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Abstract
Caching techniques are widely used in today’s computing

infrastructure from virtual memory management to server

cache and memory cache. This paper builds on two observa-

tions. First, the space utilization in cache can be improved by

varying the cache size based on dynamic application demand.

Second, it is easier to predict application behavior statisti-

cally than precisely. This paper presents a new variable-size

cache that uses statistical knowledge of program behavior to

maximize the cache performance. We measure performance

using data access traces from real-world workloads, includ-

ing Memcached traces from Facebook and storage traces

from Microsoft Research. In an offline setting, the new cache

is demonstrated to outperform even OPT, the optimal fixed-

size cache which makes use of precise knowledge of program

behavior.
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1 Introduction
On modern computer systems, memory has become often

the largest factor in cost, power and energy consumption.

Significant amounts of memory are used as software man-

aged caches for data on persistent storage or data stored on

remote systems. Examples include caching done by oper-

ating system kernel file system code [41], memory caches

such as Memcached [23], and caching performed by network

file servers [41]. Cache management has been extensively

studied, leading to many effective techniques.

For fixed size caches, the optimal solution is known as

Belady, MIN [6], B0 [13], or OPT [40]. It has set the goal for

decades of improvements in research and practice, including

a number of recent techniques closely modeling or mimick-

ing OPT [10, 29, 58]. While past work tries to achieve the

performance of OPT, this paper aims to improve beyond OPT

in two ways.

First, OPT [6] is optimal only for fixed-size caches. The

working set of an application is not a constant size and may

benefit from a temporary increase of cache space. It has long

been a principle of virtual memory management that when

memory is shared among multiple applications, a variable-

size allocation is more effective than a constant-size partition.

This paper studies how much variable-size cache can outper-

form OPT while using the same amount of cache on average.

https://doi.org/10.1145/3297858.3304067
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Second, OPT requires precise knowledge of future data

reuse [6]. It is usually impossible to precisely predict when

a data item will be reused in the future. However, it is often

possible to have a probabilistic prediction on when a data

item will be accessed again. Let data item a be reused 4 times

in axxaaaxxa. OPT requires knowing the next reuse each

time a is accessed [6]. A probabilistic prediction states that

the reuse interval is 1 for half of the a reuses and 3 for the

other half. This paper studies the best method of data caching

that uses statistical, rather than precise, knowledge of future

accesses.

This papermakes threemain contributions. First, it presents

the Optimal Steady-state Lease (OSL) algorithm, a variable-

size caching algorithm which utilizes statistical information

about future program behavior. We show that OSL maxi-

mizes the cache performance and therefore provides a reach-

able bound on statistical caching algorithms. We also show

that OSL has asymptotically lower complexity than OPT in

both time and space. Second, it describes a space-efficient

implementation of OSL named Space Efficient Approximate
Lease (SEAL) and evaluates its space and time complexity.

Finally, it evaluates the proposed implementation of OSL

against existing caching solutions on data access traces from

real-world workloads. These workloads include Memcached

traces from Facebook [3] and traces of network file system

traffic from Microsoft Research [43].

The new technique is presented in Section 2, including

the lease definition in Section 2.1, the OSL algorithm and its

properties in Section 2.2, and efficient lease-cache implemen-

tation in Section 2.3. Section 3 evaluates OSL using traces

from real-world workloads, Section 4 presents related work,

and Section 5 concludes.

2 Caching Using Probability Prediction
2.1 Managing Cache by Leases
In this paper, the cache is controlled by leases. This section

presents the interface and performance calculation of such a

cache.

Lease Cache At each access, the cache assigns a lease to

the data block being accessed, and the data block is cached

for the length of the lease and evicted immediately when

the lease expires. We call this type of cache the lease cache.
In this paper, the lease is measured by logical time, i.e. the

number of data accesses. A lease of x means to keep the data

block in cache for the next x accesses. The concept mirrors

the window in the working set theory, which we will review

in Section 4.

Miss Ratio Given a data access trace, the forward reuse
interval is defined for each access as the number of accesses

between this current access and the next access to the same

data block [8]. In this paper, we call it reuse interval for short.
If the access is the last to a data block, the reuse interval is

infinite. The reuse interval is the same as the interreference
interval in the literature on virtual memorymanagement [13]

and the reuse time used in our earlier papers.

At each access, the next reuse is a cache hit if the lease

extends to the next access. Otherwise, it is a miss. The cache

hit ratio is the portion of the accesses whose lease is no

shorter than its reuse interval.

Average Cache Size The cache does not have a constant

size. Instead, we compute the average cache size, which is the

average number of data blocks in the cache at each access.

Following past work, e.g. Denning and Slutz [19], we con-

sider cache usage as a time-space product. A lease x means

allocating one cache block for x accesses. The sum of all

leases is the total time-space consumption, and the average

cache size is computed by time-space divided by time, i.e. the

total lease divided by the number of accesses. The average

cache size is the average number of leases active at each

access.

To compute the total lease, we must include the effect

of lease fitting, which happens at every cache hit: when a

data block in the cache is accessed, the remaining lease is

canceled and replaced by the lease of the current access. In

addition, all leases end at the last data access of the trace.

An Example Consider an infinite long trace abc abc . . .
The reuse interval is 3 at all accesses. If we assign the unit

lease at each access, the miss ratio is 100%, and the cache

size is 1. If we increase each lease to 3, the miss ratio drops

to 0%, and the cache size is 3. If we increase each lease to 4,

the cache size is still 3, not 4, due to lease fitting.

Prescriptive vsReactive Caching With leases, cacheman-

agement is prescriptive. The eviction time of a data block is

prescribed each time it is accessed.
1
In contrast, traditional

cache management is reactive. When a miss happens in a

fully occupied cache, an existing block is selected and evicted.

Prescriptive caching manages space by allocation, while re-

active caching by replacement.

