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Abstract

We consider the problem of estimating a large rank-one tensor u®k ¢ (R”)®k,
k > 3, in Gaussian noise. Earlier work characterized a critical signal-to-noise
ratio Apayes = O(1) above which an ideal estimator achieves strictly positive
correlation with the unknown vector of interest. Remarkably, no polynomial-
time algorithm is known that achieved this goal unless A > C n*=2/4and
even powerful semidefinite programming relaxations appear to fail for | < A <«
nk=2)/4

In order to elucidate this behavior, we consider the maximum likelihood esti-
mator, which requires maximizing a degree-k homogeneous polynomial over the
unit sphere in # dimensions. We compute the expected number of critical points
and local maxima of this objective function and show that it is exponential in
the dimensions 7, and give exact formulas for the exponential growth rate. We
show that (for A larger than a constant) critical points are either very close to
the unknown vector u or are confined in a band of width (—)()L_l/ (k_l)) around
the maximum circle that is orthogonal to u. For local maxima, this band shrinks
to be of size @(A_l/ (k—2)). These “uninformative” local maxima are likely to
cause the failure of optimization algorithms. © 2019 Wiley Periodicals, Inc.
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1 Introduction

Nonconvex formulations are the most popular approach for a number of prob-
lems across high-dimensional statistics and machine learning. Over the last few
years, substantial effort has been devoted to establishing rigorous guarantees for
these methods in the context of important applications. A small subset of exam-
ples include matrix completion [17,23], phase retrieval [12,41], high-dimensional
regression with missing data [29], and two-layer neural networks [22,44]. The
general picture that emerges from theses studies, as formalized in [31], is that non-
convex losses can sometimes be “benign” and allow for nearly optimal statistical
estimation using gradient-descent-type optimization algorithms. Roughly speak-
ing, this happens when the population risk does not have flat regions, i.e., regions
in which the gradient is small and the Hessian is nearly rank deficient.

In this paper we explore the flipside of this picture, namely what happens when
the population risk has large “flat regions.” We focus on a simple problem, tensor
principal component analysis under the spiked tensor model, and show that the
empirical risk can easily become extremely complex in these cases. This picture
matches recent computational complexity results on the same model.

The spiked tensor model [33] captures, in a highly simplified fashion, a number
of statistical estimation tasks in which we need to extract information from a noisy
high-dimensional data tensor; see, e.g., [24,27, 28, 35]. We are given a tensor
Y € (R™)®* of the form

1
(1.1) Y =+ —w,
V2n
where W is a noise tensor, and would like to estimate the unit vector u € S*1.
The parameter A > 0 corresponds to the signal-to-noise ratio. The noise tensor
W e (R™)®k is distributed as
WL 3 GT/(kY) where (Giyi i<ty <n N, 1),
A

&, are permutations of the set [1], and (G™);, ...y = Gx(i;)--x(iy)- Throughout the
paper k > 3.

We say that the weak recovery problem is solvable for this model if there exists
an estimator (a measurable function) @: (R”)®* — S"~1 such that

(1.2) lim inf E|(@(Y),u)| > ¢
n—-oo

for some ¢ > 0. It was proven in [33] that weak recovery is solvable provided
A > A1(k), and in [32] that it is unsolvable for A < A¢(k) for some constant
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0 < Aog(k) < A1(k) < oo. In fact, for A < Ag(k), it is altogether impossible
to distinguish between the distribution (1.1) and the null model A = 0. A sharp
theshold Ap,yes (k) for the weak recovery problem was established in [26] (see also
[7] for related results), and better lower bounds for the hypothesis-testing problem
were proved in [36].

In light of these contributions, it is fair to say that optimal statistical estimation
for the model (1.1) is well understood. In contrast, many questions are still open
for what concerns computationally efficient procedures. Consider the maximum-
likelihood estimator, which requires solving

maximize f(o) = (Y, o ®¥),

1.3
(13) subjectto o € S

It was shown in [33] that the maximum-likelihood estimator achieves weak recov-
ery (cf. equation (1.2)) provided that A > Ay (k) for some constant Ay (k) < o0o.!
However, solving the problem (1.3) (maximizing a homogeneous degree-k poly-
nomial over the unit sphere) is NP-hard for all k£ > 3 [9].

Note that the population risk associated to the problem (1.3) is

(1.4) fo(o) = E(Y,0®%) = Au, o)*.

For k > 3, the (Riemannian) gradient and Hessian of fo(o) vanishes on the hy-
perplane orthogonal to u: {o € S*~!: (u,a) = 0}. In the intuitive language used
above, the population risk has a large flat region. Since most of the volume of the
sphere concentrates around this hyperplane [25], this is expected to have a dramatic
impact on the optimization problem (1.3).

Polynomial-time computable estimators have been studied in a number of pa-
pers. In particular, [33] considers a spectral algorithm based on tensor unfolding
and proved that it succeeds for k even provided A > C n*=2)/4_(Here and below,
we denote by C a constant that might depend on k but is independent of 72.) This re-
sult was generalized in [21] to arbitrary k > 3 by using a sophisticated semidefinite
programming relaxation from the sum-of-squares hierarchy. A lower-complexity
spectral algorithm that succeeds under the same condition was developed in [20],
and further results can be found in [2,10]. However, no polynomial-time algorithm
is known that achieves weak recovery for | < A < n*=2/4 and it is possible
that statistical estimation in the spiked tensor model is hard in this regime.

A large gap between known polynomial-time algorithms and statistical limits
arises in the tensor completion problem, which shares many similarities with the
spiked tensor model [16, 34,43]. In the setting of tensor completion, hardness
under Feige’s hypothesis was proven in [6] for a certain regime of the number of
observed entries.

! Indeed, an exact characterization of Ay, (k) should be possible using the “one-step replica sym-
metry breaking” formula proven in [42]. A nonrigorous analysis of the implications of this formula
was carried out in [18], yielding Amr (k) = ABayes (k).
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FIGURE 1.1. Complexity of the spiked tensor model of order k = 3 at
signal-to-noise ratio A = 3: exponential growth rate of the number of
critical points 0 € S"~! as a function of the scalar product m = (u, ).
Left: complexity for the total number of critical points S, (m). Right:
complexity for local maxima Sy (m).

Here we reconsider the maximum-likelihood estimator, and we explore the land-
scape of the optimization problem (1.3). In what regime is it hard to maximize the
function f(-) for a typical realization of the random tensor Y ? In [33] a power
iteration algorithm was studied that attempts to compute the maximum-likelihood
estimator, and it was proven that it is successful for A > C n®=2)/2 What is the
origin of this threshold at n (k=2)/29 I this paper we compute the expected number
of critical points of the likelihood function f(o) to the leading exponential order.

Let us summarize the qualitative picture that emerges from our results. For
clarity of exposition, we summarize only our results on local maxima, but similar
results will be presented about generic critical points.

The expected number of local maxima grows exponentially with the dimen-
sion n. We compute the exponential growth rate, denoted by So(m, x), as a func-
tion of the value of the cost function x = f(o) and of the scalar product m =
(0, u). Namely, the expected number of local maxima with f(¢) & x and (o, u) ~
m is exp{nSo(m, x) 4+ o(n)}, with So(m, x) given explicitly below. The exponent
So(m, x) and its variants So(m), S (m, x), and so on, are referred to as “complex-
ity” functions. In Figure 1.1 we plot So(m) = maxy So(m, x), which is the expo-
nential growth rate of the number of local maxima with scalar product (o, u) =~ m
for the case k = 3, A = 3. (We also plot the analogous quantity for general critical
points, S, (m).)

The expected number of local maxima with scalar product m = (o, u) =~ 0, i.e.,
lying close to the space orthogonal to the unknown vector u is exponentially large.
The complexity function S () decreases as |m| increases, i.e., as we move away
from this plane, and eventually vanishes.

For A sufficiently large (in particular, for A > A, (k) given explicitly in Section
2.4), the complexity So(m) reveals an interesting structure. It is positive in an
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interval m € (mi(A, k), ma(A,k)), where my(A, k), ma(A, k) = @A~V E=2),
and becomes nonpositive outside this interval. However, it increases again and
touches 0 for m = m« (A, k) close to one (for k even it also becomes 0 for m =
—m«(A, k) by symmetry). In other words, all the local maxima are either very
close to the unknown vector # (and to the global maximum) or they are on a narrow
spherical annulus orthogonal to u.

It is interesting to discuss the behavior of local ascent optimization algorithms
in such a landscape. While at this point the discussion is necessarily heuristic, it
points at some interesting directions for future work. The expected exponential
number of local maxima in the annulus |(u,o)| < ®(k_1/ (k—z)) suggests that
algorithms can converge to a local maximum that is well correlated with u# only
if they are initialized outside that annulus. In other words, the initialization o ¢
must be such that (&, 69) > CA~Y/*=2) [f no side information is available on u,
a random initialization will be used. This achieves (u,0¢) = O(n~'/2) with
positive probability, and hence will escape local maxima provided A > C nk=2)/2
Remarkably, this is the same scaling as the threshold for power iteration obtained
in [33]. It would be interesting to make rigorous this connection.

Let us emphasize that our results only concern the expected number of critical
points. As is customary with random variables that fluctuate on the exponential
scale, this is not necessarily close to the typical number of critical points. While
we expect that several qualitative features found in this work will hold when con-
sidering the typical number, a rigorous justification is still open (see Section 3 for
further discussion of this point).

The rest of the paper is organized as follows. We state formally our main results
in Section 2, which also sketches the main ideas of the proofs. We will then review
earlier literature in Section 3 and present proofs in Section 4.

2 Main Results

Our main results concern the number of critical points and the number of local
maxima of the function f (o) introduced in equation (1.3), where Y € (R™)®k js
distributed as per equation (1.1).

Throughout, we denote by V (o) and V? f () the euclidean gradient and Hes-
sian of f at o, respectively, and denote by grad f(6) and Hess f(¢') the Riemann-
ian gradient and Hessian of f at o on the unit sphere S”~!. Conceptually, the
Riemannian gradient grad f (o) is the projection of the euclidean gradient V f (o)
onto the tangent space of the sphere at o, and the Riemannian Hessian Hess (o)
captures the second-order behavior of function f at o on the sphere.

