
A

A Relational Theory of Locality

LIANG YUAN, SKL of Computer Architecture, Institute of Computing Technology, CAS

CHEN DING, University of Rochester

WESLEY SMITH, University of Edinburgh

PETER DENNING, Naval Postgraduate School

YUNQUAN ZHANG, SKL of Computer Architecture, Institute of Computing Technology, CAS

In many areas of program and system analysis and optimization, locality is a common concept and has

been defined and measured in many ways. This paper aims to formally establish relations between these
previously disparate types of locality. It categorizes locality definitions in three groups and shows whether

and how they can be interconverted. For footprint, a recent metric, it gives a new measurement algorithm
that is asymptotically more time/space efficient than previous approaches. Using the conversion relations,
the new algorithm derives with the same efficiency different locality metrics developed and used in program

analysis, memory management and cache design.

1. Introduction

Locality is a fundamental property of computation and a central principle in software,
hardware and algorithmic design. As defined by Denning, it is the “tendency for programs
to cluster references to subsets of address space for extended periods.” [Denning and Martell
2015, pp. 143] Locality has been exploited to design high performance caches and memory
managers in operating systems. These systems have relied on a set of locality measures that
enable memory systems to adapt to demand. In modern computer systems, “the increasing
gap between processor and memory speeds has rendered the organization, architecture,
and design of memory subsystems an increasingly important part of computer-systems
design” [Jacob et al. 2010]. Memory is also increasingly diverse, with different materials,
configurations, and interconnects providing different trade-offs between capacity, speed,
cost and other factors: “a well-implemented hierarchy allows a memory system to approach
simultaneously the performance of the fastest component, the cost per bit of the cheapest
component, and the energy consumption of the most energy-efficient component” [Jacob
et al. 2010].
There is a large and growing body of literature on locality analysis and optimization.

Locality has been defined in many ways; Table I shows examples of locality concepts in
three groups, each by their target of analysis. For a program, the analysis measures its data
accesses by the reuse distance or frequency (hotness). For resource sharing, the analysis
measures the dynamic data demand by the working set or footprint. For cache design, the
analysis measures the cache performance by the miss ratio curve or average eviction time.
While most past studies focused on one locality definition, this paper creates a unified

mathematical framework encompassing widely used, distinct locality definitions. We will
formalize and prove their relations; through this standardization we provide the groundwork
for future study unimpeded by assorted and distinct previously used ideas and techniques.
In addition, the framework we will introduce allows retrospective analysis of past locality
research through reintroduction of formulae and definitions within the context of a more
well-defined and precise mathematical language.

The manuscript is new and not a revision of a previous conference paper.
This work is supported by the National Key R&D Program of China (Grant No. 2017YFB0202001), the
National Science Foundation (Contract No. CNS-1909099, CCF-1717877, CCF-1629376, CNS-1319617), an
IBM CAS Faculty Fellowship, the National Science Foundation of China (Contract No. 61328201, 61432018,
61602443), the Science Foundation of Beijing (L182053), and Guangdong Province Key Laboratory of
Popular High Performance Computers 2017B030314073.

A:2 L. Yuan et al.

Table I. Example locality analysis uses, targets, and metrics.

Uses of locality analysis
Targets of

Metrics
analysis

program analysis and optimization data accesses
access frequency,
reuse distances

virtual memory management,
execution phases

working sets,
cache sharing footprints

cache design, performance modeling cache systems
miss ratio curves,

average eviction times

We call the new framework the relational theory of locality (RTL), which consists of precise
mathematical descriptions of a set of locality definitions and their relations. It includes three
categories, and locality is defined in each category with similar objectives and parameters.

— access locality : measures of locality for each memory access
— timescale locality : functions that measure locality with length of time as a parameter
— cache locality : functions that measure locality with cache size as a parameter

Locality definitions also differ by their levels of abstraction. An access trace is most con-
crete in that it encodes the complete memory behavior. From a trace, different definitions
of locality extract and retain different aspects of the data access information. By establish-
ing their relations, the new theory shows that timescale locality captures the most useful
information from a trace and enjoys the highest time and space efficiency.

The relational theory is useful both pedagogically and in practice. Locality definitions are
intuitively related. For example, data reuses in a program are likely beneficial since they are
likely cache hits, if the cache is large enough. However, the intuition is not precise, because
it cannot say how large is large enough. The relational theory shows the precise conversion
between these and other concepts.

The practical benefits are many and can be divided in two areas. The first is measure-
ment. If two locality definitions are mathematically equivalent, a measurement technique
developed for one metric can be used for both by converting between the two metrics. For
example, two newest techniques, AET [Hu et al. 2018] for storage cache, and RDX [Wang
et al. 2019] for CPU cache, use sampling to measure the miss ratio curve with an extremely
low cost. Using the relational theory, Section 3.3 will show that these techniques, although
independently developed with different areas of applications, produce results mathemati-
cally related to previous locality definitions and hence to each other.
The second and more important area is optimization. The relational theory shows how

optimizing one metric may affect other metrics, e.g. how to minimize the number of misses
in cache by transforming data reuses in a program. A theory inevitably makes simplifying
assumptions, but given their assumptions, the theoretical relations are both universal, i.e.
across programs, and reliable, i.e. across transformations.

Contributions

The paper presents a taxonomy of common locality concepts with precise definitions and
groups similar definitions into categories. It unifies concepts and equations introduced in
preexisting literature and shows a set of new relations as follows:
In the case of access locality, it shows equivalence between definitions based on sequences

and non-equivalence between definitions based on histograms. In the case of timescale and
cache locality, it shows the first mathematical relation between the working set by Denning
et al. [Denning 1968; Denning and Schwartz 1972] and the footprint by Xiang et al. [Xiang
et al. 2011b, 2013] as well as introducing a new way to approach using Denning recursion
on finite traces. The relation leads to new, simple proofs of boundedness and concavity.
More importantly, it shows the mathematical relation between four previous techniques in

A Relational Theory of Locality A:3

computing the miss ratio, which have been used in recent publications without a comparison
with each other. Further derivation also gives the first theoretical justification to a formula
discovered four decades ago to model shared cache miss ratio [Easton and Fagin 1978]. In
addition, the paper gives a new, short explanation of the previous formula for computing
the footprint and an alternative that is asymptotically faster.
Finally, it summarizes with a relation graph that connects all locality definitions in all

categories. The rest of the paper will provide the pieces missing from previous work but are
necessary to show the complete relations.

The new theory has a limited scope. It defines and measures locality but does not address
the problem of locality optimization [Aho et al. 2006; Allen and Kennedy 2001; Coffman Jr.
and Denning 1973; Cooper and Torczon 2010; Meyer et al. 2003; Wolfe 1996]. It measures
the amount of data movement, but not the time overhead, which depends on other factors
such as latency, prefetching and burstiness of communication. It does not consider spatial
locality, nor does it optimize the data layout [Lavaee 2016; Petrank and Rawitz 2002]. It
assumes automatic cache management and does not solve the more general problem of I/O
complexity [Elango et al. 2015; Hong and Kung 1981]. Finally, the paper does not cover all
locality measures.

2. Locality Definitions and Relations

We will first present an overview that divides the locality measurements into six categories
and then present them in subsections.

2.1. Overview

A trace is a sequence of references to data or memory locations. Each reference is a memory
address. We also call a reference a trace element, and its target a data item. The words
“sequence”, “trace” and “execution” are used interchangeably, so are the phrases “memory
access” and “memory address”. We ignore any issue of granularity. A data item may be a
variable, a data block, a page, or an object.
A locality definition is an equivalence relation among all execution traces — two execu-

tions are equivalent if and only if they have the same locality by the definition. Each locality
definition partitions executions into equivalence classes.
Figure 1 shows locality definitions in three top-level and four second-level categories.

Locality

Access locality Timescale locality
Working set
Footprint

Cache locality
Miss ratio curve
Fill / eviction time

Singleton
Data address trace

Frequency
Hot/cold data/

function

Sequence
Reuse interval /
distance trace

Histogram
Reuse interva /

distance histogram

Fig. 1. The categories of locality measurements and new theoretical results (in italics)

The first category is access locality, which quantifies locality for each access. It has four
types as shown in Figure 1. The simplest is singleton locality — the locality is the execution

A:4 L. Yuan et al.

itself.1 Singleton locality defines the strictest notion of equivalence. Two executions have the
same singleton locality if and only if they are identical. By comparing equivalence classes,
we can precisely compare different definitions of locality.
We use the terms locality definition and measurement interchangeably. Singleton locality

requires no measurement. Other locality definitions require a way to measure, and a way to
measure locality also defines the locality. It is often more convenient to define locality based
on not an execution trace but another locality definition, e.g. the miss ratio defined from the
reuse distance. We call it the locality conversion. The following sections show the relation
between locality definitions by the conversion between each other. With the complete rela-
tion between locality definitions, conversion becomes synonymous to measurement, because
to measure is to convert from singleton. A relational theory is also a measurement theory.

The following sections describe all locality categories. The sequence locality has the most
information but also incurs the highest cost. The histogram locality allows for a compact
representation. This benefit is exploited by the timescale locality to model the cache locality.
These locality categories are progressively higher level, more abstract, and more efficient
to use in practice. As running examples, we will use a number of trace examples composed
with just three data elements a, b, c, including those repeating them once in same order, i.e.
abc abc, in opposite order, i.e. abc cba, or repeating indefinitely, i.e. abc abc . . .

2.2. Sequence Locality

We describe sequence and histogram locality, and leave the frequency locality to Section 2.6.
We define the following:

n is the length of a trace.
N = mt(1 . . . n) is a memory address trace.
m is the number of distinct memory addresses accessed by the trace.
M = {e1 . . . em} is the set of distinct memory addresses.

The locality may be measured by one of the following three sequences:

—Address independent (AI) sequence. Given an access trace, the AI sequence is constructed
by renaming the memory addresses to M = {1 . . .m} and indexing them in order. The
memory address is i if it is ith earliest in the order of first appearance in the trace. An
AI sequence standardizes data-to-memory mappings. For example, two traces abc abc and
cba cba have the same AI sequence e1, e2, e3 e1, e2, e3. AI locality is more abstract than
singleton locality. If a program is run multiple times with the same input but different
memory allocations, e.g. address space layout randomisation (ASLR), the (singleton) trace
changes, but the AI sequence does not.

