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Abstract
Memory allocation is increasingly important to parallel performance,
yet it is challenging because a program has data of many sizes, and
the demand differs from thread to thread. Modern allocators use
highly tuned heuristics but do not provide uniformly good perfor-
mance when the level of concurrency increases from a few threads
to hundreds of threads.

This paper presents a new timescale theory to model the mem-
ory demand in real time. Using the new theory, an allocator can ad-
just its synchronization frequency using a single parameter called
allocations per fetch (apf ). The paper presents the timescale the-
ory, the design and implementation of APF tuning in an existing
allocator, and evaluation of the effect on program speed and mem-
ory efficiency. APF tuning improves the throughput of MongoDB
by 55%, reduces the tail latency of a Web server by over 60%, and
increases the speed of a selection of synthetic benchmarks by up
to 24× while using the same amount of memory.

CCS Concepts •General and reference → Metrics; Perfor-
mance; •Software and its engineering →Main memory;
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1 Introduction
In parallel C/C++ applications, dynamicmemory allocation is ubiq-
uitous, frequent and expensive. Studies of past and recent sys-
tems have found that the time spent in allocation and de-allocation
ranges from a few percent to 30% in many benchmark programs [3,
7, 19, 54]. Furthermore, memory allocation is critical to the scala-
bility of highly threaded applications such asWeb servers [26] and
databases [42].

The design of a memory allocator, as exemplified by
dlmalloc [34], is a balancing act between many overlapping and
even conflicting goals, including speed, low fragmentation, tun-
ability, portability, and compatibility. In concurrent allocation,
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earlier allocators [30, 34] use a shared heap and serialize allocation
and de-allocation using locks. Frequent locking leads to poor scal-
ing [30, 57]. Scalable allocators, Hoard [5], jemalloc [10], tcmal-
loc [16], SuperMalloc [31] and others [14, 49], give each thread a
local reserve, in which allocation and de-allocation are thread lo-
cal and synchronization free. Synchronization is only needed for a
memory fetch, when a thread-local reserve is empty, or a memory
return, when it has too much free space.

Table 1. Execution times of tcmalloc on Intel Haswell and IBM
Power 8 on two tests from [15], running 1 to 256 threads. A fixed
design does not serve all thread counts equally well.

Benchmark/ Exe. time (sec.) for # threads
platform 1 16 64 256

MicroServer Haswell 360 26.9 764 1, 078
Power8 377 30.5 7,015 >3 hrs.

Producer- Haswell 9.79 15.4 79.2 101
Consumer Power8 12.0 9.81 77.2 129

In scalablememory allocations, a basic problem is therefore how
much free space to fetch into a local reserve when it is empty. In
existing allocators, the choice does not depend on the workload.
They follow the tradition and ideal as phrased by Doug Lea that
“[an allocator that is] configured using default settings should per-
form well across a wide range of real loads” [34]. This strategy
is effective in single-thread memory allocation, as evident by the
success of dlmalloc.

In parallel memory allocation, however, one size does not fit all.
Table 1 shows the execution times of tcmalloc [16] on two tests
from [15] running 1 to 256 threads on two machines. As more
threads are used, the running time is reduced but then increased
by two orders of magnitude in the worst case. The allocator works
well for some but not all thread counts.

In this paper, we augment amemory allocator with tuning using
a single parameter called allocations per fetch (apf ). The parame-
ter specifies the target time interval between consecutive fetches
from the central reserve. We use different character styles to dis-
tinguish between the technique and the parameter. APF tuning is
the technique that realizes a given apf . By controlling the fetch
frequency, APF removes contention in memory allocation.

Given an apf , APF keeps just enough free memory in a thread
local reserve — not too little to cause too many fetches, and not
too much to waste memory. To determine this optimal amount,
we use a new theory to quantify the memory demand. The main
contributions of the paper are:

• The timescale theory, which models the dynamic memory
demand using a set of timescale functions, gives the algo-
rithms for linear-time, online measurement of the memory
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demand, and proves its monotonicity, which is needed for
tuning (Section 3).

• Design and implementation of APF tuning, which controls
the size of thread-local reserve for each thread and each
size class in a principled way based on thememory demand
(Section 4).

• Optimal APF, which is an offline algorithm to compute the
optimal local reserve size (Section 5).

• Evaluation, which adds APF in an existing allocator, tcmal-
loc, and evaluates it on two applications and six synthetic
benchmarks for up to 128 threads on two types of machines
(Section 6) for speed, memory consumption, and for a Web
server, tail latency.

In the rest of the paper, we present the objective in Section 2,
the four main contributions in Sections 3 to 6, and related work in
Section 7 before summarizing at the end.

2 Thread-local Memory Reservation
A program has a number of threads. To a memory allocator, each
thread is a sequence of heap operations. For our purpose, we
consider only the operations of allocation and de-allocation, also
called a free or a reclamation. The unit of an allocation or a free is
an object. The memory location holding an object is a heap slot.

A heap slot belongs to a set of pre-defined size classes. Amemory
reserve is a list of free heap slots of the same size class. A parallel
allocator creates for each thread a set of thread-local reserves, one
for each size class. Allocations and frees in thread-local reserves
are synchronization-free. In addition, the allocator has a set of
central reserves, one for each size class, shared by all threads.1

The number of slots in a reserve is the reserve size. When it is
zero, the next allocation triggers a memory fetch from the central
reserve. The number of free heap slots brought in is the fetch size,
which is the initial reserve size. When a local reserve has too many
free slots, it returns some of them to the central reserve. Fetch and
return require synchronization.

Problem Statement We have two goals: memory efficiency and
parallelism. Memory efficiency means to limit the amount of un-
used memory. For memory reservation, we measure the ineffi-
ciency by the total size of all thread-local reserves. This total size
puts an upper bound on the blowup, which, as defined by Berger
et al. [5], happens when a heap slot is available in the reserve of
one thread but cannot be used by another thread which needs to
allocate memory. The second goal, parallelism, is measured by the
frequency of synchronization, i.e., the number of fetches and re-
turns.

We solve an optimization problem: given a desired frequency of
synchronization, how to minimize the free memory in each thread-
local reserve. The solution enables tuning: A user or a tool can
tune the allocator to support a degree of parallelism with minimal
memory reservation.

Allocations Per Fetch (APF) We use capital letters APF to de-
note the technique and the italicized non-capital apf to denote the
numerical value, calculated by dividing the number of allocations
by the number of fetches. APF tuning means trying different apf
values. The measure of apf was first defined in the higher-order
1A reserve is also called a cache. In tcmalloc, each thread has a thread-local cache,
which includes all its local reserves, and a central cache, with all the central re-
serves [16].

theory of memory demand (HOTM) [40], which we discuss in Sec-
tion 3.7.

3 ATheory of Timescale Functions
We formalize the memory demand by defining a set of timescale
functions and using them to represent the dynamic memory de-
mand. For the theoretical development, we consider the memory
demand for a single size class by a single thread.

3.1 From Time Series to Timescale Functions
A timescale is a length of time. A timescale function f (k) is the av-
erage of the per-window measure of all windows of length k . Fig-
ure 1 shows an illustrationwith some heap dynamics, e.g. the num-
ber of live objects, over time in a time series, i.e. a series of data
points indexed by time. Assume that we measure a time window
by the total number of objects live in the time window. The graph
shows three windows of the same length, i.e. the same timescale.
The object count changes from window to window. To find repre-
sentative liveness, we use the timescale function f (k), which is the
average object count for all windows of length k .

time
n1 t t+k

live
data

Figure 1. A time series and three example windows of length k .
A timescale function f (k) shows the average of all windows of
length k .