The completed real line is denoted by R = R U {400, —oc}. Fora set § C R,
we denote by S its closure and by S its interior.
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2.1 Complexity of Critical Points
For any Borel sets £ C R and M € [—1, 1], we define Crt, . (M, E) to be the
number of critical points of f with function value in E and correlation in M :
(2.1) Crty o (M.E):= Y 1{{o.u) € M}1{f(0) € E}.
o:grad f(o)=0

We define function S,: [—1,1] x R — R as

S.(m,x):= %(log(k —D+1D+ %log(l —m?) = kA2m**72(1 — m?)
(2.2)

2k
_ _ ky\2
(x —Am"™) +d>*( k—lx)’
where

x| =2,
2
L S ARG Ee e SR SRt

THEOREM 2.1. For any Borel sets M C [—1,1] and E C R, assume A is fixed.
Then, we have

(23) Pu(x) =

1
(2.4) limsup%—logIE[Crtn,*(M, E)]— sup S*(m,e)} <0,
n—oo (1 meM ,ecE
1
(2.5) liminf{— log E{Crt, +(M, E)} — sup Se(m, e)} > 0.
n—oo (n meM©?,ecE°

2.2 Complexity of Local Maxima

For any Borel set E C R and M € [—1, 1], we define Crt, o(M, E) to be the
number of local maxima of f with function value in £ and correlation in M :

Cripo(M.E):= Y  1{{o.u) e M}
(2.6) o:grad f(a)=0
x 1{ f(o) € E}1{Hess f (o) < 0}.
We define the function So: [-1,1] x R — R as

2.7 So(m, x) := Sx(m,x) — L(0(m), t(x)),
where

Lo(6,1), 2<t<0+3. 1<,
(2.8) L(6,t) = 1 oo, t <2,

0, otherwise,

with

t 2
TR A S S
0
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FIGURE 2.1. Spiked tensor model with k = 3 and A = 2.25. The black
region corresponds to nonnegative complexity: S, (m, x) > 0 (left) and
So(m, x) > 0 (right). The arrows indicate the point where the complex-
ity touches 0, in correspondence with the “good” local maxima.

and 0 = O(m) = 2k(k — 1) - Am*2(1 —=m?), t = 1(x) = V2k/(k — 1) - x.

‘We also note that

(2.10) f Jy2—4. dy—z,/——l—zlog ,/1—1)

THEOREM 2.2. For any Borel sets M C [—1,1] and E C R, assume A is fixed.
Then we have

1
2.11) limsup{—logIE[Crtn,o(M, E)— sup So(m,e)§ <0
n—oo (1 meM ,ecE
1
(2.12) liminf{— log E{Crt, ,0(M, E)} — sup So(m, e)% >0
n—>oo (n meM©?.,ecE°

2.3 Evaluating the Complexity Function

The expressions for S, (m, x) and So(m, x) given in the previous section can
be easily evaluated numerically: the figures in this section demonstrate such eval-
uations. Throughout this section we consider k = 3, but the behavior for other
values of k > 3 is qualitatively similar (with the important difference that, for k
even, the landscape is symmetric under change of sign of m). In Figure 2.1 we plot
the region of the (m, x)-plane in which S, (m, x) and So(m, x) are nonnegative for
A = 2.25. By the Markov inequality, the probability of any critical point or any
local maximum to be present outside these regions is exponentially small.

As anticipated in the introduction, we can identify two sets of local maxima:

(1) Uninformative local maxima. These have small x (i.e., small value of the
objective) and small m (small correlation with the ground truth u). They
are also exponentially more numerous, and we expect them to trap descent
algorithms.
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(i) Good local maxima. These have large x (i.e., large value of the objective)
and large m (large correlation with the ground truth #). Reaching such a
local maximum results in accurate estimation.

Figure 2.2 shows the evolution of the two “projections” So (x) = max,, So(m, x)
and So(m) = max, So(m, x) that give the exponential growth rate of the number
of local maxima as functions of the objective value x = f (o) and the scalar prod-
uct m = (u, o). Similar plots for the total number of critical points are found in
Figure 2.3. We can identify several regimes of the signal-to-noise ratio A:

(1) For A small enough, we know that the landscape is qualitatively similar to
the case A = 0: local maxima are uninformative. While they are spread
along the m-direction, this is purely because of random fluctuations. Local
maxima with m =~ 0 are exponentially more numerous and have larger
value.

(2) As A crosses a threshold A., the complexity develops a secondary max-
imum that touches 0 at m.(A) close to 1. This signals a group of local
maxima (or possibly only one of them) that are highly correlated with u.
These are good local maxima but have smaller value than the best uninfor-
mative local maxima. Maximum likelihood estimation still fails.

(3) As A crosses a second threshold A, good local maxima acquire a larger
value of the objective than uninformative ones. Maximum likelihood suc-
ceeds. However, the most numerous local maxima are still uncorrelated
with the signal # and are likely to trap algorithms.

The expression for threshold A, (k) is explicitly calculated as in equation (2.15).
Fork =3,A.(3) = \/m ~ 0.82. We did not provide an analytical expression
for the second threshold A (k). For k = 3, numerical evaluation suggests A5(3) ~
0.86. The second regime for the signal-to-noise ratio A € (A.(k),As(k)) is not
captured in Figures 2.2 or 2.3.

Let us emphasize once more that this qualitative picture is obtained by consid-
ering the expected number of critical points. In order to confirm that it holds for
a typical realization of Y, it would be important to compute the typical number as
well.

2.4 Explicit Formula for Complexity of Critical Points at a Given Location

The projection S, (m) = max, S, (m, x), which gives the expected number of
critical points at a given scalar product m = (u, o), has a simple explicit formula in
the hemisphere m € [0, 1]. This is derived using elementary calculus by analyzing
equation (2.2).

PROPOSITION 2.3. The projection S.(m) = maxy S«(m,x) has the following
explicit formula for m € [0, 1]:
SU(m)’ 0§m<mc,

(2.13) S.(m) = Sem), m=m
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FIGURE 2.2. Complexity (exponential growth rate of the expected num-
ber of local maxima) in the spiked tensor model with k¥ = 3 and (from
top to bottom) A € {0.1,0.75,1.5,2.25}. Left column: complexity as a
function of the objective value x = f(0), So(x) = max,, So(m, x).
Right column: complexity as a function of the scalar product m =
(u,0), So(m) = maxy So(m, x).
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FIGURE 2.3. Complexity (exponential growth rate of the expected num-
ber of critical points) in the spiked tensor model with k = 3 and (from
top to bottom) A € {0.1,0.75,1.5,2.25}. Left column: complexity as a
function of the objective value x = f(0), S«(x) = max,, S,(m, x).
Right column: complexity as a function of the scalar product m =
(u,0), Si(m) = max, S,(m, x).
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where
1/k
o1 k-2 /
T\ V2kG—-D)
1 k 1
Su (m) := 3 log(1 - m?) — kA2m?*72(1 —m?) + m/\szk +3 log(k — 1),
2
1 1
Sg(m) = Elog(l —m?) — kA2m@*D (1 - m?) - (‘/EH -mk)

1 1 1
+ ‘lzk‘/\ -mk . \/(1 + Ek -12m2k) + sinh_1<‘/§k/\mk).

Analysis of this formula confirms some of the qualitative observations from Sec-
tion 2.3. For A very small, namely A < (k—2)//2k(k — 1), we have that m, > 1.
In this case, S«(m) = Sy(m) and landscape is qualitatively similar to the case
A = 0. When A > (k —2)/+/2k(k — 1), we have that m, < 1, and the func-
tion Sg captures the behavior of possible “good” critical points that may exist at
m > m,. Further analysis of the function Sg is carried out in Proposition 2.4.

PROPOSITION 2.4. The function Sg is nonpositive, Sg(m) < 0 for allm € [0, 1].
Moreover, Sg(m) = 0 if and only if m satisfies

1
2kA?

(2.14) m* =41 —m?) =
In particular, if we set

1 (k—1)k=D
2.15 Ao 1= | = —F—,
(2.15) ¢ \/2k (k —2)*=2)

then we have that if A < A¢, then Sg(m) < 0, and if A > A, then Sg has a unique
zero in the domain m € [me, 1].

The critical point A, identified in Proposition 2.4 represents a qualitative change
in the energy landscape. When A < A, then Sg < 0 and “good” critical points
are exponentially rare. On the other hand, when A > A, then S¢ and has a unique
zero. This is the only location in the region m > m. where critical points are not
exponentially rare, and this represents the best correlation with the signal u that is
achievable.

The proofs of Propositions 2.3 and 2.4 are deferred to Appendix B

2.5 Proof Ideas

The proofs of Theorems 2.1 and 2.2 rely on a representation of the expected
number of critical points of a given index using the Kac-Rice formula. This ap-
proach was pioneered in [5, 15] to study the case A = 0 of the present problem.

Evaluating the expression produced by the Kac-Rice formula requires estimating
the expectation of the determinant of Hess f(¢). In the case A = 0 considered in
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[5], Hess f(0) is distributed asaW , +b 1, where W, ~ GOE(n) is a matrix form
the Gaussian orthogonal ensemble. This fact, together with the explicitly known
joint distribution of the eigenvalues of W, is used in [5] to express the expected
determinant in terms of the distribution of one eigenvalue and a normalization that
is computed using Selberg’s integral.

In the present case, Hess f(0) is distributed as aW, + bl, + celeI, ie., a
rank one deformation of the previous matrix. Instead of an exact representation,
we use the asymptotic distribution of the eigenvalue of this matrix, as well as its
large-deviation properties, obtained in [30].

3 Related Literature

The complexity of random functions has been the object of a large amount of
work within statistical physics, in particular in the context of mean field glasses
and spin glasses. The function of interest is, typically, the Hamiltonian or energy
function, and its local minima are believed to capture the long-time behavior of
dynamics, as well as thermodynamic properties.

In particular, the energy function (1.3) was first studied by Crisanti and Som-
mers in [14] for the case A = 0. This is referred to as the spherical p-spin model
in the physics literature. The paper [14] uses nonrigorous methods from statisti-
cal physics to derive the complexity function, which corresponds to So(x) in the
notations used here. An alternative derivation using random matrix theory was pro-
posed by Fyodorov [15]. Connections with thermodynamic quantities can be found
in [13]. The impact of the rough energy landscape on the behavior of Langevin dy-
namics was studied in a number of papers; see, e.g., [11,13].

A mathematically rigorous calculation of the expected number of critical points
of any index—and the associated complexity—was first carried out in [5], again for
the pure noise case A = 0. (See also [4] for mathematically rigorous results for the
complexity of some more general “pure noise” random surfaces.) As mentioned
above, the expected number of critical points is not necessarily representative of
typical instances. However, for the pure noise case A = 0, it was expected that
the number of critical points concentrates on its expectation. This was recently
confirmed by Subag via a second-moment calculation [38]. (See also [39,40] for
additional information about the landscape geometry.)

