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Devices, or SQUIDs. SQUIDs can measure minute changes in voltages and 

magnetic fields. Because of this, SQUIDs can be used to measure neural activity 

in the brain, heart activity [2], and even submarine detection [3]. 

A crystal dislocation is an irregularity within the crystal structure. There are 

two types of dislocations. An edge dislocation occurs when one plane of atoms 

only extends half-way through the crystal. This causes the planes to bend around 

it. A screw dislocation looks like the Riemann surface of the complex logarithm. 

Dislocations can also be a combination of the two types. Studying these disloca-

tions can help material scientists improve the strength of metals. The kink soli-

tons of the SGE can be used to model the interactions of these dislocations [4]. 

Ultrashort pulses allow scientists to study ultrashort processes and allow for 

optical data transmission. Some ultrashort processes of interest include electron 

dynamics within semiconductors, light-induced phase changes of metals, plasma 

dynamics, and chemical reactions [5]. Light pulses can be used to transmit data 

at very high rates due to high optical frequencies [6]. 

In relativistic field theory, topological solitons, or kinks, can be used to model 

undiscovered particles such as magnetic monopoles and cosmic strings [7]. 

The goal of this paper is to find exact solutions to strongly perturbed 

sine-Gordon (SG) type equations. Recent works in the literature proposed ana-

lytical and numerical solutions to this problem [8] [9] [10] [11]. In this work, we 

find exact solutions by means of the Ansatz method. This research is a direct 

continuation of the research done in [12] [13] [14] [15] and [16]. The research 

done in those papers was primarily to find solutions to the sine-Gordon equa-

tion and its variations under small, adiabatic perturbations. The solutions found 

in this paper are for strong perturbations to those same equations. In Section 2 

we describe the Ansatz method, and in Section 3 we propose exact soliton solu-

tions to sine-Gordon type equations and higher order dispersive versions. We 

conclude this work with a summary of our methods, the applicability of our re-

sults, and possible avenues of future work. 

2. The Ansatz Method 

The typical nonlinear wave equation that will be studied in this dissertation is of 

the form 

( ) ( ) 0tt xxq q L q N q− + + =                    (1) 

where x and t represent partial derivatives with respect to space and time respec-

tively, and where ( )L q  represents the linear terms, including derivatives of q, 

and ( )N q  represents the nonlinear terms, including derivatives of q. The An-

satz method requires a guess for the solution. Call this guess the particular solu-

tion ( )ˆ ,q x t . Once an initial guess is made for ( )ˆ ,q x t , that solution is put into 

the original nonlinear wave Equation (1) 

( ) ( )ˆ ˆ ˆ ˆ 0tt xxq q L q N q− + + =  

The above equation is then simplified down to a sum of linearly independent 
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functions, 

( )
0

0 ,
n

i i
i

c F x t
=

=∑                           (2) 

where ic  are the constant coefficients of the linearly independent functions 

( ),iF x t . In order to satisfy (2), it is necessary to set all coefficients equal to zero 

{ }0 0,1, 2, ,ic i n= ∀ ∈   

In completing this step, one of two things will happen. If a critical parameter 

must be set to zero, then the particular solution ( )ˆ ,q x t  has been proven to be 

invalid. Otherwise, this is proof that ( )ˆ ,q x t  is a particular solution to (1). In 

the latter case, setting the ic  to zero will lead to some constraints on the para-

meters of (1) and the internal parameters of ( )ˆ ,q x t . 

3. Soliton Solutions 

3.1. Sine-Gordon Equation and Its Type 

This first subsection will study the SGE and other similar equations without 

higher order dispersion terms. The same equations with the addition of 

fourth-order and sixth-order dispersion will be studied in the subsections the-

reafter. 

3.1.1. Sine-Gordon Equation 

The SGE studied in this paper is 

2 sin 0tt xxq k q a q− + =                       (3) 

The kink Ansatz that will be used to solve this equation, given by [12], is 

( ) ( ){ }, 4arctan expq x t A B x vt= −                   (4) 

The variable E will be used henceforth, where ( )expE A B x vt= −   . Insert-

ing (4) into (3) yields 

( )
( )

3
2 2 2

2
2

4 0
1

E E
B v k a

E

−  − + = +
 

Solving for B gives 

2 2

a
B

k v
= ±

−
 

It turns out that 0e
Bx

A
−= ±  represents the starting location of the soliton at 

0x . Positive A represents a bright soliton whereas negative A represents a dark 

soliton. The sign of A B⋅  determines the direction of the internal twist in the 

kink. These things hold true whenever the solution structure is an arctangent of 

an exponential. 