A timescale function f (k) shows the average (expected value)
for all timescales 0 ≤ k ≤ n, where n is the maximal time length. It
is interesting to compare with a time series, e.g. the one in Figure 1.
The time in a time series increments from 1 and n or from 0 to n−1.
The timescale for such time series ranges from 0 to n. Gradation
comes with representation. Although per window measures are
not monotone, timescale measures are, as shown in Section 3.6.

Next, we define two timescale measures, reuse and allocation,
and use them to compute the memory demand in Section 3.4. For
a direct definition of the memory demand, a reader can refer to the
one at the end of Section 3.4.

3.2 Memory Reuse
Consider the sequence of allocations and de-allocations for a single
reserve. We define the logical time to start at zero and increment
at each event. A time window is specified by the start and the end
events and includes these and all events in between. The length of
a window is its end time minus its start time plus one.

We define a memory reuse in a time window as follows:

Definition 1. Intra-window memory reuse In a time window,
if a new object is allocated a heap slot vacated (freed earlier) in the
window, we call this allocation an intra-window reuse.

The number of intra-window reuses may vary from window to
window. To summarize all reuse behavior, we define the timescale
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measure reuse(k) as the average number of intra-window reuses
in all windows of length k .

A Running Example Consider a simple program that repeat-
edly allocates and frees three objects. It needs three heap slots,
numbered 1 to 3. The execution is an infinite sequence of alloca-
tion and free operations . . . a1a2a3 f3 f2 f1 . . . , where the subscript
indicates the heap slot allocated or freed. This example uses the
convention that the heap slot last freed is first allocated, but the
theory does not depend on this convention.

To simplify the explanation, we use a type of logical time called
the allocation clock, used by Li et al. in theorizing the memory
demand [40]. An execution is a series of allocation and free oper-
ations, but only the allocations increment the logical time. Free
operations happen at the time of the next allocation. At a time
point, there is one and only one allocation, with zero or more free
operations.

Definition 1 counts the reuses in a window, i.e. the number of
the allocations satisfied due to the free operations in the window.
In the running example, the window a2a3 has no free operation, so
the intra-window reuse must be 0. In the window a3 f3 f2 f1a1a2,
the last two allocations reuse a heap slot, so the intra-window
reuse is 2.

It is worth pointing out that the length of a3 f3 f2 f1a1a2 is 3 (not
6) according to the allocation clock. The theory does not depend
on any particular type of logical time. The following definitions
and calculations are given for any definition of logical time.

We next give an efficient solution to measure reuse(k). Let n be
the length of an execution. Hence, x ∈ 1 . . .n. The total number of
windows is quadratic, i.e.

(n
2

)
=

n(n−1)
2 . A direct solution would

take at least quadratic time just to enumerate all the windows. In-
stead, we transform the problem to make it solvable in linear time.

3.2.1 Computing reuse(k) in Linear Time for Any k

Given a trace of n events, reuse(k) is the average number of intra-
window reuses of all windows of length k for 0 ≤ k ≤ n. First, we
view a memory reuse as a free interval:

Definition 2. Free interval If a heap slot is freed at time s and
then allocated at time e , the window [s, e] is a free interval.

For each heap slot at each allocation, there is a free interval
(except for the first allocation to the slot). The number of intra-
window reuses in a window is the number of free intervals that are
contained in the window. The counting of intra-window reuses is
the same as counting the free intervals. We call it interval count-
ing:

Definition 3. Interval Counting per Window For a window
[x ,y], the interval count is the number of contained free intervals,
i.e. interval [s, e] s.t. x ≤ s ≤ e ≤ y.

Interval counting is costly, because the total number of win-
dows is quadratic. The “trick” of efficient counting is to convert
the problem from interval counting to window counting, defined
as follows:

Definition 4. Window Counting per Interval For a free inter-
val [s, e], the window count is the number of enclosing windows, i.e.
window [x ,y] s.t. x ≤ s ≤ e ≤ y.

It is easier to count the enclosing windows for all intervals, be-
cause the total number of intervals is linear (at most one interval
per allocation).

In window counting, an execution is a collection of m free in-
tervals, [si , ei ], for i ∈ 1 . . .m. For a window length k , we classify
these intervals into a number of categories. For example, if the
interval length is greater than the window length k , i.e. [si , ei ],
ei − si > k , the window count is 0. Otherwise, we compute the
specific window count.

Eq. 1 shows the complete solution. The first two lines show the
conversion from interval counting to window counting, and the
remaining two lines show the final result.

reuse(k) =
∑

all windows w (number of free intervals inw)

n − k + 1

=

∑
all intervals [s,e ] (number of windows enclosing [s, e])

n − k + 1

=

∑m
i=1 I(ei − si ≤ k)(min(n − k, si ))

n − k + 1

+

∑m
i=1 I(ei − si ≤ k)(−max(k, ei ) + k + 1)

n − k + 1
(1)

where I(p) is a predicate function that equals 1 if p is true and
otherwise 0. In Eq. 1, I(ei − si ≤ k) selects only free intervals
whose length is k or shorter.

Eq. 1 has a linear time cost,O(m), for any one k . It is quadratic,
O(mn), for all ks. Next, we show a linear-time solution for all k .

3.2.2 Computing reuse(k) in Linear Time for All k
We first separate the numerator of Eq. 1 into three terms:

X (k) =
m∑
i=1

I (ei − si ≤ k)min(n − k, si )

Y (k) =
m∑
i=1

I (ei − si ≤ k)max(k, ei )

Z (k) =
m∑
i=1

I (ei − si ≤ k)(k + 1)

so that

reuse(k) =
X (k) − Y (k) + Z (k)

n − k + 1
(2)



Timescale Functions for Parallel Memory Allocation ISMM ’19, June 23, 2019, Phoenix, AZ, USA

X (1) =
m∑
i=1

I (ei − si = 1)si

X (k) = X (k − 1) −
m∑
i=1

I (si ≥ n − (k − 1))

+
m∑
i=1

I (ei − si = k)min(n − k, si )

Y (1) =
m∑
i=1

I (ei − si = 1)ei

Y (k) = Y (k − 1) +
m∑
i=1

I (ei ≤ k − 1) +
m∑
i=1

I (ei − si = k)max(k, ei )

Z (1) = 2
m∑
i=1

I (ei − si = 1)

Z (k) = Z (k − 1) +
m∑
i=1

I (ei − si ≤ k) + k
m∑
i=1

I (ei − si = k)

In the above, we show the recursive formulas to compute X (k),
Y (k) and Z(k). For brevity, we save derivation getting those for-
mulas. In each recursive formula, the predicate parts could be pre-
computed in O(n) for all ks, so for one single k , X (k) can be com-
puted from X (k − 1) inO(1) time, so X (k) takesO(n) time for all
ks. So do Y (k) and Z(k). Since X (k), Y (k) and Z(k) all take O(n)
time, reuse(k) can now be computed in O(n) for all ks.

