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Abstract

We consider the problem of estimating a large rank-one tensor u˝k 2 .Rn/˝k ,
k � 3, in Gaussian noise. Earlier work characterized a critical signal-to-noise
ratio �Bayes D O.1/ above which an ideal estimator achieves strictly positive
correlation with the unknown vector of interest. Remarkably, no polynomial-
time algorithm is known that achieved this goal unless � � Cn.k�2/=4, and
even powerful semidefinite programming relaxations appear to fail for 1� ��

n.k�2/=4.
In order to elucidate this behavior, we consider the maximum likelihood esti-

mator, which requires maximizing a degree-k homogeneous polynomial over the
unit sphere in n dimensions. We compute the expected number of critical points
and local maxima of this objective function and show that it is exponential in
the dimensions n, and give exact formulas for the exponential growth rate. We
show that (for � larger than a constant) critical points are either very close to
the unknown vector u or are confined in a band of width ‚.��1=.k�1// around
the maximum circle that is orthogonal to u. For local maxima, this band shrinks
to be of size ‚.��1=.k�2//. These “uninformative” local maxima are likely to
cause the failure of optimization algorithms. © 2019 Wiley Periodicals, Inc.
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1 Introduction
Nonconvex formulations are the most popular approach for a number of prob-

lems across high-dimensional statistics and machine learning. Over the last few
years, substantial effort has been devoted to establishing rigorous guarantees for
these methods in the context of important applications. A small subset of exam-
ples include matrix completion [17, 23], phase retrieval [12, 41], high-dimensional
regression with missing data [29], and two-layer neural networks [22, 44]. The
general picture that emerges from theses studies, as formalized in [31], is that non-
convex losses can sometimes be “benign” and allow for nearly optimal statistical
estimation using gradient-descent-type optimization algorithms. Roughly speak-
ing, this happens when the population risk does not have flat regions, i.e., regions
in which the gradient is small and the Hessian is nearly rank deficient.

In this paper we explore the flipside of this picture, namely what happens when
the population risk has large “flat regions.” We focus on a simple problem, tensor
principal component analysis under the spiked tensor model, and show that the
empirical risk can easily become extremely complex in these cases. This picture
matches recent computational complexity results on the same model.

The spiked tensor model [33] captures, in a highly simplified fashion, a number
of statistical estimation tasks in which we need to extract information from a noisy
high-dimensional data tensor; see, e.g., [24, 27, 28, 35]. We are given a tensor
Y 2 .Rn/˝k of the form

Y D �u˝k C
1
p
2n
W ;(1.1)

where W is a noise tensor, and would like to estimate the unit vector u 2 Sn�1.
The parameter � � 0 corresponds to the signal-to-noise ratio. The noise tensor
W 2 .Rn/˝k is distributed as

W
d
D

X
�2Sn

G�=.kŠ/ where fGi1���ikg1�i1;:::;ik�n
i:i:d:
� N.0; 1/;

Sn are permutations of the set Œn�, and .G�/i1���ik D G�.i1/����.ik/. Throughout the
paper k � 3.

We say that the weak recovery problem is solvable for this model if there exists
an estimator (a measurable function) yuW .Rn/˝k ! Sn�1 such that

lim inf
n!1

Ejhyu.Y /;uij � "(1.2)

for some " > 0. It was proven in [33] that weak recovery is solvable provided
� � �1.k/, and in [32] that it is unsolvable for � < �0.k/ for some constant
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0 < �0.k/ < �1.k/ < 1. In fact, for � < �0.k/, it is altogether impossible
to distinguish between the distribution (1.1) and the null model � D 0. A sharp
theshold �Bayes.k/ for the weak recovery problem was established in [26] (see also
[7] for related results), and better lower bounds for the hypothesis-testing problem
were proved in [36].

In light of these contributions, it is fair to say that optimal statistical estimation
for the model (1.1) is well understood. In contrast, many questions are still open
for what concerns computationally efficient procedures. Consider the maximum-
likelihood estimator, which requires solving

(1.3)

(
maximize f .� / D hY ; �˝ki;

subject to � 2 Sn�1:

It was shown in [33] that the maximum-likelihood estimator achieves weak recov-
ery (cf. equation (1.2)) provided that � > �ML.k/ for some constant �ML.k/ <1.1

However, solving the problem (1.3) (maximizing a homogeneous degree-k poly-
nomial over the unit sphere) is NP-hard for all k � 3 [9].

Note that the population risk associated to the problem (1.3) is

(1.4) f0.� / � EhY ; �˝ki D �hu; � ik :

For k � 3, the (Riemannian) gradient and Hessian of f0.� / vanishes on the hy-
perplane orthogonal to u: f� 2 Sn�1W hu; � i D 0g. In the intuitive language used
above, the population risk has a large flat region. Since most of the volume of the
sphere concentrates around this hyperplane [25], this is expected to have a dramatic
impact on the optimization problem (1.3).

Polynomial-time computable estimators have been studied in a number of pa-
pers. In particular, [33] considers a spectral algorithm based on tensor unfolding
and proved that it succeeds for k even provided � � C n.k�2/=4. (Here and below,
we denote byC a constant that might depend on k but is independent of n.) This re-
sult was generalized in [21] to arbitrary k � 3 by using a sophisticated semidefinite
programming relaxation from the sum-of-squares hierarchy. A lower-complexity
spectral algorithm that succeeds under the same condition was developed in [20],
and further results can be found in [2,10]. However, no polynomial-time algorithm
is known that achieves weak recovery for 1 � � � n.k�2/=4, and it is possible
that statistical estimation in the spiked tensor model is hard in this regime.

A large gap between known polynomial-time algorithms and statistical limits
arises in the tensor completion problem, which shares many similarities with the
spiked tensor model [16, 34, 43]. In the setting of tensor completion, hardness
under Feige’s hypothesis was proven in [6] for a certain regime of the number of
observed entries.

1 Indeed, an exact characterization of �ML.k/ should be possible using the “one-step replica sym-
metry breaking” formula proven in [42]. A nonrigorous analysis of the implications of this formula
was carried out in [18], yielding �ML.k/ D �Bayes.k/.
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FIGURE 1.1. Complexity of the spiked tensor model of order k D 3 at
signal-to-noise ratio � D 3: exponential growth rate of the number of
critical points � 2 Sn�1 as a function of the scalar product m D hu; � i.
Left: complexity for the total number of critical points S?.m/. Right:
complexity for local maxima S0.m/.

Here we reconsider the maximum-likelihood estimator, and we explore the land-
scape of the optimization problem (1.3). In what regime is it hard to maximize the
function f . � / for a typical realization of the random tensor Y ? In [33] a power
iteration algorithm was studied that attempts to compute the maximum-likelihood
estimator, and it was proven that it is successful for � � Cn.k�2/=2. What is the
origin of this threshold at n.k�2/=2? In this paper we compute the expected number
of critical points of the likelihood function f .� / to the leading exponential order.

Let us summarize the qualitative picture that emerges from our results. For
clarity of exposition, we summarize only our results on local maxima, but similar
results will be presented about generic critical points.

The expected number of local maxima grows exponentially with the dimen-
sion n. We compute the exponential growth rate, denoted by S0.m; x/, as a func-
tion of the value of the cost function x D f .� / and of the scalar product m D
h� ;ui. Namely, the expected number of local maxima with f .� / � x and h� ;ui �
m is expfnS0.m; x/C o.n/g, with S0.m; x/ given explicitly below. The exponent
S0.m; x/ and its variants S0.m/, S?.m; x/, and so on, are referred to as “complex-
ity” functions. In Figure 1.1 we plot S0.m/ D maxx S0.m; x/, which is the expo-
nential growth rate of the number of local maxima with scalar product h� ;ui � m
for the case k D 3, � D 3. (We also plot the analogous quantity for general critical
points, S?.m/.)

The expected number of local maxima with scalar productm D h� ;ui � 0, i.e.,
lying close to the space orthogonal to the unknown vector u is exponentially large.
The complexity function S0.m/ decreases as jmj increases, i.e., as we move away
from this plane, and eventually vanishes.

For � sufficiently large (in particular, for � > �c.k/ given explicitly in Section
2.4), the complexity S0.m/ reveals an interesting structure. It is positive in an
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interval m 2 .m1.�; k/;m2.�; k//, where m1.�; k/;m2.�; k/ D ‚.��1=.k�2//,
and becomes nonpositive outside this interval. However, it increases again and
touches 0 for m D m�.�; k/ close to one (for k even it also becomes 0 for m D
�m�.�; k/ by symmetry). In other words, all the local maxima are either very
close to the unknown vector u (and to the global maximum) or they are on a narrow
spherical annulus orthogonal to u.

It is interesting to discuss the behavior of local ascent optimization algorithms
in such a landscape. While at this point the discussion is necessarily heuristic, it
points at some interesting directions for future work. The expected exponential
number of local maxima in the annulus jhu; � ij � ‚.��1=.k�2// suggests that
algorithms can converge to a local maximum that is well correlated with u only
if they are initialized outside that annulus. In other words, the initialization � 0
must be such that hu; � 0i � C��1=.k�2/. If no side information is available on u,
a random initialization will be used. This achieves hu; � 0i D ‚.n�1=2/ with
positive probability, and hence will escape local maxima provided � � Cn.k�2/=2.
Remarkably, this is the same scaling as the threshold for power iteration obtained
in [33]. It would be interesting to make rigorous this connection.

Let us emphasize that our results only concern the expected number of critical
points. As is customary with random variables that fluctuate on the exponential
scale, this is not necessarily close to the typical number of critical points. While
we expect that several qualitative features found in this work will hold when con-
sidering the typical number, a rigorous justification is still open (see Section 3 for
further discussion of this point).

The rest of the paper is organized as follows. We state formally our main results
in Section 2, which also sketches the main ideas of the proofs. We will then review
earlier literature in Section 3 and present proofs in Section 4.

2 Main Results
Our main results concern the number of critical points and the number of local

maxima of the function f .� / introduced in equation (1.3), where Y 2 .Rn/˝k is
distributed as per equation (1.1).

Throughout, we denote by rf .� / and r2f .� / the euclidean gradient and Hes-
sian of f at � , respectively, and denote by gradf .� / and Hessf .� / the Riemann-
ian gradient and Hessian of f at � on the unit sphere Sn�1. Conceptually, the
Riemannian gradient gradf .� / is the projection of the euclidean gradient rf .� /
onto the tangent space of the sphere at � , and the Riemannian Hessian Hessf .� /
captures the second-order behavior of function f at � on the sphere.

The completed real line is denoted by SR D R [ fC1;�1g. For a set S � R,
we denote by xS its closure and by So its interior.
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2.1 Complexity of Critical Points
For any Borel sets E � R and M 2 Œ�1; 1�, we define Crtn;?.M;E/ to be the

number of critical points of f with function value in E and correlation in M :

(2.1) Crtn;?.M;E/´
X

� W gradf .� /D0

1fh� ;ui 2M g1ff .� / 2 Eg:

We define function S?W Œ�1; 1� �R! SR as

(2.2)
S?.m; x/´

1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/ � k�2m2k�2.1 �m2/

� .x � �mk/2 Cˆ?