The bright solution to the unperturbed SGE is 

( ) ( )02 2
, 4arctan exp

a
q x t x x vt

k v

   = ± − −  
−   

 



S. Johnson et al. 

 

 

DOI: 10.4236/jamp.2019.710163 2404 Journal of Applied Mathematics and Physics

 

The result above is already well known [1] [12] [13] [16] [17] [18]. Now that 

we have the exact solution to the unperturbed SGE, we will use the same Ansatz 

to find the exact solution to the strongly perturbed SGE. The variable R will be 

used to hold all of the perturbation terms, where 

t x xt tt xxt xxxxR q q q q q qβ γ δ λ σ ν= + + + + +               (5) 

In Josephson junctions, β  represents the dissipative losses of electrons 

tunneling across a dielectric barrier, γ  comes about from an inhomogeneous 

part of the local inductance, δ  accounts for the diffusion, λ  results from an 

inhomogeneity of the capacitance, σ  arises due to current losses along the 

barrier, and ν  contains the higher order spatial dispersion [18]. 

The perturbed SGE is thus 

2 sintt xxq k q a q R− + =  

Using the same Ansatz from (4), and performing the calculations found in 

Appendix A, we find the following relationships: 

0

0

vγ β
σ
ν

=
=
=

                             (6) 

The bright soliton solution to the perturbed SGE is 

( )
( )

( )02 2
, 4arctan exp

1

a
q x t x x vt

k v vδ λ

   = ± − −  
− − −    

 

with the constraints found in (6). These results have already been reported in 

[12], and are reproduced here in order to show the method that will be used 

henceforth. 

3.1.2. Sine-Cosine-Gordon Equation 

The sine-cosine-Gordon (SCGE) equation is 

2 sin cos 0tt xxq k q a q b q− + + =  

The kink Ansatz for this equation is 

( ) ( ){ }, 4arctan expq x t A B x vt C= − +                 (7) 

The solution to the unperturbed SCGE is 

( )
( )

( )

1
2 2 4

0
2 2

, 4arctan exp arctan
a b b

q x t x x vt
ak v

  
+    = ± − − −    

 −  
  

 

The perturbed SCGE is 
2 sin costt xxq k q a q b q R− + + =  

where R again contains all of the perturbation terms from (5). Using the same 

Ansatz from (7), and setting the coefficients of the linearly independent func-

tions to zero as is done in Appendix A leads to the same matrix equation. The 

solution to the perturbed SCGE is 
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( )
( )

( )
( )

1
2 2 4

0
2 2

, 4arctan exp arctan
1

a b b
q x t x x vt

ak v vδ λ

  
+    = ± − − −    

 − − −  
  

 

3.1.3. Double Sine-Gordon Equation 

The double sine-Gordon equation (DSGE) is 

2

1 2sin sin 2 0tt xxq k q a q a q− + + =                   (8) 

The first Ansatz we will investigate is 

( ) ( ){ }, 2arctan sinhq x t A B x vt= −                    (9) 

Substituting (9) into (8) and setting the coefficients to the linearly indepen-

dent functions both to zero gives us the first solution to the unperturbed DSGE. 

The details of this process are given in Appendix B. 

( ) ( )1 2 1

2 2

1 2

2
, 2arctan sinh

2

a a a
q x t x vt

a a k v

  − = ± −  
− −    

 

For the soliton to exist, it is necessary that 2 12a a>  and 1 0a < . 

The second Ansatz for (8), found in [13], is 

( ) ( ){ }, 2arctan tanhq x t A B x vt= −                  (10) 

The resulting equation from combining (8) and (10) and setting the coeffi-

cients of the linearly independent functions to zero leads to the second solution 

to the unperturbed DSGE. Again, the details of this process are given in Appen-

dix B. 

( ) ( ) ( )
2 2

2 1 2 1

2 2
2 1 2

1
, 2arctan tanh

2

a a a a
q x t x vt

a a a k v

  + −  = ± −  − −   

 

where 
2 1a a> . 

The perturbed DSGE is 

2

1 2sin sin 2tt xxq k q a q a q R− + + =  

Here, we will use the first Ansatz, (9). Solving as before leads to the first solu-

tion to the perturbed DSGE. This process is described in Appendix B. 

( )
( )

( )1 2 1

2 2

1 2

2
, 2arctan sinh

2 1

a a a
q x t x vt

a a k v vδ λ

  − = ± −  
− − − −    

 

This requires the constraints found in (6) and 2 12a a>  and 1 0a < . 

Using the second Ansatz, (10), we get the second solution to the perturbed 

DSGE. This process is also described in Appendix B. 