—Reuse interval (RI) sequence. For each access, the reuse interval is the increment of logical
or physical time since the last access of the same datum. For example, the RI sequence is
∞∞∞ 333 for abc abc and ∞∞∞ 135 for abc cba. The reuse interval is ∞ if it is its first
access. For a finite reuse interval, the minimal is 1 and the maximum n − 1. The reuse
interval has been called the inter-reference interval (iri) in the working set theory [Denning
1968], inter-reference gap in LIRS [Jiang and Zhang 2002], reuse distance in StatCache
and StatStack [Eklov et al. 2011], and reuse time in our earlier papers.

—Reuse distance (RD) sequence. For each access, the reuse distance is the number of distinct
data accessed since the last access to the same datum, including the reused datum. For
example, the RI sequence is ∞∞∞ 333 for abc abc and ∞∞∞ 123 for abc cba. The reuse
distance is ∞ if it is its first access. For a finite reuse distance, the minimum is 1 (because

1The name “singleton” is an adaptation of Lu and Scott, who defined determinism as equivalence relation-
ship among concurrent executions [Lu and Scott 2011].

A Relational Theory of Locality A:5

it includes the reused datum), and the maximum is m. The reuse distance is the same as
the LRU stack distance [Mattson et al. 1970], which is often called stack distance in short.

For either RI or RD, the locality may be represented by the entire sequence or be broken
down into per-datum sequences:

—Per datum (PD) sequence of reuse interval (PD·RI) and reuse distance (PD·RD), which
converts a trace into a set of RI or RD sub-sequences pd[e] = (fe, r2, . . . , rne

) for each
datum e, where fe is the time of e’s first access, ne the number of accesses, and ri the
reuse interval of ith access in PD·RI and the reuse distance of ith access in PD·RD. Note
that r1 = ∞ is omitted. For element a in abc abc, the PD·RI and PD·RD sequences are
the same: pd[a] = (1, 3).

The reuse interval ri may be either forward or backward. It is the forward reuse interval
of the (i−1)th access and the backward reuse interval of the ith access. They are equivalent
when used for whole-trace analysis but different when used in online analysis. The backward
reuse interval shows the history, and the forward interval the future. There is the similar
distinction between forward and backward reuse distance. The following discussion assumes
the backward reuse.

2.2.1. Equivalence The five definitions in the preceding section are all equivalent. This sec-
tion shows this equivalence by mutual conversions between each pair of definitions.
It is trivial to show mutual conversion between RI and AI and between RI and PD·RI.

For example, to convert from AI to RI, we traverse the trace and use a hash table to record
the last access time of each element. At each access, the reuse interval is the difference
between the current time and the last access time. The three definitions are shown as boxes
in Figure 2 and the two pairwise conversions by four directed edges. By transitivity, AI and
PD·RI are also mutually convertible. Hence, all three definitions are equivalent.
From the past work [Mattson et al. 1970] in reuse distance measurement, AI can be

converted to RD, which is then trivially converted to PD·RD. Next, we show two theorems
that establish the conversion first from RD to AI and then from PD·RD to AI. The two
conversion results, as shown by Figure 2, produce a completely cyclic graph including all
five locality definitions, proving their equivalence.

PD RD

AI

RD

PD RI

RI

Thm. 2.2

PD

T
hm

. 2.1

PD

Fig. 2. Sequence locality definitions and their conversions

Theorem 2.1. The address-independent sequence AI can be built from the reuse dis-
tance sequence RD.

A:6 L. Yuan et al.

Proof. The LRU stack contains the access sequence at the top position [Mattson et al.
1970]. To obtain the AI sequence, we show that the RD sequence can construct the LRU
stack as follows. When the reuse distance is ∞, a new data item i is created and placed
on top of the stack (first position). At a finite reuse distance x, the data item at stack
position x is moved to the top, and the items in positions 1 . . . x − 1 are moved down by
one position.

The construction of an AI trace is more difficult than from per datum (PD) reuse dis-
tances, because the order of reuses between data items is lost in the PD conversion.

Theorem 2.2. The AI trace can be built from per datum reuse distances PD · RD.

Proof. See appendix.

Algorithm 1 gives a simple conversion from PD·RD to AI. A more complicated algorithm
for converting PD·RD to AI, Algorithm 3, is presented in the appendix along with a proof
of correctness; for readability we give here only the simple algorithm along with a proof of
equivalence. We do not give a direct proof of correctness for Algorithm 1.
Algorithm 1 follows a simple procedure. Initially, all data elements are sorted by their first
access time. At each position i of the AI trace, we put the element at the head of the list.
Then we reinsert the element based on its next reuse distance. The algorithm omits the
case when an element has no more reuses, in which case, it is not re-inserted into the list
at Line 7.
Algorithm 1 is based on a linked list, while Algorithm 3 uses vectors. Next, we show that

the list-based algorithm is correct because it generates the same trace as the vector-based
algorithm does.

ALGORITHM 1: PD·RD → AI conversion (list based)

1 ai[1 . . . n]← 0
2 list[1 . . .m]← {ei} sorted by first-access time
3 for i = 1 to n do
4 let list[1] be e
5 ai[i]← e
6 let d be the next reuse distance of e
7 remove list[1] and re-insert e as list[d], moving down list[d . . .m− 1] to list[d+ 1 . . .m]
8 end

Theorem 2.3. Algorithm 1 constructs the correct AI trace.

Proof. At each ai[i], the list in Algorithm 1 is ordered the same as one sorted by
nextpos in Algorithm 3. The two algorithms both start the same, with the order of the
first-access time. The update to nextpos in Algorithm 3 has the same effect as re-insertion
into the list in Algorithm 1. Note that the order in Algorithm 3 is a partial order by nextpos
but a total order when consider lastpos.

Algorithm 1 selects the first element of the list. In Algorithm 3, the corresponding element
is e with smallest nextpos[e] (such that nextpos[e] ≥ i). Since Algorithm 3 is correct, we
must have nextpos[e] = i, so choosing the first list element by Algorithm 1 is always
correct.

The complexity of Algorithm 1 is O(nd), where n is the length of the trace, and d the
average reuse distance, which is O(m) in the worst case. The complexity can be reduced
by using a balanced search tree to store the ordered list. At each iteration, Line 7 removes
the left-most child node, and re-inserts it as the dth node. To find the insertion point and

A Relational Theory of Locality A:7

to maintain the balance, each tree node keeps a record of the sub-tree size. The complexity
can be reduced to O(n logm).

2.3. Histogram Locality

Histogram construction (HI) produces two types of histograms:

—The RI histogram ri(i), which counts the number of reuse intervals that equal to i, i =
1, . . . , n − 1,∞ and 0 ≤ ri(i) ≤ n. The RI histogram ri(i) for abc abc is 3 when i = 3,∞
and 0 otherwise. It is a (unordered) summary of its reuse intervals.

—The RD histogram rd(i), which counts the number of reuse distances that equal to i,
i = 1, . . . ,m,∞ and 0 < rd(i) ≤ n. The RD histogram for abc abc is the same as its RI
histogram shown before, i.e. rd(i) = ri(i).

We denote the reuse interval and reuse distance histogram as HI ·RI and HI ·RD, where
RI and RD are the reuse interval and reuse distance trace discussed above, and HI is
the histogram conversion. The HI conversion loses all information about memory address,
access time, and order of reuses.
The reuse interval histogram was called the interreference density [Denning and Schwartz

1972]. If we normalize the bins of a reuse interval histogram by dividing them with the total
number of reuse n−m, the histogram can be viewed as a probability function that repre-
sents the interreference distribution. The reuse distance histogram was called the locality
signature [Zhong et al. 2009].
Reuse distances have a direct relation with cache performance, and the histogram is a

compact summary. In cache analysis, the RD histogram gives the miss ratio of the fully
associative cache [Mattson et al. 1970], direct-mapped or set-associative cache [Marin and
Mellor-Crummey 2004; Nugteren et al. 2014; Qasem and Kennedy 2005; Smith 1976], and
cache with other reuse-based replacement policies [Sen and Wood 2013] of all sizes. It is used
to separate the locality effect by the program structure [Marin and Mellor-Crummey 2004]
and the load/store operation [Fang et al. 2005], model the change of locality as a function
of the input [Fang et al. 2005; Marin and Mellor-Crummey 2004; Zhong et al. 2009] and the
degree of parallelism [Wu and Yeung 2011], and predict the performance of different cache
designs and parameters [Wu et al. 2013; Zhong et al. 2007], making it the most widely used
metric of access locality.

2.3.1. Compactness A sequence is indexed by time. A histogram is an enumerated repre-
sentation by value (which may be either a reuse interval or a reuse distance). Indexing is
synonymous to sorting: a sequence is sorted by time, and a histogram by value. Just as
the Fourier transform converts a signal from a time function to a frequency distribution,
histogram conversion changes the locality representation from a trace to a distribution.
Table II compares sequence and histogram locality in its parameter and space consump-

tion. Sequence locality takes linear space, but histogram locality can be approximated and
stored in logarithmic or constant space. A histogram enables a compressed representation.

Table II. Space requirements of sequence and histogram locality.

RI/RD sequence RI histogram ri(x) RD histogram rd(v)

indexing parameter time t ∈ [1 . . . n] window length x ∈ [1 . . . n− 1] volume v ∈ [1 . . .m]
space accurate O(n) O(n) O(m)
cost compact n.a. O(logn), O(1) O(logm), O(1)

The main benefit is compactness. Once the time information is removed and only val-
ues are kept, the values are sorted, they can be stored by binning, or bucketing. A basic
solution divides the full value range evenly. This solution is constant size and general, but

A:8 L. Yuan et al.

it may waste space when values are sparsely distributed. A specialized solution is a ref-
erence histogram, which sorts all reuse distances by their values and divides them evenly
into 1000 bins, so each bin stores exactly 0.1% of reuse distances [Zhong et al. 2009]. A
reference histogram may still waste space because two adjacent bins may store identical
values. Another solution is recursive division, which stops dividing a group when its values
are identical [Marin and Mellor-Crummey 2004].

Logarithmic size histograms are commonly used. In the basic solution, the ith bin stores
the range [2i, 2i+1 − 1]. There are at least two ways to improve precision. The first is to
record the average value in each bin and assume a constant or linear distribution by the
values in the range (fitted to give the same average) [Fang et al. 2005]. The second is
a k-sublog histogram, which further divides a power-of-two range into 2k sub-ranges for a
pre-determined constant k > 0 [Xiang et al. 2011a, 2013]. For example, a 8-sublog histogram
uses 256 sub-ranges and is accurate from 0 to 511 and then divides each successive power-
of-two ranges into 256 bins. The asymptotic space cost is logarithmic rather than linear.
Compactness implies approximation, which means sparsity rather than imprecision. A

sublog RD histogram of size O(log n) can be used to compute O(log n) miss ratios. The
computed miss ratios are accurate. Section 2.5.3 will show a similar result for RI histograms.