Finally, the typical number of critical points of the spiked tensor model and
variants was recently obtained in independent work [37] by using an asymptot-
ically exact but nonrigorous generalization of the Kac-Rice formula based on the
replica method [5,15]. This computation indicates that the typical and the expected
number of critical points generically do not coincide for the spiked tensor model,
contrary to what happens for the pure noise case A = 0 at low energy. By ana-
lyzing generalizations of the spiked tensor model, [37] finds different scenarios for
the organization of minima on the sphere; in particular, there are cases in which
the landscape is characterized by an exponential number of minima both around
the spike and close to the orthogonal hyperplane.
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4 Proofs

In this section we prove Theorem 2.1 and 2.2. We begin by introducing some
definitions and notations in Section 4.1. We next state some useful lemmas in
Section 4.2, with proofs in Sections 4.3 and 4.4. Finally, we prove Theorems 2.1
and 2.2 in Section 4.5 and 4.6.

4.1 Definitions and Notations

We will generally use lowercase letters (e.g., a, b, ¢) for scalars, lowercase bold-
face letters (e.g., a, b, ¢) for vectors, and uppercase boldface letters (e.g., A, B, C)
for matrices. The identity matrix in # dimensions is denoted by I, and the canon-
ical basis in R” is denoted by eq,...,e,. Given a vector v € R”", we write
Py = vv'/||v||3 for the orthogonal projector onto the subspace spanned by v,
and by P,J; = I — P, the projector onto the orthogonal subspace.

For symmetric matrix B, € R™ ", we denote by A1(B,) > A2(B,) > ---
An(B}) the eigenvalues of B, in decreasing order. We will also write Anax (B )
A1(Bp) and Ayin(By) = A, (B,) for the maximum and minimum eigenvalues.

We denote by GOE(n) the Gaussian orthogonal ensemble in n dimensions.
Namely, for a symmetric random matrix W in R"*", we write W ~ GOE(n)
if the entries (W;;);<; are independent, with (W;;)1<i<j<n ~iia N(0,1/n) and
(Wii)1<i<n ~iia N(0,2/n).

For a sequence of functions fy,: R — R0, n € N4, we say that f,(x) is
exponentially finite on a set 2~ C R if

v

< Q.

1
4.1 limsup sup ‘—log fn(x)
n

n—oo xe4

We say that f,(x) is exponentially vanishing on a set Z C R4 if

1
4.2) lim sup —log f,(x) = —c0.
n

n—»ooxe’

We say that f,,(x) is exponentially trivial on a set 2 C R< if

4.3) lim sup ‘%log fa(x)| =0.

n—-ooxe

We say f,(x) is exponentially decaying on a set 2" C R?  if

4.4) limsup sup llog fa(x) <O0.
n—oo xex N
For a metric space (%, d), we denote the open ball at x € % with radius
r>0byB(x,r) = {z € .%: d(z,x) <r}. InR?, we will always use euclidean
distance. For any x € R and § > 0, the open ball in R is denoted by B(x,r) =
(x —r,x +7r). Let Z(R) be the space of probability measures on R. We will equip
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Z(R) with the Dudley distance: for two probability measures u, v € Z(R), this
is defined as

d(.v) = sup{] [ rau= [ ra

The open ball B(u, §) contains the probability measures with Dudley distance less
than § to .

Suppose  is a probability measure on R. We denote H(z) as the Stieltjes
transform of & defined by (here “conv” denotes the convex hull and C the upper
half-plane)

SVACIIRY

S - )
xX—=y

<1,Vx # y}.

Hy: CL UR\ conv(supp u) — C,

1
ZI—)/ L u(dd).
RZ—A

H,, is always injective, so we can define its inverse G: G, (H,(z)) = z. Denote
R, as the R-transform defined by

R, (w): Image(H,) — C,

w — Gu(w)—1/w.

4.5)

(4.6)

We denote 0sc(dA) = 1j3j<xvV4 —A2/(27)dA as the semicircular law. The
Stieltjes transform for the semicircular law is

z—+z2 -4
4.7) Hs (2) = —
and its R-transform is
(4.8) Ry (W) = w.

4.2 Preliminary Lemmas

We start by stating a form of the Kac-Rice formula that will be a key tool for
our proof. Essentially the same statement was used in [5], and we refer to [1] for
general proofs and broader context.

LEMMA 4.1. Let f be a Gaussian field on S"~, and let &/ = (U, Yo )ae.s be a
finite atlas on S"™ . Set f* = foW 1. Wy(Uy) C R"! — R, and define ¥ =
af%/dx; and fl;" = 02 f%/dx; dxj. Assume that for all @ € % and all x,y €
Vo (%y), the joint distribution of ( f;*(x), i;’.‘ (X))1<i<j<n is nondegenerate, and

T?“@(§QD+VH(§@D—2CW(§@%iﬂﬂNSKMWx—ﬂrFB
for some B > 0 and Ky > 0. For Borel sets E C R and M C [—1,1], let

4.9) Crt’{k(M, E) = Z 1{i(Hessf(0)) =k, f(0) € E,{0,u) € M}.
o:grad f(0)=0
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Then, using do to denote the usual surface measure on S"™1, and denoting by
@ (x) the density of V f(a) at x, we have

E{Crt/ (M E)}
= / E[|det(Hess f(a))]
(o,u)eM
x 1{i(Hess f(0)) =k, f(6) € E} | gradf(0) = 0]

95 (0) - do

(4.10)

The next lemma specializes the last formula to our specific choice of f(-); cf.
equation (1.3). Its proof can be found in Section 4.3.

LEMMA 4.2. We have

E{Crt, «(M,E)} = /M Va(m) - E{|det(H)|-1{f € E}}

4.11)
x @g (0) - (1 —=m?) ™12 dm,
BCrtn.o(M. £)} = [ V() Efldet(H)|- LH =0} 1{f € E}
4.12) M
X @g (0) - (1 —m?) ™12 - dm.
where
(4.13) Vo(m) = Vol(0B"1((1 — m?)1/?))

is the area of the (n — 1)-dimensional sphere with radius (1 — m®)Y/2, and ¢4 (0)
is the density of g at 0. Furthermore, the joint distribution of f € R, g € R"™1,
and H € RO—DX0=1) s aiven by

d k 1
=im" + —1727,
/ v/ 2n

k
g SIAmTIVT =2 ey 4 B,

k(k—1)(n-1)
2n i

n—1

H < k(k — DAm*2(1 = m?)e e + \/

1
—k(am* + Z)I 1.
( ,—zn n—1

where Z ~ 4 (0,1), g,_1 ~ A (0,1,-1), and W,_; ~ GOE(n — 1) are
independent.

The next lemma provides a simplified expression. Its proof is deferred to Section
4.4.
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LEMMA 4.3. We have
E{Crt, (M, E)}

_ . .2 —3/2 .
_ ¢, /de/M(l m2)"32dm - E{|det(H )|}

“.19 X exp{n B(log(k —DH+1)+ %10g(1 —m?)
—kA2m* 2 (1 —m?) — (x - Amk)z]}
and
E{Crt, o(M, E)}
=% [ ax [ (1w dm - Bilden(H )| 1{H, <0}
(4.15) e

X exp{n[%(log(k -DH+1)+ %log(l —m?)
— kkszk_z(l —m?) —(x — )Lmk)z]}

where, for W ,_1 ~ GOE(n — 1),
H, = 0,(m) 'eleI + Wy1 —tn(x) - In—1,

1/2
[n(x) = (Zk—l’l) - X,

(k=1)(n—1)
_ 1/2
6, (m) = (2k(k—1)n) ,/\mk—z(l —m?),
(n—1)

n—1
_1\F 1\ ! 1/2
=2 (" o(m Y\
2e 2 (k—1Derm
Furthermore, 6, is exponentially trivial.

The next lemma contains a well-known fact that we will use several times in
the proofs. It follows immediately from the joint distribution of eigenvalues in the
GOE ensemble [3]; see, for instance, [30].

LEMMA 4.4 (Joint density of the eigenvalues of the spiked model). Let X, =
9eleI + W, where W, ~ GOE(n) and 8 > 0. The density joint for the eigen-
values of X5, is given by

IP’,?(dxl,...,dxn)

(4.16) n
H |x; —xj| - In(0. x7) - exp 1 lez dxyp---dx,,

1
=5
Zn i<j i=1
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where x7 denotes the vector (x1, ..., x)', and I, is the spherical integral defined
by
0
4.17) I,(0,x]) = [ exp{% (U - diag(x}) - U )11 ,dmy(U),
On

with my, the Haar probability measure on Oy, the orthogonal group of size n.

Next, we state a lemma regarding the large deviations of the largest eigenvalue
of the spiked model, proven in [30].2

LEMMA 4.5 (Large deviation of the largest eigenvalue of the spiked model [30]).
Let X, = GeleI + Wy, where W, ~ GOE(n), and denote by Amax(Xn) the
largest eigenvalue of X . Then we have

1
limsup —log P (Amax (X 7) <t) < —L(0,1),

n—oo N
1
liminf —log P(Amax (X7) <) = —L(0,1-),
n—>oo n
where L(0,1) is as defined in equation (2.8).

For symmetric matrix B, € R, let L,_1(Bn) = 1/(n —1) - Y7, 83,(B,)
the empirical distribution of the n — 1 smallest eigenvalues.

We next state three useful lemmas on the spherical integral from the papers
[19,30].

LEMMA 4.6 (Continuity of spherical integral I [19, lemma 14]). For any 6,1 > 0,
there exists a function gg ,(8): R0 — R with limz—o, g¢.,(z) = 0 such that
the following holds. Let x, y € R" be two vectors, with Xmax = MaX; <p Xi, Xmin =
min; <; Xi, Ymax = MaXj<p Vi, Ymin = MiNj<p yi. Let Wy, Wy be their empirical
distributions and define Hx(z) = (1/n) > 7_11/(z — xi). If d(jix, uy) < 8 and
0 e Hx([xrnin — 1, Xmax + U]c) N Hy ([yrnin — 1, Ymax + TZ]C); thenfor SuﬁciCiently
large n

1 1
(4.18) 10 1(6.x) = = 10g n(6. )| = 80, (®).

LEMMA 4.7 (Continuity for spherical integral IT [30, prop. 2.1]). Forany 6,x, M >
0, there exists a function g, ¢ p: R>0 — Rxo with lim; ¢ g,.0,0(2) = 0 such
that the following holds. For x,y € R", denote by . ;,L; the empirical distribu-
tions of the (n — 1) smallest entries of x, y, and x1, y1 the largest elements of x, y.
Ifd(py. 1) =n™ [x1 = y1l =6, and ||x |loo. |y loo < M, then for sufficiently
large n

1 1
4.19) - log I,,(6,x) — " log I,,(0, y)| < &k,0,m(5).