( )
( )

( )
2 2

2 1 2 1

2 2
2 1 2

1
, 2arctan tanh

2 1

a a a a
q x t x vt

a a a k v vδ λ

  + −  = ± ± − 
−   − − −    

 

with the constraints found in (6) and 
2 1a a> . 
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3.2. Fourth Order Dispersion 

This section adds fourth order dispersion to the SG type equations. Equations 

with a fourth order dispersion term are commonly referred to as Boussinesq type 

equations by their resemblance to the Boussinesq equation: 

( )2 0tt xx xxxx
xx

q q a q bq− + + =  

The Boussinesq equation is an approximate equation for shallow water waves, 

similar to the well-known Korteveg de Vries (KdV) equation. Both equations 

model solitary waves, or solitons, along the surface of shallow water. For further 

discussion of the Boussinesq equation, see [14] [15]. 

3.2.1. Sine-Gordon Equation 

The SGE with fourth-order dispersion is 

2 sin 0tt xx xxxxq k q dq a q− − + =  

The Ansatz given by [16] is 

( ) ( ){ }, 8arctan expq x t A B x vt= −                  (11) 

The 8 here means that this is in fact a double soliton. This can occur when two 

identical solitons interact and combine to form a single unit. A deeper discus-

sion of this process can be found in [17]. The solution to the unperturbed dis-

persive SGE is 

( ) ( )02 2

2

3, 8arctan exp

a

q x t x x vt
k v

  
    = ± − − 

−  
    

 

where 

2 4

3
v k ad= ± −  

with the following two restrictions on the parameters a and d 

0a >  
43

0
4

k
d

a
< <  

This result agrees with the results found in [16]. The perturbed dispersive SGE 

is 

2 sintt xx xxxxq k q dq a q R− − + =  

Using the same Ansatz from (11), the solution to the perturbed SGE with 

fourth order dispersion is 

( )
( )

( )02 2

2

3, 8arctan exp
1

a

q x t x x vt
k v vδ λ

  
    = ± − − 

− − −  
    
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where 

0σ =  

vγ β=  

( ) ( )

( )

2 2 4
4 1

3

2 1

a
k d

v

δ δ λ ν

λ

 
− ± + − − +  

 =
−

 

which require the following inequalities to hold true 

1λ ≠  

0a >  

( )

2
2

23
0

4 4 1
d k

a

δν
λ

 
< + < +  − 

 

3.2.2. SIne-Cosine-Gordon Equation 

The SCGE with fourth order dispersion is 

2 sin cos 0tt xx xxxxq k q dq a q b q− − + + =  

The Ansatz for this equation is 

( ) ( ){ }, 8arctan expq x t A B x vt C= − +                 (12) 

The solution to the unperturbed dispersive SCGE is 

( ) ( )
2 2

02 2

2

3, 8arctan exp arctan

a b
b

q x t x x vt
ak v

  
+      = ± − − −   −    

    

 

where 

2 2 24

3
v k d a b= ± − +  

which puts the following restriction on the parameter d 

4

2 2

3
0

4

k
d

a b
< <

+
 

The perturbed dispersive SCGE is 

2 sin costt xx xxxxq k q dq a q b q R− − + + =  

Using the previous Ansatz (12), the solution to the perturbed dispersive SCGE 

is 

( )
( )

( )
2 2

02 2

2

3, 8arctan exp arctan
1

a b
b

q x t x x vt
ak v vδ λ

  
+      = ± − − −   − − −    

    

 

where 
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0σ =  

vγ β=  

( ) ( )

( )

2 2 2 24
4 1

3

2 1

k d a b

v

δ δ λ ν

λ

 
− ± + − − + +  

 =
−

 

which require the following inequalities 

1λ ≠  

( )

2
2

2

2 2

3
0

4 14
d k

a b

δν
λ

 
< + < +  −+  

 

3.2.3. Double Sine-Gordon Equation 

The DSGE with fourth order dispersion is 

2

1 2sin sin 2 0tt xx xxxxq k q dq a q a q− − + + =  

The Ansatz for this equation, due to [15], is 

( ) ( ){ }, 4arctan expq x t A B x vt= −                  (13) 

The solution to the unperturbed dispersive DSGE is 

( ) ( )
1 2

02 2

4

3, 4arctan exp

a a

q x t x x vt
k v

  
+    = ± − − 
−  

    

 

where 

2

1 2

2

4 3

3 2

d
v k a a

a

 = ± − + 
 

 

which puts the following two restrictions on the parameters 1a , 2a , and d 

2 0a d⋅ >  

2 2
1 2

24
0

3 3

a
a a k

d
< + <  

The perturbed dispersive DSGE is 

2

1 2sin sin 2tt xx xxxxq k q dq a q a q R− − + + =  

Using the Ansatz found in (13), the solution to the perturbed DSGE with 

fourth order dispersion is 

( )
( )

( )
1 2

02 2

4

3, 8arctan exp
1

a a

q x t x x vt
k v vδ λ

  
+    = ± − − 

− − −  
    

 

where 

0σ =  

vγ β=  
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( ) ( )

( )

1

2
2 2

1 2

2

4 3
4 1

3 2

2 1

k a a d
a

v

δ δ λ ν

λ

    − ± + − − + +   
    =
−

 

which require the following inequalities to hold true 

1λ ≠  

1 2

4
0

3
a a+ >  

( )

2
2

2

2
1 2

4 12
0

43

3

k
d

a
a a

δ
λν

 
+ −+  < <  
+  

 

 

A portion of these results was already reported in [15]. They are presented 

here in a more complete manner than when they were first reported. It is also 

important to include these results here in this paper for the sake of completion. 