2.3.2. Non-equivalence The two types of histograms are not equivalent. This can be proved
by showing memory traces with different reuse interval histograms but the same reuse
distance histogram, and memory traces with different reuse distance histograms but the
same reuse interval histogram.
Consider the following four traces:
t1: e1, e2, e3, e4, e3, e4, e1, e2, e3, e4, e3, e2, e3, e2, e3, e4, e3, e2, e1
t2: e1, e2, e3, e4, e3, e2, e1, e2, e3, e4, e3, e2, e3, e4, e3, e4, e3, e2, e1
t3: e1, e2, e3, e4, e3, e4, e1, e2, e3, e4, e3, e2, e1
t4: e1, e2, e3, e4, e3, e4, e2, e1, e3, e4, e3, e2, e1

It can be shown that t1, t2 have the same RI histogram but different RD histograms, and
t3, t4 have the same RD histogram but different RI histograms. A locality property useful
in modeling cache sharing is composability, discussed in Section 2.5.5. A consequence of the
non-equivalence is that the RI histogram is composable, but the RD histogram is not.

Next we introduce the timescale locality, which is based on the RI histogram, and it is
both compact and composable.

2.4. Timescale Definitions of Locality

A timescale is a length of time, which may be measured in seconds or years in physical
time or number of memory accesses in logical time. A timescale metric is a mathematical
function f(x), where x ranges across all timescales, i.e. x ≥ 0. It shows the growth of the
working set size over timescales.

2.4.1. The Denning Working Set Recursion The original timescale metric of locality is the aver-
age working set size (WSS) s(x) formulated by Denning [1968]. By adopting a probabilistic
approach, [Denning and Schwartz 1972] derived the recursive formula for s(x). Initially, the
working set is empty s(0) = 0, and the miss ratio is 100% m(0) = 1. The function m(x) is
the time-window miss ratio. At the window length x, an access is a miss if its reuse interval t
is greater than x, that is, m(x) = P (t > x). The working set size is computed by iteratively
adding the time-window miss ratio.

s(x) = s(x− 1) +m(x− 1) =

x−1∑
i=0

m(i) =

x−1∑
i=0

P (ri > i) (1)

A Relational Theory of Locality A:9

We call Eq. 1 the Denning working set recursion or Denning recursion in short. It is in-
ductive: the WSS at x is the WSS at x − 1 plus the working set increase, which is the
time-window miss ratio. For the infinite trace abc abc . . . , we have m(x) = 1 for 0 ≤ x ≤ 2,
and m(x) = 0 for x ≥ 3. The Denning recursion computes

s(x) =

{
x, 0 ≤ x ≤ 3

3, x > 3

2.4.2. Footprint In an execution, every consecutive sub-sequence of accesses is a time win-
dow, formally as (t, x), where t is the end position and x the window length. The number of
distinct elements in the window is the working set size ω(i, x) [Denning 1968]. For a length
x, the footprint fp(x) is the average working set size, computed by the total working set
size divided by the number of length-x windows:

fp(x) =
1

n− x+ 1

n∑
t=x

ω(t, x) (2)

For the infinite long trace abc abc . . . , the footprint is the same as before, i.e. fp(x) = s(x).
It is still the same for abc abc. The footprint for abc cba is fp(x) = 0, 1, 1.8, 2.5, 8

3 , 3 for
x = 0, 1, 2, 3, 4, 5+. Comparing the two footprint functions, we see the difference in locality
in that the second function grows slower than the first.

2.4.3. Computing the Footprint Xiaoya Xiang gave the following formula to compute the
footprint from reuse intervals and the times of first and last accesses [Xiang et al. 2011b].

fp(x) = m− 1

n− x+ 1

(n−1∑
i=x+1

(i− x)ri(i)

+

m∑
k=1

(fk − x)I(fk > x)

+

m∑
k=1

(n− x+ 1− lk)I(n− x+ 1 > lk)

)
(3)

The symbols in the Xiang formula are:

— ri(i): the number of accesses whose reuse interval is i.
— fk: the first access time of the k-th datum (counting from 1).
— lk: the last access time of the k-th datum (counting from 1).
— I(p): the predicate function equals to 1 if p is true; otherwise 0.

Xiang et al. [2011b] used two pages in their paper to derive the formula based on “dif-
ferential counting” of how the working set changes over successive windows. Next is a new,
shorter explanation. The idea is “absence counting”, by starting with assumption of all data
in all windows and then counting all absences and subtracting their effects. For people who
have filed income tax in the United States, taking deductions is a familiar process.
The first deduction is based on data reuses. If a reuse interval i is greater than x, there

are i − x windows of length x that do not access the reused datum. The working set size
should be reduced by i− x to account for this absence. The total absence from all reuses is∑n−1

i=x+1(i− x)ri(i).
The next two deductions follow a similar rationale. If the kth datum is first accessed at

time fk and fk > x, it is absent in the first fk − x windows of length x. Similarly, it is last

A:10 L. Yuan et al.

accessed at lk < n− x+ 1, it is absent in the last n− x+ 1− lk windows of length x. The
total adjustment are shown by the last two terms of the Xiang formula.

2.4.4. Relation between the Working Set and Footprint This section shows an equivalence rela-
tion between the Denning recursion and a simplified Xiang formula.
First, we introduce the limit case Xiang formula. If a trace is infinitely long n = ∞, the

footprint is limn→∞ fp(x). The limit case formula is much simplified, because it uses only
the reuse interval and not the first- and last-access times.

lim
n→∞

fp(x) = m−
∞∑

i=x+1

(i− x)P (ri = i)

where P (ri = i) is the portion of accesses that have reuse interval i. Consider the trace:
abcabc Since every access has the same reuse interval (3), we have P (ri = 3) = 1. It is
easy to verify that limn→∞ fp(x) = x for x = 0, 1, 2 and 3 for x ≥ 3. The Denning recursion
computes the same result. The example suggests an equivalence relation between the two.
We prove a general relation, for not just an infinite long trace but any length trace.
We can use the limit case Xiang formula for finite length traces except for one problem: we

cannot calculate i− x when i = ∞. We next define the reuse-interval term footprint which
uses the limit case formula but treats infinite long reuse intervals separately as follows.2

rtfp(x) = m−
n−1∑

i=x+1

(i− x)P (ri = i)− (n− x)P (ri = ∞) (4)

Theorem 2.4. (WS-RTFP Equivalence) The Denning recursion and the reuse term
footprint differ by a constant

s(x) = rtfp(x)− rtfp(0)

for all integer x ≥ 0.

Proof. The relation is proved by induction. In the base case, s(0) = rtfp(0)−rtfp(0) = 0.
Assuming s(x) = rtfp(x)− rtfp(0), we prove the inductive case. In the following derivation,
m(x) in the Denning recursion is the time-window miss ratio, and m in the reuse term
footprint is the data size.
The increment of Denning recursion is

s(x+ 1)− s(x) =m(x) = P (ri > x).

The increment of the reuse term footprint is the same:

rtfp(x+ 1)− rtfp(x) = m−
n−1∑

i=x+2

(i− x− 1)P (ri = i)− (n− x− 1)P (ri = ∞)

2This is mathematically equivalent to treating infinite long reuse intervals as intervals of length n, which was
used by Denning and Slutz to count the end corrections for space-time working set [Denning and Slutz 1978]
and by Liang et al. for deriving the equivalence between the footmark and the Denning recursion [Yuan
et al. 2018].

A Relational Theory of Locality A:11

− (m−
n−1∑

i=x+1

(i− x)P (ri = i)− (n− x)P (ri = ∞))

= P (ri > x)

Hence, the inductive hypothesis is correct, so is the theorem.

The same relation holds if we do not count infinite reuse intervals. We compute the

probability as P ′(ri = i) = ri(i)
n−m , where the function ri(i) is the number of reuse intervals

of length i, and m is the number of infinite reuse intervals, i.e. the data size. For Denning
recursion, we define s(x+1) = s(x)+P ′(n > ri > x), and for the limit case Xiang formula,

we define rtfp(x) = m −
∑n−1

i=x+1(i − x)P ′(ri = i). Similar derivation shows that these
definitions are still equivalent, i.e. s(x) = rtfp(x) − rtfp(0). In addition, for infinitely long
traces, we have rtfp(0) = 0, so s(x) = rtfp(x).

2.4.5. Finite trace Denning recursion The original timescale definition of locality, the Den-
ning recursion, was derived based on stochastic assumptions — that a trace is infinite and
generated by a stationary Markov process, i.e. a limit value exists [Denning and Schwartz
1972]. Later studies used the formula on finite-length traces, with adjustments to account
for boundary effects [Denning and Slutz 1978; Slutz and Traiger 1974]. Here we will present
a straightforward way to incorporate these boundary effects into the Denning recursion;
this allows the Denning recursion to correctly operate on finite traces.
Define a “run” to be a period during which a data block is in the working set, i.e a

reference to that block always exists in the sliding length-x window. Recently, Li et al.
[2019]’s definition of lease cache allows for a modern interpretation of the working set as
such: each data block is assigned a lease equal to window length. If this lease expires, the
block is removed from the cache, and the lease is renewed on an access. A run begins with
a miss and contains zero or more reuse intervals.

a a a aaa a

run

miss

<x<x <x <x<x >x

x

Fig. 3. Consider a sequence of accesses to data block a. Beginning with a miss, every consecutive reuse
interval less than window length contributes to that run. The run ends with a reuse interval greater than
window length. Note that the last window x contains the last access to a within the run.

Here we examine runs and working sets on example trace abcaabdd with window length 3.
At each element in the trace, a 1 in a row indicates that that element is currently in the
working set. Misses, which begin runs, are 1s directly preceded by 0s and are bolded in this
example. Each column represents the working set at that point in the trace.

A:12 L. Yuan et al.

{} a b c a a b d d
a 0 1 1 1 1 1 1 1 0
b 0 0 1 1 1 0 1 1 1
c 0 0 0 1 1 1 0 0 0
d 0 0 0 0 0 0 0 1 1

Because each run begins with a miss and each miss begins a run, the number of runs is the
miss count mc(x). Let st(x) denote the sum of the lengths of all runs. To adapt Equation
1 to finite traces, we look at the effect on st(x) of incrementing window size from x to
x + 1. Were the trace infinite, each run would increase in length one unit and we would
have the relation st(x+1) = st(x)+mc(x). Dividing by n here yields Equation 1. For finite
traces, the only runs not incremented by 1 by incrementing window size are runs where the
distance from the last access of the element to the end of the trace is ≤ x. Let e(x) denote
the number of such elements given window length x; an equivalent notion is the number
of distinct elements appearing in the last window of the trace. Then Equation 5 correctly
adjusts the Denning recursion for boundary effects of finite traces:

st(x+ 1) = st(x) +mc(x)− e(x) (5)

Dividing both sides of Equation 5 by n results in the modified form of Equation 1.