Locality in computing is characterized by Denning as com-

puting in a series of phases where each phase accesses a

different set of data, i.e. its locality set [15]. Not all data in a

locality set are used again in the next phase. Some accesses

to the same datum may be separated by long periods of no

access. If we collect statistics, we will see most data reuses

with short reuses and a few long reuses. Prescriptive caching

makes use of such statistics and keeps data in cache in phases

where it is accessed but not in cache in-between these phases.

Lifetime vs Per Access Lease The term cache leases was
initially used in distributed file caching [24]. Such uses con-

tinue today in most Web caches, e.g. Memcached [23], and

recently in TLB [4]. A lease specifies the lifetime of data in

cache to reduce the cost of maintaining consistency. The

1
If a data block is accessed during the lease, its lease is renewed.



Algorithm 1 PPUC Algorithm

Require: M ▷ Total number of data blocks

Require: R ▷ Max. distinct reuse intervals per block

Require: RI[1 . . .M][1 . . .R] ▷ reuse interval histograms

1: function hits(block, maxReuseInterval)

2: return
∑maxReuseInterval

i=0 RI [block][i]
3: end function
4:

5: function cost(block, lease)

6: return
∑lease

i=0 i ∗ RI [block][i]
+
∑R

i=lease+1 lease ∗ RI [block][i]
7: end function
8:

9: function getPPUC(block, oldLease, newLease)

10: return hits(block,newLease)−hits(block,oldLease)
cost(block,newLease)−cost(block,oldLease)

11: end function

lease cache is similar in that a data block is evicted when

the lease expires, but it differs in that the lease is re-assigned

each time the data block is accessed. The purpose is prescrip-
tive caching to capture the working set of a program. The

implementation is more difficult, because it must manage

the lease at every access.

In the next section, we show how to optimize prescriptive

caching based on statistical predictions with asymptotically

lower time and space cost than optimal reactive caching

(Section 2.2.5).

2.2 Lease Assignment by OSL
This section presents the lease assignment algorithm: given

the reuse intervals of a data block, it assigns the best per-

block lease, i.e. the best lease used every time the data block

is accessed. We call it the Optimal Steady-state Lease (OSL).

This section describes the steady-state condition and the OSL

algorithm and then shows its properties.

2.2.1 Steady State
In a steady state, a program accessesm data blocks. Each data

block i is accessed with a probability distribution Pi (ri = x),
where ri = x denotes that the reuse interval is x such that

x ≥ 0. In the steady state, Pi (ri = x) does not change. In the

following description, we take the list of memory accesses

of a complete program that is in a steady state. Each data

block i is accessed fi times, and the probability Pi (ri = x) is
the ratio of fi to its total number of accesses.

2.2.2 Intuition and Illustration
The key metric OSL uses is profit per unit of cost (PPUC).
In PPUC, the profit is a number of hits, and the cost is the

amount of cache occupied over a time. Hence, PPUC is the

number of hits per unit of lease. The goal of OSL is to select

the leases to maximize their PPUC.
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Figure 1. Illustration of OSL. The example shows the reuse

interval histograms of two data blocks. Block A has four

reuse intervals, and B has three. Each reuse interval is shown

by a box, with its PPUC at the bottom cell of the box. At each

step, OSL selects the box with the highest PPUC and assigns

its reuse interval (top-left cell) as the lease. It first assigns the

lease 5 to all A accesses, then increases it to 19, and finally

assigns 12 for B. After each step, OSL re-computes the PPUCs

based on the last lease assignment.

OSL is an iterative, greedy algorithm. It first initializes

all leases for all blocks to zero. In each step, it computes

the PPUC of all reuse intervals of all data blocks (using the

existing leases that it has so far assigned) and chooses the

data block and its reuse interval that has the highest PPUC.

OSL assigns this reuse interval as the lease for all accesses of

this data block. OSL repeats this computation until either the

total assigned lease reaches the target cache size, or all data

blocks are always cached, i.e. their longest reuse interval is

assigned as their lease.

Figure 1 illustrates OSL by an example. It shows two reuse

interval histograms for data block A,B respectively. Each

reuse interval is represented by a box. In the top two cells of

each box sit a pair of integers. The first is the reuse interval,

and the second the number of data accesses with that reuse

interval. For example, A has 4 boxed pairs: (3,1), (5,7), (17,4),

and (19,3), which show that A has 15 reuses and 4 different

reuse intervals. B’s histogram has 3 boxed pairs: (12,6), (24,1),

and (64,1). The program has other data that are represented

and processed in the same manner as A,B, so we do not

include them in the illustration.



Algorithm 2 The OSL Algorithm

Require: M ▷ Total number of data blocks

Require: N ▷ Total number of accesses

Require: R ▷ Max. distinct reuse intervals per block

Require: RI[1 . . .M][1 . . .R] ▷ reuse interval histograms

Require: C ▷ Target cache size
Ensure: L[1 . . .M] ▷ Assigned leases

1: function maxPPUC

2: bestPPUC ← 0

3: bestBlock ← (true, 0, 0)
4: for all block do
5: for all i such that 0 < i ≤ R do
6: if RI [block][i] > L[block] then
7: reuse ← RI [block][i]
8: ppuc ← getPPUC(block,L[block], reuse)
9: if ppuc > bestPPUC then
10: bestPPUC ← ppuc
11: bestBlock ← (f alse,block, reuse)
12: end if
13: end if
14: end for
15: end for
16: return bestBlock
17: end function
18:

19: function main

20: for all block do
21: L[block] ← 0

22: end for
23: totalCost ← 0

24: tarдetCost = C ∗ N
25: while totalCost <= tarдetCost do
26: (f inished,block,newLease) ← maxPPUC

27: if f inished = f alse then
28: oldLease ← L[block]
29: cost ← cost(block,newLease)

−cost(block,oldLease)
30: totalCost ← totalCost + cost
31: L[block] ← newLease
32: else
33: break
34: end if
35: end while
36: end function

OSL first initializes the leases of all data blocks to 0 and

then computes the PPUC for all reuse intervals. When the

initial lease 0, and there is no lease fitting, the PPUC of assign-

ing lease y to data i is computed as
fiPi (ri≤y)

fiy
= Pi (ri ≤ y)/y,

where fi is the access frequency of data i , and Pi is the reuse
probability. With lease fitting, the cost calculation is more

complex, as shown in cost in Algorithm 1.