3.2.4. Double Sine-Cosine-Gordon Equation 

The double sine-cosine-Gordon equation (DSCGE) with fourth order dispersion 

is 

2

1 1 2 2sin cos sin 2 cos 2 0tt xx xxxxq k q dq a q b q a q b q− − + + + + =  

The Ansatz for this equation is 

( ) ( ){ }, 4arctan expq x t A B x vt C= − +                 (14) 

It is first necessary to ensure 

2 2

2 1 1

2 1 12

a a b

b a b

−
=  

Then the solution to the unperturbed dispersive DSCGE is 

( )
( ) ( )

( )( )

( )

3
2 2 2 22
1 1 2 1 1 1 1 2

2 2 2 2

1 1

1
0

1

4
2

3, 4arctan exp

arctan

a b a a b a b b

q x t
k v a b

b
x x vt

a

 
   + + − +  = ±  − +  


  × − − −    

 

where 

( )
( )

2 2

2 1 1 1 1 22 2 2

1 1 2 22 2
2 1 1 1 1 21 1

3
24 2

3 2

da a b a b b
v k a b

a a b a b ba b

 − +
 = ± − + + ⋅
  − ++ 

 

which puts the following restrictions on the parameter 1a , 2a , 1b , 2b , and d 
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( )2 2

2 1 1 1 1 22 0d a a b a b b − + >   

( ) ( )
3

2 2 2 22
1 1 2 1 1 1 1 2

4
0 2

3
a b a a b a b b < + + − +   

( ) ( ) ( ) ( )2 2 2 2
3

1 1 2 1 1 1 1 22 2 2 2 22
1 1 2 1 1 1 1 2

24
2

33

2

a b a a b a b b
a b a a b a b b k

d

 + − +  + + − + <   

The perturbed dispersive DSCGE is 

2

1 1 2 2sin cos sin 2 cos 2tt xx xxxxq k q dq a q b q a q b q R− − + + + + =  

Using the Ansatz found in (14) and the previously found relationships for C, 

1a , 1b , 2a , and 2b , the solution to the perturbed dispersive DSCGE is 

( )
( ) ( )

( ) ( )

( )

3
2 2 2 22
1 1 2 1 1 1 1 2

2 2 2 2

1 1

1
0

1

4
2

3, 4arctan exp
1

arctan

a b a a b a b b

q x t
k v v a b

b
x x vt

a

δ λ

 
   + + − +  = ±   − − − +   


  × − − −    

 

where 

0σ =  

vγ β=  

( ) ( )

( ) ( )

( )

2 2 2 2

1 1

1

2

2 2

2 1 1 1 1 2

2 22 2
2 1 1 1 1 21 1

1
4 1

2 1

3
24 2

3 2

v k a b

da a b a b b

a a b a b ba b

δ δ λ
λ

ν

   
   

  = − ± + − − +  −     


 + − +  + ⋅  − + +    


 

in which case the following inequalities must also hold true 

1λ ≠  

( ) ( )2 2

2 1 1 1 1 22 0a a b a b b d ν − + + >   

( ) ( )
3

2 2 2 22
1 1 2 1 1 1 1 2

4
0 2

3
a b a a b a b b < + + − +   

( )
( )

( )
( )

2 2 2 22
2 1 1 1 1 2 2 1 1 1 1 22 2 2

1 1
2 2

1 1

2 24

33 4 1

2

a a b a b b a a b a b b
a b k

a b d

δ
λ ν

− + − + 
+ + ⋅ < +  −+   +
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3.3. Sixth Order Dispersion 

Higher order dispersion terms mainly come about from stronger interactions of 

the highly discretized SGE, see [19]. Just as the fourth order dispersion term 

gave way to double solitons, the sixth order dispersion term will yield triple soli-

tons. For further discussion of the discretized SGE and these triple solitons, see 

[17]. 