When the trace length is infinite, the e(x) term vanishes when divided by n and the un-
modified Denning recursion is correct. This was shown first by its derivation [Denning and
Schwartz 1972].

2.4.6. From Footprint to Reuse Interval Denote total working set size as W(x) = (n − x +
1)fp(x). Using the Xiang formula, the first and second order finite differences of W(x) are:

∆W(x+ 1) = W(x+ 1)−W(x) = m+

n∑
i=x+1

ri(i)−
∑

fe<x+1

1−
∑

n−x<le

1

∆2W(x+ 1) = ∆W(x+ 1)−∆W(x)

= −ri(x)−
∑
e

I(fe = x)−
∑
e

I(le = n− x+ 1)

Therefore, footprint can be used to derive the reuse interval histogram if the first and
last access times are known.

2.5. Cache Definitions of Locality

The practical purpose of a locality theory is cache performance. This section discusses the
metrics of cache locality and their relation with timescale locality. It reviews two previous
methods for computing the miss ratio and presents two asymptotic improvements, one in
time and the other in space. Finally, it discusses cache sharing, associative, multi-level
caches, and spatial locality.

2.5.1. Performance of Fully Associative LRU Cache The following metrics have been defined to
model the performance of fully associative LRU caches:

—miss ratio mr(c), which is the portion of memory accesses that are cache misses.
— inter-miss time im(c) = 1

mr(c) , which is the average number of accesses between two

consecutive misses.

By restricting the problem to fully associative caches, we can define cache performance
for all integer cache sizes. There are important reasons to model the general cache size c ≥ 0,
not just powers of two. First, some real-cache solutions requires the miss ratio of all cache

A Relational Theory of Locality A:13

sizes and not just the size of the target cache.3 Second, cache in practice is often shared.
The occupancy of a program in shared cache can be any size, not just powers of two. Third,
in software cache and some hardware cache, the size may not be powers of two. It is often
useful to know how much the miss ratio changes when a program is given 10% more space
than it currently has in cache.

2.5.2. Converting from Timescale Locality We can compute the miss ratio from the timescale
locality in two ways.

Denning-HOTL Conversion The miss ratio can be computed by the finite difference of
the footprint. When the cache size is the footprint c = fp(x), the cache stores and only
stores the working set of the last length-x window. The next access is a miss if and only
if it expands the working set. For example, let the miss ratio be 10%. Then 10% times
the working set size is increased by 1, so the average increase is 0.1. We take the footprint
increase, i.e. fp(x+ 1)− fp(x), as the miss ratio. Eq. 6 formulates this conversion using the
finite difference:

mr(c) = ∆fp(x)|fp(x)=c (6)

where ∆ is the finite-difference operator, i.e. ∆f(x) = f(x+1)− f(x), and c the cache size.
Denning [1968] was the first to use this conversion. HOTL applied it to the footprint [Xiang
et al. 2013]. We call it the Denning-HOTL conversion.
The original working set size is given by the Denning-Schwartz forumla s(x) (see Sec-

tion 2.4.1). To use it to compute the miss ratio, we substitute fp(x) in Eq. 6 with s(x). In
either case, the conversion has the same form but uses a different timescale metric. This
shows that Denning-HOTL is a general conversion from timescale locality to cache locality.
From the relation between the two timescale locality definitions studied in the previous

section, we can analyze the relation between their converted miss ratios. In particular, from
the WS-RTFP equivalence (Theorem 2.4), we see that the miss ratios computed using the
Denning-Schwartz formula are exactly the same as those from the limit-case Xiang formula,
shown by the following equation:

∆s(x)|s(x)=c = ∆rtfp(x)|rtfp(x)−rtfp(0)+mx/n=c

Reuse-interval Conversion The second way to convert is based on reuse interval. When
the cache size is the footprint c = fp(x), the cache stores and only stores the working set
of the last length-x window. The next access is a miss if and only if its data has not been
accessed in the last window, i.e. its backward reuse interval is greater than x.

mr(c) = P (ri > x)|fp(x)=c (7)

To use the Denning recursion to compute the miss ratio, we substitute fp(x) in the
preceding equation with s(x). Like Denning-HOTL, the reuse-interval conversion is a general
conversion from timescale locality to cache locality.
In practice, reuse-interval conversion has two benefits. First, it counts the cold-start misses

correctly. These are first accesses whose reuse interval is infinite, since ri > ft(c) for all c.
Second, in short traces, e.g. sampled executions, the footprint may not be concave at the

3Past work showed that the effect of cache associativity can be estimated using the full reuse distance
distribution [Marin and Mellor-Crummey 2004; Nugteren et al. 2014; Smith 1976], which is equivalent to
the miss ratio curve of the fully associative LRU cache.

A:14 L. Yuan et al.

timescale close to the trace length, so the miss ratios computed by Denning-HOTL may not
be monotone. Reuse-interval conversion, however, guarantees monotone miss ratios.

Monotonicity There is a gap between the footprint of two consecutive timescales. For
example, we have fp(2) = 1.8 and fp(3) = 2.5 for abc cba. The conversion may “miss”
a cache size, i.e. computing the miss ratio for a size higher and lower but not the target
size. This gap problem is solved by monotonicity, that is, the miss ratios are monotonically
non-increasing with the cache size.
By its definition, the Denning recursion is concave, hence the miss ratio computed by

Denning-HOTL conversion is monotone. From the WS-RTFP equivalence (Theorem 2.4),
the limit case Xiang formula differs by a constant term; therefore, the limit case Xiang
formula is also concave.4 For the reuse-interval conversion, Xiang et al. [2011b] showed
that the Xiang formula is monotone, and hence the miss ratio computed from the footprint
is monotone. If using the limit case Xiang formula, Xiang et al. [2013] proved that the
reuse-interval conversion by Eq. 7 computes identical results as Denning-HOTL by Eq. 6.

Based on monotonicity, we know that the miss ratio of any missing cache size lies in
between the miss ratios of the adjacent, computed cache sizes. This is similar to the case
when we make a physical measurement, the target value falls between two markings on the
instrument.

2.5.3. Computing the Miss Ratio Curve Incrementally in Linear Time The full range of the
timescale is from 1 to n. From Eq. 7, computing the miss ratio for cache size c is the
same problem as finding the timescale x such that fp(x) = c. However, usually we only need
a relatively small part. One weakness of the Xiang formula is that to compute the footprint
for any timescale it requires the whole reuse interval histogram as well as all first access
times and last access times. We present a lemma and two new formulae for computing the
footprint. One of the two new formulas requires just a partial range of reuse intervals, first
access times and last access times.
The following lemma constructs a connection between the reuse interval histogram and

the first and last access time.

Lemma 2.5.
n−1∑
i=1

i× ri(i) =
m∑
e=1

(le − fe)

Proof. A reuse has two properties we consider here: which element the reuse accesses
and the reuse interval. The left and right side of this lemma compute the summation of all
reuse intervals from these two perspectives.

To form the left side, all reuses are sorted according to their reuse interval, i.e. the reuse
interval histogram. Recall that ri(i) records the number of accesses with reuse interval i.
So i × ri(i) is the summation of all reuse interval of i and thus the left term traverses all
accesses.
To interpret the right side, all reuses are sorted according to their accessed elements. For

each element e the summation of all its reuse intervals is le − fe. Thus the right term also
sums all reuse intervals.

Substituting the lemma into Xiang formula we obtain the following two new formulas. We
call the first additive formula since it uses the reuse interval histogram as a positive term.
We refer to the second formula as the incremental formula. We provide general explanations
for deriving them directly.

4Xiang et al. [2013] first proved that the limit-case footprint is concave. Here we have given a different proof
based on the WS-RTFP equivalence.

A Relational Theory of Locality A:15

(8)

(n− x+ 1)fp(x) = xm+

n−1∑
i=1

min(i, x)× ri(i)−
m∑
e=1

(x− fe)I(x− fe)

−
m∑
e=1

(le − n+ x− 1)I(le − n+ x− 1)

Additive formula. Formula 8 follows the idea that if one window contains an element more
than once, the footprint counts the first appearance and ignores the rest. For an access mt(t)
with reuse interval i, there are a total of min(i, x) windows where mt(t) contributes to fp(x)
as a first appearance, i.e. ω(t−min(i, x)+1, x) . . . ω(t, x). The first accesses and last accesses
contribute to the footprint in a similar way.

(9)

(n− x+ 1)fp(x) = xn−
x−1∑
i=1

(x− i)× ri(i)−
m∑
e=1

(x− fe)I(x− fe)

−
m∑
e=1

(le − n+ x− 1)I(le − n+ x− 1)

Incremental formula. Formula 9 first assumes fp(x) = xn, i.e every access contributes x.
Then it derives the correct value by subtracting the redundant counts. If an access’s reuse
interval is greater than or equal to x, this access and its previous access do not exist in
a same window. Thus there is no redundancy. If the reuse interval of an access mt(t) is
smaller than x, it incurs x − i redundant counts since this access and its previous access
exist in x− i windows, i.e. ω(t− x+ 1, x) . . . ω(t− i, x). The first accesses and last accesses
contribute to the footprint in a similar way.
If we only need a partial range of footprint fp(1 . . . x), the incremental formula allows for

storing only a part of reuse interval histogram ri(1 . . . x − 1), the first access time portion
that is smaller than x and the last access time portion that is greater than n− x+ 1.

2.5.4. Using Compact Histograms Another weakness of the Xiang formula (Equation 3) is
that the entire reuse-time histogram is required when computing the footprint of any
timescale x. The total time and space to compute the complete footprint fp(x) for all
timescales is O(n). For real-world applications n is extremely large, so the linear cost is
too high. In addition, when modeling cache performance, constant factor analysis, e.g. the
effect of using 10% more cache, is usually sufficient.
In this section we show how to compute the footprint using a compact histogram. An

example is the sublog histogram. As described in Section 2.3.1, a sublog histogram is a
logarithmic histogram where each bin range is divided into a constant number of sub-bins.
The size of a sublog histogram is O(log n). By choosing the number of subrange bins, a
sublog histogram strikes a balance between the cost and the “resolution”, i.e. the number
of cache sizes for which we can compute the miss ratio.
In profiling, we take one sublog histogram for all reuse intervals and all first- and last-

access times. We call the histogram rifl(1 . . . b), where b is proportional to O(log n). The
time cost of profiling is linear O(n). The space is the size of the histogram O(log n). Each
bin rifl(i) stores information in the following fields:

— rifl(i).min is the lower bound value of the ith range
— rifl(i).cnt is the number of values in the ith range
— rifl(i).sum is the total value of all reuse intervals in the ith range

A:16 L. Yuan et al.