2 Notice that the formula in [30] contains a typo, which is corrected here. Also, the normalization
of W, is different from the one in [30]. Here the empirical spectral distribution converges to a
semicircle supported on [—2, 2], while in [30] the support is [—+/2, v/2].
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LEMMA 4.8 (Limiting distribution of spherical integral [19, theorem 6]). Let 6 >
0, {x(n)}nen, be a sequence of vectors with empirical measure L, converging
weakly to a compactly supported measure [, and limiting largest element Xpmax >
sup: x € supp(u)} and limiting smallest element Xy, < inf{x: x € supp(u)} < 0.
Then the function

.1
(420) Tt s, 0) = Jim_ —~ log I (6. x (n))

is finite and well-defined (which does not depend on X ).
Moreover, letting x > sup{x: x € supp(u)}, we have

@21)  J(u,x,0) = w _ %/ log(1 + 8 - v(x. 8) — 6 - )u(dA).
R
where
(4.22) o(x.0) = JRe @) HL() =6,
x —1/60 otherwise.

See Section 4.1 for the definitions of the Stieltjes transform H,(x) and the R-
transform R, (x).

Setting &t = 0 in the above lemma, with some simple calculations we get the
following expression for J (o, x, 0):

LEMMA 4.9. Since sup{x: x € supp(os.)} = 2, J (O, x, 0) is defined as x > 2.
We have
J (0, x,0) =

02/4 if0<0 <1, xe[2p0)
(4.23)
1.[0x—1—1log(d) — ®u(x)] if6>1,x>2o0r

0<6 <1, x>p).
See equation (2.3) for the definition of @, (x).
4.3 Proof of Lemma 4.2
We rewrite the objective function as

(4.24) f@) = (Y,0%) = A (u,0)* + h(o),
where
(4.25) h(o) = — (W,o®) = L i Giyiy Oty -+ O -
van Vo, S
The euclidean gradient and Hessian of the f give
(4.26) V(o) =kA{(u, o) u+ Vh(o),

(4.27) V2f(o) =k(k — DA~ (u,6) 2 uu" + V2h(o),
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where
k n
V(o) = —— - Wit i 03 01,
i NGT ; %:1:1 iiyig—1 0 ix—1
428
2 k' Z Z (G )111 wig_1001 """ Oy
n TEDy i1yenns ir—1=1
and
k(k —1) "
Vzh(a)ij = — 5 . : %:2_1 Wijiyig—20iy * " Oig_s
4.29) T
k(k— 0y 1
Z Z (Gn)ijil"'ikfzo—il 2 Ojp_»-
! TEDy 1yenns ix—2=1

We will denote by T, S"~! the tangent space of the unit sphere S”~1 at the
point ¢, which we will identify isometrically with the euclidean subspace of R”
orthogonal to 0. The Riemannian gradient and Hessian of f on the manifold S”~ !,
restricted on the tangent space, are given by

(4.30) gradf(o) = PEV f(0) = kA(u. o) 'PLu + PLVh(0).

Hess f(0) = PLV2 f(6)PL — (0,V f(0)) - PE
4.31) = k(k — DA(w, 0 )*72 . (PLu)(Ptu)" — kA(u,o)F - PL
+ PLV2h(0)PE — (0, Vh(0)) - PL

Taking 0 = e, and u = me,, ++'1 —m?2 e, we have (and identifying Ty sn—1
with R”~1)

(4.32) flo) =

1
V2n
11— m2 k
(4.33) PV /@), g0 < kamF 11— e1+\/ L &n—1>
-1 N‘/V(Ov In—l),

P V2 f(0)Py |7 g

(4.34) L k(e — DAmF2(1 = mP)e el + \/IWC%L(”_DW,H,

W ,_1 ~ GOE(n — 1).
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Thus, the Riemannian Hessian restricted to the tangent space is distributed as
Hess f(0)| 7, g
L k(k — DAmF2(1 —mP)e e
k(k —D(n—1 1
+\/ k— D -1 Z),n_l‘
2n V2n
Furthermore, note that grad f'(o') and Hess f (o) are independent.

Plug these quantities into equation (4.10) and use rotational invariance to get
equation (4.12). Summing equation (4.10) over k gives equation (4.11).

4.4 Proof of Lemma 4.3

In equation (4.12), the determinant of the Hessian is given by
[det(H )| = (k(k = 1)(n — 1)/2m)* =D/
x det(6p (m)ere] + Wo_1 — ta(f) L n—1).

We denote the density of f by pr(x); we then have
(4.37) pr(x) = Vn/m - expl—n(x — m*)?}.
The inner expectation yields

E{ldet(H )| - 1{H, <0} - 1{f € E}}

= (k(k = D)(n = 1)/ @n)) =D/

(4.38) X[EE{ldet(Hn)l-l{Hn < 0}} py(x)dx

= (k(k — 1)(n — 1)/2n))""D/2(n /) 1/2

(4.35)

Wu_1— k(/\mk +

(4.36)

x [ E{|det(H )| - 1{H, < 0}}exp{—n(x — Am*)?}dx.
E
We also have
(4.39) Va(m) = 22" D/2 /D ((n —1)/2) - (1 — m?)("=2/2,
(4.40) 06 (0) = (n/ (k) D/2 . exp{—nkAZm?*2(1 — m?)}.

Plug these into equation (4.12) and we have the form of equation (4.15) with pre-
factor

Cn = (k(k — D(n —1)/Q2n) D2 n/m)!/2
x 2 D/2 /T ((n = 1)/2)
x (n/ (k)2 % (1/(k — 1)e)"/?
=2((n — 1)/(2e))""V/2/T((n = 1)/2) x (n/(k — Dem)'/2.

Expand the I" function in 6, using Stirling’s formula, and it is easy to see that
n is exponentially trivial.

(4.41)
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Equation (4.14) follows essentially by the same calculation.
4.5 Proof of Theorem 2.1
Throughout the proof, we will use the following notations:
Jn=0-ere] +W,—t-1,,
X, = 9-eleI+ W,
H, = 0,(m)-ere] + Wp_y —ty(x)-I—1,
(4.42) 0m) = /2k(k —1) - Am*2(1 —m?),
t(x) = V2k/(k —1)-x,
6,(m) = 2k(k — Dn/(n — 1) - Am*=2(1 — m?),
tn(x) = 2kn/((k —1)(n —1)) - x.

In order to prove Theorem 2.1, we will establish the following key proposition,
whose proof follows on page 2307.

PROPOSITION 4.10. The following statements hold:
(a) Exponential tightness:

1
(4.43) lim limsup —log E{Crt, .([—1, 1], (—o0, —2z] U [z, 00))} = —00.
Z—>0Q0

n—oo N

(b) Upper bound: For any fixed large Uy > 0 and Ty > 0, let ?2) C [-Uo, Up]
and Ty C [Ty, To] be two compact sets, and define &y = Uy x . Then
we have (for @, defined as in equation (2.3))

(4.44) limsup sup llogIE{|det(Jn)|} < sup O, (7).
n—oo (0,1)e& te%
(¢) Lower bound: For any fixed § > 0, 6, and to, define %} = (6 —8. 0y + ),
%8 = (to — 8,19 + 8), and c5"08 = %08 X 908. Then we have
(4.45) lim infl log /(9 s E{|det(J,)|}d0 dt = D.(tp).

n—-oo n ) éao
Using this proposition, we can prove Theorem 2.1.

PROOF OF THEOREM 2.1. Because of the exponential tightness property, we
only need to consider the case when the set E is bounded. We will prove first the
upper bound of equation (2.4), and then the lower bound; cf. equation (2.5).

Step 1. UPPER BOUND.
First, letting Eg = (xo — 8o, X0 + So), we claim that

1
(4.46) lim limsup —log E{Crt, (M, E¢)} < sup S.(m,xop).

80—04 n—o0 meM
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Assuming this claim holds, to prove equation (2.4), we consider a general com-
pactly supported set E. Fix an ¢ > 0; for each x € E, there exists a radius §, such
that

1
(4.47)  limsup — log E{Crty,+ (M, (x — 8x, x + 0x))} = sup S.(m,x) +e.

n—oo N meM

Then {(x — 6x,x + dx): x € E} is an open cover of E. Due to the compactness
of E, there exists a finite number of intervals {(x; — éx;, x; + 6x; )}~ that form a

— i=1
cover of E and such that the above equation holds. Therefore

1
limsup — log E{Crt, +(M, E)}

n—oo N

1

(4.48) < max limsup — log E{Crty, +(M, (x; — 8x,,X; + 6x,;))}

i€[m] n—»oo N

< sup Si(m,x)+e.

meM ,xcE

Equation (2.4) holds by choosing an arbitrarily small ¢.
Therefore, we just need to prove equation (4.46). For x € R, § C R, define

d(x,S) =inf{|{x — y|: y € S}. For a given small § > 0, define

Mg :={m: d(m, M) < §},
Es :={x: d(x, Eo) < §}.

(4.49) Uy =16: 0 = 2k(k — 1) - Am*2(1 = m?), m € My},
Ty ={t:t = 2k/(k —1)-x, x € Eg},
& =Us x Ty,

Since Ej is bounded, we can define finite constants Uy, T such that
U C [~Uo, Ug] and Fy C [~To, To).

For any § > 0, there exists Ns large enough such that 1,,(x) € F; and 6, (m) €
Us for alln > Ng and (m,x) € M x Eg. According to Proposition 4.10(b), there
exists Ny s > Ns such that foralln > N, s,

sup  E{|det(H )}

meM ,x<€E,
= sup E{|det(6,(m) - e1e] + Wn_1 — tn(x) - In—1)|}
meM x€Eg
sup Ef|det(0-ere] + W1 —1-In_1)|}
(0,1)eés
< exp{(n — 1)[sug D, (1) + 8]}

teJg

(4.50)
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According to the expression for the expected number of critical points in Lemma
4.3, equation (4.14),

E{Crtn,*(Mv EO)}

< sup _ ]E{|det(Hn)|}-C€n-/E dx /M(l—mz)_3/2 dm
0

meM ,xeEg

X exp{n[%(log(k —-D+1)+ %log(l —m?)
—kA2m®* 2 (1 —m?) — (x — AmF )2]}

1
< sup 4%, Rp x exp{n[z(log(k -D+1)

meM ,xeEg

—k2X2mP* 21 —m?) — (x — Amk)2:|}

X exp{(n — 3)|:% log(1 — mz)} +@n-1)- suB[CI)*(t) + s]}

teTJy

Note that the prefactor 2%, Ry is exponentially trivial. We have

1
limsup — log E{Crt, +(M, Eo)}

n—oo N

1 1
< sup {—(log(k —1) + 1) + = log(1 —m?)
451 meM ,xeEg, 2

—kX2mP*2(1 —m?) — (x — Amb)?