TheRunning Example Wecalculate the timescale function reuse(k)
for the running example . . . a1a2a3 f3 f2 f1 . . . , using the defini-
tion. By the allocation clock, a time windowmay start at an alloca-
tion. The frees happen at the time of the succeeding allocation a1.
Since the trace is infinite, there are just three types of windows,
starting at a1,a2,a3 respectively. Let k = 2. When the window
is a1a2, we have two reuses. When it is a2a3, there is no reuse.
For a3 f3 f2 f1a1, there is one reuse. Taking the average, we have
reuse(2) = 1. Following the definition, we see that reuse(k) = k−1
for this example for k ≥ 2.

3.3 Allocation
Liveness measures the amount of data allocated and not freed. At
a time point (a snapshot), liveness is called the population count.
Li et al. extended this definition to a time window and defined
its liveness as the union of the population at all time points of the
window [39]. They defined live(k) as the average population count
in all length-k windows, and hence, a timescale function, defined
formally as follows:

live(k) =
∑

all windoww (number of live objects in w)

n − k + 1

where k ≥ 1.
Consider the running example . . . a1a2a3 f3 f2 f1 . . . live(1) is

the average number of live objects at the time of a memory alloca-
tion. If we use the allocation clock, the number of live objects is 1,
2, 3 at the three time points of the window a1,a2,a3 respectively,
so the average number of live objects at an allocation is live(1) = 2.
In general for this example, we have live(k) = k+1 for k ≥ 1. We
define live(0) = live(1) − 1, which is the number of live objects
before each allocation.

We next use liveness to compute the memory demand and will
discuss its measurement in Section 3.5.

3.4 Demand = Allocation - Reuse
The memory demand is computed as the number of allocations
minus the number of heap slot reuses. In any time window, the
frees supply memory for the allocations. The memory demand is
the number of extra heap slots needed to satisfy all its allocations.
It is the number of remaining “unsatisfied” allocations.

We have already shown that the allocations and the heap reuses
are measured by timescale functions, live(k) and reuse(k). The
memory demand can now be computed using these two functions
as follows:

demand(k) = live(k) − live(0) − reuse(k) (3)

where live(k) − live(0) is the average number of allocations in a
window, and reuse(k) the average number of allocations that are
satisfied due to the frees in the window. The difference is the mem-
ory demand. The memory demand is a timescale function com-
puted from other timescale functions.

When we use the allocation clock, the number of allocations is
simply the length of the window. The memory demand is com-
puted by

demand(k) = k − reuse(k)

Direct Definition of Memory Demand The memory demand
can be defined directly. For each window, if we traverse the win-
dow from start to end and count the number of heap slots occu-
pied at each point, we have a sequence of non-negative numbers.
Take the maximum of these numbers. The demand is the maxi-
mumminus the number of heap slots occupied at the beginning of
the window. The timescale measure demand′(k) is the average of
this demand in all windows of length k .

In fact, demand′(k) = demand(k), i.e. Eq. 3 computes the mem-
ory demand correctly. Both methods calculate the difference of al-
location and reuse. The direct definition computes the difference
for each window and then takes the average. Eq. 3 takes the av-
erage of allocation and of reuse and then computes the difference.
For brevity we omit a formal theorem and proof.

The Running Example Consider the infinite sequence of alloca-
tion and free events . . . a1a2a3 f3 f2 f1 . . . By the allocation clock,
a time window must start and end at an allocation. The frees hap-
pen at the time of the succeeding allocation a1.

We first consider the direct definition ofmemory demand demand′(k).
Since the trace is infinite, there are just three types of windows,
starting ata1,a2,a3 respectively. Forwindows of length 2 or larger,
if we start at a1, the memory demand is zero, since its allocations
are reuses (after the frees). If we start at a2, the initial heap size
is one, the maximal size three, and the memory demand two. If
we start at a3, the initial size is two, the maximal size three and
memory demand one. Taking the average, we have demand′(k) =
0+2+1

3 = 1 for k ≥ 2.
We now show that the timescale functions compute thememory

demand correctly for the running example. As explained earlier,
reuse(k) = k − 1 for k ≥ 2. We have

demand(k) = k − reuse(k) = 1



ISMM ’19, June 23, 2019, Phoenix, AZ, USA Pengcheng Li, Hao Luo, Chen Ding, Pengcheng Li, Hao Luo, and Chen Ding

where k ≥ 2.2

Eq. 3 can be solved in linear time as we have shown, but the
direct definition has no easy solution. It cannot use the idea of
window counting described in Section 3.2. Therefore, a key ad-
vantage of the new timescale theory is that it solves sub-problems
with mathematical functions and the whole problem by combining
these functions.

3.5 Online Analysis
So far the analysis is offline because it computes all timescale mea-
sures once at the end of execution. Online analysis, however, com-
putes them periodically during execution. For an execution of
length n, online analysis computes timescale measuresO(n) times.
The linear-time offline complexity becomes quadratic-time com-
plexity when used online.

In formal terms, the online analysis computes live(n,k) and reuse(n,k),
where n is the current time of execution and k is the timescale. At
each execution point, we compute only one selected k , which can
be any value from 1 to n. Next we show online solutions that take
O(1) time at each execution point for both allocation and reuse.

Liveness As introduced earlier (Section 3.3), liveness measures
the amount of data allocated and not freed. Li et al. gave the fol-
lowing equation to compute live(k) for any k in linear time [39].

live(k) =
∑m
i=1 min (n − k + 1, ei ) −

∑m
i=1 max (k, si ) +mk

n − k + 1

where si denotes the allocation time of object i , ei the death time,
m the number of objects, and n the trace length.

The solution, however, is quadratic time if used online. Fig-
ure 2(a) shows all the five cases when calculating liveness. Up till
the current time n, objects 1, 2 and 3 are dead while objects 4 and
5 are not. The reuse is accomplished for 1, 2 and 3 but not for 4 or
5. Since the online time goes only to n, the death times of objects
4 and 5 are assumed to be n. This approximation of future death
does not impact liveness computation at time n.

timeline
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(a) incremental liveness 

Figure 2. Two examples to illustrate how to compute liveness and
reuse incrementally. A segment of “s-e” denotes an object, where
“s” denotes the allocation time and “e” denotes the death time. A
segment of “e-s” denotes a reuse, where “e” denotes last free of a
heap slot and “s” denotes next allocation to reuse the same heap
slot.