Algorithm 2 computes the Xiang footprint using the sublog histogram. It has two loops
each runs b iterations with constant work per iteration, so the time and space complexity
is O(b), which is O(log n).

ALGORITHM 2: Logarithmic time and space Xiang formula

1 totalSum = totalCount = 0
2 for j = 1 to b do
3 totalCount = totalCount+ rifl(i).cnt
4 totalSum = totalSum+ rifl(i).sum
5 end
6 partialCount = partialSum = 0
7 for i = 1 to b do

8 fp(rifl(i).min) = m− (totalSum−partialSum)−(totalCount−partialCount)∗rifl(i).min
n−rifl(i).min+1

9 partialCount = partialCount+ rifl(i).cnt
10 partialSum = partialSum+ rifl(i).sum
11 end

The number of footprint values it computes is limited by the number of bins in the
histogram. For each bin i, it computes fp(x) at x = rifl(i).min the exact value as computed
by the original Xiang formula. The algorithm can be used unchanged for any compact reuse
interval histogram.

2.5.5. Composability and Cache Sharing On modern multicore processors, the cache is shared
at one or more levels. Ding et al. [2014] defines composability which means that the locality
of a co-run can be computed from the locality of solo runs. The reuse interval is composable
between independent programs, if they are uniformly interleaved. In a co-run, each reuse
interval in a solo run is increased by a constant factor. The reuse distance cannot be con-
verted in the same way. However, the RD sequence is composable indirectly through the
equivalence with the RI sequence, shown in Section 2.2.

Cache sharing has been modeled using the concurrent reuse distance (CRD) [Schuff et al.
2010; Wu and Yeung 2013]. CRD computes the miss ratio accurately, but it is not com-
posable. Many other techniques are hybrids where the locality is by reuse distance and the
interference is by footprint [Chen and Aamodt 2009; Suh et al. 2001; Xiang et al. 2011a],
including one of the first models of multicore cache [Chandra et al. 2005]. An earlier model
is given by Easton and Fagin [1978], which we will discuss in Section 3.3.4.
The effect of cache sharing has also been considered for threads that share data [Luo

et al. 2017] and for independent programs with all possible interleavings [Brock et al. 2018].
The all-interleaving result shows that for independent programs, the serial execution has
the best locality.

2.5.6. Set Associative and Multi-level Caches Until now, cache locality has been limited to
fully associative LRU caches. However, the same locality definitions have been used to
model many aspects of caching. As mentioned in Section 2.3, the effect of cache associativ-
ity can be modeled using the reuse distance histogram [Marin and Mellor-Crummey 2004;
Nugteren et al. 2014; Qasem and Kennedy 2005; Smith 1976], as well as non-LRU poli-
cies [Sen and Wood 2013]. Luo et al. [2018] showed that footprint enables more general
models of cache associativity, as well as modelling the sub-block cache, and these models
can be used together. Furthermore, the effect of multi-level caches, i.e. the effect of cache
“filtering”, can be modeled using an extension of footprint called victim footprint by Ye
et al. [2017] and average eviction time (AET) by Hu et al. [2018].

A Relational Theory of Locality A:17

2.5.7. Spatial Locality Data layout is important for cache performance. Gu et al. [2009]
measured spatial locality as the change in temporal locality when increasing the block
size. Gupta et al. [2013] defined locality as the probability of reuse, where the two types
of histograms, RI and RD, give the likelihood of reuse in next-n-addresses and next-n-
unique-addresses. Locality optimization has no known polynomial time solutions, whether
it is to minimize the conflict misses, i.e. the Petrank-Rawitz limit [2002], or the capacity
misses [Lavaee 2016]. However, many effective solutions exist, including the reference affinity
based on timescale co-occurrences [Liu et al. 2018; Zhang et al. 2006; ?]. We do not consider
spatial locality in the relational theory.

2.6. Frequency Locality

Frequency is concise — for any n accesses to m data, the average access frequency per
datum is n/m, a single number. This is one of the most commonly used approaches to
measuring program locality; as such, we benefit from understanding how it relates to our
previous definitions.
It is commonly known as “hotness” [Chilimbi et al. 1999; Rubin et al. 2002]. Program

data with a greater number of reuses are hotter. The locality is better if the “temperature”
is higher. However, the ratio completely ignores the order of data access. The following
three traces have the same access frequency but different locality. We name the first two
following [Denning and Kahn 1975] and the last one following [Ding and Kennedy 2004].

cyclic:abc abc

sawtooth:abc cba

fused:aa bb cc

The locality depends on not just the frequency but also the recency of reuse. Although the
three traces reuse the same data, the locality of fused is better than sawtooth, and sawtooth
better than cyclic. The closer the reuse is, the better the locality.
In theory, Snir and Yu showed that the complete locality cannot be captured by a fixed

size representation [Snir and Yu 2005]. One way to measure locality is mr(c) for all c ≥ 0.
The Snir-Yu limit implies that the frequency conversion has lost too much information —
it is impossible to compute the miss ratio from a fixed number of access frequencies.
Not all locality definitions are equally usable. For the example, fused is optimal, because

no other access order can further reduce any reuse distance. This optimality is obvious when
analyzed using the reuse distance but not using the footprint or miss ratio.

3. The Relational Theory

3.1. The Complete Relations

Figure 4 shows the relation graph, where each node is a definition of locality, each directed
edge a conversion and, if the edge has a cross (×), the assertion that no such conversion
exists. An undirected edge means two directed edge in opposite directions. The conver-
sions are injective. A series of directed edges form a path. The transitive relation gives the
conversion or its impossibility between every pair of metrics.
The locality metrics are grouped by categories, which are areas separated by dotted lines.

Timescale locality is centrally connected: it is the hub that connects histogram and cache
metrics and through them, all other metrics.
All the metrics in the relation graph are from existing work. The contribution of the

preceding sections is the connection of these metrics: in particular, the conversion and non-
equivalence results that are required for all-to-all relations and were absent from past work.

Table III compares three categories of locality with respect to information retained and
practical implications. Sequence locality stores full ordering information, while histogram

A:18 L. Yuan et al.

per datum reuse
interval sequences PD • RI

reuse interval sequences
RI

address independent sequences
AI

per datum reuse distance sequences
PD • RD

reuse distance sequences
RD

reuse interval histograms
precise

reuse distance histograms
precise or compact

sequence metrics histogram metrics

access locality

singleton
locality

data address
sequence

limit case
rtfp(x)

cache localitytimescale locality

Shen formula
StatCache

Average eviction time

working set
s(T)

Thm. 2.3

fully associative LRU
mr(c) for all c

Sec. 3.3.1-3

Sec. 3.3.4

Denning-
HOTL

Xian
g f

orm
ula

(Se
c. 2

.4.3
)

Denning
recursion

x

hotnessfrequency locality

x

Sn
ir-

Yu
 li

m
it

Sec. 2.3

reuse interval histograms
compact footprint

fp(x)

Sec. 2.5.4 fill time
cold-start cache lifetime

Easton-FaginEq. 4Sec
. 2.

5.3

Fig. 4. The graph shows the relational theory as the conversion between locality metrics. For relations
between sequence locality definitions (those in the gray box), see Fig. 2. New contributions in this paper
are shown by the edges marked with a section, equation, algorithm, or theorem number.

and timescale locality ignore the ordering among reuses. To compute the miss-ratio curve
(MRC), histogram locality needs reuse distances, while timescale locality needs just reuse
intervals. There is a significant gain of space efficiency from sequence to histogram locality,
and of time efficiency from histogram to timescale locality. In addition, timescale locality is
composable, as discussed in Section 2.5.5.

Table III. Comparison of locality categories.

Category Information stored Strength/weakess in modeling cache

Sequence ordered accesses no compaction, RD → MRC, RI-RD equivalence
Histogram unordered RI/RD compactness, RD histogram →MRC, RI-RD

nonequivalence
Timescale unordered RI compactness, RI histogram→MRC, composability

3.2. Usefulness in Practice

The relational theory helps to solve problems in practice. The first is precision. All metrics in
the relation graph are defined by mathematics or algorithms, based entirely on information
extracted from a reference trace, i.e. the singleton locality. Mathematics is not just precise
but maintains the precision after many steps of derivation. Furthermore, it proves results
for all programs, which are therefore universal.
The second is brevity and completeness. A metric may be computed in different ways,

and this is shown by multiple paths from singleton locality. Every derivation between two
locality concepts is represented by a path in the graph.

The third is modularity. A path decomposes a complex construction into single steps
each represented by an edge. When there are multiple paths to derive the same metric,
their overlap shows shared intermediate concepts and steps. These combinatorial choices
are fully expressed without having to be enumerated.

The fourth is integration. Researchers can use multiple metrics when solving a problem.
As the example in Section 2.6 shows, it is often convenient to formulate a problem using
one metric and solution in another. The relational theory gives researchers the convenience
in mixing these concepts in practice. Its equivalence and conversion results provide safe
bridges, and non-equivalence results mark the boundaries and limitations.

A Relational Theory of Locality A:19

As an example, consider the Denning recursion. As shown in Section 2.4.1, it computes
the working set size iteratively by adding the miss ratio at each timescale. The time and
space cost is linear. From the formula itself, it is unclear how it can be computed in a
logarithmic cost using a compact histogram. Using the relation graph in Fig. 4, we now see
that this problem is easily solved. First, the footprint can be computed using a compact
histogram. Second, it can derive the limit case footprint. Finally, the limit case footprint
can compute the result of the Denning recursion. In the next section, we will show that a set
of techniques are equivalent to the Denning recursion. Similar reasoning using the relation
graph would show that they too can be computed using a compact histogram.

3.3. Formal Relations with Past Techniques

This section introduces four past techniques. The first three measure the miss ratio curve
by using various types of sampling. This section focuses on how they compute the miss
ratio. Using the new theory, we show that four past techniques, although independently
developed with different areas of applications, produce results mathematically related to
previous locality definitions and hence to each other.