Take, for example, the reuse interval 5 of A. If the lease
for all 15 accesses of A is 5, we have 8 hits. The total lease is

5 × 15 = 75 without considering lease fitting, but 3 × 1 + 5 ×
(7 + 4 + 3) = 73 with lease fitting. The PPUC is the ratio of

these two numbers, 8/73 = 0.11.
Before the first assignment, OSL computes the PPUC of

all reuse intervals for all data blocks; they are shown in

Figure 1(1) in the bottom cell of every box. Throughout OSL,

every reuse interval not yet included in an assigned lease

has a PPUC, which is computed by OSL and considered in

the next lease assignment.

OSL is iterative. At each step, it selects the reuse interval

with the highest PPUC. In a later step, it may re-assign the

lease of a data block by increasing it from y to y ′. The PPUC

of y ′ is then based on the change from y to y ′, not from 0 to

y ′. This is done in getPPUC in Algorithm 1, which calculates

the PPUC when replacing the old lease with the new.

In the first step in Figure 1, OSL selects the reuse interval

5 of block A and assigns the lease 5 to all A accesses. After

the first assignment, OSL updates the PPUCs for reuse in-

tervals of A that are greater than 5. The updated values are

in Figure 1(2). In the second step, OSL repeats the greedy

selection and (re-)assigns the lease 19 to all 15 accesses of

A. There is no further update since A has no greater reuse

interval than 19. In the third step, OSL assigns the lease 12

to 8 accesses of B.

2.2.3 Lease Assignment
Algorithm 1 shows the algorithm for computing PPUC, and

Algorithm 2 shows the OSL algorithm. The inputs to OSL are

M , the total number of data blocks; N , the total number of

accesses; RI , the reuse interval histograms of all data blocks;

and C , the target cache size. OSL computes the best leases

for all data blocks that achieve target average cache size C .
The main loop at line 25 in Algorithm 2 keeps calling

maxPPUC to assign leases until one of two conditions is

met. The first condition is when the cache size reaches the

target cost, i.e. total space-time computed by the target cache

size times the trace length N . The second condition is when

maxPPUC returns true as the first element of the tuple it

returns, indicating that there are no more leases to assign,

and the cache is already at the maximum possible size (with

only cold-start misses).

maxPPUC computes the PPUC for each reuse interval of

each data block given the leases assigned in the last iteration

of the loop at line 25. For each block, the old lease is stored

in L (initialized to 0 at line 21). Each greater reuse interval

is a candidate lease.
2
To select the best lease, maxPPUC calls

getPPUC at line 8 in Algorithm 1, which calculates the PPUC

as the increase in hits divided by the increase in cost (in cache

2
The best lease must be equal to one of the reuse intervals. If a lease were

larger than one of the reuse intervals, we could reduce it to the closest reuse

interval (to save space) and not incur more misses.



space), where the hits and cost are calculated by functions

hits and cost, respectively. The nested loop in maxPPUC

selects the candidate lease and candidate block with the

highest PPUC in line 9 of Algorithm 2. maxPPUC returns a

tuple of the candidate lease and candidate block to main
which assigns the lease to the candidate block in line 31.

The nested loop in maxPPUC computes PPUC after each

lease assignment. This is needed because the same data block

may be assigned multiple times with increasingly longer

leases. Each assignment necessitates recomputing the PPUCs

because they are based on the old lease, which has just been

changed. In the example in Figure 1, we can see that the

PPUC of two reuse intervals, 17 and 19, is changed after the

first lease assignment.

maxPPUC can be made faster. For each block, the PPUC

is changed only if its lease is changed. Instead of a nested

loop, only the block that was just assigned a new lease re-

quires updating. In an actual implementation, we store all

lease candidates in a heap, update the PPUC for only those

affected candidates after each assignment, and select the best

candidate for the next assignment by a heap pop. LetM be

the number of data blocks, and R the maximal number of

distinct reuse intervals per data block. The nested loop takes

O(RM) per step, but a heap-based implementation takes only

O(R) per step.

2.2.4 Maximal Cache Utilization
OSL is a greedy algorithm for cache allocation. At each step

of OSL, by increasing the lease for a data block, it allocates an

amount of space in the lease cache. By choosing the highest

PPUC, i.e. profit per unit of cost, it allocates the cache space

that yields the greatest benefit, that is, the highest number

of cache hits for the amount of additional cache. The greedy

allocation ensures that the leases selected by OSL make the

best utilization of the cache. While it is intuitive that OSL

maximizes the cache performance, a formal proof is not

trivial, and it is beyond the scope of this paper.

2.2.5 Complexity
The algorithm complexity is as follows. Let the total number

of blocks be M , and the maximal number of distinct reuse

intervals per data block be R. The number of lease candi-

dates is at mostMR. At each assignment in OSL, at most R
candidates are updated. Assuming a binomial heap is used,

the maximization time is O(log(MR)) = O(logM + logR).
The total cost per lease assignment isO(logM + logR +R) =
O(logM +R). The number of assignments is at mostMR (for

the largest cache size). Overall, OSL takesO(MR(logM +R))
in time. The space cost is O(MR).
If we approximate and use a histogram with logarithmic

size bins, R = O(logN ), where N is the trace length, and

N − 1 the longest possible reuse interval. The time cost

is O(M logN (logM + logN )). Since M ≤ N , it equals to

O(M logN (logN + logN )) = O(M log
2 N ). The space cost is

O(M logN ).