+ sup D, () + .
teJy

Letting &,8 — 0, and using the continuity of ®,(z) and compactness of &, we
have

1
limsup — log E{Crt,, «(M, Eo)}

n—oo N

1 1 )
(4.52) = sup _s(log(k = 1) +1) + 5 log(1 —m")

meM ,x€Eg

— kkszk_z(l —m?) — (x — )Lmk)2 + sup . (7).

te%

Note that Eg = (xo — 80, xo + o). Letting o — 0 and using the continuity of
®, (¢), we have proved equation (4.46).
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Step 2. LOWER BOUND. For any Borel sets M C [—1, 1] and £ C R, and for
any ¢ > 0, there exists (19, xg) € M° x E? such that

(4.53) S (mo, xo) > sup Si(m, x) —e.
(m,x)eMOxE°

Denote 6y = 6(mg) and ¢ty = t(x¢). For a given small § > 0, define

M = (mo — 8, mo + §),

ES := (xo — 8, x0 4 6).

%’g = Mg X Eg,

U8 = 10: 0 = 2k(k — On/(n — 1) - amF=2(1 —m?), m € M{},

Z = {1 = V2kn/(k =D = 1)) -x, x € E3},

n

& =S x 7.

n

(4.54)

We fix § sufficiently small so that Mg C M? and Eg C E°. ltis easy to see that

%} and 78 are open sets and 0y € %, to € F;° are inner points.
For this choice of § and ¢, according to Proposition 4.10(c), for any ¢ > 0, we
can find N, , s and 6o > O such thatasn > N, . s,

(4.55) E30 .= (0 — 80,00 + 80) X (to — 80,10 + 80) C &
and
E{|det(6-e1e! + W,—1 —t-1,_1)}dO ds
/(9,,)@;;0 ([det(6 - e1eT + W, )}

> exp{(n — 1)[@+(t0) — &o]}-

According to the expression for the expected number of critical points as in
equation (4.15) in Lemma 4.3,

(456)  E{Crt,.(M,E)}
= E{Crt,« (Mg, E9)}

> 6n / E{|det(Hp)|}dx dm
4

x inf exp{(n -3)- [% log(1 — mz)]

S
(m,x)e %

+n [%(log(k -D+1)

—kAZm* 2 (1 —m?) — (x — Amk)z}} >
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= /o@ E{|det(6 - ere] + War =1 - In1) |}
20

n—1

do dr
" kan|(k—2) - m(O)F —k -m(9)F—1]

1 1
X inf exp{n |:§(10g(k -D+1)+ 3 log(1 — m?)

28
(m,x)eAg

—kA2m* 21— m?) — (x — )Lmk)z]},

which gives

E{Crt, (M, E)}

n

8k2A

>

-exp{(n — 1) [Ds(to) — 80]}

(4.57) x  inf exp{n[%(log(k -H+1+ %log(l —m?)

(m,x)eg%g
—k2X2mP*R 21— m?) — (x — Amk)z]}.

Note that the preconstant %, /8k2 is exponentially trivial on a compact set. We
have

1
liminf — log E{Crt, (M, E)}
n—oo n

, 1 1 5
(4.58) > inf E(log(k -1+1)+ 5 log(1 — m*)

- S
(m,x)€%;

—kX2mP2(1 = m?) = (x — amF)2 + D (10) — €o.

Letting g9, § — 04, we have

1
liminf — log E{Crt, «(M, E)} > S, (mo, Xo)
(4.59) neo n
> sup Se(m,x) —e.
meM©° xeE°

Letting ¢ — 04 gives the desired result. O

In the following we prove Proposition 4.10.
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Proof of Proposition 4.10(a): Exponential Tightness
We need to upper-bound E{Crt, .([—1, 1], (—oo0, —z] U [z, 00))}. Starting from
equation (4.14), we have a crude upper bound

E{Crty,+ ([=1. 1], (=00, 2] U [z, 00))}

00
(4.60) < 4y /Z dx - E{[4x + 2kA + ”Wn—IHOp] }

X exp{n[%(log(k —D+1)—(x— 1)2]}.

We let D, = 4%, - exp{n[1/2- (log(k — 1) + 1)]}. It is easy to check that D, is
exponentially finite.

Taking z > max(2kA, 1) (note that we consider k > 2) and letting Y, =
[ Wa—1llop, we have

E{Crty «([—1, 1], (=00, 2] U [z, 00))}

(4.61) = Dn- /Zoo E{(5x + Yn)"} - exp{-nx?/4}dx

< D,E{(1 + Y,)"} f Oo(5x)" -exp{—nx2/4}dx.

The operator norm of a GOE matrix has sub-Gaussian tails (cf. Lemma A.2). This
immediately implies

(4.62) E{(1 + Y,)"} < E{e"Vn} < C"
for some universal constant C, whence

E{Crty «([—1,1], (—00, 2] U [z, 00))}

(463) S DnCn / (Sx)n . exp{—l’lxz/é‘-}d)(:,
Z

and the claim in equation (4.43) follows by Lemma A.3.

Proof of Proposition 4.10(b): Upper Bound

Recall that J,, = QeleI + W, —tl,and X, = QeleI + W,. Let o (dA) =
1)5|<2V4 —A2/(27)dA be the semicircle law, and denote by B(oy, §) the ball
of radius § around oy.(dA), with the Dudley metric defined in Section 4.1. Let
BRr (o, d) be the set of probability measures in B(oy, §) with support in [—R, R].
For p a probability measure on R, define (for all x such that the integral on the
right-hand side is well-defined)

(4.64) D, x) = / log |A — x| - u(dA).
R
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We will often make use of the following fact: for any event A, we have (defining
L,=1/n- Z?:l 8x,; the empirical measure of the numbers {x;}7'_,):

E{|det(J»)[; A}
n
=/ 1_[|x,~—t|-1A-Pn‘9(dx1,...,dx,,)
1

=1

1 n
(4.65) _ﬁ/ngnl_['x"_l"ln(@’x?)'lf
. n i=1

n
. 1_[ |xi —x;j] - 1—[ exp{—nx}?/4}dx;

i<j i=1
ZO
= —Z/ exp{n - ®(Ly, 1)} - I, (0, x7) - 14 - PO(dxy, ..., dxp),

Zy Jrn
where
(4.66) 79 = z,?/ Li(6,x™) - P2(dxy, ..., dxy).

Rn
We have the upper bound
E{|det(J )|} < E{|det(J,)|; Ly € B(og,d)}
E,
(4.67)
+ E{ldet(Jn)[: Ln ¢ B(0sc. 8)}
E>

where § > 0 is a fixed arbitrary small number.
According to Lemma A.4, E; < B2 /A2 as a function of (6, 1) is exponentially
vanishing on any compact set. Hence, we just need to consider the term Ey:

ZO
Ev=75 |, exptn @(Lu. 0} In(8.x7) - HLy € B(ow. 8)} - P,
n n
z? 0
(4.68) <exp{n- sup D(u.1)}- Z_’;/ 1,(0, x7)dP,
WEB(04,8) n JR”

=exp{n- sup D(u.1)}.
WEB(0x:,8)

Defining @, (u,1) = [glog(|t — A| v n)(dA), it is easy to verify that @y (u, 1)
is continuous in (u,t) € Mi([—Ro, Ro]) x Jp for each n. Since O(u,7) =
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infy~o{®;(u, )}, it holds that ®(u,t) is upper-semicontinuous on the same do-
main. Further, a direct calculation yields ® (o, t) = P (¢). Therefore,

limsuplimsup sup llog Eq1 < limsup sup D(u,t)
(4.69) §=0  n—oo (B1)ed 50 1€, 1ueB(0x,)
< sup ®,(r).
te%

Consequently, we have

1
4.70) limsup sup —log E{|det(J )|} < sup D, (7).

n—>00 (9,t)eéo te

Proof of Proposition 4.10(c): Lower Bound
Since t — ®,(¢) is continuous, we only need to prove the lower bound for
(Ao, to) in a dense subset of R%. We consider two cases for fg:

Case 1. tg € (—00,—2) U (2,00). In this case, the proof is easier, since #g is
separated from the support of the semicircle law. We only consider the subcase
to > 2 and 6y > 1, which is more difficult. The proof for 7 > 2 and 6y < 1
follows by a very similar argument.

Case?2. ty € (—2,2). This case is more challenging since ¢y is inside the support
of the semicircle law. We will distinguish two subcases. In subcase 2.1, ¢y €
(—2,2) and 6y > 1, and in subcase 2.2 1o € (—2,2) and 6y < 1. We use the
estimate of the spherical integral in [19] and [30].

Case 1: 1y € (—00,—2) U (2, 00). As mentioned, we consider g > 2 and 6y > 1
here. The other cases are similar.

Let p(0) = 6 + 1/6. Let §o € (0,8) be such that 5 > 2 + 2§9. We
can then choose g9 € (0,8) such that p(6p + 2g9) — p(6p — 2g9) < 8o and
p(o —2e0) > 2. Let 72(80, €0) = [to — o, to + So] \ [0(6o — 2€0), p(Bo + 2¢0)],
and 77 (89,80) = [p(@o — &9), p(6o + 80)] U [lo — 280, t0 + 250]6. We have
d(71 (80, 20), %2(80,20)) > 0, and the eigenvalues of the spiked matrix X, be-
longs to .77 (8¢, £0) with probability converging to 1 as n — oo.

Thus, for € F5(80.€0), 0 € %;° = (6o — €0, B + €0), we have the following
lower bound, holding for any §" > 0 (here L, (X ) denotes the empirical spectral
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distribution of the matrix X):

E{ldet(J )}

ZO
= —’; exp{n - ®(Ly. 1)} - 1,(0, x7) - dP?
Z7 Jrn
n
z, n
> 70 Jn exp{n - ®(L,,t)} - In(0,x7)
n

X 1{Ly € B(0,8"), supp(Ln) € Fi (80, €0)} - dPL

A%

z n ,
= 1,(0, x"1{L, € B(0.8).
Z7 Jrn

supp(L,) € 7 (8o, 80)}d]P’,?}

(4.71)
X exp {n[ inf @(u,t)]},
WEB(0,8"),
supp(1) € 71 (80,0)

> {P(supp(Ln(Xn)) C Fi(5o.£0)
VA

=76 e I, (0, x%) - 1{L, ¢ B(USC,S’)}dIP’,?}
n

Gy

X exp {n[ inf CD(;L,Z)]}.
WeEB(0,8"),
supp(u) €71 (80,€0)

According to Lemma A.4, G; = B2/A2 is exponentially vanishing on compact
sets, so we can drop this term. We also know that IP (supp(L, (X)) € Z1(80, €0))
is exponentially trivial on compact sets.