3.3.1. The Shen Formula Shen was the main inventor of a formula that converts from reuse
interval to reuse distance statistically [2007]. Given the reuse interval histogram, the Shen
formula predicts the most likely reuse distance histogram. The conversion was 99% accurate
and used by the open-source programming tool SLO [Beyls and D’Hollander 2006] and by a
new tool called RDX which uses samples collected by hardware counters [Wang et al. 2019].
The formula is derived based statistical inference. The derivation is long and complex.

Based on the paper, it is difficult to understand why the formula should be such and why it
is accurate in experiments. The authors actually admitted in the paper that their “formula
is hard to interpret intuitively.”
The key invention in the Shen formula is p(w), which is “the probability of any given

data element to appear in a time interval of length” w and is computed as follows from the
reuse interval histogram:

p(w) =

w∑
i=1

n−1∑
j=i+1

rt(j)

m− 1

If we take the difference p(w+1)−p(w), we see that it is equivalent to the Denning-Schwartz
formula divided by m− 1:

p(w + 1)− p(w) =

n∑
i=w+2

rt(i)

m− 1

From Section 2.4.1, the probability is equivalent to p(w) = s(w)/(m−1). It now has a clear
meaning, which is that the probability an access in a window adds a distinct data item (to
reuse distance) is the ratio of the working set size divided by the data size minus one. The
reason for m − 1 is to model a reuse window, where the reused datum cannot be accessed
inside the window.
We can analyze the properties of the Shen formula using the new theory. For example,

mathematically the probability p(w) may exceed 1, because s(w) is not bounded by m. The
formula may use the footprint, i.e. setting p(w) = fp(w)/(m− 1), to avoid this problem.

3.3.2. Statcache In 2010, Eklov and Hagersten developed Statcache and showed that it
was highly accurate (98%) for computer-architecture evaluation. Statcache estimates the
average reuse distance ES(r) of all the accesses with the same reuse interval r. Eklov and

A:20 L. Yuan et al.

Hagersten [2010] defined Fj as the fraction of all memory references with a reuse interval
greater than j and computed the average reuse distance ES(r) using the following formula:

ES(r) =

r∑
j=1

Fj =

r∑
j=1

n∑
i=j+1

rt(i)

The purpose and the method of Statcache are similar to Shen. While the basic formula
is identical to Denning-Schwartz, Statcache also developed extremely fast measurement
through a novel type of random sampling [Eklov and Hagersten 2010]. The subsequent
application of Statstack won a best paper award a year later for its efficiency and accu-
racy [Eklov et al. 2011].

3.3.3. Cache Fill Times and Eviction Times In the higher-order theory of locality (HOTL),
Xiang et al. [2013] defined the cache fill time, which we denote as ft(c), as the average
amount of time for a program to access an amount of data equal to a cache size c, i.e. the
time for an empty cache to incur c misses. They defined it as the inverse function of the
footprint. Mathematically, the fill time and the footprint are opposite mappings between
time and space, more specifically, between a timescale and a data (cache) size. The fill time
of the footprint of timescale x is x, i.e. ft(fp(x)) = x. Equivalently, the footprint of the fill
time of the cache size c is c, i.e. fp(ft(c)) = c.

Intuitively, the cache fill time is the time a program takes to fill the cache with recently
accessed data. Any data block previously accessed is evicted after the cache fill time. As
the cache is larger, the fill time longer, and the chance of a miss lower. Formally, an access
is a miss if and only if its reuse interval is greater than or equal to the cache fill time, and
the miss ratio can be computed by:

mr(c) = P (ri > ft(c)) (10)

where c is the cache size, ft(c) the fill time, and P (ri) the distribution of reuse intervals.
Hu et al. [2018] defined an eviction time as the time between the last access of a data

block and its eviction from the cache, and the average of all eviction times is the average
eviction time (AET), defined for each cache size c as AET(c). The miss ratio is computed
as the portion of accesses whose reuse interval is greater than the AET of the cache.

mr(c) = P (ri > AET(c)) (11)

where c is the cache size, AET(c) its AET, and P (ri) the distribution of reuse intervals.
The fill time and the average eviction time are mathematically different. The first is

based on footprint. AET is equivalent to Denning-Schwartz as shown by Hu et al. [2018].
Therefore, the difference between the two has been analyzed previously in Section 2.4.4.
In particular, from the WS-RTFP relation, if the fill time is computed from the limit-case
Xiang formula as the inverse function of rtfp(x) − rtfp(0), it is equivalent to the average
eviction time. Because of its monotonicity and concavity, it implies that the inverse of the
limit-case footprint is unique.
The fill time is mainly a metric for explaining the footprint theory, including next in

Section 3.3.4. AET has been used in managing and optimizing the memory and storage
cache [Byrne et al. 2018; Chen et al. 2018; Hu et al. 2018; Xiang et al. 2018]. For static
analysis, Chen et al. [2018] found it more convenient to use AET, because it required only
the reuse interval, not the first- and last-access time.

3.3.4. The Easton-Fagin Recipe Easton and Fagin [1978] were among the first to study cache
sharing, in particular, the effect from context switching. They defined a “cold-start cache”

A Relational Theory of Locality A:21

as one when a program is switched back and its earlier data have been all wiped out, and
to distinguish from it, a “warm-start cache” is used to refer to a regular, solo-use cache.
The cold-start miss ratio was difficult to simulate because a program may be interrupted

and then restarted at any point. The warm-start cache had no breaks in execution and was
easy to simulate. Section 5 of the 1978 paper gave an ingenious solution that computes the
cold-start miss ratio from the warm-start miss ratio.
The solution computes LIFE*c(c), the time to have c misses in the cold-start cache of

size c as the sum of the inter-miss time of all warm-start caches of size 0 ≤ j < c, i.e.
LIFE*c(c) =

∑c−1
j=0 LIFE(j) [Easton and Fagin 1978, Sec. 5]. It expresses a simple but

compelling intuition — the time from the jth miss to the next in the cold-start cache is
probably similar to the inter-miss time of the warm-start cache of size j. Initially, the first
access to the cold-start cache is the first miss, which is the inter-miss time of zero-size
warm-start cache, LIFE(0) = 1.
The intuition seemed correct. Easton and Fagin found that the “estimate was almost

always within 10-15 percent of the directly observed average cold-start miss ratio.” They
“gave a rough explanation as to why our recipe is reasonable” but“remark without proof
that this need not be the case.” They called the formula a recipe rather than a model.
With the relational theory, we can now derive the recipe. First, we see that LIFE*c(c) =

ft(c) and LIFE(j) = im(j). Therefore, the recipe says that the fill time ft(c) can be computed

from the inter-miss times of the cache of all smaller sizes j, or formally, ft(c) ≈
∑c−1

j=0 im(j).
We rewrite the fill time as the sum of c inter-miss times.

ft(c) =

c−1∑
j=0

(ft(j + 1)− ft(j)) ≈
c−1∑
j=0

im(j)

We see that the key assumption of the recipe is that the time between the jth miss and
the next is approximately the inter-miss time of cache size j. We can rewrite the inter-miss
time as the inverse of the miss ratio and compute it using the Denning-HOTL conversion.
In addition, we have fp(ft(j+1))− fp(ft(j)) = j+1− j = 1. The approximation is therefore
as follows:

ft(j + 1)− ft(j) ≈ im(j) =
1

mr(j)
=

fp(ft(j + 1))− fp(ft(j))

fp(ft(j) + 1)− fp(ft(j))

Examining both sides of ≈, we see that the change in the fill time function is approximated
by the change in the footprint function. It assumes a linear relation between the two changes.
Mathematically, the approximation is equivalent to f(x+∆)− f(x) ≈ (f(x+1)− f(x))∆,
where ∆ = ft(j+1)− ft(j), and f(x) is fp(ft(j)). The change in ft, i.e. ∆, is proportional to
the change in fp, i.e. fp(x+ 1)− fp(x).

4. Related Work

We review more related work in more detail in the following areas:

Observational Stochastics Denning and Buzen [1978] formulated a new theory of queue-
ing analysis now called observational stochastics. Conventional analysis was based on classic
queuing models with idealistic assumptions such as infinite stationary processes. Observa-
tional stochastics are based on directly measurable variables and directly verifiable assump-
tions. The theory and applications in system and network analysis are enunciated in two
recent books [Buzen 2015; Denning and Martell 2015]. All locality definitions and properties
in this paper are based on direct measurements, do not depend on idealistic assumptions,
hence are extensions of observational stochastics.

A:22 L. Yuan et al.

The original timescale definition of locality is the Denning recursion, which can be derived
using stochastic assumptions — that a trace is infinite and generated by a stationary Markov
process, i.e. a limit value exists [Denning and Schwartz 1972]. In later work Denning and his
colleagues adopted observational stochastics and used the formula on finite-length traces,
with adjustments to account for boundary effects [Denning and Slutz 1978; Slutz and Traiger
1974]. The footprint is also a type of observational stochastics. The equivalence theorem in
Section 2.4.4 shows the mathematical relation between the two.

Cache Benchmark Synthesis Benchmark synthesis is the construction of a synthetic pro-
gram with desirable locality. It is locality metric conversion in the opposite direction to a
trace. Synthesis has been used to solve two practical problems. The first is memory probing
with parameterized locality to examine machine performance in multiple use scenarios. The
probe program APEX-MAP can be configured to exhibit a distribution of reuse distances
similar to a given target [Ibrahim and Strohmaier 2010]. While APEX-MAP approximates,
an algorithm by Shen and Shaw [2008] generates a trace that has the exact reuse distance
histogram as specified. The second use cache behavior cloning. A system called WEST gen-
erates a stochastic trace based on the RD distribution within each cache set [Balakrishnan
and Solihin 2012], while Hierarchical Reuse Distance (HRD) matches the RD distributions
at multiple cache-line granularities or cache levels [Maeda et al. 2017].

Sampling A real-world application usually generates a memory address trace of an ex-
tremely large length. Existing locality models [Hu et al. 2016; Wires et al. 2014] often
employ sampling techniques to reduce the profiling overhead. There exist many sampling
techniques: address sampling using hardware counters [Tam et al. 2009; Wang et al. 2019],
random sampling [Eklov and Hagersten 2010; Hu et al. 2018], reservoir sampling [Beyls and
D’Hollander 2006], and static sampling [Chen et al. 2018]. Overall, sampling is a technique
orthogonal to the definition of locality used in the analysis. The use of the new theory in
sampling is beyond the scope of this paper.

5. Summary

This paper has formalized major definitions of locality, grouped them into six categories,
and showed a series of relations and properties, including the equivalence between sequence
locality definitions, non-equivalence between histogram metrics, the equivalence between
two timescale definitions, a formal justification of the Easton-Fagin recipe, the first solution
that computes the footprint in linear time from either a precise or a compact histogram,
and from these results, a complete relational theory of locality.