3.3.1. Sine-Gordon Equation 

The SGE with sixth order dispersion is 

2

1 2 sin 0tt xx xxxx xxxxxxq k q d q d q a q− − − + =  

The Ansatz for this equation, found in [16], is 

( ) ( ){ }, 12arctan expq x t A B x vt= −                 (15) 

The 12 here means this is a triple soliton. The solution to the unperturbed 

highly dispersive SGE is 

( ) ( )02 2

23

45, 12arctan exp

a

q x t x x vt
k v

  
    = ± − − 

−  
    

 

where 

2

1

23

30
v k ad= ± −  

which puts the following restrictions on the parameters a, 1d , and 2d  

0a >  

3

1
2

3

20

d
d

a
=

 
4

1

900
0

529

k
d

a
< <

 

The solution to the unperturbed highly dispersive SGE is 

The perturbed SGE with sixth order dispersion is 

2

1 2 sintt xx xxxx xxxxxxq k q d q d q a q R− − − + =  

Using the same Ansatz as in (15) yields 

( )( )
( )( )( )

( )
( )( )
( )

( )

3 5 7 9 11

2 2 2 3 5 7 9 11

3 3 5 7 9 11

4 3 5 7 9 11

1

6 3 5 7 9 11

2

3 5 7 9 11

0 5 10 10 5

1 3 2 2 3

3 14 14 3

21 22 22 21

237 1682 1682 237

3 55 198 198 55 3
3

B v E E E E E E

B k v v E E E E E E

B v E E E E E E

B d E E E E E E

d B E E E E E E

a
E E E E E E

β γ

δ λ

σ

ν

= − + + + + +

− − − − + + − − −

+ − − − − +

− + − − + + −

− − + − + −

+ − + − + −
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This is equivalent to the matrix equation 

1

2

3

4

5

6

1 1 1 1 1 3 0

5 3 3 21 237 55 0

10 2 14 22 1682 198 0

10 2 14 22 1682 198 0

5 3 3 21 237 55 0

1 1 1 1 1 3 0

c

c

c

c

c

c

    
    

− − − −     
    − −     =    − − − −     
    − −
        − − − −    

 

where ( )1c B vβ γ= − , ( )2 2 2

2 1c B k v vδ λ = − − − −  , 3

3c B vσ= ,  

( )4

4 1c B d ν= − + , 6

5 2c d B= − , and 6 3c a= . Solving the above system gives us 

0σ =  

vγ β=  

( )3

1

2

3

20

d
d

a

ν+
=  

( )2 2

23

45

1

a

B
k v vδ λ

= ±
− − −

 

( ) ( )

( )

2 2

1

23
4 1

30

2 1

k a d

v

δ δ λ ν

λ

 − ± + − − + 
 =
−

 

with constraints 

1λ ≠  

0a >  

( )

2
2

2

1

900
0

529 4 1
d k

a

δν
λ

 
< + < +  − 

 

The solution to the perturbed highly dispersive SGE is 

( )
( )

( )02 2

23

45, 12arctan exp
1

a

q x t x x vt
k v vδ λ

  
    = ± − − 

− − −  
    

 

3.3.2. Sine-Cosine-Gordon Equation 

The SCGE with sixth order dispersion is 

2

1 2 sin cos 0tt xx xxxx xxxxxxq k q d q d q a q b q− − − + + =          (16) 

The Ansatz for this equation is 

( ) ( ){ }, 12arctan expq x t A B x vt C= − +                 (17) 

First, set ( )arctanC b a= − . Then (16) and (17) give us 



S. Johnson et al. 

 

 

DOI: 10.4236/jamp.2019.710163 2413 Journal of Applied Mathematics and Physics

 

( ) ( )
( )
( )

( )

2 2 2 3 5 7 9 11

4 3 5 7 9 11

1

6 3 5 7 9 11

2

2 2 3 5 7 9 11

0 3 2 2 3

21 22 22 21

237 1682 1682 237

1
3 55 198 198 55 3

3

k v B E E E E E E

d B E E E E E E

d B E E E E E E

a b E E E E E E

= − − + + − − −

− − − + + −

− − + − + −

+ + − + − + −

 

Solving the same system of equations from Section 3.3.1 leads to the similar 

pair of relations 

2 2

2 2

23

45
a b

B
k v

+
=

−
 

( )
1

2 2 2 4
1

23

30
v k a b d= − +  

which put the following pair of restrictions on parameters 1d  and 2d  

( )

3

2
1

2 1
2 2 4

3

20

d
d

a b

= ⋅
+

 

4

1
2 2

900
0

529

k
d

a b
< <

+
 

The solution to the unperturbed highly dispersive SCGE is 

( ) ( )
2 2

02 2

23

45, 12arctan exp arctan

a b
b

q x t A x x vt
ak v

  
+      = − − −   −    

    

 

The perturbed SCGE with sixth order dispersion is 

2

1 2 sin costt xx xxxx xxxxxxq k q d q d q a q b q R− − − + + =  

Using the same Ansatz from (17), we have 

( )( )
( )( )( )