We have derived the online analysis as follows.

live(n,k) =

∑
En−k+1 + (m − #En−k+1)(n − k + 1)

n − k + 1

+
−(#Skk +

∑
Sn −∑

Sk ) +mk

n − k + 1
(4)

2The equality holds also for k = 1. From direct definition, we have demand′(1) =
2/3, because the demand of the three types of windows are 0, 1, 1, when the win-
dow length is 1. From timescale functions, we have reuse(1) = 1/3, and hence
demand(1) = 2/3.

where #Sk the number of allocations before k ,
∑
Sk the sum of

these allocation times, #Ek the number of frees before k , and
∑
Ek

is the sum of these free times. These counters and sums are all
incrementally accumulated in O(1) time. The space complexity is
O(n), where n is total time. If we use the logarithmic scale, the
space cost is O(logn). Figure 3 shows the algorithm to incremen-
tally compute liveness: each step is O(1).

procedure doAllocation
1: ∑sn += n 
2: #sn += 1 
3: m += 1 

procedure doFree
4: ∑en += n 
5: #en += 1 

(a) Notations
n: current time, i.e. a timer  

m: number of objects  

∑si: sum of allocation times before time i 
∑ei: sum of free times before time i 

#ei: number of frees before time i
#si: number of allocations before time i  

k: target window length  

procedure incTimer
6: n += 1 
7: #sn = #sn-1 
8: ∑sn = ∑sn-1 

10: ∑en = ∑en-1 

procedure doLiveness
11: i = n-k+1 
12: tmp1 = (m - #ei) × i +∑ei

13: tmp2 = #sk × k + ∑sn - ∑sk

14: return (tmp1-tmp2+m×k)/(n-k+1)

(b) Algorithms

9: #en = #en-1 

Figure 3. Online live analysis implementing Eq. 4

Reuse In incremental liveness analysis, it knows exactly what to
do at each allocation and free, because the present computation
does not depend on the future. However, it is not the case for
memory reuse. For example, in Figure 2(b), at time point k when
two reuses 2 and 4 have not happened, we cannot count them in
the online calculation because we do not know if they will happen
before the next fetch. We do not know the reuse of 2 until time
u. Because u is before n, this reuse should be counted before next
fetch. Then, we have to go back to update in the equations of time
points between v and u at latest at time n, which is not O(1) cost.
To be O(1), the online solution at k has to be future-independent,
which is impossible. Hence, incremental reuse analysis is impossi-
ble. Instead, we solve the problem through sampling.

In bursty sampling, an execution is periodically analyzed for a
period, called a burst, and every two consecutive bursts are sepa-
rated by a hibernation period [2, 6, 22]. We use bursty sampling
as follows: in a burst, we collect all reuse intervals and then calcu-
late the timescale reuse using the offline algorithm in Section 3.2.2.
This reuse will be used until the next burst. Since the offline algo-
rithm is linear time, the amortized time complexity isO(1) overall.
The limitation is that the reuse is measured for the sampling pe-
riods, not the whole execution. In practice, we can trade cost for
accuracy by choosing the length of burst and hibernation periods.

3.6 Monotonicity
A formal property is that the demand for memory is greater in a
larger timescale, as stated by the following theorem.
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Theorem3.1. (DemandMonotonicity)The timescale function demand(k)
defined in Eq 3 is monotonically non-decreasing, assuming the trace
length n ≫ k .

Proof. We use demand(k, i) to denote the memory demand of the
length-k window starting at i . We use the allocation clock here, so
i denotes the i-th allocation.

First, for ∀i , demand(k + 1, i) ≥ demand(k, i) holds. Consider
the window of length-(k +1) starting at i and its last allocation. If
the allocation reuses a slot freed in thewindow, demand(k+1, i) =
demand(k, i), otherwise demand(k + 1, i) = demand(k, i) + 1.

Then,

demand(k + 1) =
1

n − k

n−k∑
i=1

demand(k + 1, i)

≥ 1

n − k

n−k∑
i=1

demand(k, i)

≈ 1

n − k

n−k+1∑
i=1

demand(k, i)

≥ 1

n − k + 1

n−k+1∑
i=1

demand(k, i)

= demand(k)

The reason for approximate equal is that when n ≫ k , the de-
mand of the last length-k window, demand(k,n − k + 1), which is
at most k by itself, contributes approximately zero to the average
when n is sufficiently large. □

We call the property demand monotonicity. From Eq 3, the prop-
erty is equivalent to live(k+1)− live(k) ≥ reuse(k+1)− reuse(k).
Another corollary of demand monotonicity is APF monotonicity,
to be discussed in Section 4.

3.7 Comparison with HOTM
This section builds on higher-order theory of memory demand
(HOTM) [40]. In particular, it uses the definitions of apf (called
the peak demand pd) and reuse from HOTM. However, HOTM
does not show how to measure the memory demand. The mea-
surement problem is solved in this section, with new, linear-time
offline (Eq. 1 for single k and Eq. 2 for all ks) and online analysis
of reuse and new online analysis if live (Eq. 4). The presentation of
timescale measures in Section 3.1 is also new. Furthermore, HOTM
did not show demand monotonicity, which is important for APF
tuning.

The timescale measure shows the average memory demand, it
ignores the variation in actual memory demand. The average de-
mand may not be the actual demand in any specific window, e.g.
those in the illustration in Figure 1. The next section addresses
the demand variation, unavoidable when adopting APF in a real
memory allocator.

4 APF-based Memory Reservation
APF-based memory reservation is to set the initial reserve size, at
each fetch, equal to the memory demand of the next window of apf
allocations. This is the best reserve size: a greater value will use
morememory, and a lesser value will cause a fetch from the central

cache before making apf allocations. As mentioned earlier, APF is
the technique for memory reservation, and apf its parameter.

Per-thread, Per-class Control of Reserve Size The apf value is
set globally for all threads and all size classes. The reservation is
customized for every size class of every thread based on the mem-
ory demand, which we measure using the online timescale theory
(Section 3). When the same apf is satisfied for every thread and
every size class, it is satisfied for the entire application.

Adaptive Control APF reservation takes in as the parameter the
target apf and the memory demand demand(k). For adaptive con-
trol, it adjusts the dynamic apf. In this discussion, we call the over-
all target and the dynamic target Tapf and Napf respectively. Let
the current time be n and the number of fetches so far c . Since the
global target is to have c + 1 fetches in Tapf × (c + 1) allocations,
we set the dynamic target as follows.

Napf = Tapf × (c + 1) − n (5)

If the right-hand side is 0 or negative, we set Napf to Tapf.3
Figure 4 illustrates the adaptive control. The “timeline” at the

bottom is punctuated by two sets of markings. The first are even-
space marks of Tapf per interval. The second are irregular spaced
marks showing when the local reserve becomes empty. The adap-
tive control sets the initial reserve size at the beginning and when-
ever the reserve becomes empty. They are computed by Eq. 5 and
shown by stars followed by a line segment.

empty empty

timeline

synchronization point memory empty next estimation periodpreset period length

empty empty
timeline

fetch point memory empty dyn. apftarget apf

empty emptyempty

Figure 4. Illustration of adaptive control. The timeline shows two
sets of markings: Tapf intervals and actual points when the reserve
is empty. The adaptive control increases or decreases Napf (shown
by the starred lines) to achieve Tapf.

The control so far is about memory fetch. We handle the return
as follows. At every free operation, we check whether the number
of available slots equals 2×demand(Napf)+1, and if so, we return
demand(Napf) + 1 slots to the central reserve.

Adaptive vs. Fixed Control The timescale theory measures the
average behavior in allocations and frees. We may set a fixed con-
trol to always fetch demand(Tapf). The fixed strategy may miss the
target given some adversarial pattern. More commonly, an execu-
tion may have phases with radically different memory demands.
During each phase, the adaptive control can actually behave like
the fixed control but set the reserve size properly for the current
phase.

3At the beginning of an execution, demand is not yet known. Any existing heuristic,
e.g. tcmalloc, may be used. In a steady state, the initialization does not matter to
performance.
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APF Monotonicity The property states that a larger apf value
means less synchronization andmore parallelism. A larger apf means
a larger initial reserve size. It follows from Theorem 3.1 that this
satisfies the memory demand of more allocations and hence fewer
memory fetches.