ACKNOWLEDGMENTS

The authors wish to thank the referees and staff of the journal and especially Referee 2 who suggested

Algorithm 1 as a more intuitive expression of Algorithm 3. The presentation has been improved thanks to

the comments by Noah Bertram, Jacob Brock, Dong Chen, Joel Kottas, Yechen Li, Rahman Lavaee, Hao
Luo, Pengcheng Li, Colin Pronovost, and Chencheng Ye.

APPENDIX

Here we present Algorithm 3, a more detailed version of Algorithm 1 for which we have a proof of correctness.

Proof of Theorem 2.3:

Proof. The first appearance of each data item is placed correctly. Later appearances of each data item

are also placed correctly, because the calculation of nextpos converts from reuse distance to reuse interval.

After an access of e, nextpos[e] is set initially by the reuse distance. Whenever there is a reuse, nextpos[e]
increments (Line 13). At the next access of e, nextpos[e] equals to the last access time plus the reuse interval.

Therefore, all later occurrences of data elements are placed correctly.

A Relational Theory of Locality A:23

ALGORITHM 3: PD·RD → AI conversion (vector based)

1 lastpos[1 . . .m]← pd[1 . . .m][1]
2 nextpos[1 . . .m]← pd[1 . . .m][1]
3 cnt[1 . . .m]← {1}
4 for i = 1 to n do
5 e← 0
6 for e′ = 1 to m do
7 if nextpos[e′] = i && (e = 0 || lastpos[e] < lastpos[e′]) then
8 e← e′

9 end
10 end
11 for e′ = 1 to m do
12 if lastpos[e′] < lastpos[e] then
13 nextpos[e′]← nextpos[e′] + 1
14 end
15 end
16 ai[i]← e
17 cnt[e]← cnt[e] + 1
18 lastpos[e]← i
19 nextpos[e]← i+ pd[e][cnt[e]]
20 end

Algorithm 3 gives the conversion PD · RD → AI. The main loop of Algorithm 3, starting at Line 4, constructs

the AI trace ai[1 . . . n] by selecting the datum e accessed at each time i. Lines 1 to 3 initialize the auxiliary

data: the last access time lastpos[e] is the time of e’s last access before i, nextpos[e] the estimated time of
its next access, the access count cnt[e] the number of times e has been accessed. Initially for each datum e,

the first access is fe, and its access count cnt[e] = 1.
The main loop has two inner loops: the selection loop and the update loop. The selection loop, Lines

6 to line 10, chooses e for ai[i] if its estimated next access time is i. There may be multiple choices. The

selection loop does not stop at the first such datum. It finds every such item and chooses the one with the
largest last access time. This is a choice based on recency, i.e. most recent last access. Naturally, this choice

is unique.

The recency choice at line 7 is necessary. Consider the AI trace (e1, e2, e3, e2, e1). When time i = 4,
the next access times of e1, e2 are both estimated as 4. The selection loop must choose e2, which is more

recently accessed.

The update loop is the second inner loop. Lines 11 to 15 update nextpos for all other elements e′. If e
has been accessed after the last e′, the e access is a recurrence, so the estimated next access time of e′ is

increased by 1. Then, Lines 16 to 19 update for e: the current access is now the last access, the access count
cnt[e] is increased by 1, and the next access time is estimated to be the current time plus the next reuse

distance pd[e][cnt[e]].

REFERENCES

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques,
and Tools (2nd ed.). Addison-Wesley.

Randy Allen and Ken Kennedy. 2001. Optimizing Compilers for Modern Architectures: A Dependence-based

Approach. Morgan Kaufmann Publishers.
Ganesh Balakrishnan and Yan Solihin. 2012. WEST: Cloning data cache behavior using Stochastic Traces.

In Proceedings of the International Symposium on High-Performance Computer Architecture. 387–398.

DOI:http://dx.doi.org/10.1109/HPCA.2012.6169042
Kristof Beyls and Erik H. D’Hollander. 2006. Discovery of locality-improving refactoring by reuse path

analysis. In Proceedings of High Performance Computing and Communications. Springer. Lecture Notes

in Computer Science, Vol. 4208. 220–229.
Jacob Brock, Chen Ding, Rahman Lavaee, Fangzhou Liu, and Liang Yuan. 2018. Prediction and bounds on

shared cache demand from memory access interleaving. In Proceedings of the International Symposium

http://dx.doi.org/10.1109/HPCA.2012.6169042

A:24 L. Yuan et al.

on Memory Management. 96–108. DOI:http://dx.doi.org/10.1145/3210563.3210565

Jeffrey P. Buzen. 2015. Rethinking randomness: a new foundation for stochastic modeling.
Daniel Byrne, Nilufer Onder, and Zhenlin Wang. 2018. mPart: miss-ratio curve guided partitioning

in key-value stores. In Proceedings of the International Symposium on Memory Management. 84–95.
DOI:http://dx.doi.org/10.1145/3210563.3210571

Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. 2005. Predicting Inter-Thread Cache Con-
tention on a Chip Multi-Processor Architecture. In Proceedings of the International Symposium on

High-Performance Computer Architecture. 340–351.
Dong Chen, Fangzhou Liu, Chen Ding, and Sreepathi Pai. 2018. Locality analysis through static parallel

sampling. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. 557–570. DOI:http://dx.doi.org/10.1145/3192366.3192402

Xi E. Chen and Tor M. Aamodt. 2009. A first-order fine-grained multithreaded throughput model. In

Proceedings of the International Symposium on High-Performance Computer Architecture. 329–340.

Trishul M. Chilimbi, Bob Davidson, and James R. Larus. 1999. Cache-Conscious Structure Definition. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation.
13–24.

Edward G. Coffman Jr. and Peter J. Denning. 1973. Operating Systems Theory. Prentice-Hall.
Keith Cooper and Linda Torczon. 2010. Engineering a Compiler, 2nd Edition. Morgan Kaufmann.

Peter J. Denning. 1968. The working set model for program behaviour. Commun. ACM 11, 5 (1968),
323–333.

Peter J. Denning and Jeffrey P. Buzen. 1978. The Operational Analysis of Queueing Network Models.
Comput. Surveys 10, 3 (1978), 225–261. DOI:http://dx.doi.org/10.1145/356733.356735

Peter J. Denning and Kevin C. Kahn. 1975. A study of program locality and lifetime functions. In

Proceedings of the ACM Symposium on Operating System Principles. 207–216.
Peter J. Denning and Craig H. Martell. 2015. Great Principles of Computing. MIT Press.
Peter J. Denning and Stuart C. Schwartz. 1972. Properties of the working set model. Commun. ACM 15,

3 (1972), 191–198.
Peter J. Denning and Donald R. Slutz. 1978. Generalized working sets for segment reference strings.

Commun. ACM 21, 9 (1978), 750–759.

C. Ding and K. Kennedy. 2004. Improving effective bandwidth through compiler enhancement of global

cache reuse. J. Parallel and Distrib. Comput. 64, 1 (2004), 108–134.
Chen Ding, Xiaoya Xiang, Bin Bao, Hao Luo, Ying-Wei Luo, and Xiao-lin Wang. 2014. Perfor-

mance Metrics and Models for Shared Cache. J. Comput. Sci. Technol. 29, 4 (2014), 692–712.

DOI:http://dx.doi.org/10.1007/s11390-014-1460-7
Malcolm C. Easton and Ronald Fagin. 1978. Cold-Start vs. Warm-Start Miss Ratios. Commun. ACM 21,

10 (1978), 866–872.
David Eklov, David Black-Schaffer, and Erik Hagersten. 2011. Fast modeling of shared caches in multicore

systems. In Proceedings of the International Conference on High Performance Embedded Architectures

and Compilers. 147–157. Best paper.
David Eklov and Erik Hagersten. 2010. StatStack: Efficient modeling of LRU caches. In Proceedings of the

IEEE International Symposium on Performance Analysis of Systems and Software. 55–65.

Venmugil Elango, Fabrice Rastello, Louis-Noël Pouchet, J. Ramanujam, and P. Sadayappan.
2015. On Characterizing the Data Access Complexity of Programs. In Proceedings of

the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 567–580.

DOI:http://dx.doi.org/10.1145/2676726.2677010
Changpeng Fang, Steve Carr, Soner Önder, and Zhenlin Wang. 2005. Instruction Based Memory Distance

Analysis and its Application. In Proceedings of the International Conference on Parallel Architecture
and Compilation Techniques. 27–37.

Xiaoming Gu, Ian Christopher, Tongxin Bai, Chengliang Zhang, and Chen Ding. 2009. A component model

of spatial locality. In Proceedings of the International Symposium on Memory Management. 99–108.
Saurabh Gupta, Ping Xiang, Yi Yang, and Huiyang Zhou. 2013. Locality principle revisited: A

probability-based quantitative approach. J. Parallel and Distrib. Comput. 73, 7 (2013), 1011–1027.

DOI:http://dx.doi.org/10.1016/j.jpdc.2013.01.010
J. Hong and H. T. Kung. 1981. I/O complexity: The red-blue pebble game. In Proceedings of the ACM

Conference on Theory of Computing. Milwaukee, WI.

Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Chen Ding, and Zhenlin Wang. 2016. Kinetic Modeling
of Data Eviction in Cache. In Proceedings of USENIX Annual Technical Conference. 351–364. https:

http://dx.doi.org/10.1145/3210563.3210565
http://dx.doi.org/10.1145/3210563.3210571
http://dx.doi.org/10.1145/3192366.3192402
http://dx.doi.org/10.1145/356733.356735
http://dx.doi.org/10.1007/s11390-014-1460-7
http://dx.doi.org/10.1145/2676726.2677010
http://dx.doi.org/10.1016/j.jpdc.2013.01.010
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu

A Relational Theory of Locality A:25

//www.usenix.org/conference/atc16/technical-sessions/presentation/hu

Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Zhenlin Wang, Chen Ding, and Chencheng Ye. 2018.
Fast Miss Ratio Curve Modeling for Storage Cache. ACM Transactions on Storage 14, 2 (2018), 12:1–
12:34. DOI:http://dx.doi.org/10.1145/3185751

Khaled Z. Ibrahim and Erich Strohmaier. 2010. Characterizing the Relation Between Apex-Map Synthetic

Probes and Reuse Distance Distributions. International Conference on Parallel Processing 0 (2010),
353–362. DOI:http://dx.doi.org/10.1109/ICPP.2010.43

Bruce Jacob, Spencer W. Ng, and David T. Wang. 2010. Memory systems: cache, DRAM, disk. Morgan
Kaufmann.