Complexity: OSL vsOPT OPT requires precise knowledge,

meaning the reuse interval for each access, so its space cost

is O(N ). OPT can be implemented by stack simulation, re-

quiring O(M) space and O(M) operations at each access to

maintain a constant cache size [40]. The time cost is therefore

O(MN ). In comparison, by using statistical clairvoyance, OSL

reduces the space cost from O(N ) to O(M logN ). By target-

ing an average cache size, instead of maintaining a constant

cache size, OSL reduces the cache management cost from

O(MN ) to O(M log
2 N ).

2.2.6 Generalization
OSL assigns the best lease for a group of accesses. In the

presentation so far, accesses are grouped by data identity, i.e.

all accesses to the same data block. OSL can be used in any

type of grouping. It may group by program code, i.e. accesses

by the same load/store instruction, the same function, or the

same data structure.

In general, OSL divides all data accesses into a set of

groups, feeds their reuse interval statistics and other pa-

rameters such as cache size to Algorithm 2, and computes

the best lease for each group. This lease is then the lease for

every access of that group. The optimality and complexity

results are unchanged — OSL maximizes cache performance

at the time cost ofO(G log
2 N ) and space cost ofO(G logN ),

where G is the number of groups. This number of groups

may be reduced by coarse grouping, i.e. putting a class of

data blocks into one group or all load/store instructions of a

function into one group.

OSL, however efficient, still has to assign a lease at each

access, and the lease can be arbitrarily long. Next we consider

efficient implementation of leases.

2.3 Lease Implementation by SEAL
The most straightforward way to implement a lease cache is

to use an approach called expiration circular bins. We main-

tain an array of bins. A bin is created for each lease. Thus, the

number of bins is proportional to the maximal lease. Each

bin contains a doubly-linked list with the same lease and is

indexed by the lease. All bins are sorted in the ascending

order of lease. At every time point, we delete all nodes in the

list of the oldest bin i.e., evicting all expired data items. The

oldest bin is then reused as the newest bin that has maximal

lease relative to the present time point. Therefore, the array

of bins is in fact a circular array. The insertion operation

takesO(1) time. However, this approach usesO(M+L) space,
whereM is the number of unique items and L the maximal

lease. WhileM is small, L may be very large and possibly up

to the full trace length.

This section presents the Space Efficient Approximate

Lease cache algorithm (SEAL). SEAL achievesO(1) amortized



insertion time and usesO(M + 1

α logL) space while ensuring
that data stay in cache for no shorter than their lease and no

longer than one plus some factor α times their lease.

2.3.1 Design
SEAL creates “buckets” into which it places cached objects.

Buckets are “dumped” into the next bucket at some interval,

called the “dumping interval.” This interval is fixed for each

bucket. When an object is dumped out of the last (smallest)

bucket, it is evicted.

Figure 2 shows three buckets that store leases of increasing

lengths. The first is for unit leases, the second for length-two

leases, and the third for leases from 3 to 4. The first bucket is

emptied at every access since all leases expire. The second is

dumped to the first, since they become unit leases. The third

is dumped to the second at every two accesses.

When an object is accessed, its lease is renewed and recorded

by SEAL. SEAL assigns the lease to the bucket whose con-

tents have the smallest time to eviction which is still at least

the object’s lease. Buckets are indexed in ascending order of

time to eviction, starting from zero.

The dumping interval of any particular bucket is a power

of two. The amount of buckets with dumping interval 2
k
for

k ∈ N depends on the accuracy parameter, α , but does not
depend on k . We call the number of buckets at each dumping

interval N , to which we assign the value ⌈ 2α ⌉.
SEAL uses N buckets for each dumping interval. These

buckets are organized as a linear sequence with increasing

interval lengths. At each access, SEAL assigns a bucket for

the accessed data. The following function B determines the

bucket by determining the exponent s of the dumping inter-

val, the offset o among buckets of the dumping interval, and

the adjustment β (when the access happens in the middle of

a dumping interval):

s =

⌈
log

2

(
l

N
+ 1

) ⌉
− 1

o =

⌈
l − N (2s − 1)

2
s

⌉
− 1

β =

{
0 if l ≤ N (2s − 1) + (o + 1)2s − (i mod 2

s )
1 otherwise

B(l , i,N ) = Ns + o + β

where the parameters l and i are, respectively, the lease time

and access number (i.e. the “clock time,” or index in the trace)

and N is the number of buckets of each dumping interval.

L=1 L=2 L=4

L=2L=1 L=4

L=4L=1 L=2

At every access, 
content of L=1 is 

evicted

At every access, L=1 is 
evicted, L=2 content 

moved into L=1.

At every two 
accesses, L=1 is 

evicted, L=2 into L=1, 
L=4 content moved 

into L=2.

Arrows signify that the data of a bucket has been moved into 
the bucket to it’s left, that has a shorter longest lease. Red 

buckets now contain no data, since their contents have moved 
into the “lower” bucket but the bucket above them’s contents 

have not moved down into them.

Figure 2. Demonstration of basic SEAL design.

2.3.2 Time and Space Complexity
Theorem 1. The function B assigns objects to the bucket
whose contents will be evicted soonest among those buckets
whose contents will not be evicted before the object’s lease
expires.

Proof. We begin by assuming that all buckets are at the be-

ginning of their dumping interval. Under this assumption,

we prove that the exponent s of the dumping interval and

the index o of the bucket are computed correctly.

Trivially, the time to eviction of the contents of largest

bucket of dumping interval 2
k
when it is at the beginning of

its interval (the access after the previous dump) is

k∑
j=0

N 2
j = N (2k+1 − 1).