5 Optimal Memory Reservation
We have developed an offline optimal solution to measure the per-
formance upperbound of any technique. The optimization prob-
lem is formulated for a single size class. Given m as the number
of transfers, including fetches and returns, allowed in execution,
what is the lowest memory inefficiency? Here a fetch may happen
at any time, not just at an allocation when a local cache is empty.
Let the length of the execution be n. We have

(n
m
)
ways to placem

transfer operations. For each choice, we have 2m cases since each
communication is either a fetch or a return. For each communi-
cation, the maximal volume to transfer is n. Hence, a brute force
solution needs to evaluateO(

(n
m
)
×2m ×n) choices. In this section,

we give a more efficient solution.

0
1
2
3
4

(a) gap is 7 (b) gap is 5
0
1
2
3
4

Figure 5. Two placements of 3 roofs over 7 bars. Dashed lines
denote roofs. The second placement has less gap.

We convert the optimization problem into the following prob-
lem. Suppose we have a bar graph. The height of each bar is the
number of live objects. The number of bars is n, which is the to-
tal time. Our goal is to usem segments (or rooflines) to cover the
n bars to minimize gap between the roofs and the bars. Figure 5
gives an example to illustrate this problem. In Figure 5, there are
7 bars and 3 rooflines. (a) and (b) show two placements. The two
gaps are 7 and 5, respectively. Thus the second placement is better.

Now we convert the “roofing” problem into the optimization
problem. The first roofline shows that the first communication is a
fetch and its height shows the fetch size. The next fetch initiates a
new communication. If the next roofline is lower than the previous
one, the communication is a return; otherwise, it is a fetch. The
height difference is the fetch or return size. Hence, once we have
m rooflines over n bars, we know exactly when to communicate
and and how much to communicate in which direction. Next we
solve the “roofing” problem optimally.

We use dynamic programming [55]. Eq. 6 shows the optimal
substructure of the solution:

minGap(m, n) = min
i=m−1. . .n−1

{minGap(m − 1, i)

+ oneRoof Gap(i + 1, n)}
(6)

whereinminGap(m,n) calculates the minimal gap usingm roofs to
cover bars from 1 to n, and oneRoofGap(i, j) calculates gap value
of using one roof to cover from bar i to bar j. To understand it,
consider the last roofline. Its left endpoint ranges from m to n.
We select the minimal gap among all results of this range of roofs.
For the oneRoofGap(i, j) calculation, it is the height of highest bar
between bars i and j. With this optimal substructure, a dynamic

programming algorithm follows. We do not describe the algorithm
here. The time complexity of the optimization is O(n3).

6 Evaluation
6.1 Experimental Setup
APF-based tcmalloc We implemented APF based on
tcmalloc [16] by replacing all the heuristics based code control-
ling thread-local cache (see the following) and part of the code of
central cache. In each thread for each size class, APF measures the
memory demand online as described in Section 3 and sets the re-
serve size as described in Section 4. The rest of the allocator design
stays the same. For example, large objects are allocated directly by
mmap or sbrk from OS [16]. The same theory and control may be
used by other allocators or a new allocator. Using a base allocator
is necessary for us to cleanly compare the new techniques with
prior state of the art.

tcmalloc and Other Allocators Our choice of tcmalloc as the
base allocator is motivated by the fact that it is one of the most
widely used, it performs well in tests, and it is the default allocator
for our largest test program MongoDB.

tcmalloc uses a number of thresholds to control the time and
space cost. Themost important are batch size and overall cache size.
The batch size controls the granularity of fetch, i.e., initial reserve
size after a fetch. It is carefully tuned and fixed to 64KB. The over-
all cache size bounds the total reserve size. The overall cache size
is the only parameter under user control. When a user increases
overall cache size, program performance usually increases, but the
benefit stops at a point when the fixed batch size (64KB) becomes
the limiting factor. Unless otherwise noted, the evaluation reports
tcmalloc after individually tuned for each test and thread count for
maximal performance.

If overall cache size is limited, tcmalloc uses various thresholds
and heuristics to re-size the reserves. These include memory steal-
ing, garbage collection, scavenging, and “per-list low-water-mark”,
which is used to “quickly move free chunks from the thread cache
to the central free list” when “a thread stops using a particular
size.”[16].

We also compare with Hoard [5], jemalloc [10] and
ptmalloc-v3 [15], which is based on dlmalloc [34] and serves as
the default allocator of Linux glibc. Like tcmalloc, other alloca-
tors use global parameters to control the size of local reserves. The
comparison with them is not a clean comparison, because the per-
formance may differ due to other aspects of the allocator design.

Methodology We measure performance and memory consump-
tion. Memory consumption is the total size of reserves. We use
the average, measured by taking the total size of the reserves at
each allocation and computing the average.

Our test programs all have the steady-state behavior and run for
a long time. The online profiling of demand(k) is done in a burst
of 20,000 allocations, and performance is measured in the steady
state after profiling.

We measure each test 5 times and take the average. If the devi-
ation from the average is significant, we may use up to 10 runs to
take the average. Except for the cost of fetch and return, all exper-
iments are performed on a machine with two Intel Xeon E5-2699
2.30GHz (Haswell) processors. Each processor has 18 cores, and
each core supports two hyper-threads. The machine supports 72
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hardware threads. The OS is Linux kernel 3.18.7. All allocators
(and tests) are compiled by GCC using “-O3 -g”. The cost of fetch
and return is also measured using a IBM Power 8 machine, with
two 10-core processors, with 64GB of RAM. Each core is running
at 4.1GHz, with 8 threads per core. The OS is CentOS 7 Linux with
kernel version 3.10.0.

6.2 MongoDBThroughput
MongoDB [25] is a popular open-source NoSQL database. It adopts
a thread-per-connection architecture. In each connection, a thread
allocates memory to store key-value pairs of documents, and the
memory allocationmanifests various, drastically different demands [17].
MongoDB by default uses tcmalloc as its custom memory allo-
cator. The thread-per-connection architecture may lead to very
large numbers of threads in certain workloads, in which case per-
thread caching could incur excess memory consumption, and the
performance of the memory allocator is critical to the overall per-
formance [24].

MongoDB workloads provide multiple configurable input pa-
rameters, such as the number of connections, request document
size, the number of requests and request type. Our first workload is
iiBench. We followed Callaghan’s test design [23] by inserting 100
million documents to MongoDB. We tested both fixed document
size, 1024 bytes, and variable size that follows a random distribu-
tion. We have also tested a second workload, the Yahoo! Cloud
Serving Benchmark (YCSB) [58], and found similar results, which
we omit for lack of space. The two workloads were run with 1 to
128 concurrent connections.

APF Effect Curve Increasing apf increases the parallelism of
memory allocation. We tune apf from 1 to 10,000.4 As Figure 6(b)
shows, greater allocator parallelism causes the allocator to usemore
memory but MongoDB to run faster. Both thread counts show a
sharp increase at the beginning. For 16 threads, it is followed by
a slow incline and a plateau. For 32 threads, the increase is muted
at first but starts to accelerate towards the end. Hence, 16-thread
MongoDB does not benefit from continued increase in allocator
parallelism, but 32-thread MongoDB does.

Similar effect is shown in Figure 6(c) when MongoDB serves
variable size documents. It has a similar throughput but nearly
10 times the memory consumption. In both thread counts, the
throughput drops after reaching the peak when the reserve size
exceeds 4000 slots. While the allocator parallelism continues to
increase, its benefit in the overall MongoDB throughput is out
weighed by the cost of greater memory consumption. The detec-
tion is simple since it is a single turning point with monotone
changes on both sides.