�r
2k

k � 1
x

�
;

where

(2.3) ˆ?.x/ D

8<:
x2

4
�
1
2
; jxj � 2;

x2

4
�
1
2
�
jxj
4
�
p
x2 � 4C log

nq
x2

4
� 1C jxj

2

o
; jxj > 2:

THEOREM 2.1. For any Borel sets M � Œ�1; 1� and E � R, assume � is fixed.
Then, we have

lim sup
n!1

�
1

n
log E

�
Crtn;?.M;E/

�
� sup
m2 SM;e2 xE

S?.m; e/

�
� 0;(2.4)

lim inf
n!1

�
1

n
log EfCrtn;?.M;E/g � sup

m2Mo;e2Eo
S?.m; e/

�
� 0:(2.5)

2.2 Complexity of Local Maxima
For any Borel set E � R and M 2 Œ�1; 1�, we define Crtn;0.M;E/ to be the

number of local maxima of f with function value in E and correlation in M :

(2.6)
Crtn;0.M;E/´

X
� W gradf .� /D0

1fh� ;ui 2M g

� 1ff .� / 2 Eg1fHessf .� / � 0g:

We define the function S0W Œ�1; 1� �R! SR as

(2.7) S0.m; x/´ S?.m; x/ � L.�.m/; t.x//;

where

(2.8) L.�; t/ D

8̂<̂
:
L0.�; t/; 2 � t < � C 1

�
; 1 < �;

1; t < 2;

0; otherwise;

with

(2.9) L0.�; t/ D
1

4

Z t

�C 1
�

q
y2 � 4 � dy�

1

2
�

�
t�

�
�C

1

�

��
C
1

8

�
t2�

�
�C

1

�

�2�
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FIGURE 2.1. Spiked tensor model with k D 3 and � D 2:25. The black
region corresponds to nonnegative complexity: S?.m; x/ � 0 (left) and
S0.m; x/ � 0 (right). The arrows indicate the point where the complex-
ity touches 0, in correspondence with the “good” local maxima.

and � D �.m/ D
p
2k.k � 1/ � �mk�2.1 � m2/, t D t .x/ D

p
2k=.k � 1/ � x.

We also note that

(2.10)
Z t

2

q
y2 � 4 � dy D t

s
t2

4
� 1 � 2 log

�
t

2
C

s
t2

4
� 1

�
:

THEOREM 2.2. For any Borel sets M � Œ�1; 1� and E � R, assume � is fixed.
Then we have

lim sup
n!1

�
1

n
log EŒCrtn;0.M;E/� � sup

m2 SM;e2 xE

S0.m; e/

�
� 0;(2.11)

lim inf
n!1

�
1

n
log EfCrtn;0.M;E/g � sup

m2Mo;e2Eo
S0.m; e/

�
� 0:(2.12)

2.3 Evaluating the Complexity Function
The expressions for S?.m; x/ and S0.m; x/ given in the previous section can

be easily evaluated numerically: the figures in this section demonstrate such eval-
uations. Throughout this section we consider k D 3, but the behavior for other
values of k � 3 is qualitatively similar (with the important difference that, for k
even, the landscape is symmetric under change of sign ofm). In Figure 2.1 we plot
the region of the .m; x/-plane in which S?.m; x/ and S0.m; x/ are nonnegative for
� D 2:25. By the Markov inequality, the probability of any critical point or any
local maximum to be present outside these regions is exponentially small.

As anticipated in the introduction, we can identify two sets of local maxima:
(i) Uninformative local maxima. These have small x (i.e., small value of the

objective) and small m (small correlation with the ground truth u). They
are also exponentially more numerous, and we expect them to trap descent
algorithms.
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(ii) Good local maxima. These have large x (i.e., large value of the objective)
and large m (large correlation with the ground truth u). Reaching such a
local maximum results in accurate estimation.

Figure 2.2 shows the evolution of the two “projections”S0.x/ D maxm S0.m; x/
and S0.m/ D maxx S0.m; x/ that give the exponential growth rate of the number
of local maxima as functions of the objective value x D f .� / and the scalar prod-
uct m D hu; � i. Similar plots for the total number of critical points are found in
Figure 2.3. We can identify several regimes of the signal-to-noise ratio �:

(1) For � small enough, we know that the landscape is qualitatively similar to
the case � D 0: local maxima are uninformative. While they are spread
along them-direction, this is purely because of random fluctuations. Local
maxima with m � 0 are exponentially more numerous and have larger
value.

(2) As � crosses a threshold �c , the complexity develops a secondary max-
imum that touches 0 at m�.�/ close to 1. This signals a group of local
maxima (or possibly only one of them) that are highly correlated with u.
These are good local maxima but have smaller value than the best uninfor-
mative local maxima. Maximum likelihood estimation still fails.

(3) As � crosses a second threshold �s , good local maxima acquire a larger
value of the objective than uninformative ones. Maximum likelihood suc-
ceeds. However, the most numerous local maxima are still uncorrelated
with the signal u and are likely to trap algorithms.

The expression for threshold �c.k/ is explicitly calculated as in equation (2.15).
For k D 3, �c.3/ D

p
2=3 � 0:82. We did not provide an analytical expression

for the second threshold �s.k/. For k D 3, numerical evaluation suggests �s.3/ �
0:86. The second regime for the signal-to-noise ratio � 2 .�c.k/; �s.k// is not
captured in Figures 2.2 or 2.3.

Let us emphasize once more that this qualitative picture is obtained by consid-
ering the expected number of critical points. In order to confirm that it holds for
a typical realization of Y , it would be important to compute the typical number as
well.

2.4 Explicit Formula for Complexity of Critical Points at a Given Location
The projection S?.m/ D maxx S?.m; x/, which gives the expected number of

critical points at a given scalar productm D hu; � i, has a simple explicit formula in
the hemisphere m 2 Œ0; 1�. This is derived using elementary calculus by analyzing
equation (2.2).

PROPOSITION 2.3. The projection S?.m/ D maxx S?.m; x/ has the following
explicit formula for m 2 Œ0; 1�:

(2.13) S?.m/ D

(
SU .m/; 0 � m < mc ;

SG.m/; m � mc ;
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FIGURE 2.2. Complexity (exponential growth rate of the expected num-
ber of local maxima) in the spiked tensor model with k D 3 and (from
top to bottom) � 2 f0:1; 0:75; 1:5; 2:25g. Left column: complexity as a
function of the objective value x D f .� /, S0.x/ D maxm S0.m; x/.
Right column: complexity as a function of the scalar product m D
hu; � i, S0.m/ D maxx S0.m; x/.
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FIGURE 2.3. Complexity (exponential growth rate of the expected num-
ber of critical points) in the spiked tensor model with k D 3 and (from
top to bottom) � 2 f0:1; 0:75; 1:5; 2:25g. Left column: complexity as a
function of the objective value x D f .� /, S?.x/ D maxm S?.m; x/.
Right column: complexity as a function of the scalar product m D
hu; � i, S?.m/ D maxx S?.m; x/.
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where

mc ´

 
1

�

k � 2p
2k.k � 1/

!1=k
;

SU .m/´
1

2
log.1 �m2/ � k�2m2k�2.1 �m2/C

k

k � 2
�2m2k C

1

2
log.k � 1/;

SG.m/´
1

2
log
�
1 �m2

�
� k�2m.2k�2/.1 �m2/ �

 r
1

2
k � �mk

!2

C

r
1

2
k � � �mk �

s�
1C

1

2
k � �2m2k

�
C sinh�1

 r
1

2
k �mk

!
:

Analysis of this formula confirms some of the qualitative observations from Sec-
tion 2.3. For � very small, namely � < .k�2/=

p
2k.k � 1/, we have thatmc > 1.

In this case, S?.m/ � SU .m/ and landscape is qualitatively similar to the case
� D 0. When � � .k � 2/=

p
2k.k � 1/, we have that mc � 1, and the func-

tion SG captures the behavior of possible “good” critical points that may exist at
m > mc . Further analysis of the function SG is carried out in Proposition 2.4.

PROPOSITION 2.4. The function SG is nonpositive, SG.m/ � 0 for all m 2 Œ0; 1�.
Moreover, SG.m/ D 0 if and only if m satisfies

(2.14) m2k�4.1 �m2/ D
1

2k�2
:

In particular, if we set

(2.15) �c ´

s
1

2k

.k � 1/.k�1/

.k � 2/.k�2/
;

then we have that if � < �c , then SG.m/ < 0, and if � � �c , then SG has a unique
zero in the domain m 2 Œmc ; 1�.

The critical point �c identified in Proposition 2.4 represents a qualitative change
in the energy landscape. When � < �c , then SG < 0 and “good” critical points
are exponentially rare. On the other hand, when � � �c , then SG and has a unique
zero. This is the only location in the region m > mc where critical points are not
exponentially rare, and this represents the best correlation with the signal u that is
achievable.

The proofs of Propositions 2.3 and 2.4 are deferred to Appendix B

2.5 Proof Ideas
The proofs of Theorems 2.1 and 2.2 rely on a representation of the expected

number of critical points of a given index using the Kac-Rice formula. This ap-
proach was pioneered in [5, 15] to study the case � D 0 of the present problem.

Evaluating the expression produced by the Kac-Rice formula requires estimating
the expectation of the determinant of Hessf .� /. In the case � D 0 considered in



THE LANDSCAPE OF THE SPIKED TENSOR MODEL 2293

[5], Hessf .� / is distributed as aW nCbIn, whereW n � GOE.n/ is a matrix form
the Gaussian orthogonal ensemble. This fact, together with the explicitly known
joint distribution of the eigenvalues of W n, is used in [5] to express the expected
determinant in terms of the distribution of one eigenvalue and a normalization that
is computed using Selberg’s integral.

In the present case, Hessf .� / is distributed as aW n C bIn C ce1e
T
1, i.e., a

rank one deformation of the previous matrix. Instead of an exact representation,
we use the asymptotic distribution of the eigenvalue of this matrix, as well as its
large-deviation properties, obtained in [30].

3 Related Literature
The complexity of random functions has been the object of a large amount of

work within statistical physics, in particular in the context of mean field glasses
and spin glasses. The function of interest is, typically, the Hamiltonian or energy
function, and its local minima are believed to capture the long-time behavior of
dynamics, as well as thermodynamic properties.

In particular, the energy function (1.3) was first studied by Crisanti and Som-
mers in [14] for the case � D 0. This is referred to as the spherical p-spin model
in the physics literature. The paper [14] uses nonrigorous methods from statisti-
cal physics to derive the complexity function, which corresponds to S0.x/ in the
notations used here. An alternative derivation using random matrix theory was pro-
posed by Fyodorov [15]. Connections with thermodynamic quantities can be found
in [13]. The impact of the rough energy landscape on the behavior of Langevin dy-
namics was studied in a number of papers; see, e.g., [11, 13].

A mathematically rigorous calculation of the expected number of critical points
of any index—and the associated complexity—was first carried out in [5], again for
the pure noise case � D 0. (See also [4] for mathematically rigorous results for the
complexity of some more general “pure noise” random surfaces.) As mentioned
above, the expected number of critical points is not necessarily representative of
typical instances. However, for the pure noise case � D 0, it was expected that
the number of critical points concentrates on its expectation. This was recently
confirmed by Subag via a second-moment calculation [38]. (See also [39, 40] for
additional information about the landscape geometry.)

Finally, the typical number of critical points of the spiked tensor model and
variants was recently obtained in independent work [37] by using an asymptot-
ically exact but nonrigorous generalization of the Kac-Rice formula based on the
replica method [5,15]. This computation indicates that the typical and the expected
number of critical points generically do not coincide for the spiked tensor model,
contrary to what happens for the pure noise case � D 0 at low energy. By ana-
lyzing generalizations of the spiked tensor model, [37] finds different scenarios for
the organization of minima on the sphere; in particular, there are cases in which
the landscape is characterized by an exponential number of minima both around
the spike and close to the orthogonal hyperplane.
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4 Proofs
In this section we prove Theorem 2.1 and 2.2. We begin by introducing some

definitions and notations in Section 4.1. We next state some useful lemmas in
Section 4.2, with proofs in Sections 4.3 and 4.4. Finally, we prove Theorems 2.1
and 2.2 in Section 4.5 and 4.6.