Therefore, for a lease of time l , s should be such that

N (2s − 1) < l ≤ N (2s+1 − 1).
In other words, there is a bucket of dumping interval 2

s

whose contents will be evicted at or after time l , but the
contents of all buckets of dumping interval less than 2

s
will

be evicted before time l . It follows that

log
2

(
l

N
+ 1

)
− 1 ≤ s < log

2

(
l

N
+ 1

)
.

The unique integer which satisfies this inequality is⌈
log

2

(
l

N
+ 1

) ⌉
− 1.

Once an object is dumped into a bucket of dumping in-

terval 2
s−1

, it will be evicted in exactly N (2s − 1) accesses
(in the case where s = 0, it is simply evicted, as no buckets

of dumping interval 2
−1

exist. The argument is analogous).

Therefore, for a lease time l , o should be such that

N (2s − 1) + o2s < l ≤ N (2s − 1) + (o + 1)2s .
In other words, an object with lease time l is placed into a

bucket whose contents will be evicted at or after least time l ,



but the contents of all buckets farther down the chain will

be evicted before time l . It follows that

l − N (2s − 1)
2
s − 1 ≤ o <

l − N (2s − 1)
2
s .

The unique integer which satisfies this inequality is⌈
l − N (2s − 1)

2
s

⌉
− 1.

Previously, it was assumed that all buckets were at the

beginning of an interval. In order to account for the time

before the eviction of a bucket’s contents decreasing as the

bucket reaches the end of its interval, an object is placed into

the subsequent bucket if necessary. This is computed by the

adjustment β . The time to eviction of a bucket’s contents is

N (2s − 1) + (o + 1)2s − (i mod 2
s ),

where i is the access number. The i mod 2
s
term is the time

left until the end of the current interval, when the bucket’s

contents will be dumped. Therefore, an object is put into

the subsequent bucket when its lease time is greater than

this value, ensuring that it stays in cache for at least its lease

time. □

Theorem 2. The time an object stays in cache beyond its least
time is at most αl + 1, where l is the object’s lease time.

Proof. Let l be the lease time of an object and let l ′ be the
amount of time it actually stays in cache.

α ≥ 2

N
=

2l
N

l
=

2

(
l
N + 1

)
− 2

l
=

2

log
2

(
l
N +1

)
+1 − 2

l

≥ 2

⌈
log

2

(
l
N +1

) ⌉
− 2

l
=

2
s+1 − 2
l

By Theorem 1, an object is placed into the bucket which is

evicted soonest among those buckets which will be evicted

no sooner than the object’s lease expires. Therefore the lease

can be extended by at most one less than the dumping inter-

val of the bucket into which the object is placed, which can

be of dumping interval at most 2
s+1

. This means that

2
s+1 − 2
l

≥ l ′ − l − 1
l

and therefore

αl + 1 ≥ l ′ − l . □

Theorem 3. Each access has O(1) amortized cost.

Proof. Each access consists of two parts: (1) an object is

placed into its bucket and (2) buckets at the end of their

interval are dumped. The first part takes constant time. The

second part may need to dump up to log
2
L buckets (L is

the maximum lease time), however each dumping interval

of bucket is dumped only half as often as the next smallest

dumping interval. Therefore, the average amount of buckets

that need dumping is at most

∞∑
i=0

1

2
i = 2. □

Theorem 4. The space consumption of the cache is O(M +
N logL), whereM is the capacity and L is the maximum lease
time.

Proof. Space is needed only for the objects in cache (M) and

for each bucket (N logL). □

3 Evaluation
3.1 Experimental Setup
3.1.1 Cache Policies
We compare ideal OSL with 3 practical policies, LRU, 2Q [30],

ARC [42], and 2 ideal policies, OPT [40] and VMIN [48]. LRU
always replaces the least recently used data blocks, so it

captures data recency. However, it does not capture data
frequency. LFU captures no data recency but data frequency,

thus it may accumulate stale data blocks that have high fre-

quency but are no longer used. Many latter cache policies

try to improve upon variants of LRU and LFU. LRU-K [46] ap-

proximates LFU while eliminating its lack of consideration of

data recency by keeping track of the times of the last K refer-

ences to estimate inter-arrival times for references. However,

its implementation requires logarithmic time complexity. 2Q
behaves as LRU-2 but with constant time overhead; therefore,

we compare OSL with 2Q. Another related solution is MQ,

which divides data among multiple queues based on access

frequency [65]. ARC uses an on-line learning rule to tune

cache between data recency and frequency and, empirically,

performs as well as a fixed replacement policy optimized

off-line. A common strategy of 2Q and ARC is to give low pri-

ority to caching streaming or random data accesses. They are

highly effective in practice. According to Waldspurger et al.,

“ARC has been deployed widely in production systems, and

is considered by many to be the ‘gold standard’ for storage

caching." [58].

The optimal algorithm for variable-size cache is VMIN [48].
VMIN takes in a parameter x and the precise future reuse in-

tervals for each access. All data accesses with a reuse interval

less than x will have their data cached until their reuse. Ac-

cesses with reuse intervals greater than x will not be cached.

Optimal caching is achieved by not caching data longer than

strictly needed.

3.1.2 Simulators
We implemented a lease generator (by the OSL algorithm in

Section 2.2.3) with its leases managed by a lease-cache simu-

lator (SEAL in Section 2.3) in RUST. RUST is a safe language

that does not use garbage collection. The extensive static

analysis eliminates important classes of error (including all

memory errors) in the implementation. It has good perfor-

mance as the code is compiled. The generator and simulator



have roughly 500 and 3,000 lines of code, respectively. We

refer to them collectively as OSL cache.
OSL is an ideal policy and runs a trace twice. In training,

the lease generator reads in a trace and computes the optimal

lease for each data block. In testing, the lease-cache simulator

reads in the trace, applies the leases at each access, and

reports a miss ratio. For the lease cache, we set α to 0.5,

which means that a data block stays in cache for no shorter

than their lease and no longer than 1.5 times their lease.