This gives

1
liminf — log[ E{|det(J,)|}dO dt
n—0o0 n 0,88

1
4.72) > liminf — log / E{|det(J,)|}dO dt
n—00 n 0e,° te 7 (80,80)
> lim inf inf d(p,t) = inf  D.().
8'—04 t€7(80,€0),1E€B(0,8") te7(80,€0)

supp(i) € 71 (80,80)

The last equality holds because ®(u,?) is continuous with respect to (u,¢) on
{(n,1): 1 € B(0c, 8'), supp(i) € F1(S0. €0). 1 € F2(0, €0)}.
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Since . (¢) is continuous, letting first ¢g — 04+ and then 69 — 04, we have

1
lim inf — log / E{|det(J,)|}dO dt
(4.73) nee S Jenes
> limsup limsup  inf &, (1) = D (20).
80—04 £0—04 t€7(80,€0)

Case 2.1: We next consider the case of typ € (—2,2) and 6y > 1. We further
assume o > 0, as the case 9 < 0 follows by a similar argument. Define

“.74) Hi = [ expln ®(Lo.0)} - (6.50) - dBDGED).
Rl’l

(4.75) m:/hﬁmdwwy
R}’l

We have E{|det(J )|} = Hi/H>. Let p(8) = 6 + 1/6. Since @, (o) = 1Z/4 —
1/2 for tg € (=2, 2), it suffices to show that

1
liminf — log / H; do dt
(4.76) n—oo n (GRS

> 13/4+ @4 (p(00)) — p(60)? /4 + J (05, p(o). 6o),

1
limsuplimsup sup — log H»
“4.77) §—>04 n—00 9607/63

< 1/2+ @.(p(80)) — p(60)* /4 + J (0, p(6o), bo),

with J(-) defined as per Lemma 4.8.
By [30, prop. 3.1], for fixed 8 > 1, we have

. 1
(478)  limsup —log Hy < 1/2 4 ®.(p(0)) — p(6)>/4 + J(0sc. p(6). 6).
n—oo N
Therefore, equation (4.77) is implied by the convexity of 1/n-log H» as a function
of 6.
To prove equation (4.76), first we choose §¢ € (0,8) and g9 > 0 small enough
such that p(6p — 80) — €0 > to + 28¢. For any fixed 8 € (6y — 8o, 0o + So), we
have

H, dt
%5

1 n
—— | a | nexn [lI-x
z9 s /R” n(®x) - [ L=l

i=1

n n
X H |xi—x]~|-exp{—%in2}dei=

1<i<j=<n i=1 i=1
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7 ess )
= — I,(0,x7) - |xi — x|
Z’? xoe%& " n 1 1_[ 14 J

n

0<i<j<n

n
n n
X exp{—z lez} . 1_[ dx; -exp{zxg}
i=0 i=0
1 n—1

n
2
= | | . [T b = wlexp = w2 e
Zn Jx,eB(p(0),20) Jxoe 70 Jxi~1eRn=1 [ 4

X 1n(0,X7) UL (x§7") € Bayeg(0ien™ ™y [ i —

0<i<j<n—1

n—1 n—1
n n
Xexp{—z E x,z} dei xexp{z(lo—(so)z}}-

Note that for n sufficiently large, L, (xg_l) € Bagg (05, n~ /%) implies that
Ln_l(x’l’_l) € Bz+80(asc,2n_1/4). Therefore, for any 6 € (6y — 80,60 + So),

we have
/ Hydt
I
> (p(6o — 80) — to — 8o — £0) - exp{—p(Bo + 80)*/4} x 2e0
Ay
X exp{%(to - 50)2}§
N—
An
1
X inf expl(n — D[®(Lp—1(x"Y), xn) — —x2
4.79) Ly—1 (3771 €Bay 5 (0ic,2n /), p{ | . o 2
x, €B(p(0),80+280)
A3
X inf In(6, x7)
Ly—1(x771)€By 5 (0uc,2n /),
xn€B(p(6),e0+280)
Agq
X / / I{Ln(x(’)l_l) € B(GSCsn_1/4)}Pr?(dx(r)l_l) :
xoeﬂo‘s x?ile[—2—€0,2+80]"_1
As

The term A is strictly positive and does not depend on . Therefore it is exponen-
tially trivial.

Since ®(u, ) is continuous on the set {(i,1): u € Bays, (05, 8'). t € B(p(9),
go + 280)}, the term A3 is lower-bounded as follows:

1 1
(4.80) liminf — log A3 > inf |:CI>*(x) — —xz].
n—oo p x€B(p(0),e0+280) 4
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For the term A4, using the continuity of the spherical integrals in Lemma 4.7
and 4.8, we have

1
(4.81) limicgf— log A4 > J(0sc, p(0), 0) — gg(2e0 + 4d0),
n— n

where g9(+) = g1/4.,0,p(6)+1(*)
For the term A5, we have

1
As > EGog,n [;#{Ai tAi € 708}]

(4.82)
— PGOE,n(nel?)j |Ai] = 24 80) — Poorn(Ln & B(ow,n™V/4)).
LE€ln

The first term is exponentially trivial, the second term is exponentially decaying,
and the third term is exponentially vanishing. Therefore, A5 is exponentially triv-
ial.

Putting the various terms together we get, for any 8 € (6p — 8o, 8o + o) and
to > 0,

1
liminf — log Hydt

n—oo n ’708
1
(*53) > (o= 80)% + J (e, p(6). 0) — 20 (260 + 450)
inf O, (x)—1/4-x2].
xeB(p(e),so+2so)[ +(@) =174 7]

For any fixed 6 € (6p — 8¢, 6o + 80), letting €¢, 8o — 0 and using the continuity
of &, (x) and J(oy, x, 6) in variable x (see equations (2.3) and (4.23)), we have

1
liminf — log Hydr
n—-oo n yos

(4.84) |
> Zté + J (05, p(6).0) + Du(p(6)) — 1/4 - p(6)>.

Note that {1/n - log [ 78 Hydif}pen, are convex functions and are uniformly
bounded in 6. Therefore, according to Lemma A.1, the above inequality holds
uniformly for 6 € (6g — &9, 6o + o). That is,

1
liminf — log/ Hy d6 dr
&

n—oo n

1
> liminf inf -—log / Hydr
(4.85) 58

n>00 gegdo n

> inf [%tg + J (0. p(0), 6) + Po(p(8)) — 1/4- p(9)2:|.

oen®

Letting §o — 0 gives the desired result.
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Case 2.2: ty € (—2,2) and 69 < 1. We further assume 79 > 0, as the case
to < O can be treated analogously. For any fixed small g9, 8’ > 0, we have the

lower bound
E{|det(J )|}

ZO
- Z_’; R” eXp{n : CD(Ln’ t)} : In(e’ X’f) ’ dIPnO
n
ZO 0
= Z_’; R expin - ®(Ly, 1)} - In (Q,X’ll) ‘L, € BZ+80(OSC’8,)} -dP,
n n
0
= _’; ’ {f exp{n - ®(L,, 1)} - I{L, € Baggy (0, 8/)} : dP}?
zZ; R”
Fi
X lnf In(ewx;l) .

Ln GBZ—‘,-SO (Usc 98/)

F

For the term F;, we have

Pz exptn - ®(Ly, 1)} - AP
[-2—&0,2+¢0]"

F3

—/ exp{n - ®(Ly. 1)} - 1{L, ¢ B(0x,8")}-dP? .

Fy

According to Lemma A.4, F4 = B} is exponentially vanishing on compact sets.
For the term F3, letting 0 < 8¢ < §, we have

/ dt / exp{n - ®(Ly, 1)} - dP?
te,%s [—2—¢0,2+¢0]"

| n
_ [t — x;]
Z,(,Z /;e%‘s /[—2—80,2+80]” t:l_ll l
n " z
< T wi-gl-ewf-2 Y a2 [Tan o

l<i<j<n i=1 i=1
1

=T S [T |x—xl
n Jx0€7y J[=2—e0,2+e0l" g<icj<n

:ZO
n

n
x exp{—z Zx,z} . 1_[ dx; -exp{%x%},

i=0 i=0

~
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which gives

[ dr / exp{n - ®(Ly, 1)} - dP?
tegg [—2—80,2+4£0]"

(n+1)(n+2)
4

/ }’l 3 | | yi y]
Yo€ ,700 [ 2 80/2,2-‘,-80/2 1 0<i .

i<j<n
n+1
xexp{ Zyl} l_[dy, xexp{ (to — d0) }

i=0
z0 1
n+1
= 1+ —
zy ( +n)
1 n
+1 8
EZOE[ +1 {" i e\/m%o}

x 1{max |1;| <2 + 80/2}] X exp{%(to — 80)2}

n+1n+2)
a

Using Selberg’s integral formula, we have
(D n+2)

1. (Z N+ 1
(4.86) lim —log{ ;“(1+ ) }:__,

—oon n 2

Similar to the method dealing with the term A5 in equation (4.79), we have

: 1 n+1 1 . n 8o
nlggo;logEGOE[n n 1#{)&, tAj € ‘/n-i- 190

x 1{max |A;| <2 +80/2}] =

Now we turn to look at the term F». For any fixed 0 € %, 5 there is a margin
between 6 and 1, so we can find 1 small enough so that

0 e U Hy([-2—¢e0—n,2+ &0 + 1)
weB(0x,8")

as g9, 8’ are small enough. Due to the continuity of the spherical integral (cf. Lem-
mas 4.6 and 4.8), there exists gg ,(8) > 0 as § > 0 and lims_, gg,,(5) = 0 such
that for all n large enough,

1
(4.87) —log inf 1n(0,x7) = J(0sc. 2+ €0, 0) — gg,5(8").
n Ln EB2+80 (Usc:g/ ’

Using the right-continuity of function J (o, X, ) with respect to x at x = 2, we
have

1
(4.88) liminf liminf — log inf 1,(0,x7) > J(0g,2,0).

£0,8’—>04 N—00 N Ly €Bate(05c,8")
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Therefore for any fixed 6 € %2,

hmlnf—log/ / exp{n - ®(L,, 1)} - In(6,x7) - d]P’O

n—>00 n 178 JRn

(4.89) 1

> thUP{J(Usc,Z 0) + (to —80)° — —} = J(0x,2,0) + ®u(l0)-
§0—0 2

Since 1/n-log fre%“ Jrn expin-®(Ly, 1)}-1,(0, x7})-dPy is convex in 6, according

to Lemma A.1, we have

llmlnf—log/ / expi{n - ®(Ly,, 1)} - I,(0,x7) - dIP’O
(4.90) n=oo n - Jgness Jre " !