4.1 Definitions and Notations
We will generally use lowercase letters (e.g., a; b; c) for scalars, lowercase bold-

face letters (e.g., a;b; c) for vectors, and uppercase boldface letters (e.g.,A;B;C )
for matrices. The identity matrix in n dimensions is denoted by In, and the canon-
ical basis in Rn is denoted by e1; : : : ; en. Given a vector v 2 Rn, we write
Pv D vvT=kvk22 for the orthogonal projector onto the subspace spanned by v,
and by P?v D I � Pv the projector onto the orthogonal subspace.

For symmetric matrix Bn 2 Rn�n, we denote by �1.Bn/ � �2.Bn/ � � � � �
�n.Bn/ the eigenvalues ofBn in decreasing order. We will also write �max.Bn/ D

�1.Bn/ and �min.Bn/ D �n.Bn/ for the maximum and minimum eigenvalues.
We denote by GOE.n/ the Gaussian orthogonal ensemble in n dimensions.

Namely, for a symmetric random matrix W in Rn�n, we write W � GOE.n/
if the entries .Wij /i�j are independent, with .Wij /1�i<j�n �iid N.0; 1=n/ and
.Wi i /1�i�n �iid N.0; 2=n/.

For a sequence of functions fnW Rd ! R�0, n 2 NC, we say that fn.x/ is
exponentially finite on a set X � Rd if

(4.1) lim sup
n!1

sup
x2X

ˇ̌̌̌
1

n
logfn.x/

ˇ̌̌̌
<1:

We say that fn.x/ is exponentially vanishing on a set X � Rd if

(4.2) lim
n!1

sup
x2X

1

n
logfn.x/ D �1:

We say that fn.x/ is exponentially trivial on a set X � Rd if

(4.3) lim
n!1

sup
x2X

ˇ̌̌̌
1

n
logfn.x/

ˇ̌̌̌
D 0:

We say fn.x/ is exponentially decaying on a set X � Rd , if

(4.4) lim sup
n!1

sup
x2X

1

n
logfn.x/ < 0:

For a metric space .S ; d /, we denote the open ball at x 2 S with radius
r > 0 by B.x; r/ D f´ 2 S W d.´; x/ < rg. In Rd , we will always use euclidean
distance. For any x 2 R and ı > 0, the open ball in R is denoted by B.x; r/ D
.x�r; xCr/. Let P.R/ be the space of probability measures on R. We will equip
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P.R/ with the Dudley distance: for two probability measures �; � 2 P.R/, this
is defined as

d.�; �/ D sup
�ˇ̌̌̌ Z

f d� �
Z
f d�

ˇ̌̌̌
I jf .x/j _

ˇ̌̌̌
f .x/ � f .y/

x � y

ˇ̌̌̌
� 1;8x ¤ y

�
:

The open ball B.�; ı/ contains the probability measures with Dudley distance less
than ı to �.

Suppose � is a probability measure on R. We denote H�.´/ as the Stieltjes
transform of � defined by (here “conv” denotes the convex hull and CC the upper
half-plane)

(4.5)
H�W CC [R n conv.supp�/! C;

´ 7!

Z
R

1

´ � �
�.d�/:

H� is always injective, so we can define its inverse G�: G�.H�.´// D ´. Denote
R� as the R-transform defined by

(4.6)
R�.w/W Image.H�/ ! C;

w 7! G�.w/ � 1=w:

We denote �sc.d�/ D 1j�j�2
p
4 � �2=.2�/d� as the semicircular law. The

Stieltjes transform for the semicircular law is

(4.7) H�sc.´/ D
´ �
p
´2 � 4

2
;

and its R-transform is

(4.8) R�sc.w/ D w:

4.2 Preliminary Lemmas
We start by stating a form of the Kac-Rice formula that will be a key tool for

our proof. Essentially the same statement was used in [5], and we refer to [1] for
general proofs and broader context.

LEMMA 4.1. Let f be a Gaussian field on Sn�1, and let A D .U˛; ‰˛/˛2I be a
finite atlas on Sn�1. Set f ˛ D f ı‰�1˛ W ‰˛.U˛/ � Rn�1 ! R, and define f ˛i D
@f ˛=@xi and f ˛ij D @2f ˛=@xi @xj . Assume that for all ˛ 2 I and all x; y 2
‰˛.U˛/, the joint distribution of .f ˛i .x/; f

˛
ij .x//1�i�j�n is nondegenerate, and

max
i;j
jVar.f ˛ij .x//C Var.f ˛ij .y// � 2Cov.f ˛ij .x/; f

˛
ij .y//j � K˛jlnjx � yjj

�1�ˇ

for some ˇ > 0 and K˛ > 0. For Borel sets E � R and M � Œ�1; 1�, let

(4.9) Crtf
n;k
.M;E/ D

X
� W gradf .� /D0

1fi.Hessf .� // D k; f .� / 2 E; h� ;ui 2M g:
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Then, using d� to denote the usual surface measure on Sn�1, and denoting by
'� .x/ the density of rf .� / at x, we have

(4.10)

EfCrtf
n;k
.M;E/g

D

Z
h� ;ui2M

EŒjdet.Hessf .� //j

� 1fi.Hessf .� // D k; f .� / 2 Eg j gradf .� / D 0�

� '� .0/ � d�

The next lemma specializes the last formula to our specific choice of f . � /; cf.
equation (1.3). Its proof can be found in Section 4.3.

LEMMA 4.2. We have

(4.11)
EfCrtn;?.M;E/g D

Z
M

Vn.m/ � Efjdet.H /j � 1ff 2 Egg

� '� .0/ � .1 �m
2/�1=2 � dm;

(4.12)
EfCrtn;0.M;E/g D

Z
M

Vn.m/ � Efjdet.H /j � 1fH � 0g � 1ff 2 Egg

� '� .0/ � .1 �m
2/�1=2 � dm;

where

(4.13) Vn.m/ D Vol.@Bn�1..1 �m2/1=2//

is the area of the .n � 1/-dimensional sphere with radius .1 �m2/1=2, and '� .0/
is the density of g at 0. Furthermore, the joint distribution of f 2 R, g 2 Rn�1,
andH 2 R.n�1/�.n�1/ is given by

f
d
D �mk C

1
p
2n
Z;

g
d
D k�mk�1

p

1 �m2 � e1 C

r
k

2n
� zgn�1;

H
d
D k.k � 1/�mk�2.1 �m2/e1e

T
1 C

r
k.k � 1/.n � 1/

2n
W n�1

� k

�
�mk C

1
p
2n
Z

�
In�1;

where Z � N .0; 1/, zgn�1 � N .0; In�1/, and W n�1 � GOE.n � 1/ are
independent.

The next lemma provides a simplified expression. Its proof is deferred to Section
4.4.
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LEMMA 4.3. We have

(4.14)

EfCrtn;?.M;E/g

D Cn �

Z
E

dx
Z
M

.1 �m2/�3=2dm � Efjdet.H n/jg

� exp
�
n

�
1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/

� k�2m2k�2.1 �m2/ � .x � �mk/2
��

and

(4.15)

EfCrtn;0.M;E/g

D Cn �

Z
E

dx
Z
M

.1 �m2/�3=2 dm � Efjdet.H n/j � 1fH n � 0gg

� exp
�
n

�
1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/

� k�2m2k�2.1 �m2/ � .x � �mk/2
��

where, forW n�1 � GOE.n � 1/,

H n D �n.m/ � e1e
T
1 CW n�1 � tn.x/ � In�1;

tn.x/ D

�
2kn

.k � 1/.n � 1/

�1=2
� x;

�n.m/ D

�
2k.k � 1/n

.n � 1/

�1=2
� �mk�2.1 �m2/;

Cn D 2 �

�
n � 1

2e

�n�1
2

� �

�
n � 1

2

��1
�

�
n

.k � 1/e�

�1=2
:

Furthermore, Cn is exponentially trivial.

The next lemma contains a well-known fact that we will use several times in
the proofs. It follows immediately from the joint distribution of eigenvalues in the
GOE ensemble [3]; see, for instance, [30].

LEMMA 4.4 (Joint density of the eigenvalues of the spiked model). Let Xn D
�e1e

T
1 CW n, where W n � GOE.n/ and � � 0. The density joint for the eigen-

values of Xn is given by

(4.16)

P �n .dx1; : : : ; dxn/

D
1

Z�n
�

Y
i<j

jxi � xj j � In.�; x
n
1 / � exp

�
�
n

4

nX
iD1

x2i

�
dx1 � � � dxn;
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where xn1 denotes the vector .x1; : : : ; xn/T, and In is the spherical integral defined
by

(4.17) In.�; x
n
1 /´

Z
On

exp
�
n�

2
� .U � diag.xn1 / � U

T/11

�
dmn.U /;

with mn the Haar probability measure on On, the orthogonal group of size n.

Next, we state a lemma regarding the large deviations of the largest eigenvalue
of the spiked model, proven in [30].2

LEMMA 4.5 (Large deviation of the largest eigenvalue of the spiked model [30]).
Let Xn D �e1e

T
1 C W n, where W n � GOE.n/, and denote by �max.Xn/ the

largest eigenvalue of Xn. Then we have

lim sup
n!1

1

n
log P .�max.Xn/ � t / � �L.�; t/;

lim inf
n!1

1

n
log P .�max.Xn/ < t/ � �L.�; t�/;

where L.�; t/ is as defined in equation (2.8).

For symmetric matrix Bn 2 Rn�n, let Ln�1.Bn/ D 1=.n � 1/ �
Pn
iD2 ı�i .Bn/,

the empirical distribution of the n � 1 smallest eigenvalues.
We next state three useful lemmas on the spherical integral from the papers

[19, 30].

LEMMA 4.6 (Continuity of spherical integral I [19, lemma 14]). For any �; � > 0,
there exists a function g�;�.ı/W R�0 ! R�0 with lim´!0C g�;�.´/ D 0 such that
the following holds. Let x;y 2 Rn be two vectors, with xmax D maxi�n xi , xmin D

mini�n xi , ymax D maxi�n yi , ymin D mini�n yi . Let �x , �y be their empirical
distributions and define Hx.´/ D .1=n/

Pn
iD1 1=.´ � xi /. If d.�x; �y/ � ı and

� 2 Hx.Œxmin � �; xmax C ��
c/ \Hy.Œymin � �; ymax C ��

c/; then for sufficiently
large n

(4.18)
ˇ̌̌̌
1

n
log In.�;x/ �

1

n
log In.�;y/

ˇ̌̌̌
� g�;�.ı/:

LEMMA 4.7 (Continuity for spherical integral II [30, prop. 2.1]). For any �; �;M >

0, there exists a function g�;�;M W R�0 ! R�0 with lim´!0 g�;�;M .´/ D 0 such
that the following holds. For x;y 2 Rn, denote by �0x; �

0
y the empirical distribu-

tions of the .n�1/ smallest entries of x;y , and x1; y1 the largest elements of x;y .
If d.�0x; �

0
y/ � n

�� , jx1 � y1j � ı, and kxk1; kyk1 � M , then for sufficiently
large n

(4.19)
ˇ̌̌̌
1

n
log In.�;x/ �

1

n
log In.�;y/

ˇ̌̌̌
� g�;�;M .ı/:

2 Notice that the formula in [30] contains a typo, which is corrected here. Also, the normalization
of W n is different from the one in [30]. Here the empirical spectral distribution converges to a
semicircle supported on Œ�2; 2�, while in [30] the support is Œ�

p
2;
p
2�.
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LEMMA 4.8 (Limiting distribution of spherical integral [19, theorem 6]). Let � >
0, fx.n/gn2NC be a sequence of vectors with empirical measure Ln converging
weakly to a compactly supported measure �, and limiting largest element xmax �

supW x 2 supp.�/g and limiting smallest element xmin � inffxW x 2 supp.�/g < 0.
Then the function

(4.20) J.�; xmax; �/ D lim
n!1

1

n
log In.�;x.n//

is finite and well-defined (which does not depend on xmin).
Moreover, letting x � supfxW x 2 supp.�/g, we have

(4.21) J.�; x; �/ D
� � v.x; �/

2
�
1

2

Z
R

log.1C � � v.x; �/ � � � �/�.d�/;

where

(4.22) v.x; �/ D

(
R�.�/ if H�.x/ � �;
x � 1=� otherwise:

See Section 4.1 for the definitions of the Stieltjes transform H�.x/ and the R-
transform R�.x/.