We implemented simulators for LRU, 2Q [30], and ARC [42].
There are different versions of 2Q [30] implementation; we

implemented it as follows. A 2Q cache has two portions.

The two portions are equal sized. One is a First-In-First-Out

(FIFO) queue that stores the data blocks that have been ac-

cessed only once. The other is an LRU queue, i.e. an LRU cache.
Newly accessed data will be placed in the FIFO queue, and
evicts the stale data as the FIFO rule indicates. If a data block
is accessed in the FIFO queue, it promotes to the LRU queue.

We implemented ARC by strictly following the algorithm in

the work [42]. We use the OPT cache simulator from Sugumar

and Abraham [54].

3.1.3 Microsoft Storage Traces
We tested a collection of storage traces collected byNarayanan,

Donnelly, and Rowstron [43]. These traces record disk block

accesses performed by 13 in-production servers in Microsoft

Research’s data-center and have been used in recent stud-

ies [28, 57, 61]. Each server had one or more volumes of

storage. Table 1 provides information on the 13 traces.

3.2 OSL Evaluation
The comparison for 13 MSR tests are divided between Fig-

ure 3 and 4. Each graph shows 6 policies by miss ratios

connected into curves. In all graphs, the miss ratio curves

are separated into three groups. The practical algorithms,

LRU, 2Q, and ARC, form the first group. A recent technique

called SLIDE can reduce many of the miss ratios, which we

discuss in Section 4. However, even with such improvements,

there is a large gap between the practical group and the ideal

policies.

Among the 3 ideal policies, there is a gap between OPT
and VMIN in all graphs except the first four (with the smallest

data sizes) and src1. Of the remaining 9 tests, OSL is similar

to OPT in 6, similar to VMIN in 3, and between OPT and VMIN
in proj.

OPT and VMIN use precise knowledge, whereas OSL uses

statistical knowledge. For 7 traces, the average reuse per data

block is over 12 (as high as 417 in prxy). At all accesses of
the same block, OPT knows the exact time of the next access,

which may differ from access to access. However, OSL knows
only the distribution (which is the same at each access). It is

interesting that OSL almost always performs the same as or

better than OPT using the same (average) space. In particular,

in 3 programs, prxy, stg, and mds, OSL clearly outperforms

OPT. In 3 programs, wdev, rsrch, and usr, OSL is consistently

a little better than OPT. In ts and hm, OSL is worse than OPT

in small cache sizes but becomes better than OPT when the

cache size increases. In src2 and web, OSL starts the same as

OPT, then becomes a bit worse, and finally becomes better.

This is due to the main design differences between OSL and

OPT. We next discuss them one by one.

Support for Variable Working-set Sizes OSL clearly out-

performs OPT in 4 programs, prxy, proj, stg in Figure 3, and

mds in Figure 4. To understand the reason, it is easiest to

consider a program whose working-set size (WSS) varies

significantly from phase to phase.
3
To simply it further, con-

sider a program with an equal mix of two types of phases,

one has a large WSS L and the other a small WSS l . OSL
alternatively uses L and l as the cache sizes. The average is
a value in between. For OPT to fully cache this program, it

needs the cache size of at least L, under utilizing the cache
space in half of the phases. We call this behaviorWorking-set
size (WSS) variance.

Among all MSR tests, prxy and proj have the highest data
reuse, on average 417 and 29 accesses per data block respec-

tively. They also show greatest improvement by OSL over

OPT. In prxy, for the first four cache sizes between 32MB

and 138MB, the miss ratio is 19%, 13%, 9%, and 4% by OPT
but 11%, 0.6%, 0.4% and 0.3% by OSL. The difference is as

large as high as 23 times, suggesting great variance in WSS.

This is corroborated by the steep fall by LRU from 22% miss

ratio at 128MB to 5.3% at 160MB, suggesting a common WSS

within the narrow range. It is also the only program with

Belady anomaly where ARC produces non-monotone miss

ratios, likely caused by the unusual WSS variance.

In proj, the improvement does not come from WSS vari-

ance (no sharp drop in miss ratio in either OSL or LRU). It
shows a different effect — the same data is used in phases far

separated from each other. Being prescriptive (Section 2.1),

OSL keeps data in cache only in these phases. We call this ef-

fectWorking-set variance. The effect of working-set variance
increases with the size of the cache. The test proj has the
greatest demand for cache and hence the largest displayed

cache size (162GB) among all graphs. Between 96GB and

162GB, OSLmiss ratio is between 3.0% and 4.4% (5.2% to 6.2%

relative) lower than OPT, demonstrating that the effect of

working-set variance is most pronounced in large caches.

The tests stg (Figure 3) and mds (Figure 4) mostly contain

blocks that are accessed just once. We compute the average

reuse per data block by dividing the trace length with the

data size in Table 1. For stg andmds, the average use is 1.1 and
1.3 respectively. In fact, they are the lowest among all tests.

It is instructive to consider how a caching policy handles

single-use data blocks. In LRU, such block may cause eviction

of data blocks that have future reuses. In optimal policies,

3
We do not formally define the notions of working-set size and phase. They

are used here in order to explain and contrast OSL and OPT.