Multi-objective Tuning We demonstrate tuning for three objec-
tives: maximal performance, which is MongoDB throughput;mem-
ory efficiency, which is the increase over tcmalloc in throughput
for similar reserve size; and memory saving, which is the reduc-
tion over tcmalloc in reserve size for similar performance. In Fig-
ure 6(b,c), (untuned) tcmalloc performance is shown as squares.
The three types of tuning has geometric explanations. Formaximal
performance, we find the highest point of the curve. For memory
efficiency or saving, we find the point on the curve whose x-axis

4The apf values used are 1 2, . . . , 10, 20, . . . , 100, 200, . . . , 1000, 2000, . . . , 10000.

or y-axis value equals to that of tcmalloc. These are marked by
stylized points.

Figure 6(a) tabulates the effect of MongoDB on iibench with
equal-size documents using six different thread counts between
1 and 128.5 For maximal performance, APF increases the whole-
application throughput by 11% to 55%. It costs more memory to
improve at higher thread counts — the increase in reserve size is
less than 2 times for 1 and 4 threads, less than 4 for 16 to 64 threads,
and 10.6 for 128 threads.

Tuning improves over tcmalloc. With less memory, APF im-
proves MongoDB throughput by at least 8% and for as high as 26%.
The memory saving is more dramatic: APF uses just 3% to 10% of
the reserve size to achieve a similar throughput.6 Such large re-
ductions, between 10 times and 33 times, allow MongoDB launch
many more connections.

6.3 Tail Latency
Tail latency, e.g., 99th+ percentile, is important in interactive Web
services, such as search, recommendations, games, and finance.
For example, a study on a system called Few-to-Many (FM) found
that by reducing the 99% tail latency by 26% for Bing, the number
of servers can be reduced by 42%, and as a result, FM has been
deployed on thousands of production servers [21]. FM and other
systems, Request Clairvoyant (RC) [28] and TPC [27], reduce tail
latency by incremental parallelism, i.e., parallelizing long-running
requests.

If the long running time is caused by the worst-case cost of
memory allocation, these solutions are effective only if the allo-
cator responds well to adding more threads. In parallel allocation,
the worst-case cost comes from fetches and returns because they
require synchronization. In tcmalloc, the worst-case cost also
comes from the running of memory-stealing heuristics. Adding
parallelism may actually increase rather than reduce these worst-
case costs, because it increases the contention on the allocator. In
this section, we evaluate the effect of APF on tail latency.

OlioWeb Server We test theCloud-StoneWeb Serving benchmark
in the CloudSuite [12]. The client generates a workload for a server
called Olio by simulating 100 users and sending 7 types of requests
in parallel for 600 seconds, with a warm-up period of 30 seconds.
The client runs in 100 threads on a separate machine (Intel 3.4GHz
8-core machine with 8GB memory and Linux 2.6.32). Olio runs on
the Intel Haswell machine described earlier, where we also run a
database and a geocoder backend. Olio is written and runs multi-
threaded PHP. The test is the PHP runtime on the server with 4
threads. We replace the default memory allocator of PHP with tc-
malloc, APF-based tcmalloc, and three other allocators. Running
100 users does not overload the system, so we measure the perfor-
mance only by the response time.

Tail Latency of Olio We test the Web server Olio for 7 opera-
tions: AddPerson,Homepage, Login, EventDetail,AddEvent,PersonDetail,
and EventDetail. Among them, AddPerson and AddEvent take the
longest time, and their response time depends most on memory
allocation. Figure 7 shows AddPerson using APF-based tcmalloc

5For two thread counts, similar improvements for variable-size documents are shown
by stylized markings in Figure 6(c).
6Note that tcmalloc is tuned to use as much memory as it needs to improve through-
put (Section 6.1).
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Figure 6. APF and tcmalloc on MongoDB for iibench for equal-size documents (a,b) and variable-size documents in (c). The table in (a)
shows multi-objective tuning: performance and memory efficiency increase/saving (compared with tuned tcmalloc for similar reserve
size/performance).

with apf s from 1 to 500, followed by original tcmalloc and three
other allocators.

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Response time of AddPerson

allocations per fetch (APF)

re
sp

on
se

 ti
m

e

1 5 10 50 100 200 500 tc je hoard pt

●

99.9th percentile
99.5th percentile
99th percentile
average

Figure 7. The average and 99th+ percentile response time (sec-
onds) of the AddPerson request to Olio.

Compared to original tcmalloc, the best tuned APF reduces the
99%, 99.5%, and 99.9% tail latencies by 61%, 49% and 40%. As in
other tests, we have tuned tcmalloc by increasing the overall cache
size from the default 32MB till there is no more performance im-
provement (2GB).

Memory allocation has relatively mild effects on the average
latency, which is between 0.15 and 0.17 seconds in APF (for all
apf s) and original tcmalloc. Still, the best tunedAPF, 0.146 second,
is 7% faster than original tcmalloc.

Tail Latency of MongoDB We test the 99% tail latency for the
YCSBworkload onMongoDB. apf tuning is consistently better than
the best tuned tcmalloc. At small thread counts from 1 to 16, the
improvement by apf is moderate, 5% on average, with average re-
serve size of just 57% of original tcmalloc. However, at thread
counts from 32 to 128, the improvement increases to 51%, indicat-
ing that apf tuning would be extremely effective in high through-
put server applicationswhich routinely run hundreds of thousands
of threads simultaneously.

Reducing Worst-case Time by APF APF has four advantages
over heuristic-based solutions such as the ones used in original tc-
malloc. First, nonuniform reserve size improves memory utiliza-
tion. Second, APF eliminates the cost and complexity of heuristics.
There is no complex heuristic to evaluate. In comparison, tcmalloc
uses them occasionally, e.g. for memory stealing, and as a result in-
creases the worst-case time. Third, in highly concurrent memory
allocation, the worst-case allocation time is far greater than the
average time because of the cost of fetch and return operations.
APF directly controls the frequency of these fetch and return oper-
ations. Finally, it is necessary to tunewithout a limit on the reserve
size, as it is by APF. In comparison, tcmalloc, due to design con-
siderations, uses the 64KB fixed-reserve design. Therefore, if the
tail latency is caused by the worst-case cost of memory allocation,
APF is an effective alternative.

6.4 Synthetic Tests
Synthetic benchmarks were widely used to evaluate memory allo-
cators. We have tested six such tests: MicroServer and Producer-
Consumer that are based on t-test1 and t-test2 from ptmalloc [15]
and larson, threadtest, shbench from Hoard [5] and SuperServer
from SuperMalloc [31]. For lack of space, we focus on three: Mi-
croServer, whose threads do not share objects; ProducerConsumer,
whose threads do; and SuperServer, whose objects have diverse
sizes. All three simulate multi-threaded server applications. We
use the default input. Table 2 profiles their memory allocation be-
havior.