Setting � D �sc in the above lemma, with some simple calculations we get the
following expression for J.�sc; x; �/:

LEMMA 4.9. Since supfxW x 2 supp.�sc/g D 2, J.�sc; x; �/ is defined as x � 2.
We have

(4.23)

J.�sc; x; �/ D8̂̂<̂
:̂
�2=4 if 0 < � � 1; x 2 Œ2; �.�/�;

1
2
� Œ�x � 1 � log.�/ �ˆ?.x/� if � � 1; x � 2 or

0 < � � 1; x > �.�/:

See equation (2.3) for the definition of ˆ?.x/.

4.3 Proof of Lemma 4.2
We rewrite the objective function as

(4.24) f .� / D hY ; �˝ki D � � hu; � ik C h.� /;

where

(4.25) h.� / D
1
p
2n
hW ; �˝ki D

1
p
2n

nX
i1;:::;ikD1

Gi1���ik�i1 � � � �ik :

The euclidean gradient and Hessian of the f give

rf .� / D k� hu; � ik�1 � uCrh.� /;(4.26)

r
2f .� / D k.k � 1/� � hu; � ik�2 � uuT

Cr
2h.� /;(4.27)
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where

(4.28)

rh.� /i D
k
p
2n
�

nX
i1;:::;ik�1D1

Wi i1���ik�1�i1 � � � �ik�1

D
k
p
2n
�
1

kŠ
�

X
�2Pn

nX
i1;:::;ik�1D1

.G�/i i1���ik�1�i1 � � � �ik�1

and

(4.29)

r
2h.� /ij D

k.k � 1/
p
2n

�

nX
i1;:::;ik�2D1

Wij i1���ik�2�i1 � � � �ik�2

D
k.k � 1/
p
2n

�
1

kŠ
�

X
�2Pn

nX
i1;:::;ik�2D1

.G�/ij i1���ik�2�i1 � � � �ik�2 :

We will denote by T�Sn�1 the tangent space of the unit sphere Sn�1 at the
point � , which we will identify isometrically with the euclidean subspace of Rn

orthogonal to � . The Riemannian gradient and Hessian of f on the manifold Sn�1,
restricted on the tangent space, are given by

(4.30) gradf .� / D P?
�rf .� / D k�hu; � i

k�1P?
� uC P?

�rh.� /;

(4.31)

Hessf .� / D P?
�r

2f .� /P?
� � h� ;rf .� /i � P

?
�

D k.k � 1/�hu; � ik�2 � .P?
� u/.P

?
� u/

T
� k�hu; � ik � P?

�

C P?
�r

2h.� /P?
� � h� ;rh.� /i � P

?
� :

Taking � D en and u D menC
p
1 �m2 e1, we have (and identifying T�Sn�1

with Rn�1)

(4.32) f .� /
d
D �mk C

1
p
2n
Z; Z � N .0; 1/;

(4.33) P?
�rf .� /

ˇ̌
T� Sn�1

d
D k�mk�1

p

1 �m2 e1 C

r
k

2n
gn�1;

gn�1 � N .0; In�1/;

P?
�r

2f .� /P?
�

ˇ̌
T� Sn�1

d
D k.k � 1/�mk�2.1 �m2/e1e

T
1 C

r
k.k � 1/.n � 1/

2n
W n�1;(4.34)

W n�1 � GOE.n � 1/:
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Thus, the Riemannian Hessian restricted to the tangent space is distributed as

(4.35)

Hessf .� /
ˇ̌
T� Sn�1

d
D k.k � 1/�mk�2.1 �m2/e1e

T
1

C

r
k.k � 1/.n � 1/

2n
W n�1 � k

�
�mk C

1
p
2n
Z

�
In�1:

Furthermore, note that gradf .� / and Hessf .� / are independent.
Plug these quantities into equation (4.10) and use rotational invariance to get

equation (4.12). Summing equation (4.10) over k gives equation (4.11).

4.4 Proof of Lemma 4.3
In equation (4.12), the determinant of the Hessian is given by

(4.36)
jdet.H n/j D .k.k � 1/.n � 1/=2n/

.n�1/=2

� det
�
�n.m/e1e

T
1 CW n�1 � tn.f /In�1

�
:

We denote the density of f by pf .x/; we then have

(4.37) pf .x/ D
p
n=� � expf�n.x � �mk/2g:

The inner expectation yields

(4.38)

Efjdet.H n/j � 1fH n � 0g � 1ff 2 Egg

D .k.k � 1/.n � 1/=.2n//.n�1/=2

�

Z
E

Efjdet.H n/j � 1fHn � 0ggpf .x/dx

D .k.k � 1/.n � 1/=.2n//.n�1/=2.n=�/1=2

�

Z
E

Efjdet.H n/j � 1fH n � 0gg expf�n.x � �mk/2gdx:

We also have

Vn.m/ D 2�
.n�1/=2=�..n � 1/=2/ � .1 �m2/.n�2/=2;(4.39)

'� .0/ D .n=.�k//
.n�1/=2

� expf�nk�2m2k�2.1 �m2/g:(4.40)

Plug these into equation (4.12) and we have the form of equation (4.15) with pre-
factor

(4.41)

Cn D .k.k � 1/.n � 1/=.2n//
.n�1/=2.n=�/1=2

� 2�.n�1/=2=�..n � 1/=2/

� .n=.�k//.n�1/=2 � .1=.k � 1/e/n=2

D 2..n � 1/=.2e//.n�1/=2=�..n � 1/=2/ � .n=.k � 1/e�/1=2:

Expand the � function in Cn using Stirling’s formula, and it is easy to see that
Cn is exponentially trivial.
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Equation (4.14) follows essentially by the same calculation.

4.5 Proof of Theorem 2.1
Throughout the proof, we will use the following notations:

(4.42)

J n D � � e1e
T
1 CW n � t � In;

Xn D � � e1e
T
1 CW n;

H n D �n.m/ � e1e
T
1 CW n�1 � tn.x/ � In�1;

�.m/ D
p
2k.k � 1/ � �mk�2.1 �m2/;

t.x/ D
p
2k=.k � 1/ � x;

�n.m/ D
p
2k.k � 1/n=.n � 1/ � �mk�2.1 �m2/;

tn.x/ D
p
2kn=..k � 1/.n � 1// � x:

In order to prove Theorem 2.1, we will establish the following key proposition,
whose proof follows on page 2307.

PROPOSITION 4.10. The following statements hold:
(a) Exponential tightness:

(4.43) lim
´!1

lim sup
n!1

1

n
log EfCrtn;?.Œ�1; 1�; .�1;�´� [ Œ´;1//g D �1:

(b) Upper bound: For any fixed large U0 > 0 and T0 > 0, let �U0 � Œ�U0; U0�
and ST0 � Œ�T0; T0� be two compact sets, and define xE0´ �U0 � ST0. Then
we have ( for ˆ? defined as in equation (2.3))

(4.44) lim sup
n!1

sup
.�;t/2 xE0

1

n
log Efjdet.J n/jg � sup

t2 ST0

ˆ?.t/:

(c) Lower bound: For any fixed ı > 0, �0, and t0, define U ı
0 D .�0�ı; �0Cı/,

T ı
0 D .t0 � ı; t0 C ı/, and E ı0 ´ U ı

0 �T ı
0 . Then we have

(4.45) lim inf
n!1

1

n
log

Z
.�;t/2E ı0

Efjdet.J n/jgd� dt � ˆ?.t0/:

Using this proposition, we can prove Theorem 2.1.

PROOF OF THEOREM 2.1. Because of the exponential tightness property, we
only need to consider the case when the set E is bounded. We will prove first the
upper bound of equation (2.4), and then the lower bound; cf. equation (2.5).

Step 1. UPPER BOUND.
First, letting E0 D .x0 � ı0; x0 C ı0/, we claim that

(4.46) lim
ı0!0C

lim sup
n!1

1

n
log EfCrtn;?.M;E0/g � sup

m2 SM

S?.m; x0/:
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Assuming this claim holds, to prove equation (2.4), we consider a general com-
pactly supported set E. Fix an " > 0; for each x 2 E, there exists a radius ıx such
that

(4.47) lim sup
n!1

1

n
log EfCrtn;?.M; .x � ıx; x C ıx//g � sup

m2 SM

S?.m; x/C ":

Then f.x � ıx; x C ıx/W x 2 Eg is an open cover of xE. Due to the compactness
of xE, there exists a finite number of intervals f.xi � ıxi ; xi C ıxi /g

m
iD1 that form a

cover of xE and such that the above equation holds. Therefore

(4.48)

lim sup
n!1

1

n
log EfCrtn;?.M;E/g

� max
i2Œm�

lim sup
n!1

1

n
log EfCrtn;?.M; .xi � ıxi ; xi C ıxi //g

� sup
m2 SM;x2 xE

S?.m; x/C ":

Equation (2.4) holds by choosing an arbitrarily small ".
Therefore, we just need to prove equation (4.46). For x 2 R, S � R, define

d.x; S/ D inffjx � yjW y 2 Sg. For a given small ı > 0, define

(4.49)

SMı ´fmW d.m; SM/ � ıg;

xEı ´fxW d.x; xE0/ � ıg;�Uı ´f� W � Dp2k.k � 1/ � �mk�2.1 �m2/; m 2 SMıg;

STı ´ft W t D
p
2k=.k � 1/ � x; x 2 xEıg;

xEı ´ �Uı � STı :
Since E0 is bounded, we can define finite constants U0, T0 such that�Uı � Œ�U0; U0� and STı � Œ�T0; T0�:

For any ı > 0, there exists Nı large enough such that tn.x/ 2 STı and �n.m/ 2�Uı for all n � Nı and .m; x/ 2 SM � xE0. According to Proposition 4.10(b), there
exists N";ı � Nı such that for all n � N";ı ,

(4.50)

sup
m2 SM;x2 xE0

Efjdet.H n/jg

D sup
m2 SM;x2 xE0

E
˚ˇ̌

det
�
�n.m/ � e1e

T
1 CW n�1 � tn.x/ � In�1

�ˇ̌	
� sup
.�;t/2 xEı

E
˚ˇ̌

det
�
� � e1e

T
1 CW n�1 � t � In�1

�ˇ̌	
� exp

˚
.n � 1/

�
sup
t2 STı

ˆ?.t/C "
�	
:
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According to the expression for the expected number of critical points in Lemma
4.3, equation (4.14),

EfCrtn;?.M;E0/g

� sup
m2 SM;x2 xE0

Efjdet.H n/jg � Cn �

Z
E0

dx
Z
M

.1 �m2/�3=2 dm

� exp
�
n

�
1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/

� k�2m2k�2.1 �m2/ � .x � �mk/2
��

� sup
m2 SM;x2 xE0

4CnR0 � exp
�
n

�
1

2
.log.k � 1/C 1/

� k�2m2k�2.1 �m2/ � .x � �mk/2
��

� exp
�
.n � 3/

�
1

2
log.1 �m2/

�
C .n � 1/ � sup

t2 STı

Œˆ?.t/C "�

�
:

Note that the prefactor 2CnR0 is exponentially trivial. We have

(4.51)

lim sup
n!1

1

n
log EfCrtn;?.M;E0/g

� sup
m2 SM;x2 xE0

�
1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/

� k�2m2k�2.1 �m2/ � .x � �mk/2
�

C sup
t2 STı

ˆ?.t/C ":

Letting "; ı ! 0C and using the continuity of ˆ?.t/ and compactness of xE0, we
have

(4.52)

lim sup
n!1

1

n
log EfCrtn;?.M;E0/g

� sup
m2 SM;x2 xE0

�
1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/

� k�2m2k�2.1 �m2/ � .x � �mk/2
�
C sup
t2 ST0

ˆ?.t/:

Note that E0 D .x0 � ı0; x0 C ı0/. Letting ı0 ! 0 and using the continuity of
ˆ?.t/, we have proved equation (4.46).
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Step 2. LOWER BOUND. For any Borel sets M � Œ�1; 1� and E � R, and for
any " > 0, there exists .m0; x0/ 2M o �Eo such that

(4.53) S?.m0; x0/ � sup
.m;x/2Mo�Eo

S?.m; x/ � ":

Denote �0 D �.m0/ and t0 D t .x0/. For a given small ı > 0, define

(4.54)

M ı
0 ´ .m0 � ı;m0 C ı/;

Eı0 ´ .x0 � ı; x0 C ı/;

Bı
0 ´M ı

0 �E
ı
0 ;

U ı
n ´

˚
� W � D

p
2k.k � 1/n=.n � 1/ � �mk�2.1 �m2/; m 2M ı

0

	
;

T ı
n ´

˚
t W t D

p
2kn=..k � 1/.n � 1// � x; x 2 Eı0

	
;

E ın ´ U ı
n �T ı

n :

We fix ı sufficiently small so that M ı
0 � M

o and Eı0 � E
o. It is easy to see that

U ı
n and T ı

n are open sets and �0 2 U ı
n , t0 2 T ı

n are inner points.
For this choice of ı and ", according to Proposition 4.10(c), for any "0 > 0, we

can find N";"0;ı and ı0 > 0 such that as n � N";"0;ı ,

(4.55) E ı00 ´ .�0 � ı0; �0 C ı0/ � .t0 � ı0; t0 C ı0/ � E ın ;

and Z
.�;t/2E

ı0
0

E
˚ˇ̌

det
�
� � e1e

T
1 CW n�1 � t � In�1

�ˇ̌	
d� dt

� expf.n � 1/Œˆ?.t0/ � "0�g:

According to the expression for the expected number of critical points as in
equation (4.15) in Lemma 4.3,

EfCrtn;?.M;E/g(4.56)

� E
˚
Crtn;?

�
M ı
0 ; E

ı
0

�	
� Cn �

Z
Bı0

Efjdet.Hn/jgdx dm

� inf
.m;x/2Bı0

exp
�
.n � 3/ �

�
1

2
log.1 �m2/

�
C n

�
1

2
.log.k � 1/C 1/

� k�2m2k�2.1 �m2/ � .x � �mk/2
��
�
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� Cn �

Z
E
ı0
0

E
˚ˇ̌

det
�
� � e1e

T
1 CWn�1 � t � In�1

�ˇ̌	
�

n � 1

2k�nj.k � 2/ �m.�/k�3 � k �m.�/k�1j
d� dt

� inf
.m;x/2Bı0

exp
�
n

�
1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/

� k�2m2k�2.1 �m2/ � .x � �mk/2
��
;

which gives

(4.57)

EfCrtn;?.M;E/g

�
Cn
8k2�

� exp
�
.n � 1/ � Œˆ?.t0/ � "0�

�
� inf
.m;x/2Bı0

exp
�
n

�
1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/

� k�2m2k�2.1 �m2/ � .x � �mk/2
��
:

Note that the preconstant Cn=8k2� is exponentially trivial on a compact set. We
have

(4.58)

lim inf
n!1

1

n
log EfCrtn;?.M;E/g

� inf
.m;x/2Bı0

�
1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/

� k�2m2k�2.1 �m2/ � .x � �mk/2
�
Cˆ?.t0/ � "0:

Letting "0; ı ! 0C, we have

lim inf
n!1

1

n
log EfCrtn;?.M;E/g � S?.m0; x0/

� sup
m2Mo;x2Eo

S?.m; x/ � ":
(4.59)

Letting "! 0C gives the desired result. �

In the following we prove Proposition 4.10.
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Proof of Proposition 4.10(a): Exponential Tightness
We need to upper-bound EfCrtn;?.Œ�1; 1�; .�1;�´�[ Œ´;1//g. Starting from

equation (4.14), we have a crude upper bound

(4.60)

EfCrtn;?.Œ�1; 1�; .�1; ´� [ Œ´;1//g

� 4Cn �

Z 1
´

dx � EfŒ4x C 2k�C kWn�1kop�
n
g

� exp
�
n

�
1

2
.log.k � 1/C 1/ � .x � �/2

��
:

We let Dn D 4Cn � expfnŒ1=2 � .log.k � 1/C 1/�g. It is easy to check that Dn is
exponentially finite.

Taking ´ � max.2k�; 1/ (note that we consider k � 2) and letting Yn D
kWn�1kop, we have

(4.61)

EfCrtn;?.Œ�1; 1�; .�1; ´� [ Œ´;1//g

� Dn �

Z 1
´

Ef.5x C Yn/
n
g � expf�nx2=4gdx

� DnEf.1C Yn/
n
g

Z 1
´

.5x/n � expf�nx2=4gdx:

The operator norm of a GOE matrix has sub-Gaussian tails (cf. Lemma A.2). This
immediately implies

(4.62) Ef.1C Yn/
n
g � EfenYng � C n

for some universal constant C , whence

EfCrtn;?.Œ�1; 1�; .�1; ´� [ Œ´;1//g

� DnC
n

Z 1
´

.5x/n � expf�nx2=4gdx;
(4.63)

and the claim in equation (4.43) follows by Lemma A.3.

Proof of Proposition 4.10(b): Upper Bound
Recall that J n D �e1eT

1CW n � tIn and Xn D �e1eT
1CW n. Let �sc.d�/ D

1j�j�2
p
4 � �2=.2�/d� be the semicircle law, and denote by B.�sc; ı/ the ball

of radius ı around �sc.d�/, with the Dudley metric defined in Section 4.1. Let
BR.�sc; ı/ be the set of probability measures in B.�sc; ı/ with support in Œ�R;R�.
For � a probability measure on R, define (for all x such that the integral on the
right-hand side is well-defined)

(4.64) ˆ.�; x/ D

Z
R

log j� � xj � �.d�/:
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We will often make use of the following fact: for any event A, we have (defining
Ln D 1=n �

Pn
iD1 ıxi the empirical measure of the numbers fxigniD1):

(4.65)

Efjdet.J n/jIAg

D

Z
Rn

nY
iD1

jxi � t j � 1A � P
�
n .dx1; : : : ; dxn/

D
1

Z�n

Z
Rn

nY
iD1

jxi � t j � In.�; x
n
1 / � 1

X
A

�

Y
i<j

jxi � xj j �

nY
iD1

expf�nx2i =4gdxi

D
Z0n

Z�n

Z
Rn

expfn �ˆ.Ln; t /g � In.�; xn1 / � 1A � P
0
n .dx1; : : : ; dxn/;

where

(4.66) Z�n D Z
0
n

Z
Rn
In.�; x

n
1 / � P

0
n .dx1; : : : ; dxn/:

We have the upper bound

(4.67)

Efjdet.J n/jg � Efjdet.J n/jILn 2 B.�sc; ı/g„ ƒ‚ …
E1

C Efjdet.J n/jILn … B.�sc; ı/g„ ƒ‚ …
E2

where ı > 0 is a fixed arbitrary small number.
According to Lemma A.4, E2 � B3n=A

2
n as a function of .�; t/ is exponentially

vanishing on any compact set. Hence, we just need to consider the term E1:

(4.68)

E1 D
Z0n

Z�n

Z
Rn

expfn �ˆ.Ln; t /g � In.�; xn1 / � 1fLn 2 B.�sc; ı/g � dP0n

� exp
˚
n � sup

�2B.�sc;ı/

ˆ.�; t/
	
�
Z0n

Z�n

Z
Rn
In.�; x

n
1 /dP0n

D exp
˚
n � sup

�2B.�sc;ı/

ˆ.�; t/
	
:

Defining ˆ�.�; t/ D
R

R log.jt � �j _ �/�.d�/, it is easy to verify that ˆ�.�; t/
is continuous in .�; t/ 2 M1.Œ�R0; R0�/ � ST0 for each �. Since ˆ.�; t/ D



THE LANDSCAPE OF THE SPIKED TENSOR MODEL 2309

inf�>0fˆ�.�; t/g, it holds that ˆ.�; t/ is upper-semicontinuous on the same do-
main. Further, a direct calculation yields ˆ.�sc; t / D ˆ?.t/. Therefore,

(4.69)
lim sup
ı!0

lim sup
n!1

sup
.�;t/2 xE0

1

n
logE1 � lim sup

ı!0

sup
t2 ST0;�2B.�sc;ı/

ˆ.�; t/

� sup
t2 ST0

ˆ?.t/:

Consequently, we have

(4.70) lim sup
n!1

sup
.�;t/2 xE0

1

n
log Efjdet.J n/jg � sup

t2 ST0

ˆ?.t/:

Proof of Proposition 4.10(c): Lower Bound
Since t 7! ˆ?.t/ is continuous, we only need to prove the lower bound for

.�0; t0/ in a dense subset of R2. We consider two cases for t0:

Case 1. t0 2 .�1;�2/ [ .2;1/. In this case, the proof is easier, since t0 is
separated from the support of the semicircle law. We only consider the subcase
t0 > 2 and �0 > 1, which is more difficult. The proof for t0 > 2 and �0 < 1

follows by a very similar argument.

Case 2. t0 2 .�2; 2/. This case is more challenging since t0 is inside the support
of the semicircle law. We will distinguish two subcases. In subcase 2.1, t0 2
.�2; 2/ and �0 > 1, and in subcase 2.2 t0 2 .�2; 2/ and �0 < 1. We use the
estimate of the spherical integral in [19] and [30].

Case 1: t0 2 .�1;�2/ [ .2;1/. As mentioned, we consider t0 > 2 and �0 > 1

here. The other cases are similar.

Let �.�/ D � C 1=� . Let ı0 2 .0; ı/ be such that t0 > 2 C 2ı0. We
can then choose "0 2 .0; ı/ such that �.�0 C 2"0/ � �.�0 � 2"0/ � ı0 and
�.�0 � 2"0/ > 2. Let T2.ı0; "0/ D Œt0 � ı0; t0C ı0� n Œ�.�0 � 2"0/; �.�0C 2"0/�,
and T1.ı0; "0/ D Œ�.�0 � "0/; �.�0 C "0/� [ Œt0 � 2ı0; t0 C 2ı0�

c . We have
d.T1.ı0; "0/;T2.ı0; "0// > 0, and the eigenvalues of the spiked matrix Xn be-
longs to T1.ı0; "0/ with probability converging to 1 as n!1.