Source Domain (# volumes) Trace Name Trace Length #Data Blocks Block Size
Facebook Memcached fb6 5,435,241 524,866 280B

MSR

(13 servers,

36 volumes,

179 disks)

Test web server (4) wdev 3,024,140 162,629

4KB

Terminal server (1) ts 4,181,323 256,922

Research projects (3) rsrch 3,508,103 279,128

Hardware monitoring (2) hm 11,183,061 715,049

Firewall/web proxy (2) prxy 351,361,438 842,095

Source control (3) src2 28,997,811 10,939,638

Project directories (5) proj 599,716,005 325,439,390

Web/SQL Server (4) web 78,662,064 20,563,955

Web Staging (2) stg 28,538,432 22,608,572

Media Server (2) mds 26,169,810 22,965,034

Print server (2) prn 73,135,443 25,928,166

Source control (3) src1 818,619,317 63,864,930

User home directories (3) usr 637,227,335 231,421,475

Table 1. Trace Characteristics

OPT, OSL, and VMIN, this will never happen. In fact, all three

optimal policies knowwhich block is single use. Still, OSL and
VMIN outperforms OPT. The reason is WSS variance. Without

such variance, the two would have the same miss ratio.

OSL outperforms OPT due to the effects ofWSS andworking-

set variances. Among the MSR traces, the effects are greatest

in traces with the least use, stg, mds proj, and with the most

reuse, prxy.

Statistical Clairvoyance To compare statistical clairvoy-

ance with variable size, we denote the following two benefits:

• Let VB be the benefit of variable size over fixed size.

• Let PC be the benefit of precise (exact reuse interval)

over statistical clairvoyance (a distribution).

If we assume the two factors are independent, we have

the following informal performance equations. Here perfor-

mance is the hit ratio, not the miss ratio.

OSL= OPT + VB - PC, where VB = VMIN - OPT
Whether OSL is better or worse than OPT hangs in the balance
of VB vs. PC. The exact VB value is the gap between VMIN
and OPT. In the first 3 graphs in Figure 3, OSL performs the

same as OPT, which means that VB and PC effects cancel

each other. In all others (with larger amounts of data), OSL
outperforms OPT at large cache sizes, showing that the loss
of PC becomes eventually less significant than the gain of

VB. The increasing gains of VB at larger cache sizes are due

to WSS and working-set variation explained earlier.

Fully Reuse Cache Cache achieves maximal reuse when

it loads each data block just once, and all reuses of it are hits.

We call it the fully reuse cache (FRC). To be precise, FRC has

only cold-start misses according to the 3C characterization

by Hill [26], which is best possible cache performance. The

FRC size of a cache policy is an interesting performance

measure. It shows how much cache is needed by this policy

to achieve this best possible performance.

OSL has much smaller FRC size than OPT. In OSL, the life-
time of a data block is always bounded (by the lease of its

last access). In fact, based on statistics, it never assigns a

lease longer than the longest reuse interval of a data block.

Comparing OSL and OPT in Figure 3, we see that OSL has a
smaller FRC size in all except for two. In rsrch, hm, mds, its
FRC size is about half of that of OPT.4 In other words, it takes

OSL half as much space to achieve maximal cache reuse than

OPT can. Another distinction, maybe important in practice, is

predictability of the FRC size. OSL computes the FRC size (by

running the loop at line 25 in Algorithm 2 to maximal target

cost), so does OPT but at a much greater time and space cost,

as described in Section 2.2.5.

OSL with Space-bounded Cache We use two tests, mds
and src2, to show more details in Figure 4. At each miss ratio

of OSL, the graphs show the maximal cache size reached

during the execution. The full range is between 0 and the

maximal size, with the average is the point on the OSL curve.
In addition, we have also tested OSL with space-bounded

cache, in particular, the cache will stop inserting new data

blocks when the size exceeds a given bound.We call it capped
OSL cache. Figure 4 shows the effect of 10% cap, where the

maximal size is no more than at 10% of the average.

It requires more space than we have to show complete

results, but the two tests in Figure 4 show the range of effects.

In mds, the maximal cache size deviates from the average

more as the (average) cache size increases. Capped OSL (by
10%) performsmuchworse than uncapped OSL but converges
to OSL as the cache size increases. In src2, the maximal size

deviates from the average more as the cache size increases.

Capped OSL performs nearly as well as uncapped OSL. Space
variation is important for performance inmds but not in src2.

Memcached The Memcached trace is generated using Mu-

tilate [1], which emulates the characteristics of the ETC

4
From paper [58, Fig. 4], we see the same happens for web.



Figure 3. Performance comparison for 11 MSR traces. See Figure 4 for mds and src2.



Figure 4. Comparison of mds and src2, showing maximal cache sizes and capped OSL

workload at Facebook [3]. ETC is the closest workload to

a general-purpose one, with the highest miss ratio in all

Facebook’s Memcached pools. We set the workload to have

50 million requests to 7 million data objects and select the

trace for size class 6, which has the most accesses among

all size classes. We have tested 3 other size-class traces and

found the graphs (other than the cache size on x-axis) look
identical.

Figure 5. Memcached comparison

Figure 5 shows the performance comparison. Since OPT
performs near the same as VMIN, there is little benefit from
variable-size caching. The trace is generated randomly based

on a distribution, so it has no WSS and working-set variance.

There is a large gap between OSL and OPT due to the lack of

precise information in OSL. These characteristics are opposite
of those of MSR traces.

4 Related Work
Working Set Theory andMemory Management Statisti-

cal caching is a technique of space allocation. This approach

of cache management is motivated by the working set model,

which defines the principle of locality as “the tendency for

programs to cluster references to subsets of address space

for extended periods,” called phases. [17, pp. 143] In 1968,

Denning defined the working set as the pages that were used

in the last window of length T and used it to track the lo-

cality behavior of a program [15]. The working set model

naturally handles phase transitions and utilizes variable-size

memory. For programs with good locality, the working set

model closely approximates the VMIN policy. The model has

numerous uses [16] and is the basis of OS memory manage-

ment [20, 32–34] for over half a century.