The synthetic tests are useful to estimate the cost of fetch and re-
turn in a parallel memory allocator. Table 3 shows the time costs of
fetch and return operations compared to allocation and free oper-
ations in original tcmalloc. The first three data columns show the
ratios in total times of these operations, and the last two columns
the ratios of per operation times. The total time of fetches and re-
turns accounts 30% or higher of all allocator time in 5 tests. The
per fetch/return cost is highly variable across all 6 programs on
the 2 test machines. Because of the magnitude and variation, it is
important for an allocator to provide effect control over fetch and
return costs. APF is effective for such control.
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Table 2. The total size and maximal live size of memory allocation in the 6 test programs running with 1 thread and with 16 threads. The
many differences between the programs show that they cover a wide range of memory allocation behavior.

Benchmarks Total objects Max objects Total memory Max memory Avg. object Total / maxin use in bytes bytes in use size(bytes)

MicroServer 1 5,407,871,972 550 28,957,915,488,6 3,024,016 5,354.77 9,575,979.59
16 5,033,013,605 592 26,940,580,225,600 3,118,448 5,352.77 8,639,098.75

Producer- 1 241,710,885 807 1,294,237,246,112 4,550,176 5,354.48 284,436.74
Consumer 16 241,749,923 826 1,294,524,983,008 4,582,656 5,354.81 282,483.56

SuperServer 1 6,000,000 600,000 192,000,000 192,000,000 32 1
16 96,000,000 80,352,493 3,072,000,000 2,571,284,032 32 1.19

threadtest 1 5,000,000,000 500,000 320,000,000,000 32,000,000 64 10,000
16 5,000,000,000 422,352 320,000,000,000 31,095,712 64 10,290.81

shbench 1 3,231,100,000 153,960,005 183,756,800,000 8,813,425,904 56.87 20.85
16 3,231,100,016 153,885,012 183,757,717,504 8,717,986,792 56.87 21.08

larson 1 145,112,458 1,033 1,279,995,330,856 9,764,080 8,820.71 131,092.26
16 48,012,675 16,035 423,542,580,744 143,844,592 8,821.47 2,944.45

Table 3. The time of fetch/return operations compared to allocation/free operations. The first three data columns show the ratios in total
times of these operations, and the last two columns the ratios of per operation times. Because of the magnitude and variation of costs, it is
important for an allocator to limit the frequency of fetch/return in parallel memory allocation.

Benchmarks fetch
alloc.+fetch

return
free+return

fetch+return
alloc.+fetch+free+return

avg.fetch
avg.alloc.

avg.return
avg.free

MicroServer Haswell 0.26% 0.09% 0.18% 182.34 186.65
Power8 0.16% 0.04% 0.10% 114.29 81.63

ProducerConsumer Haswell 30.77% 36.82% 33.83% 53.03 240.08
Power8 19.35% 27.80% 23.62% 27.36 152.79

SuperServer Haswell 79.75% 83.31% 81.55% 821.09 2841.39
Power8 70.56% 76.40% 73.29% 503.46 1831.74

threadtest Haswell 4.87% 5.23% 5.03% 5264.82 7810.76
Power8 1.72% 1.74% 1.73% 1809.99 2483.60

shbench Haswell 13.74% 16.44% 15.05% 88.59 141.34
Power8 9.06% 14.48% 11.76% 55.27 120.74

larson Haswell 47.16% 57.71% 52.83% 71.63 342.83
Power8 24.91% 36.67% 31.07% 31.78 173.86

Table 4. Effect of APF on MicroServer, ProducerConsumer and SuperServer on performance and memory consumption.

Tuning objectives MicroServer ProducerConsumer SuperServer
and effects 16 32 64 128 16 32 64 128 16 32 64 128

Maximal rel. speed 1.06 1.13 84.53 154.53 2.49 7.97 18.96 29.69 1.37 1.17 1.46 1.46

performance rel. mem. 1.21 2.93 2.40 2.49 1.56 2.17 8.09 10.73 0.89 0.94 0.76 0.93
apf 200 900 300 300 700 400 800 600 500 500 400 500

Memory rel. speed 1.06 0.94 5.67 24.35 2.29 5.90 12.28 12.37 1.37 1.17 1.38 1.46

efficiency rel. mem. 1.21 0.94 0.97 0.91 0.90 0.95 0.96 1.00 0.89 0.94 0.95 0.93
apf 200 80 6 5 300 100 30 30 500 500 300 500

Memory rel. speed 1.00 1.01 5.11 9.22 1.29 3.03 5.79 7.92 0.96 0.99 1.16 1.19

saving rel. mem. 0.51 0.50 0.24 0.24 0.10 0.19 0.44 0.70 0.35 0.37 0.38 0.37
apf 50 7 4 1 5 5 5 5 200 200 200 200

6.5 Effect of APF Tuning on Synthetic Tests
The performance of synthetic tests is measured by the throughput
which is the number of allocations per second. We compare the
performance of tcmalloc with and without APF for three tuning
objectives7 for four thread counts: 16, 32, 64, and 128. The total

7For the objectives of memory efficiency and memory saving, we choose the apf val-
ues which have the closest memory cost and speed, respectively.

number of tests for six programs is 24. To save space, we show 12
tests for three benchmarks.

Tables 4 shows that when tuned for maximal performance (by
using more memory), the throughput is increased between 6% and
154 times. The increase is over 10 times in 9 out of 24 tests. The
correspondingmemory increase is smaller, over 10 times in 5 out of
24 tests. The most dramatic improvements happen at high thread
counts, i.e., 64 and 128 threads. Over half of the tests (7 out of 12)
are improved by 10 times or more, and over half of those increases
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are over 50. The minimal improvement is 64% in SuperServer and
the greatest are 154 times in MicroServer and 111 times in larson.

When APF uses a similar amount of memory as original tcmal-
loc, it improves performance in 19 of the 24 tests. The improve-
ment ranges from 17% in SuperServer at 32 threads to 12.4 times in
ProducerConsumer at 128 threads. Themost improvements happen
at 128 threads. Half of the programs are improved by 9 times or
more: shbench by 9.4 times, ProducerConsumer by 11.4 times and
MicroServer by 23 times.

Except for one program threadtest and one case (larson at 16
threads), APF can be tuned to have similar performance as original
tcmalloc but save memory significantly. The minimal reduction is
30% at 128 threads in ProducerConsumer. The next smallest reduc-
tion is 49% at 16 threads inMicroServer. The remaining 19 memory
savings are between 50% and 81%.

The apf values for the 12 tests are shown in Table 4. For differ-
ent programs and tuning purposes, the actual apf varies greatly.
The performance is sensitive to the most significant digit of the
apf . The tuning effort is proportional to the logarithm of the apf
range.

Comparisonwith tcmallocTuning In 13 out of 24 tests, tcmal-
loc can be improved by increasing overall cache size from 32MB to
2GB. Figure 8 shows the improvement of tuned tcmalloc and APF
over default tcmalloc. Results show that APF improves tcmalloc
by 22% on average, always greater than the improvement from tc-
malloc tuning.

Figure 8. Original, tuned, and APF-based tcmalloc

Comparison with Other Allocators and Optimal Table 5 com-
pares the performance betweenAPF and other allocators on iibench
on MongoDB. jemalloc achieves similar throughput as tcmalloc
with 16 and 32 threads. Hoard has similar performance as tcmal-
loc with 16 threads, but has 25% less throughput than tcmalloc
with 32 threads. Synthetic tests show the same ordering of per-
formance among the three allocators (which we omit for lack of
space).