( )
( )( )
( )

( )

3 5 7 9 11

2 2 2 3 5 7 9 11

3 3 5 7 9 11

4 3 5 7 9 11

1

6 3 5 7 9 11

2

2 2 3 5 7 9 11

0 5 10 10 5

1 3 2 2 3

3 14 14 3

21 22 22 21

237 1682 1682 237

1
3 55 198 198 55 3

3

B v E E E E E E

B k v v E E E E E E

B v E E E E E E

B d E E E E E E

d B E E E E E E

a b E E E E E E

β γ

δ λ

σ

ν

= − + + + + +

− − − − + + − − −

+ − − − − +

− + − − + + −

− − + − + −

+ + − + − + −

 

This leads to the same matrix equation from Section 3.3.1 where  

( )1c B vβ γ= − , ( )2 2 2

2 1c B k v vδ λ = − − − −  , 3

3c B vσ= , ( )4

4 1c B d ν= − + , 
6

5 2c d B= − , and 2 2

6 3c a b= + . The relationships now are 

0σ =  

vγ β=  
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( )

( )

3

2
1

2 1
2 2 4

3

20

d
d

a b

ν+
=

+
 

( )

2 2

2 2

23

45

1

a b

B
k v vδ λ

+
= ±

− − −
 

( ) ( )
( )

1
2 2 2 2 4

1

23
4 1

30

2 1

k a b d

v

δ δ λ ν

λ

 
− ± + − − + + 

 =
−

 

with constraints 

1λ ≠  

( )

2
2

2

1
2 2

900
0

4 1529
d k

a b

δν
λ

 
< + < +  −+  

 

The solution to the perturbed highly dispersive SCGE is 

( )
( )

( )
2 2

02 2

23

45, 12arctan exp arctan
1

a b
b

q x t x x vt
ak v vδ λ

  
+      = ± − − −   − − −    

    

 

3.3.3. Triple Sine-Gordon Equation 

The triple sine-Gordon equation (TSGE) with sixth order dispersion is 

2

1 2 1 2 3sin sin 2 sin 3 0tt xx xxxx xxxxxxq k q d q d q a q a q a q− − − + + + =       (18) 

The Ansatz for (18), due to [16], is 

( ) ( ){ }, 4arctan expq x t A B x vt= −                   (19) 

Plugging (19) into (18) gives us 

( )
( )
( )

( )
( )

2 2 2 3 5 7 9 11

1

4 3 5 7 9 11

1

6 3 5 7 9 11

2

3 5 7 9 11

2

3 5 7 9 11

3

0 ( ) 3 2 2 3

21 22 22 21

237 1682 1682 237

2 5 6 6 5

3 55 198 198 55 3

a B k v E E E E E E

d B E E E E E E

d B E E E E E E

a E E E E E E

a E E E E E E

 = − − + + − − − 

− − − + + −

− − + − + −

+ − − + + −

+ − + − + −

 

This leads to the system of equations according to the powers of E 

1

2

3

4

5

1 1 1 1 3 0

3 21 237 5 55 0

2 22 1682 6 198 0

2 22 1682 6 198 0

3 21 237 5 55 0

1 1 1 1 3 0

c

c

c

c

c

   
    − − − −     
    − −   =   

− − −     
    −         − − − − −   

 

where ( )2 2 2

1c a B k v= − − , 4

2 1c d B= − , 6

3 2c d B= − , 4 22c a= , and 5 3c a= . 
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Solving the above system leads to the following relations 

1 2 3

2 2

4 23

3 15
a a a

B
k v

+ +
= ±

−
 

1
2

1 2 3

2 3

3

4 23 2

3 15 2

d

v k a a a
a a

 = ± − + +  + 
 

3

2

1
3

2

2 3

3
2 2

15 2

d
a

d
a a

 
 

=  
+  

 

 

which put the following four restrictions on the parameters 1a , 2a , 3a , 1d , 

and 2d  

( )1 2 32 0d a a+ >  

1
2

1 2 3

2 3

3

4 23 20
3 15 2

d

a a a k
a a

< + + <
+

 

The solution to the unperturbed highly dispersive TSGE is 

( ) ( )
1 2 3

02 2

4 23

3 15, 4arctan exp

a a a

q x t x x vt
k v

  
+ +    = ± − − 

−  
    

 

The perturbed TSGE with sixth order dispersion is 
2

1 2 1 2 3sin sin 2 sin 3tt xx xxxx xxxxxxq k q d q d q a q a q a q R− − − + + + =  

Using the Ansatz found in (19) gives 

( )( )
( )( ) ( )

( )
( )( )