The key concepts of the lease cache are related to the

working set theory. OSL uses a constant lease for all ac-

cesses of the same block, which is equivalent to a per-block

working-set parameter T . Like T , a lease is an allocation of

space-time to avoid a cache miss at the next reuse. Proper-

ties of space-time allocation in computer systems have been

well established [11]. We use lease fitting (in Section 2.1) to

calculate the average cache size. In the working set theory,

this is done by summing the space-time of all pages in the

windows T and then dividing the sum by the length of the

address trace [19].

Cache Leases Cache leaseswere initially used in distributed

file caching [24], later in most Web caches [23], and recently

in TLB [4]. The purpose of their leases is different, which

is to specify the lifetime of data in cache to reduce the cost

of maintaining consistency, i.e. the value will not become

stale during the period of the lease. A consistency lease is

assigned per data block, but in the lease cache, the lease is

assigned for every access. The implementation also differs.

The consistency leases do not change the cache size, but

in the lease cache, the cache size is entirely decided by the

leases. Next we focuses on related work in optimal caching.

Variable-space cache As mentioned earlier, the working

set model pioneered variable-space caching in 1960s [15]. In

1976, Prieve and Fabry gave the optimal algorithmVMIN [48].

In the 1970s, Denning and his colleagues showed the formal

relation between the working-set size and the miss ratio for

a broad range of caching policies such as LRU, working-set

cache, VMIN, and stack algorithms including OPT [18, 19, 52].

They gave a formal analysis of the relation between fixed

and variable caching and showed “substantial economies



... when the variation in working set sizes becomes rela-

tive large." [13, Sec. 7.4] Such economies have two benefits:

reducing the miss ratio and / or increasing the degree of

multiprogramming. Many techniques were developed with

this concept, including early virtual memory techniques re-

viewed by Denning [16] and relatively recent work such as

server load balancing by Pai et al. [47]

VMIN is prescriptive and optimal based on precise future

knowledge, while the OSL algorithm in this paper is pre-

scriptive and optimal based on statistical clairvoyance. In

implementation, working-set allocators are usually invoked

periodically, not continuously [41]. Periodic cache manage-

ment does not support fine-grained allocation. The SEAL

algorithm in this paper efficiently supports the lease cache,

where a different lease may be assigned for each access, and

the lease can be arbitrarily long.

Fixed-space cache Optimal fixed-space policy isMIN given

by Belady [6]. Mattson et al. developed the OPT stack algo-

rithm which simulates Belady’s optimal replacement for all

cache sizes in two passes [40]. The high cost of OPT stack

simulation was addressed by Sugumar and Abraham, who

used lookahead and stack repair to avoid two-pass process-

ing and more importantly grouping and tree lookup (instead

of linear lookup) to make stack simulation much faster [54].

The asymptotic cost per step is logarithmic in the number

of groups, which was shown to be constant by experiments.

We used their implementation in our experiments.

More recently, Waldspurger et al. developed scaled-down

simulation in SHARDS, which samples memory requests and

measures miss ratio by emulating a miniature cache using

these samples [57]. SHARDs was later generalized to support

any cache policy including OPT [58].

For hardware caches, Jain and Lin developed a policy

called Hawkeye [29]. Hawkeye keeps a limited history (a

time window of 8x the cache size), uses interval counting (to

target a single cache size), and leverages associativity and

set dueling [50] to compute OPT efficiently with low time

and space cost in hardware. In comparison, scaled-down

simulation uses spatial sampling in software [58].

Past work in performance modeling has solved the prob-

lem of measuring the reuse distance (LRU stack distance),

including algorithms to reduce time complexity [2, 45] and

space complexity [61] and techniques of sampling [51, 63]

and parallelization [14, 44, 51], and the problem of mea-

surement and optimizations for parallel code [31, 35–39].

Recent developments use sampling to measure reuse dis-

tance with extremely low time and space overhead, including

SHARDS [57], counter stacks [61], and AET [28, 62]. Scaled-

down simulation and Hawkeye use sampling to measure

OPT efficiently, and the former also models other policies

including ARC, 2Q and LIRS [29, 58].

OSL is its own performance model. Unlike original OPT

stack simulation which is costly to measure its performance,

OSL is efficient by construction (Algorithms 1, 2 and Sec-

tion 2.2.5). It needs the histogram of reuse intervals, which

can be efficiently sampled as shown by AET and RDX [28,

59, 62], following earlier techniques of StatCache, SLO, and

RapidMRC [7, 9, 21, 22, 56].

Cache Optimization Miss ratio curves (MRCs) are impor-

tant tools in optimizing cache allocation in both software

and hardware caches [12, 27, 49, 53, 55, 64]. Two recent tech-

niques are Talus [5] and SLIDE [58]. Talus partitions an LRU

cache to remove “cliffs” in its performance, and SLIDE, with

scaled-down simulation, enables transparent cliff removal

for stack or non-stack cache policies. These techniques are

not based on OPT, because OPT is not practical, and for

SLIDE, its MRC is already convex.

Hawkeye is an online technique based on OPT. It uses

OPT decisions to predict whether a load instruction is “cache

friendly or cache-averse." [29] Collaborative cache considers

software hints in cache management [60]. Gu et al. gave a

solution for optimal collaborative caching, which uses OPT

to generate cache hints [25]. To make it practical, Brock et

al. used the OPT decision at loop level [10].

By using statistical rather than precise future information,

OSL is less restrictive thanOPT in its optimization. It does not

require the same sequence of accesses in the future, merely

the same statistics.

5 Summary
This paper has presented variable-size caching based on

statistical clairvoyance. It presents OSL which maximizes

cache performance based on statistical information of reuse

intervals for any given cache size. To manage arbitrarily

long leases, we present the SEAL algorithm with constant

time and logarithmic space. When evaluated using data ac-

cess traces based on real-world workloads, OSL consistently

matches or exceeds the performance of OPT. Although OSL

is currently an offline solution, it has solved two practical

problems, namely, efficient optimization and implementation,

which are necessary for any future online solution based on

statistical prediction.
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