Figure 9 compares APF with the optimal solution. In all cases,
APF has the same trend as optimal. It is very close to the optimal
solution and near identical in two programs.

Table 6 compares APF-based tcmallocwith three othermemory
allocators, ptmalloc, Hoard, and jemalloc. Compared to original
tcmalloc, APF has 4.19× speedup as opposed to 0.26× of ptmal-
loc, 1.22× of Hoard, and 2.57× of jemalloc. APF is consistently

Table 5. The throughput speedup of 4 allocators, normalized to
original tcmalloc on iibench running with 16 and 32 threads.

Workloads APF Hoard ptmalloc jemlloc
iibench (equal,16) 1.29× 0.99× 0.52× 1.01×
iibench (varied,16) 1.25× 0.97× 0.74× 1.02×
iibench (equal,32) 1.43× 0.72× 0.55× 0.94×
iibench (varied,32) 1.19× 0.76× 0.59× 1.01×
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Figure 9. APF versus optimal. Due to the cubic time complexity of
optimization, the comparison is shown for a single size class. The
x-axis, communication frequency, counts both fetches and returns
of APF.

Table 6. The throughput speedup of 4 allocators, all running with
64 threads. Three of ptmalloc’s tests took too long time, whose
speedups are marked 0×.

Programs APF Hoard ptmalloc jemlloc
MicroServer 5.11× 1.40× 0.66× 3.14×

ProducerConsumer 12.28× 1.92× 0.90× 8.04×
SuperServer 1.25× 0.42× 0.00× 1.07×
threadtest 2.21× 1.46× 0.02× 0.88×
shbench 2.89× 0.54× 0.00× 0.74×
larson 1.42× 1.59× 0.00× 1.33×
average 4.19× 1.22× 0.26× 2.57×

good. Hoard behaves better in four programs, but worse in the
other two, compared to tcmalloc. The comparison is unfair in
that the other allocators are not tuned for these tests. However,
for this paper, the comparison is valid, because our goal is to show
the advantage of tuning. In all allocators, a default configuration
does not work well for all programs. In high concurrency, it has
pathologically bad performance for all programs. For applications
that spend much time inside memory allocators, e.g., ProducerCon-
sumer, tuning is extremely beneficial.

6.6 Summary of Experimental Findings
First, to fully control allocator parallelism and memory efficiency,
it is necessary to individually control per-thread, per-size-class re-
serve size, and this control should be tailored for each workload.
The precise and complete control can significantly improve the
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throughput and reduce the tail latency especially for programs
with many parallel threads.

Second, online timescale theory is efficient and effective. Its
algorithms take a constant number of operations per allocation. It
achieves near optimal control when compared with the optimal
offline algorithm.

Third, APF tuning is not overly onerous. APF monotonicity en-
sures that the allocator parallelism increases with apf. Manual tun-
ing can cover the full APF effects by trying a handful of apf values.
In “tuned” results reported in this section, the apf values are all
round numbers (only the first one or two digits are not zero). The
tuning effort is proportional to the logarithm of the apf range.

Finally, APF tuning is flexible and effective. It enables a user to
select the desirable tradeoff, for example, maximal throughput, ef-
ficient memory use, or minimal memory. It can be used for legacy
applications, replacing the original allocator with one that has APF
tuning.

The alternative to tuning is automatic optimization, which is
unlikely effective for three reasons. First, the allocator is only
one component of the host application. APF monotonicity does
not mean monotone improvement. Second, APF effect curves are
never linear and all have different shapes, even for the same ap-
plication and the same input. Third, a user may have different
objectives in the trade-off between performance and memory con-
sumption.

In comparison, tcmalloc and other allocators use the same global
parameters and thresholds, e.g. the batch size, for all threads and
size classes. They lack the granularity and precision of APF. In ad-
dition, we found that tcmalloc spends significant time in running
its heuristics, especially at high thread counts.

7 Related Work
Scalable allocators such as Hoard and the subsequent solutions [5,
10, 14, 16, 49, 51] adopt a layered organization with thread-local
caches and global heaps. A most recent allocator called scalloc [1]
uses a flat cache hierarchy.

Thread-local caches and their size classes cannot reuse each other’s
memory directly. To ameliorate, tcmalloc [16] and Hoard [5]
both fetch or return a fixed number of objects on-demand. The
difference is that tcmalloc uses many collaborated heuristics to
tune when to communicate, while Hoard delegates the decision
to users. jemalloc [10] periodically adjusts the number of mem-
ory chunks in a fetch and return at run-time. SuperMalloc [31]
prefetches a fixed amount of objects on-demand. Instead of global
policies, APF uses per-thread, per-class reserve control enabled by
the online timescale theory.

tcmalloc was known for a frequent “slowpoke” in garbage col-
lection Scavenge(). Lee et al. found the reason [35]. When there
is lack of memory, memory stealing may trigger a chain reaction
where a victim thread has to steal the memory back and creates a
time-consuming loop. In contrast, the monitoring and control in
APF have the same cost across all thread counts, which improves
both throughput and tail latency.

Previous allocators use multiple heuristics and setting multiple
thresholds for all threads. The interaction makes it difficult for a
user to understand and tune performance. Using the new theory,
APF lets a user tune the size of all reserves using a single parameter.

In addition to increasing speed, it is beneficial to reduce the
variability of heap operations. TintMalloc controls heap data place-
ment to balance the speed of thread execution, which reduces their
total idle time waiting for barriers [50]. As we have shown, allo-
cation cost may be uneven especially with current allocators in
high concurrency. APF equalizes the synchronization cost across
threads and can reduce the cost as much as a user wants.

A related problem is predicability. For interactive services, the
first goal is to reduce the number of requests exceeding their tar-
get latency. An effective solution is a recent work-stealing policy
called tail-control [36]. It assumes a constant work distribution,
which for online workloads of this paper, means that allocator cost
must not change with system load. APF makes this guarantee for
the synchronization cost.

APF builds on the HOTM and liveness theories [8, 38–40]. The
liveness theory does not model memory reuse, so it cannot mea-
sure memory demand. HOTM defines the average reuse but gives
no solution for either offline or online measurement and no rem-
edy if the actual memory demand deviates from the average (Sec-
tion 3.7). There aremany similarworks using timescale functions [9,
37, 41, 43–48].

There are other considerations concerning time and space, such
as size class partition [10, 31], locality [11, 29, 33, 51, 56], and meta-
data management [5, 10, 11, 16, 51]. The existing techniques are
efficient and mature, thus we respect the their designs. There are
also efforts exploiting object demographics, such as lifetimes, ref-
erence and object sizes [4, 13, 18, 20, 53], to improve the perfor-
mance of memory management. In a different vein, application
specific optimizations of memory allocators are studied for Web
applications [26, 32], transactional workloads [3], and many-core
applications [52].

8 Summary
We have designed a new technique APF memory reservation for
parallel memory allocation. APF precisely controls the per-thread,
per-class reserve size using a single parameter. We have presented
a new theory of timescale memory demand, linear-time offline and
online algorithms tomeasure two timescale functions, liveness and
reuse, an online algorithm to achieve the target apf, and an offline
algorithm to give the upper-bound performance. We have evalu-
ated APF onMongoDB,OlioWeb server and synthetic benchmarks.
Results demonstrate that APF is highly effective in improving the
throughput and reducing the memory waste as well as the worst-
case time cost of parallel memory allocation.
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