3 5 7 9 11

2 2 2 3 5 7 9 11

1

3 3 5 7 9 11

4 3 5 7 9 11

1

0 5 10 10 5

1 3 2 2 3

3 14 14 3

21 22 22 21

B v E E E E E E

a B k v v E E E E E E

B v E E E E E E

B d E E E E E E

β γ

δ λ

σ

ν

= − + + + + +

 + − − − − + + − − − 
+ − − − − +

− + − − + + −

 

( )
( )

( )

6 3 5 7 9 11

2

3 5 7 9 11

2

3 5 7 9 11

3

237 1682 1682 237

2 5 6 6 5

3 55 198 198 55 3

d B E E E E E E

a E E E E E E

a E E E E E E

− − + − + −

+ − − + + −

+ − + − + −

 

This is equivalent to the matrix equation 

1

2

3

4

5

6

7

1 1 1 1 1 1 3 0

5 3 3 21 237 5 55 0

10 2 14 22 1682 6 198 0

10 2 14 22 1682 6 198 0

5 3 3 21 237 5 55 0

1 1 1 1 1 1 3 0

c

c

c

c

c

c

c

 
    
    − − − − −    
   − − −  

=    − − − −    
    − −
       − − − − −    

 
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where ( )1c B vβ γ= − , ( )2 2 2

2 1 1c a B k v vδ λ = − − − −  , 3

3c B vσ= ,  

( )4

4 1c B d ν= − + , 6

5 2c d B= − , 6 22c a= , and 7 3c a= . Solving this system re-

sults in the following equalities 

0σ =  

vγ β=  

3

2
3 1

2

2 3

2 3

15 2 2

a d
d

a a

ν +
= ⋅ + 

 

( )
1 2 3

2 2

4 23

3 15

1

a a a

B
k v vδ λ

+ +
= ±

− − −
 

( )

( )

2 2 1
1 2 3

2 3

4 23 3
4 1

3 15 2 2

2 1

d
k a a a

a a
v

νδ δ λ

λ

 + − ± + − − + + ⋅   +   =
−

 

with constraints 

1λ ≠  

( )1 2 32 0d a a+ >  

( )
2

22 3
1 2 3

1

24 23 2
0

3 15 3 4 1

a a
a a a k

d

δ
ν λ

 +
< + + < ⋅ +  + − 

 

The solution to the perturbed highly dispersive TSGE is 

( )
( )

( )
1 2 3

02 2

4 23

3 15, 4arctan exp
1

a a a

q x t x x vt
k v vδ λ

  
+ +    = ± − − 
− − −  

    

 

3.3.4. Triple Sine-Cosine-Gordon Equation 

The triple sine-cosine-Gordon (TSCGE) equation with sixth order dispersion is 

2

1 2 1 1

2 2 3 3

sin cos

sin 2 cos 2 sin 3 cos3 0

tt xx xxxx xxxxxxq k q d q d q a q b q

a q b q a q b q

− − − + +

+ + + + =
          (20) 

The Ansatz for (20) is 

( ) ( ){ }, 4arctan expq x t A B x vt C= − +              (21) 

It is necessary to set ( )1 1arctanC b a= −  and to ensure both 

2 2

2 1 1

2 1 12

a a b

b a b

−
=  

and 

3 3

3 1 1 1

3 3

3 1 1 1

3

3

a a a b

b b b a

−
= − ⋅

−
 

to eliminate the even exponents of E from the cosine terms. These make the fol-
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lowing three simplifications 

2 2

1 1 1 1sin cos sina q b q a b q+ = +  

( )2 2

2 1 1 1 1 2

2 2 2 2

1 1

2
sin 2 cos 2 sin 2

a a b a b b
a q b q q

a b

− +
+ =

+
 

( ) ( )
( )

2 2 2 2

1 3 1 1 1 3 1 1

3 3 3
2 2 2
1 1

3 3
sin 3 cos3 sin 3

a a a b b b b a
a q b q q

a b

− − −
+ =

+
 

Combining (20) into (21) yields 

( ) ( )
( )
( )
( ) ( )

( ) ( )
( )

2 2 2 2 2 3 5 7 9 11

1 1

4 3 5 7 9 11

1

6 3 5 7 9 11

2

2 2

2 1 1 1 1 2 3 5 7 9 11

2 2

1 1

2 2 2 2

1 3 1 1 1 3 1 1 3

3
2 2 2
1 1

0 3 2 2 3

21 22 22 21

237 1682 1682 237

2
2 5 6 6 5

3 3
3 55

a b B k v E E E E E E

d B E E E E E E

d B E E E E E E

a a b a b b
E E E E E E

a b

a a a b b b b a
E E

a b

 = + − − + + − − −  

− − − + + −

− − + − + −

− +
+ − − + + −

+

− − −
+ − +

+
(

)

