mostly follows PH, but uses a fine grain function splitting, analo-
gous to us. Their work does not give insights into the implications
of code layout for branch prediction.

More recently, Ottoni andMaher [Ottoni andMaher 2017] intro-
duced call-chain clustering, a new heuristic for function reorder-
ing. Call-chain clustering follows a similiar bottom-up approach
as PH, but aims at reducing the expected call distance, by merg-
ing function layouts in the direct of the call. They evaluate their
technique on four data-center applications including HHVM. Our
work gives an independent evaluation of their heuristic on pro-
grams which are more widespread, but have smaller code sizes.

Focusing on conflict misses, Gloy and Smith [Gloy and Smith
1999] developed a solution based on a Temporal Relation Graph
(TRG). They defined the temporal relation between two code blocks
as the number of times two successive occurrences of one block are
interleaved by at least one occurrence of the other. The solution
works best on direct-mapped caches. It looks at TRG edges running
between code blocks mapped to the same cache lines. Considering
these edges in sorted order, it tries to remove conflict misses by
remapping procedures to other cache lines. Once all mappings are
obtained, it orders the procedures to realize those mappings while
minimizing the total gap between procedures.

The direct extension of TRG for k-way set-associative caches
requires storing temporal relations between every code block and
every k-sized set of code blocks. It is evident that as programs be-
come larger and cache associativity goes higher, storing this infor-
mation becomesmore expensive. Liang andMitra [Liang andMitra
2010] introduced the intermediate blocks profile, a compact model
for storing this information, which enables them to evaluate the
approach on up to 8KB associative caches, and on programs with
up to about 500 procedures. Besides this, their optimizations are
not portable across different cache configurations.

Finally, while in this paper we used edge-profiling to optimize
code layout, path profiling [Ball and Larus 1996] givesmore precise
information about the control flow in a program. Whole program
path profiling [Larus 1999] extend path profiling to analyze the
program’s entire control flow, including loop iterations and inter-
procedural paths. We believe that unless we allow for code duplica-
tion, path profiling is too excessive of information for code layout.

With code duplication, different hot paths which are executed in
different contexts (and may possibly share code fragments among
each other), could be laid out in different parts of the code [Mueller
andWhalley 1995]. However, because of the expensive compulsory
misses in lower level caches and TLBs, we expect that code dupli-
cation harms the performance more than it benefits.

6 SUMMARY
In this paper, we introduced a new technique for inter-procedural
basic block layout including path-cover based BB chaining and
distance-based BB collocation. Our technique achieves a perfor-
mance improvement of 10% over five widely-used programs. The
improvement is primarily due to the finer grain splitting of func-
tions and the optimal code collocation, enabled by our distance-
sensitive code collocation framework.
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