> J (05,2, 60) + Dul(to).
By [30, prop. 3.1], for fixed 6 € (6p — 8, B9 + &), we have

1
4.91) 11msup—log(Z /ZO) < J(0g,2,0).

n—-oo

By the convexity of sup, e % log(Z,f /Z?9) as a function of 6, we have

1
4.92) lim sup lim sup sup —log(Zg/Z,?) < J(0g.,2,6p).

§—>04 100 gegd

Therefore, as ty € (—2,2) and 6y < 1, we have

n—-oo n

1
(4.93) lim mf—log/ E{|det(Jn)|}d9 dt = D, (20).
0,188
4.6 Proof of Theorem 2.2

PROPOSITION 4.11. The following statements hold:
(a) Exponential tightness.

(4.94) 11m lim sup — logIE{Crtn o([-1,1], (o0, —z] U [z,00))} = —00

n—oo N

(b) Upper bound. For any fixed large Uy > 0 and Ty > 0, denote ?_Z) C
[—Uo, Uo] and Ty C [—To, To] to be two compact sets, and denote &y :=

Yo x To. Then we have

limsup sup ! log E{|det(J )| - 1{J, < 0}}
(4.95) " @0k
< sup [P.(r) — L(6,1)]
(0,)eéH
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(¢) Lower bound. For any fixed § > 0, 0y, and ty, denote %08 = (6p—3, OBp+96),
908 = (to — 6,19 + 8), and f(f = %05 X 908. Then we have

1
liminf — log/ E{|det(J )| - 1{J, < 0}}dO dr
(4.96) n—00 n 0,088
> @, (10) — L(bo, t0)-
Assume this proposition holds, we are in a good position to prove Theorem 2.2.

PROOF. Because of the exponential tightness property, we only need to consider
the case when E is bounded.

Step 1. UPPER BOUND. Denoting Eg = (x9 — 80, xo + 6p). Using the same
argument as in the proof of the upper bound in Theorem 2.1, we just need to show
that

1
4.97) lim limsup —log E{Crt, o(M, E¢)} < sup. So(m, xg).

So—>04 n—soo N i
For any small § > 0, define

Ms = {m: d(m, M) < 8},

Es = {x: d(x, Eo) < 8},

(4.98) Uy = 1{6: 0 = 2k(k — 1) - Am*2(1 = m?), m € My},
Ty ={t:1 = 2k/(k=1)-x, x € Eg},
& = Us x Ts.
Since Eg is bounded, we can define finite constants Ry = sup{|x|: x € Ep},

Uo = 2sup{|+/2k/(k — 1) -x|: x € Ep} and
To = 2sup{|/2k(k — 1) - Am*=2(1 = m?)|: m € M}.

Therefore, as § is sufficiently small, we have % C [~Uo, Up] and Tz C [—To, To).
We only prove the case for (M, Eg) such that sup(e’t)ego[q)*(t) —L(6,1)] >
—o0. For (M, Ey) such that sup(e,t)eg—o[dh(t) — L(6,t)] = —oo, we can prove it
using similar arguments.
According to Proposition 4.11(b), for any ¢ > 0 and § > 0, there exists N, s
large enough such that 1, (x) € F5 and 6, (m) € ?Zg for all (m,x) € M x Ey, and
foralln > Ng s,

sup  E{|det(Bn(m) - e1e] + Wy—1 — tn(x) - In—1)| - 1{H, < 0}}
meM ,xeEgy
< sup E{|det(J,—1)| - H{Jpn—1 < 0}}
(CRC
<exp{(n —1)[ sup P.(t) — L(0,7) + ¢}
(6,1)€85

(4.99)
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Therefore, using equation (4.14) in Lemma 4.3, we have
E{Crtn,0(M, Eo)}
1
< sup 2%,-Ro X exp%n |:§(log(k -+

meM,xeEy

—kX2mP* 21 —m?) — (x — )Lmk)z]}

x exp{(n — 3)[% log(1 — mz)] +(—1)- sup [Du(t) = L(O, 1)+ g]§.
(0,t)eéss

Note that the preconstant 2%, Ry is exponentially trivial. We have

1
limsup — log E{Crt,, o(M, Eo)}

n—oo N
1 1
< sup {—(log(k -D+1)+ 3 log(1 —m?)

meM ,xeEy

(4.100)
— k22m?K2(1 = m?) — (x — am¥)?

4+ sup %tb*(t) —L(6,t)+ 8}.
(0,1)eé5

Letting &,§ — 04 and using the upper semicontinuity of ®,(z) — L(6,7) and

compactness of &y, we have

1
lim sup — log E{Crt, o(M, Eo)}

n—oo N

1 1
< sup {—(Iog(k — 1)+ 1)+ = log(l —m?)
meM ,xcEg 2

(4.101)
— kX2mP*2(1 = m?) — (x — Am¥)?

+ sup {CD*(I)—L(Q,Z)}.
(8.0)€é0

Note that we took Eg = (x9 — 8o, xo + 8o); letting §o — 0 and using the upper
semicontinuity of ®,(¢) — L(6,t) gives equation (4.97).

Step 2. LOWER BOUND. It suffices to consider the case when

sup So(m, x) > —o0;
(m,x)eMOxE©°

otherwise, the inequality holds trivially.
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For any Borel sets M C [—1,1] and £ C R, and for any ¢ > 0, there exists
(mo, xo) € M?° x E° such that

(4.102) So(mo, x0) > sup So(m, x) —e.
(m,x)eMOxE°

For this choice of (mg, xo), denote 8y = 6(mg) and 79 = #(x¢). For a given small
8 > 0, define

M = (mo — 8. mgy + §).

Eg = (x0 —8,x0 +9),

B = M{ x E§,

U =10: 0 = 2k(k — D)n/(n — 1) - Am*=2(1 —m?), m € M{},
T = {t:t = 2kn/((k —1)(n — 1)) - x,x € E§},

&= ul x T3,

(4.103)

We fix § sufficiently small so that M € M® and ES C E°.
For this choice of § and ¢, according to Proposition 4.11(c), for any g9 > 0, we
can find N, ,, s and 6o > O such thatasn > N, ., s,

(4.104) &30 .= (B — 80. 00 + 80) X (to — 80,70 + 0) C &
and

[ Bl e < 030 ar
6,0€es,°

> exp{(n — 1)[®(t0) — L(6o. t0) — £0]}-

(4.105)

According to the expression for the expected number of critical points as in
equation (4.15) in Lemma 4.3,

E{Crt,,’o(M, E)}
> E{Crtn 0 (M{. E})}

> %n / ] E{|det(Hy)| - 1{H, < 0}}dx dm
%5

X inf exp%(n -3). [% log(1 — mz):|

S
(m,x)€%;

+n B(log(k — 1)+ 1) —kAZ2m®*72(1 —m?) — (x — Amk)z]} >
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> €, .LSO E{|det(J n—1)| - 1{J p—1 < 0}}

n—1

Sk = 2) - m@F 3 —k -m(ye1 4

1 1
X inf exp%n |:§(10g(k -D+ D+ 3 log(1 — m?)

(m,x)e@g
—k2X2mP* 21— m?) — (x — )Lmk)z]}
n .
8k2 A
1 1
x inf exp{n |:§(log(k -D+ 1D+ 3 log(1 — m?)

S
(m,x)€%;

=

exp{(n — 1) - [Po(to) — L (6o, to) — o]}

— kkszk_z(l —m?) —(x — )Lmk)z]}.

Note that the preconstant %, /8k? is exponentially trivial on a compact set. We
have

1
liminf — log E{Crt, o(M, E)}
n—oo n

1 1
> inf 5(1og(k—1)+1)+Elog(1—mZ)

- (m,x)E%g
— k)tszk_z(l —m?) —(x — )Lmk)2
+ @ (to) — L(6o,20) — €o.

Letting €9, § — 04, we have

1
liminf — log E{Crt, o(M, E)} > So(mo, x0)
(4.106) nmeon
> sup So(m, x) —e.
meM©o xeE°

Letting ¢ — 04 gives the desired result. U

For Proposition 4.11, the exponential tightness is trivial since we have the ex-
ponential tightness of the expected number of critical points. In the following, we
will prove the upper bound and the lower bound.
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Part (1). Upper Bound
We decompose

Efldet(Jn)| - 1{Jn = 0}}
< E{[det(Jn)| - {Jn < 0} L € B0, 8)} + E{[det(S )|, Ln ¢ B(osc. )}

Fr E>

where § > 0 is an arbitrary small number.

According to Lemma A.4, E; = B} /A2 as a function of (6, ) is exponentially
vanishing on compact set. We just need to consider the term F7.

For the term F;, we have

0

Z
F === exp{[n -®(Ly, )} - {max{x;} <t,L, € B(GSC,S)}I,,(Q,x’f) -dIP’,?
Z’? R”? i€[n]

0

V4
< exp{n - sup  D(u, t)} . _’;/ 1{maX{Xi} < t}ln(G,x{‘) .d[p:'?
MEB(USCs(g) Zn R7 le[n]

=exp{n- sup P(u,0)} P(Amax(Xn) <1).
1EB(0c,8)

According to Lemma 4.5, and noting that P (A« (X5) < t) is a coordinate-wise
monotone function with respect to (8, t), we have

1
(4.107) limsup sup —logP(Anax(Xn) <t) <— inf_ L(6,1).
n—oo (6,1)ed (0.1)edo

Consequently,

1
lim limsup sup —logF;

§—04 n—oo (6,1)edp n
< lim sup [®(,t) — L(O,1)] < sup [D.(t)— L(O,1)].
8—04 (8,)€60,11€B(0c,8) 0,t)e&H

Therefore, we have

1
limsup sup —loglE{|det(J,)| - 1{J, < 0}}
n—oo (0,1)e&H
< sup [DP.(t)—L(O,1)].
(0,1

Part (2). Lower Bound

For the lower bound, since ®.(¢) — L(6,t) is upper-semicontinuous, we only
need to prove it for those (6, fo) in a dense subset of R2. Since fg € (—00, 2), we
have L (0, typ) = oo for any 6. So we only need to consider the case when 79 > 2.
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Fix to > 2, choose §p > 0 and g9 > O such that §o < §,and 2 <ty — 89 — &9 <
to — 89. We have

E{|det(Jn)| - 1{Jn < 0}}
Zr(z) n 0/.n
= 70 Ja exp{n - ®(Lp., 1)} - Wxmax <t} - In(0, x7) - dP; (x7)
ZO
Z’; eXp{n 'CD(Ln’t)}'In(eax’f)
n JR”

A%
|

X 1{Xmax < min{z, o — 8o — €0}, Ly € B(0s, &)} - dP?