5

7 9 11

198

198 55 3

E

E E E− + −

 

This gives rise to the same matrix equation from 3.3.3, where this time 

( )2 2 2 2 2

1 1 1c a b B k v= + − − , 4

2 1c d B= − , 6

3 2c d B= − ,  

( ) ( )2 2 2 2

4 2 1 1 1 1 2 1 12 2c a a b a b b a b = − + +  , and  

( ) ( ) ( )
3

2 2 2 2 2 2 2
5 1 3 1 1 1 3 1 1 1 13 3c a a a b b b b a a b = − − − +  . The solution to that system 

gives us 

( )
( ) ( )

( ) ( )

2
2 2 2 2 2 2

1 1 2 1 1 1 1 2 1 13
2 2 2 2 4

1 1

1

2
2 2 2 2

1 3 1 1 1 3 1 1

1 4
2

3

23
3 3

15

B a b a a b a b b a b

k v a b

a a a b b b b a

  = ± + + − + +  − +

 + − − −  

 

( )

( ) ( )

( ) ( ) ( )

2 2

2 1 1 1 1 22 2 2

1 1
2 2

1 1

2 2 2 2

1 3 1 1 1 3 1 1

2 2

1 1

1

2

1

2 2 2 2

1 3 1 1 1 3 1 12 2

2 1 1 1 1 2
2 2

1 1

24

3

3 323

15

3

2

3 3
2 2

a a b a b b
v k a b

a b

a a a b b b b a

a b

d

a a a b b b b a
a a b a b b

a b

  − + = ± − + +  + 
− − −
+
+ 



× 

− − − 
− + + 

+ 
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( ) ( )

( ) ( ) ( )

2 2 2 2

2 1 3 1 1 1 3 1 1

3

2

1

2 2 2 2

1 3 1 1 1 3 1 12 2

2 1 1 1 1 2
2 2

1 1

2
3 3

15

3

2

3 3
2 2

d a a a b b b b a

d

a a a b b b b a
a a b a b b

a b

 = − − − 

 
 
 

× 
− − − 

− + +  + 

 

and this gives way to the following constraints on the parameters 1a , 2a , 3a , 

1b , 2b , 3b , 1d , and 2d  

( ) ( ) ( )2 2 2 2

1 3 1 1 1 3 1 12 2

1 2 1 1 1 1 2
2 2

1 1

3 3
2 2 0

a a a b b b b a
d a a b a b b

a b

 − − −
 − + + >
 + 

 

( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 2

2 1 1 1 1 2 1 3 1 1 1 3 1 12 2

1 1 2 22 2
1 11 1

2 2 2 2

1 3 1 1 1 3 1 12 2

2 1 1 1 1 2
2 2

1 12

1

2 3 34 23
0

3 15

3 3
2 2

3

2

a a b a b b a a a b b b b a
a b

a ba b

a a a b b b b a
a a b a b b

a b
k

d

− + − − −
< + + +

++

− − −
− + +

+
<

 

The solution to the unperturbed highly dispersive TSCGE is 

( ) ( ) ( )

( ) ( ) ( )

( )

2
2 2 2 2 2 2

1 1 2 1 1 1 1 2 1 1

1

2 02 2 2 2

1 3 1 1 1 3 1 1 3
2 2 2 24
1 1

4
, 4arctan exp 2

3

23
3 3

15
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The perturbed TSCGE with sixth order dispersion is 
2

1 2 1 1

2 2 3 3

sin cos

sin 2 cos 2 sin 3 cos3 0

tt xx xxxx xxxxxxq k q d q d q a q b q

a q b q a q b q

− − − + +

+ + + + =
 

Using the previous Ansatz from (21) gives the governing equation 
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This is again equivalent to the matrix equation from 3.3.3, where this time 

( )1c B vβ γ= − , ( )2 2 2 2 2

2 1 1 1c a b B k v vδ λ = + − − − −  , 3
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3
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with constraints 
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The solution to the perturbed highly dispersive TSCGE is 

( ) ( ) ( )

( ) ( )
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4. Conclusions 

This paper has studied the exact solutions to SG type equations, including single, 

double, and triple sine- and sine-cosine-Gordon equations. These equations in-

cluded the standard variation, fourth-order dispersion, and sixth-order disper-

sion. The solutions found are of the topological soliton type, called kinks. After 

finding the solutions to each unperturbed equation, exact solutions were found 

for the strongly perturbed variations of each equation. These results will aid in 

the studies of Josephson junctions, crystal dislocations, ultra-short optical pulses, 

relativistic field theory, and elementary particles. 

Future work should include the use of numerical methods to further study 

these solutions and possibly find approximate solutions to these equations and 

other equations of this type. Multiple scale analysis should also be applied to 

study the effects of weak perturbations on these equations. 
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