S. Jiang and X. Zhang. 2002. LIRS: an efficient low inter-reference recency set replacement to improve
buffer cache performance. In Proceedings of the International Conference on Measurement and Modeling
of Computer Systems. Marina Del Rey, California.

Rahman Lavaee. 2016. The hardness of data packing. In Proceedings of the ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 232–242.
DOI:http://dx.doi.org/10.1145/2837614.2837669

Pengcheng Li, Colin Pronovost, William Wilson, Benjamin Tait, Jie Zhou, Chen Ding, and John Criswell.
2019. Beating OPT with Statistical Clairvoyance and Variable Size Caching. In Proceedings of the
International Conference on Architectural Support for Programming Languages and Operating Systems.

243–256. DOI:http://dx.doi.org/10.1145/3297858.3304067
Yumeng (Lucinda) Liu, Daniel Busaba, Chen Ding, and Daniel Gildea. 2018. All Timescale Window

Co-occurrence: Efficient Analysis and a Possible Use. In Proceedings of the 28th Annual International
Conference on Computer Science and Software Engineering. 289–292. http://dl.acm.org/citation.cfm?
id=3291291.3291322

Li Lu and Michael L. Scott. 2011. Toward a Formal Semantic Framework for Deterministic Parallel Pro-

gramming. In Proceedings of the International Conference on Distributed Computing. 460–474.
Hao Luo, Guoyang Chen, Fangzhou Liu, Pengcheng Li, Chen Ding, and Xipeng Shen. 2018. Footprint mod-

eling of cache associativity and granularity. In Proceedings of the International Symposium on Memory
Systems (MEMSYS). 232–242. DOI:http://dx.doi.org/10.1145/3240302.3240419

Hao Luo, Pengcheng Li, and Chen Ding. 2017. Thread Data Sharing in Cache: Theory and Measurement.

In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

103–115. http://dl.acm.org/citation.cfm?id=3018759
Rafael K. V. Maeda, Qiong Cai, Jiang Xu, Zhe Wang, and Zhongyuan Tian. 2017. Fast and Ac-

curate Exploration of Multi-level Caches Using Hierarchical Reuse Distance. In Proceedings
of the International Symposium on High-Performance Computer Architecture. 145–156.
DOI:http://dx.doi.org/10.1109/HPCA.2017.11

G. Marin and J. Mellor-Crummey. 2004. Cross architecture performance predictions for scientific applica-
tions using parameterized models. In Proceedings of the International Conference on Measurement and

Modeling of Computer Systems. 2–13.

R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. 1970. Evaluation techniques for storage hierarchies.
IBM System Journal 9, 2 (1970), 78–117.

Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn (Eds.). 2003. Algorithms for Memory Hierarchies, Advanced

Lectures. Lecture Notes in Computer Science, Vol. 2625. Springer.
Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal, and Henri E. Bal. 2014. A detailed GPU

cache model based on reuse distance theory. In Proceedings of the International Symposium on

High-Performance Computer Architecture.
E. Petrank and D. Rawitz. 2002. The Hardness of Cache Conscious Data Placement. In Proceedings of the

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
Apan Qasem and Ken Kennedy. 2005. Evaluating a Model for Cache Conflict Miss Prediction. Technical

Report CS-TR05-457. Rice University.
S. Rubin, R. Bodik, and T. Chilimbi. 2002. An efficient profile-analysis framework for data layout opti-

mizations. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. Portland, Oregon.

Derek L. Schuff, Milind Kulkarni, and Vijay S. Pai. 2010. Accelerating multicore reuse distance analysis with
sampling and parallelization. In Proceedings of the International Conference on Parallel Architecture and

Compilation Techniques. 53–64.

Rathijit Sen and David A. Wood. 2013. Reuse-based online models for caches. In Proceedings of the
International Conference on Measurement and Modeling of Computer Systems. 279–292.

https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu
http://dx.doi.org/10.1145/3185751
http://dx.doi.org/10.1109/ICPP.2010.43
http://dx.doi.org/10.1145/2837614.2837669
http://dx.doi.org/10.1145/3297858.3304067
http://dl.acm.org/citation.cfm?id=3291291.3291322
http://dl.acm.org/citation.cfm?id=3291291.3291322
http://dx.doi.org/10.1145/3240302.3240419
http://dl.acm.org/citation.cfm?id=3018759
http://dx.doi.org/10.1109/HPCA.2017.11

A:26 L. Yuan et al.

Xipeng Shen and Jonathan Shaw. 2008. Scalable Implementation of Efficient Locality Approximation. In

Proceedings of the Workshop on Languages and Compilers for Parallel Computing. 202–216.
Xipeng Shen, Jonathan Shaw, Brian Meeker, and Chen Ding. 2007. Locality approximation using time.

In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
55–61.

Donald R. Slutz and Irving L. Traiger. 1974. A Note on the Calculation Working Set Size. Commun. ACM
17, 10 (1974), 563–565. DOI:http://dx.doi.org/10.1145/355620.361167

A. J. Smith. 1976. On the Effectiveness of Set Associative Page Mapping and Its Applications in Main
Memory Management. In Proceedings of the International Conference on Software Engineering.

M. Snir and J. Yu. 2005. On the theory of spatial and temporal locality. Technical Report DCS-R-2005-2564.
Computer Science Dept., Univ. of Illinois at Urbana-Champaign.

G. Edward Suh, Srinivas Devadas, and Larry Rudolph. 2001. Analytical cache models with applications to

cache partitioning.. In Proceedings of the International Conference on Supercomputing. 1–12.

David K. Tam, Reza Azimi, Livio Soares, and Michael Stumm. 2009. RapidMRC: approximating L2 miss rate
curves on commodity systems for online optimizations. In Proceedings of the International Conference

on Architectural Support for Programming Languages and Operating Systems. 121–132.
Qingsen Wang, Xu Liu, and Milind Chabbi. 2019. Featherlight Reuse-distance Measurement. In Proceedings

of the International Symposium on High-Performance Computer Architecture. to appear.

Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas JA Harvey, Andrew Warfield, and Coho Data. 2014.
Characterizing storage workloads with counter stacks. In Proceedings of the Symposium on Operating
Systems Design and Implementation. USENIX Association, 335–349.

M. J. Wolfe. 1996. High Performance Compilers for Parallel Computing. Addison-Wesley, Redwood City,
CA.

Meng-Ju Wu and Donald Yeung. 2013. Efficient Reuse Distance Analysis of Multicore Scal-

ing for Loop-Based Parallel Programs. ACM Trans. Comput. Syst. 31, 1 (2013), 1.
DOI:http://dx.doi.org/10.1145/2427631.2427632

Meng-Ju Wu and Donald Yeung. 2011. Coherent Profiles: Enabling Efficient Reuse Distance Analysis of

Multicore Scaling for Loop-based Parallel Programs. In Proceedings of the International Conference on
Parallel Architecture and Compilation Techniques. 264–275.

Meng-Ju Wu, Minshu Zhao, and Donald Yeung. 2013. Studying multicore processor scaling via reuse

distance analysis. In Proceedings of the International Symposium on Computer Architecture. 499–510.
Xiaoya Xiang, Bin Bao, Tongxin Bai, Chen Ding, and Trishul M. Chilimbi. 2011a. All-window profiling and

composable models of cache sharing. In Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 91–102.

Xiaoya Xiang, Bin Bao, Chen Ding, and Yaoqing Gao. 2011b. Linear-time Modeling of Program Working Set

in Shared Cache. In Proceedings of the International Conference on Parallel Architecture and Compilation
Techniques. 350–360.

Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao. 2013. HOTL: a higher order theory of locality. In

Proceedings of the International Conference on Architectural Support for Programming Languages and
Operating Systems. 343–356.

Yaocheng Xiang, Xiaolin Wang, Zihui Huang, Zeyu Wang, Yingwei Luo, and Zhenlin Wang. 2018. DCAPS:

dynamic cache allocation with partial sharing. In Proceedings of the EuroSys Conference. 13:1–13:15.
DOI:http://dx.doi.org/10.1145/3190508.3190511

Chencheng Ye, Chen Ding, Hao Luo, Jacob Brock, Dong Chen, and Hai Jin. 2017. Cache Exclusivity and

Sharing: Theory and Optimization. ACM Transactions on Architecture and Code Optimization 14, 4
(2017), 34:1–34:26. DOI:http://dx.doi.org/10.1145/3134437

Liang Yuan, Wesley Smith, Chen Ding, Sicong Fan, Zixu Chen, and Yunquan Zhang. 2018. Footmark: a New
Formulation for Working Set Statistics. In Proceedings of the Workshop on Languages and Compilers
for Parallel Computing.

Chengliang Zhang, Chen Ding, Mitsunori Ogihara, Yutao Zhong, and Youfeng Wu. 2006. A hierarchical
model of data locality. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. 16–29.

Y. Zhong, S. G. Dropsho, X. Shen, A. Studer, and C. Ding. 2007. Miss rate prediction across program
inputs and cache configurations. IEEE Trans. Comput. 56, 3 (March 2007), 328–343.

Yutao Zhong, Xipeng Shen, and Chen Ding. 2009. Program Locality Analysis Using Reuse Distance. ACM

Transactions on Programming Languages and Systems 31, 6 (Aug. 2009), 1–39.

http://dx.doi.org/10.1145/355620.361167
http://dx.doi.org/10.1145/2427631.2427632
http://dx.doi.org/10.1145/3190508.3190511
http://dx.doi.org/10.1145/3134437

	Introduction
	Locality Definitions and Relations
	Overview
	Sequence Locality
	Equivalence

	Histogram Locality
	Compactness
	Non-equivalence

	Timescale Definitions of Locality
	The Denning Working Set Recursion
	Footprint
	Computing the Footprint
	Relation between the Working Set and Footprint
	Finite trace Denning recursion
	From Footprint to Reuse Interval

	Cache Definitions of Locality
	Performance of Fully Associative LRU Cache
	Converting from Timescale Locality
	Computing the Miss Ratio Curve Incrementally in Linear Time
	Using Compact Histograms
	Composability and Cache Sharing
	Set Associative and Multi-level Caches
	Spatial Locality

	Frequency Locality

	The Relational Theory
	The Complete Relations
	Usefulness in Practice
	Formal Relations with Past Techniques
	The Shen Formula
	Statcache
	Cache Fill Times and Eviction Times
	The Easton-Fagin Recipe

	Related Work
	Summary