ZO
= Z_}; / In(ea xllfl)l{xmax = min{t, fo — 80 - 80}’ Ln € B(USC, 8,)} : d]P)lf[)
n JR”
X exp{n[ inf ®(L,, t)]}

L, €B(05c,8"),Xmax <min{¢,to—80—¢0}

> {P(xm(xn) < min{t. to — 8o — £0})
Zr(z) n /
-7 ]];K a0 X)L # B0, 8)}1dP
G
x exp{n| inf O(Ln,1)]}

Ly EB(USC asl)sxmax Emiﬂ{t,to—so—!?o}

According to Lemma A.4, G, = B2/A2 is exponentially vanishing on a compact
set, so we can drop this term.

According to Lemma 4.5, note that P (A (Xy,) < t) is a coordinate-wise
monotone function with respect to (6, ¢). Further, L(6, t) is continuous for r > 2.
Therefore, we have

1
liminf inf —1log P (Amax (Xn) < min{t, tg — §o — €0})
(4.108) n—oo (6,t)e0 1t

> —L(0p + 80,20 — S0 — €0).

This gives

1
liminf—log/ E{|det(J )| - 1{J, < 0}}d6 dr
n—00 n 6,)e88

(4.109) > lim inf ®d(Ly,.t) — LB + 80,10 — S0 — €0)
IE%SO’LHEB(USCaS/)’
Amax<to—80—€0

= O, (t9 + 60/2) — L (6o + 80,10 — S0 — ©0).

§’—04
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Since ®, () — L(0,1) is continuous with respect to (6,¢) on R x (2, 00), letting
first g9 — 04 and then 89 — 04, we have

1
liminf — log/ E{|det(J,)| - 1{J, < 0}}d6 dr
n—oo n (CRII
> lim sup lim sup @, (zo + §0/2) — L (6o + 80,0 — o — €0)
80—>04 e0—>04

= @, (t0) — L(6o, t0).

Appendix A Technical Lemmas

LEMMA A.1. Let { fu(x)}nen,. be a series of real-valued functions defined on the
same compact interval [a, b]. Suppose that each of the f,(x) are convex, and the
{/n(X)}nen,. are uniformly bounded. Then we have
(A1) liminf inf f,(x) = inf liminf f,(x).
n—oo x€la,b] x€la,b] n—o00

PROOF. It is obvious that the left-hand side is smaller or equal to the right-hand
side. It suffices to prove that the left-hand side is bigger or equal to the right-hand
side.

We prove by contradiction. Assume the left-hand side is smaller than the right-
hand side by a margin &. We call the right-hand side f,.. Then we have an increas-
ing sequence n; € Ny such that

(A.2) Jn(Xn,) < fo—e.

The sequence x,, has an accumulation point x, € [a,b]. Since the f,(x) are
uniformly bounded, let supye(g ) nen, fn(X) — fu < U. Consider the interval
I = [xa—(b—x4)e/ QU +¢), xo+(xs—a)e/(2U +¢)]. Since limg 00 Xn;, = Xx,
then there exists K large enough such that as k > K, we have x,, € .. For any
X € & N [x4, b], because of the convexity of f,, we have

(A3) Ja(xe) = (x —x)/(x —a) - fula) + (xx —a)/(x —a) - fn(X).
For k such that x,, € .# N [x4, b], we have

Xy —d

Fo (o) = TR (fa 4 U) +

ni xnk —da

(fe—9)

(Xnp —x)U — (x4 —a)e

< fut
Xnk_a

U(xy —a)e/QU + ¢) — (x« —a)e
(xe —a)e/QU + &)+ x4 —a

U/Q2U +¢) — 1

cQU te 1 S

< fu +

Sf*+8
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Similarly, for k such that x,, € .# N [a, x4], we also have fp, (x«) < fu —€/2.
Therefore

(A4) liminf f,(x,) < liminf f, (x+) < fu —&/2,
n—oo k—o00
which contradicts the definition of f. O

The following lemma is from [8, lemma 6.3].

LEMMA A.2 (Concentration of the operator norm of the GOE matrix). Let Wy ~
GOE(n). Then there exists a constant ty such that, for all t > to and all n large
enough, we have

(A.5) P(|Wallop > 1) < exp{-—nt?/9}.
LEMMA A.3. We have

1 o0
(A.6) lim lim —log/ x" exp{—nx?}dx = —o0.
Z

Z—>00n—>00 n

PROOF. For large enough x, we have x2/2 < x? — log x. Therefore, for large
enough z, the following holds:

o0
/ x" exp{—nx?}dx
¢ o0 o
(A7) = / exp{—n(x? —log x)}dx < / exp{—nx?/2}dx
Zoo | Z
< / x -exp{—nx?/2}dx = —exp{—nz?/2}.
z n
This proves the claim. U

LEMMA A.4. For the following quantities as functions of (6, 1), we have that A},
A2, and A3 are exponentially finite on any compact set, and B}, B2, and B> are
exponentially vanishing on any compact set:

Al = [ exp{n®(Ln, 1)}dP?,

R}’l
Bl = /R expin® (L. 1)} Ly ¢ B(owe. 8)}dPY,
Ag:/ In(6, x™)dPY,
(A.8) !
B2 = /R (0.1 Ln ¢ Bow. §)}dPy,

A3 =/ exp{n® (L. 1)} 15 (6, x7)dPy
Rﬂ

N

B3 :/ exp{n®(Ly, 1)} 1,0, x)1{L, ¢ B(0,8)}dPY.
Rn
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PROOF. We prove Bg’ as an example.

B} < / exp{n®(Ly, t)}1,(0, x")1{L, ¢ B(0s.,8)}dP?
Rn

= f exp{n®(Ly, )}, (6, x7)1{max |x;| > R}dP?
R” i€[n]

E,

+/ exp{ndD(Ln,t)}ln(Q,x’l')l{Ln i B(USC,S),m?)i |x;| < R}dIP’,?.
R~ i€ln

E>

Step 1. BOUND FOR E;
Let %y = [—U(), U()], T = [—To, To], and &y = % x 9. Then

1
lim limsup sup —logFE;
R00 n=00 (g.ek "

1
(A9) < lim limsup —log E{(||Wallop + T0)"
n

R—00 n—oo
X eXp{UOHWnnop}; ”Wn”op > R} = —oo.
For any L, we choose an R > 0 large enough such that

1
(A.10) limsup sup —logFEy < L.
n—oo (0,1)eéy n
Step 2. BOUND FOR E,: USE THE LDP OF THE EMPIRICAL DISTRIBUTION
OF EIGENVALUES OF THE GOE MATRIX
To bound E», we resort to the large-deviation result for L,,:
1
(A.11) lim —logPY(L, ¢ B(0x.8)) = —oo.
n—oon

Therefore, we have the upper bound
sup  Ez < P(Ly ¢ B(0x. 8)) - exp{nflog(Ro + To) + UoRol},

(A.12) O.0e5

which gives
1

(A.13) lim sup —logEr = —o0.
n

n—o00 (0,t)e&H
Therefore, we have
1
(A.14) limsup sup —logB} < L.
n—oo (0,1)e&H

Sending L — —oo gives the desired result. U
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Appendix B Derivation of an Explicit Formula for S,

PROOF OF PROPOSITION 2.3. The function S, (7, x) can be written as

1 1
Su(m.x) = ~log(k — 1) + > log(1 — m?) — kA2m2k72(1 — m?) — (x — AmF)?

2% x2 1 [V 2(k = 1)
- - _ - 2 _ .
+k—1 1 2/2 VY2 —4dy 1{|x|z 3 %

Isolating the dependence on x, to maximize S, (7, x) we must do the optimiza-
tion problem:

1 k-2, e [k—1 * o
(B.1) —En}}ng T —4(Am™) oy u—i—/; VY —4dy - Ly =23

where we have made the substitution u = /(2k/(k — l)x This is exactly the
setting of Lemma B.1 with a = 2k and b = 4Am* ,/ 2k The consideration

b = 4a leads to the definition of m, and the two separate solutions Sy, Sg. When

b < 4a, the formula for Sy is as follows using the solution to the maximization
problem in this region: —b2/4a = —(4(k — 1)/ (k — 2))A2m3* and simplifying
the resulting expression.

In the other region, when b > 4a, using our a, b values we compute that the
maximizing u is

s_ Kk 1 ok k
w= = Sk(mk)? 41 26—k~ DAt

The min value is (after some simplifying)

b zlog((l _a)u . b)

- —2\/7« Am \/—k(xmk)z + 1+ (k —2)(AmF)?
—2log(W+ \/;/\mk) + log(k — 1)
—\/;Amkz\/m + (k —2)(AmF)?

— 2sinh™! (\/;)Lmk)g + log(k — 1)

(we have used sinh™!(x) = log(x 4+ +/x2 + 1)). Plugging back into the formula
for S, (m, x) now gives the desired result for Sg. O
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LEMMA B.1. Let a > 0 and b > 0 be parameters. Let

|x|
g(x) =ax2—bx+/2 VY2 —4dy - 1gx>2-

Then
b
~, 0<b<da
arg min{g(x)} = {24’ ’
gmin{g(x); {x*’ b > 4a.
where
«  2ab—~b%+4—16a?
xT = .
4a2 — 1
Moreover,
b 0<b <4a,

, _ )1
chln{g(x)} %—%bx* _ 210g((% _a)x* + %b), b > 4a.

PROOF. We notice that g’ is monotone increasing, and hence g has a unique
minimum, which occurs when

b —2ax = sgn(x),/|x|? —4- 1{|x| > 2}.

If —4a < b < 4a, then this occurs at b/2a. Otherwise, since we consider only
the case b > 0, we have a solution with x > 2 and have b — 2ax = v/ x2 — 4. The
quadratic formula then gives the formula for arg min. To see the formula for the
minimum, we use the closed form for the integral:

x 1 1
/ Vo2 —4dy = SxVa? —4—210g(% + 5V —4).
2

Substituting the identity b—2ax = v/ x2% — 4 then gives the formula for min(g(x)).
O

PROOF OF PROPOSITION 2.4, For any value of « € (0, 1), define

1 2x2
fa(x) := Eln(l —a) — “ + x% + xv/1 + x2 + sinh™ 1 (x).
o

It can be verified by computing the derivative that this function has exactly one
maximum at xo = % «/ft—ia and that fy(xy) = 0. In particular, fy(x) < 0 for

all x. Now notice that we may write

SG(m) = fe (\/;(kmk))-

This shows Sg(m) < 0. The consideration about the zeros of f. shows that

S has a zero only when ,/ %k(/\mk) = %«/1'”2;2,
—m

(2.14). Elementary calculus reveals that the polynomial m

which is equivalent to equation

2k=4(1 — m?) achieves
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—p)k—2 . . . . .
a maximum value of %, and this observation yields the desired properties

for A.. O
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