Thus, for t 2 T2.ı0; "0/, � 2 U "0
0 D .�0 � "0; �0C "0/, we have the following

lower bound, holding for any ı0 > 0 (here Ln.Xn/ denotes the empirical spectral
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distribution of the matrix Xn):

(4.71)

Efjdet.J n/jg

D
Z0n

Z�n

Z
Rn

expfn �ˆ.Ln; t /g � In.�; xn1 / � dP0n

�
Z0n

Z�n

Z
Rn

expfn �ˆ.Ln; t /g � In.�; xn1 /

� 1fLn 2 B.�sc; ı
0/; supp.Ln/ 2 T1.ı0; "0/g � dP0n

�

�
Z0n

Z�n

Z
Rn
In.�; x

n
1 /1fLn 2 B.�sc; ı

0/;

supp.Ln/ 2 T1.ı0; "0/gdP0n

�
� exp

n
n
h

inf
�2B.�sc;ı

0/;
supp.�/2T1.ı0;"0/

ˆ.�; t/
io
;

�

�
P .supp.Ln.Xn// � T1.ı0; "0//

�
Z0n

Z�n

Z
Rn
In.�; x

n
1 / � 1fLn … B.�sc; ı

0/gdP0n„ ƒ‚ …
G1

�

� exp
n
n
h

inf
�2B.�sc;ı

0/;
supp.�/2T1.ı0;"0/

ˆ.�; t/
io
:

According to Lemma A.4, G1 D B2n=A
2
n is exponentially vanishing on compact

sets, so we can drop this term. We also know that P .supp.Ln.Xn// � T1.ı0; "0//
is exponentially trivial on compact sets.

This gives

(4.72)

lim inf
n!1

1

n
log

Z
.�;t/2E ı0

Efjdet.J n/jgd� dt

� lim inf
n!1

1

n
log

Z
�2U

"0
0 ;t2T2.ı0;"0/

Efjdet.J n/jgd� dt

� lim inf
ı 0!0C

inf
t2T2.ı0;"0/;�2B.�sc;ı

0/
supp.�/2T1.ı0;"0/

ˆ.�; t/ D inf
t2T2.ı0;"0/

ˆ?.t/:

The last equality holds because ˆ.�; t/ is continuous with respect to .�; t/ on
f.�; t/W � 2 B.�sc; ı

0/; supp.�/ 2 T1.ı0; "0/; t 2 T2.ı0; "0/g.
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Since ˆ?.t/ is continuous, letting first "0 ! 0C and then ı0 ! 0C, we have

(4.73)
lim inf
n!1

1

n
log

Z
.�;t/2E ı0

Efjdet.J n/jgd� dt

� lim sup
ı0!0C

lim sup
"0!0C

inf
t2T2.ı0;"0/

ˆ?.t/ D ˆ?.t0/:

Case 2.1: We next consider the case of t0 2 .�2; 2/ and �0 > 1. We further
assume t0 > 0, as the case t0 < 0 follows by a similar argument. Define

H1 D

Z
Rn

expfn �ˆ.Ln; t /g � In.�; xn1 / � dP0n .x
n
1 /;(4.74)

H2 D

Z
Rn
In.�; x

n
1 / � dP0n .x

n
1 /:(4.75)

We have Efjdet.J n/jg D H1=H2. Let �.�/ D � C 1=� . Since ˆ?.t0/ D t20=4 �

1=2 for t0 2 .�2; 2/, it suffices to show that

(4.76)
lim inf
n!1

1

n
log

Z
.�;t/2E ı0

H1 d� dt

� t20=4Cˆ?.�.�0// � �.�0/
2=4C J.�sc; �.�0/; �0/;

(4.77)
lim sup
ı!0C

lim sup
n!1

sup
�2U ı

0

1

n
logH2

� 1=2Cˆ?.�.�0// � �.�0/
2=4C J.�sc; �.�0/; �0/;

with J.�/ defined as per Lemma 4.8.
By [30, prop. 3.1], for fixed � > 1, we have

(4.78) lim sup
n!1

1

n
logH2 � 1=2Cˆ?.�.�// � �.�/

2=4C J.�sc; �.�/; �/:

Therefore, equation (4.77) is implied by the convexity of 1=n � logH2 as a function
of � .

To prove equation (4.76), first we choose ı0 2 .0; ı/ and "0 > 0 small enough
such that �.�0 � ı0/ � "0 > t0 C 2ı0. For any fixed � 2 .�0 � ı0; �0 C ı0/, we
haveZ

T ı
0

H1 dt

D
1

Z0n

Z
T ı
0

dt
Z

Rn
In.�; x

n
1 / �

nY
iD1

jt � xi j

�

Y
1�i<j�n

jxi � xj j � exp
�
�
n

4

nX
iD1

x2i

� nY
iD1

dxi D
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D
1

Z0n

Z
x02T

ı
0

Z
Rn
In.�; x

n
1 / �

Y
0�i<j�n

jxi � xj j

� exp
�
�
n

4

nX
iD0

x2i

�
�

nY
iD0

dxi � exp
�
n

4
x20

�

�
1

Z0n

Z
xn2B.�.�/;"0/

Z
x02T

ı0
0

Z
xn�11 2Rn�1

n�1Y
iD0

jxn � xi j exp
�
�
n

4
x2n

�
dxn

� In.�; x
n
1 / � 1fLn.x

n�1
0 / 2 B2C"0.�sc; n

�1=4/g
Y

0�i<j�n�1

jxi � xj j

� exp
�
�
n

4

n�1X
iD0

x2i

� n�1Y
iD0

dxi � exp
�
n

4
.t0 � ı0/

2
g

�
:

Note that for n sufficiently large, Ln.xn�10 / 2 B2C"0.�sc; n
�1=4/ implies that

Ln�1.x
n�1
1 / 2 B2C"0.�sc; 2n

�1=4/. Therefore, for any � 2 .�0 � ı0; �0 C ı0/,
we have

(4.79)

Z
T ı
0

H1 dt

� .�.�0 � ı0/ � t0 � ı0 � "0/ � expf��.�0 C ı0/2=4g � 2"0„ ƒ‚ …
A1

� exp
�
n

4
.t0 � ı0/

2
g

�
„ ƒ‚ …

A2

� inf
Ln�1.x

n�1
1 /2B2Cı0 .�sc;2n

�1=4/;

xn2B.�.�/;"0C2ı0/

exp
�
.n � 1/Œˆ.Ln�1.x

n�1
1 /; xn/ �

1

4
x2n�

�
„ ƒ‚ …

A3

� inf
Ln�1.x

n�1
1 /2B2Cı0 .�sc;2n

�1=4/;

xn2B.�.�/;"0C2ı0/

In.�; x
n
1 /

„ ƒ‚ …
A4

�

Z
x02T

ı
0

Z
xn�11 2Œ�2�"0;2C"0�n�1

1fLn.x
n�1
0 / 2 B.�sc; n

�1=4/gP0n .dx
n�1
0 /„ ƒ‚ …

A5

:

The term A1 is strictly positive and does not depend on n. Therefore it is exponen-
tially trivial.

Since ˆ.�; t/ is continuous on the set f.�; t/W � 2 B2Cı0.�sc; ı
0/; t 2 B.�.�/;

"0 C 2ı0/g, the term A3 is lower-bounded as follows:

(4.80) lim inf
n!1

1

n
logA3 � inf

x2B.�.�/;"0C2ı0/

�
ˆ?.x/ �

1

4
x2
�
:
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For the term A4, using the continuity of the spherical integrals in Lemma 4.7
and 4.8, we have

(4.81) lim inf
n!1

1

n
logA4 � J.�sc; �.�/; �/ � g� .2"0 C 4ı0/;

where g� . � / D g1=4;�;�.�/C1. � /
For the term A5, we have

(4.82)
A5 � EGOE;n

�
1

n
#f�i W �i 2 T ı

0 g

�
� PGOE;n

�
max
i2Œn�
j�i j � 2C ı0

�
� PGOE;n

�
Ln … B.�sc; n

�1=4/
�
:

The first term is exponentially trivial, the second term is exponentially decaying,
and the third term is exponentially vanishing. Therefore, A5 is exponentially triv-
ial.

Putting the various terms together we get, for any � 2 .�0 � ı0; �0 C ı0/ and
t0 > 0,

(4.83)

lim inf
n!1

1

n
log

Z
T ı
0

H1 dt

�
1

4
.t0 � ı0/

2
C J.�sc; �.�/; �/ � g� .2"0 C 4ı0/

C inf
x2B.�.�/;"0C2ı0/

Œˆ?.x/ � 1=4 � x
2�:

For any fixed � 2 .�0� ı0; �0C ı0/, letting "0; ı0 ! 0 and using the continuity
of ˆ?.x/ and J.�sc; x; �/ in variable x (see equations (2.3) and (4.23)), we have

(4.84)
lim inf
n!1

1

n
log

Z
T ı
0

H1 dt

�
1

4
t20 C J.�sc; �.�/; �/Cˆ?.�.�// � 1=4 � �.�/

2:

Note that f1=n � log
R
T ı
0
H1 dtgn2NC are convex functions and are uniformly

bounded in � . Therefore, according to Lemma A.1, the above inequality holds
uniformly for � 2 .�0 � ı0; �0 C ı0/. That is,

(4.85)

lim inf
n!1

1

n
log

Z
E ı0

H1 d� dt

� lim inf
n!1

inf
�2U

ı0
0

1

n
log

Z
E ı0

H1 dt

� inf
�2U

ı0
0

�
1

4
t20 C J.�sc; �.�/; �/Cˆ?.�.�// � 1=4 � �.�/

2

�
:

Letting ı0 ! 0 gives the desired result.
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Case 2.2: t0 2 .�2; 2/ and �0 < 1. We further assume t0 > 0, as the case
t0 < 0 can be treated analogously. For any fixed small "0; ı0 > 0, we have the
lower bound

Efjdet.J n/jg

D
Z0n

Z�n

Z
Rn

expfn �ˆ.Ln; t /g � In.�; xn1 / � dP0n

�
Z0n

Z�n

Z
Rn

expfn �ˆ.Ln; t /g � In.�; xn1 / � 1fLn 2 B2C"0.�sc; ı
0/g � dP0n

�
Z0n

Z�n
�

�Z
Rn

expfn �ˆ.Ln; t /g � 1fLn 2 B2C"0.�sc; ı
0/g � dP0n„ ƒ‚ …

F1

� inf
Ln2B2C"0 .�sc;ı 0/

In.�; x
n
1 /„ ƒ‚ …

F2

�
:

For the term F1, we have

F1 �

Z
Œ�2�"0;2C"0�n

expfn �ˆ.Ln; t /g � dP0n„ ƒ‚ …
F3

�

Z
Rn

expfn �ˆ.Ln; t /g � 1fLn … B.�sc; ı
0/g � dP0n„ ƒ‚ …

F4

:

According to Lemma A.4, F4 D B1n is exponentially vanishing on compact sets.
For the term F3, letting 0 < ı0 < ı, we haveZ

t2T ı
0

dt
Z
Œ�2�"0;2C"0�n

expfn �ˆ.Ln; t /g � dP0n

D
1

Z0n

Z
t2T ı

0

Z
Œ�2�"0;2C"0�n

nY
tD1

jt � xi j

�

Y
1�i<j�n

jxi � xj j � exp
�
�
n

4

nX
iD1

x2i

�
�

nY
iD1

dxi � dt

D
1

Z0n

Z
x02T

ı
0

Z
Œ�2�"0;2C"0�n

Y
0�i<j�n

jxi � xj j

� exp
�
�
n

4

nX
iD0

x2i

�
�

nY
iD0

dxi � exp
�
n

4
x20

�
;
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which givesZ
t2T ı

0

dt
Z
Œ�2�"0;2C"0�n

expfn �ˆ.Ln; t /g � dP0n

�
1

Z0n

�
1C

1

n

� .nC1/.nC2/
4

Z
y02
p

n
nC1

T
ı0
0

Z
Œ�2�"0=2;2C"0=2�n

Y
0�i<j�n

jyi � yj j

� exp
�
�
nC 1

4

nX
iD0

y2i

�
�

nY
iD0

dyi � exp
�
n

4
.t0 � ı0/

2

�

D
Z0nC1

Z0n

�
1C

1

n

� .nC1/.nC2/
4

� EnC1GOE

�
1

nC 1
#
�
�i W �i 2

r
n

nC 1
T ı0
0

�
� 1fmax j�i j � 2C "0=2g

�
� exp

�
n

4
.t0 � ı0/

2

�
Using Selberg’s integral formula, we have

(4.86) lim
n!1

1

n
log
�
Z0nC1

Z0n

�
1C

1

n

� .nC1/.nC2/
4

�
D �

1

2
:

Similar to the method dealing with the term A5 in equation (4.79), we have

lim
n!1

1

n
log EnC1GOE

�
1

nC 1
#
�
�i W �i 2

r
n

nC 1
T ı0
0

�
� 1fmax j�i j � 2C "0=2g

�
D 0:

Now we turn to look at the term F2. For any fixed � 2 U ı
0 , there is a margin

between � and 1, so we can find � small enough so that

� 2
[

�2B.�sc;ı 0/

H�.Œ�2 � "0 � �; 2C "0 C ��
c/

as "0; ı0 are small enough. Due to the continuity of the spherical integral (cf. Lem-
mas 4.6 and 4.8), there exists g�;�.ı/ > 0 as ı > 0 and limı!0 g�;�.ı/ D 0 such
that for all n large enough,

(4.87)
1

n
log inf

Ln2B2C"0 .�sc;ı 0/
In.�; x

n
1 / � J.�sc; 2C "0; �/ � g�;�.ı

0/:

Using the right-continuity of function J.�sc; x; �/ with respect to x at x D 2, we
have

(4.88) lim inf
"0;ı 0!0C

lim inf
n!1

1

n
log inf

Ln2B2C"0 .�sc;ı 0/
In.�; x

n
1 / � J.�sc; 2; �/:
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Therefore for any fixed � 2 U ı
0 ,

(4.89)

lim inf
n!1

1

n
log

Z
t2T ı

0

Z
Rn

expfn �ˆ.Ln; t /g � In.�; xn1 / � dP0n

� lim sup
ı0!0

�
J.�sc; 2; �/C

1

4
.t0 � ı0/

2
�
1

2

�
D J.�sc; 2; �/Cˆ?.t0/:

Since 1=n�log
R
t2T ı

0

R
Rn expfn�ˆ.Ln; t /g�In.�; xn1 /�dP0n is convex in � , according

to Lemma A.1, we have

(4.90)
lim inf
n!1

1

n
log

Z
.�;t/2E ı0

Z
Rn

expfn �ˆ.Ln; t /g � In.�; xn1 / � dP0n

� J.�sc; 2; �0/Cˆ?.t0/:

By [30, prop. 3.1], for fixed � 2 .�0 � ı; �0 C ı/, we have

(4.91) lim sup
n!1

1

n
log.Z�n=Z

0
n/ � J.�sc; 2; �/:

By the convexity of supt2T ı
0

1
n

log.Z�n=Z
0
n/ as a function of � , we have

(4.92) lim sup
ı!0C

lim sup
n!1

sup
�2U ı

0

1

n
log.Z�n=Z

0
n/ � J.�sc; 2; �0/:

Therefore, as t0 2 .�2; 2/ and �0 < 1, we have

(4.93) lim inf
n!1

1

n
log

Z
.�;t/2E ı0

Efjdet.J n/jgd� dt � ˆ?.t0/:

4.6 Proof of Theorem 2.2
PROPOSITION 4.11. The following statements hold:

(a) Exponential tightness.

(4.94) lim
´!1

lim sup
n!1

1

n
log EfCrtn;0.Œ�1; 1�; .�1;�´� [ Œ´;1//g D �1:

(b) Upper bound. For any fixed large U0 > 0 and T0 > 0, denote �U0 �
Œ�U0; U0� and ST0 � Œ�T0; T0� to be two compact sets, and denote xE0 ´�U0 � ST0. Then we have

(4.95)
lim sup
n!1

sup
.�;t/2 xE0

1

n
log Efjdet.J n/j � 1fJ n � 0gg

� sup
.�;t/2 xE0

Œˆ?.t/ � L.�; t/�
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(c) Lower bound. For any fixed ı > 0, �0, and t0, denote U ı
0 WD .�0�ı; �0Cı/,

T ı
0 WD .t0 � ı; t0 C ı/, and E ı0 ´ U ı

0 �T ı
0 . Then we have

(4.96)
lim inf
n!1

1

n
log

Z
.�;t/2E ı0

Efjdet.J n/j � 1fJ n � 0ggd� dt

� ˆ?.t0/ � L.�0; t0/:

Assume this proposition holds, we are in a good position to prove Theorem 2.2.

PROOF. Because of the exponential tightness property, we only need to consider
the case when E is bounded.

Step 1. UPPER BOUND. Denoting E0 D .x0 � ı0; x0 C ı0/. Using the same
argument as in the proof of the upper bound in Theorem 2.1, we just need to show
that

(4.97) lim
ı0!0C

lim sup
n!1

1

n
log EfCrtn;0.M;E0/g � sup

m2 SM

S0.m; x0/:

For any small ı > 0, define

(4.98)

SMı D fmW d.m;M/ � ıg;

xEı D fxW d.x;E0/ � ıg;�Uı D f� W � Dp2k.k � 1/ � �mk�2.1 �m2/; m 2 SMıg;

STı D ft W t D
p
2k=.k � 1/ � x; x 2 xEıg;

xEı D �Uı � STı :
Since E0 is bounded, we can define finite constants R0 D supfjxjW x 2 E0g,
U0 D 2 supfj

p
2k=.k � 1/ � xjW x 2 E0g and

T0 D 2 supfj
p
2k.k � 1/ � �mk�2.1 �m2/jW m 2M g:

Therefore, as ı is sufficiently small, we have �Uı � Œ�U0; U0� and STı � Œ�T0; T0�.
We only prove the case for .M;E0/ such that sup.�;t/2 xE0 Œˆ?.t/ � L.�; t/� >

�1. For .M;E0/ such that sup.�;t/2 xE0 Œˆ?.t/ � L.�; t/� D �1, we can prove it
using similar arguments.

According to Proposition 4.11(b), for any " > 0 and ı > 0, there exists N";ı
large enough such that tn.x/ 2 STı and �n.m/ 2 �Uı for all .m; x/ 2M � E0, and
for all n � N";ı ,

(4.99)

sup
m2 SM;x2 xE0

Efjdet.�n.m/ � e1eT
1 CWn�1 � tn.x/ � In�1/j � 1fHn � 0gg

� sup
.�;t/2 xEı

Efjdet.J n�1/j � 1fJ n�1 � 0gg

� expf.n � 1/Œ sup
.�;t/2 xEı

ˆ?.t/ � L.�; t/C "�g
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Therefore, using equation (4.14) in Lemma 4.3, we have

EfCrtn;0.M;E0/g

� sup
m2M;x2E0

2Cn �R0 � exp
�
n

�
1

2
.log.k � 1/C 1/

� k�2m2k�2.1 �m2/ � .x � �mk/2
��

� exp
�
.n � 3/

�
1

2
log.1 �m2/

�
C .n � 1/ � sup

.�;t/2 xEı

Œˆ?.t/ � L.�; t/C "�

�
:

Note that the preconstant 2CnR0 is exponentially trivial. We have

(4.100)

lim sup
n!1

1

n
log EfCrtn;0.M;E0/g

� sup
m2 SM;x2 xE0

�
1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/

� k�2m2k�2.1 �m2/ � .x � �mk/2
�

C sup
.�;t/2 xEı

�
ˆ?.t/ � L.�; t/C "

�
:

Letting "; ı ! 0C and using the upper semicontinuity of ˆ?.t/ � L.�; t/ and
compactness of xE0, we have

(4.101)

lim sup
n!1

1

n
log EfCrtn;0.M;E0/g

� sup
m2 SM;x2 xE0

�
1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/

� k�2m2k�2.1 �m2/ � .x � �mk/2
�

C sup
.�;t/2 xE0

�
ˆ?.t/ � L.�; t/

�
:

Note that we took E0 D .x0 � ı0; x0 C ı0/; letting ı0 ! 0 and using the upper
semicontinuity of ˆ?.t/ � L.�; t/ gives equation (4.97).

Step 2. LOWER BOUND. It suffices to consider the case when

sup
.m;x/2Mo�Eo

S0.m; x/ > �1I

otherwise, the inequality holds trivially.
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For any Borel sets M � Œ�1; 1� and E � R, and for any " > 0, there exists
.m0; x0/ 2M

o �Eo such that

(4.102) S0.m0; x0/ � sup
.m;x/2Mo�Eo

S0.m; x/ � ":

For this choice of .m0; x0/, denote �0 D �.m0/ and t0 D t .x0/. For a given small
ı > 0, define

(4.103)

M ı
0 ´ .m0 � ı;m0 C ı/;

Eı0 ´ .x0 � ı; x0 C ı/;

Bı
0 ´M ı

0 �E
ı
0 ;

U ı
n ´ f� W � D

p
2k.k � 1/n=.n � 1/ � �mk�2.1 �m2/; m 2M ı

0 g;

T ı
n ´

˚
t W t D

p
2kn=..k � 1/.n � 1// � x; x 2 Eı0

	
;

E ın ´ U ı
n �T ı

n :

We fix ı sufficiently small so that M ı
n �M

o and Eın � E
o.

For this choice of ı and ", according to Proposition 4.11(c), for any "0 > 0, we
can find N";"0;ı and ı0 > 0 such that as n � N";"0;ı ,

(4.104) E ı00 ´ .�0 � ı0; �0 C ı0/ � .t0 � ı0; t0 C ı0/ � E ın ;

and

(4.105)

Z
.�;t/2E

ı0
0

Efjdet.J n�1/j � 1fJ n�1 � 0ggd� dt

� expf.n � 1/Œˆ.t0/ � L.�0; t0/ � "0�g:

According to the expression for the expected number of critical points as in
equation (4.15) in Lemma 4.3,

EfCrtn;0.M;E/g

� E
˚
Crtn;0

�
M ı
0 ; E

ı
0

�	
� Cn �

Z
Bı0

Efjdet.Hn/j � 1fHn � 0ggdx dm

� inf
.m;x/2Bı0

exp
�
.n � 3/ �

�
1

2
log.1 �m2/

�
C n

�
1

2
.log.k � 1/C 1/ � k�2m2k�2.1 �m2/ � .x � �mk/2

��
�
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� Cn �

Z
E
ı0
0

Efjdet.J n�1/j � 1fJ n�1 � 0gg

�
n � 1

2k�nŒ.k � 2/ �m.�/k�3 � k �m.�/k�1�
d� dt

� inf
.m;x/2Bı0

exp
�
n

�
1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/

� k�2m2k�2.1 �m2/ � .x � �mk/2
��

�
Cn
8k2�

� expf.n � 1/ � Œˆ0.t0/ � L.�0; t0/ � "0�g

� inf
.m;x/2Bı0

exp
�
n

�
1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/

� k�2m2k�2.1 �m2/ � .x � �mk/2
��
:

Note that the preconstant Cn=8k2 is exponentially trivial on a compact set. We
have

lim inf
n!1

1

n
log EfCrtn;0.M;E/g

� inf
.m;x/2Bı0

�
1

2
.log.k � 1/C 1/C

1

2
log.1 �m2/

� k�2m2k�2.1 �m2/ � .x � �mk/2
�

Cˆ?.t0/ � L.�0; t0/ � "0:

Letting "0; ı ! 0C, we have

lim inf
n!1

1

n
log EfCrtn;0.M;E/g � S0.m0; x0/

� sup
m2Mo;x2Eo

S0.m; x/ � ":
(4.106)

Letting "! 0C gives the desired result. �

For Proposition 4.11, the exponential tightness is trivial since we have the ex-
ponential tightness of the expected number of critical points. In the following, we
will prove the upper bound and the lower bound.
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Part (1). Upper Bound
We decompose

Efjdet.J n/j � 1fJ n � 0gg

� Efjdet.J n/j � 1fJ n � 0gILn 2 B.�sc; ı/g„ ƒ‚ …
F1

CEfjdet.J n/j; Ln … B.�sc; ı/g„ ƒ‚ …
E2

where ı > 0 is an arbitrary small number.
According to Lemma A.4, E2 D B3n=A

2
n as a function of .�; t/ is exponentially

vanishing on compact set. We just need to consider the term F1.
For the term F1, we have

F1 D
Z0n

Z�n

Z
Rn

exp
˚
Œn �ˆ.Ln; t /g � 1fmax

i2Œn�
fxig � t; Ln 2 B.�sc; ı/

	
In.�; x

n
1 / � dP0n

� exp
˚
n � sup

�2B.�sc;ı/

ˆ.�; t/
	
�
Z0n

Z�n

Z
Rn
1fmax
i2Œn�
fxig � tgIn.�; x

n
1 / � dP0n

D exp
˚
n � sup

�2B.�sc;ı/

ˆ.�; t/
	
� P .�max.Xn/ � t /:

According to Lemma 4.5, and noting that P .�max.Xn/ � t / is a coordinate-wise
monotone function with respect to .�; t/, we have

(4.107) lim sup
n!1

sup
.�;t/2 xE0

1

n
log P .�max.Xn/ � t / � � inf

.�;t/2 xE0

L.�; t/:

Consequently,

lim
ı!0C

lim sup
n!1

sup
.�;t/2 xE0

1

n
logF1

� lim
ı!0C

sup
.�;t/2 xE0;�2B.�sc;ı/

Œˆ.�; t/ � L.�; t/� � sup
.�;t/2 xE0

Œˆ?.t/ � L.�; t/�:

Therefore, we have

lim sup
n!1

sup
.�;t/2 xE0

1

n
log Efjdet.J n/j � 1fJ n � 0gg

� sup
.�;t/2 xE0

Œˆ?.t/ � L.�; t/�:

Part (2). Lower Bound
For the lower bound, since ˆ?.t/ � L.�; t/ is upper-semicontinuous, we only

need to prove it for those .�0; t0/ in a dense subset of R2. Since t0 2 .�1; 2/, we
have L.�; t0/ D1 for any � . So we only need to consider the case when t0 > 2.
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Fix t0 > 2, choose ı0 > 0 and "0 > 0 such that ı0 < ı, and 2 < t0 � ı0 � "0 <
t0 � ı0. We have

Efjdet.J n/j � 1fJ n � 0gg

D
Z0n

Z�n

Z
Rn

expfn �ˆ.Ln; t /g � 1fxmax � tg � In.�; x
n
1 / � dP0n .x

n
1 /

�
Z0n

Z�n

Z
Rn

expfn �ˆ.Ln; t /g � In.�; xn1 /

� 1fxmax � minft; t0 � ı0 � "0g; Ln 2 B.�sc; ı
0/g � dP0n

�
Z0n

Z�n

Z
Rn
In.�; x

n
1 /1fxmax � minft; t0 � ı0 � "0g; Ln 2 B.�sc; ı

0/g � dP0n

� exp
˚
n
�

inf
Ln2B.�sc;ı 0/;xmax�minft;t0�ı0�"0g

ˆ.Ln; t /
�	

�

�
P .�max.Xn/ � minft; t0 � ı0 � "0g/

�
Z0n

Z�n

Z
Rn
In.�; x

n
1 /1fLn … B.�sc; ı

0/ggdP0n„ ƒ‚ …
G2

�

� exp
˚
n
�

inf
Ln2B.�sc;ı 0/;xmax�minft;t0�ı0�"0g

ˆ.Ln; t /
�	

According to Lemma A.4, G2 D B2n=A
2
n is exponentially vanishing on a compact

set, so we can drop this term.
According to Lemma 4.5, note that P .�max.Xn/ � t / is a coordinate-wise

monotone function with respect to .�; t/. Further, L.�; t/ is continuous for t > 2.
Therefore, we have

(4.108)
lim inf
n!1

inf
.�;t/2E

ı0
0

1

n
log P .�max.Xn/ < minft; t0 � ı0 � "0g/

� �L.�0 C ı0; t0 � ı0 � "0/:

This gives

(4.109)

lim inf
n!1

1

n
log

Z
.�;t/2E ı0

Efjdet.J n/j � 1fJ n � 0ggd� dt

� lim
ı 0!0C

inf
t2T

ı0
0 ;Ln2B.�sc;ı

0/;

�max�t0�ı0�"0

ˆ.Ln; t / � L.�0 C ı0; t0 � ı0 � "0/

D ˆ?.t0 C ı0=2/ � L.�0 C ı0; t0 � ı0 � "0/:
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Since ˆ?.t/ � L.�; t/ is continuous with respect to .�; t/ on R � .2;1/, letting
first "0 ! 0C and then ı0 ! 0C, we have

lim inf
n!1

1

n
log

Z
.�;t/2E ı0

Efjdet.J n/j � 1fJ n � 0ggd� dt

� lim sup
ı0!0C

lim sup
"0!0C

ˆ?.t0 C ı0=2/ � L.�0 C ı0; t0 � ı0 � "0/

D ˆ?.t0/ � L.�0; t0/:

Appendix A Technical Lemmas
LEMMA A.1. Let ffn.x/gn2NC be a series of real-valued functions defined on the
same compact interval Œa; b�. Suppose that each of the fn.x/ are convex, and the
ffn.x/gn2NC are uniformly bounded. Then we have

(A.1) lim inf
n!1

inf
x2Œa;b�

fn.x/ D inf
x2Œa;b�

lim inf
n!1

fn.x/:

PROOF. It is obvious that the left-hand side is smaller or equal to the right-hand
side. It suffices to prove that the left-hand side is bigger or equal to the right-hand
side.

We prove by contradiction. Assume the left-hand side is smaller than the right-
hand side by a margin ". We call the right-hand side f?. Then we have an increas-
ing sequence nk 2 NC such that

(A.2) fn.xnk / � f? � ":

The sequence xnk has an accumulation point x? 2 Œa; b�. Since the fn.x/ are
uniformly bounded, let supx2Œa;b�;n2NC fn.x/ � f? � U . Consider the interval
I D Œx?�.b�x?/"=.2UC"/; x?C.x?�a/"=.2UC"/�. Since limk!1 xnk D x?,
then there exists K large enough such that as k � K, we have xnk 2 I . For any
x 2 I \ Œx?; b�, because of the convexity of fn, we have

(A.3) fn.x?/ � .x � x?/=.x � a/ � fn.a/C .x? � a/=.x � a/ � fn.x/:

For k such that xnk 2 I \ Œx?; b�, we have

fnk .x?/ �
xnk � x?

xnk � a
� .f? C U/C

x? � a

xnk � a
� .f? � "/

� f? C
.xnk � x?/U � .x? � a/"

xnk � a

� f? C
U.x? � a/"=.2U C "/ � .x? � a/"

.x? � a/"=.2U C "/C x? � a

� f? C "
U=.2U C "/ � 1

"=.2U C "/C 1
� f? � "=2:
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Similarly, for k such that xnk 2 I \ Œa; x?�, we also have fnk .x?/ � f? � "=2.
Therefore

(A.4) lim inf
n!1

fn.x?/ � lim inf
k!1

fnk .x?/ � f? � "=2;

which contradicts the definition of f?. �

The following lemma is from [8, lemma 6.3].

LEMMA A.2 (Concentration of the operator norm of the GOE matrix). LetW N �

GOE.n/. Then there exists a constant t0 such that, for all t � t0 and all n large
enough, we have

(A.5) P .kW nkop � t / � expf�nt2=9g:

LEMMA A.3. We have

(A.6) lim
´!1

lim
n!1

1

n
log

Z 1
´

xn expf�nx2gdx D �1:

PROOF. For large enough x, we have x2=2 � x2 � log x. Therefore, for large
enough ´, the following holds:

(A.7)

Z 1
´

xn expf�nx2gdx

D

Z 1
´

expf�n.x2 � log x/gdx �
Z 1
´

expf�nx2=2gdx

�

Z 1
´

x � expf�nx2=2gdx D
1

n
expf�n´2=2g:

This proves the claim. �

LEMMA A.4. For the following quantities as functions of .�; t/, we have that A1n,
A2n, and A3n are exponentially finite on any compact set, and B1n , B2n , and B3n are
exponentially vanishing on any compact set:

(A.8)

A1n D

Z
Rn

expfnˆ.Ln; t /gdP0n ;

B1n D

Z
Rn

expfnˆ.Ln; t /g1fLn … B.�sc; ı/gdP0n ;

A2n D

Z
Rn
In.�; x

n
1 /dP0n ;

B2n D

Z
Rn
In.�; x

n
1 /1fLn … B.�sc; ı/gdP0n ;

A3n D

Z
Rn

expfnˆ.Ln; t /gIn.�; xn1 /dP0n

B3n D

Z
Rn

expfnˆ.Ln; t /gIn.�; xn1 /1fLn … B.�sc; ı/gdP0n :
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PROOF. We prove B3n as an example.

B3n �

Z
Rn

expfnˆ.Ln; t /gIn.�; xn1 /1fLn … B.�sc; ı/gdP0n

D

Z
Rn

expfnˆ.Ln; t /gIn.�; xn1 /1fmax
i2Œn�
jxi j � RgdP0n„ ƒ‚ …

E1

C

Z
Rn

expfnˆ.Ln; t /gIn.�; xn1 /1fLn … B.�sc; ı/;max
i2Œn�
jxi j � RgdP0n„ ƒ‚ …

E2

:

Step 1. BOUND FOR E1
Let �U0 D Œ�U0; U0�, ST0 D Œ�T0; T0�, and xE0 D �U0 � ST0. Then

(A.9)

lim
R!1

lim sup
n!1

sup
.�;t/2 xE0

1

n
logE1

� lim
R!1

lim sup
n!1

1

n
log Ef.kWnkop C T0/

n

� expfU0kWnkopgI kWnkop � Rg D �1:

For any L, we choose an R > 0 large enough such that

(A.10) lim sup
n!1

sup
.�;t/2 xE0

1

n
logE1 � L:

Step 2. BOUND FOR E2: USE THE LDP OF THE EMPIRICAL DISTRIBUTION
OF EIGENVALUES OF THE GOE MATRIX

To bound E2, we resort to the large-deviation result for Ln:

(A.11) lim
n!1

1

n
log P0n .Ln … B.�sc; ı// D �1:

Therefore, we have the upper bound

(A.12) sup
.�;t/2 xE0

E2 � P .Ln … B.�sc; ı// � expfnŒlog.R0 C T0/C U0R0�g;

which gives

(A.13) lim
n!1

sup
.�;t/2 xE0

1

n
logE2 D �1:

Therefore, we have

(A.14) lim sup
n!1

sup
.�;t/2 xE0

1

n
logBn3 � L:

Sending L! �1 gives the desired result. �
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Appendix B Derivation of an Explicit Formula for S?
PROOF OF PROPOSITION 2.3. The function S?.m; x/ can be written as

S?.m; x/ D
1

2
log.k � 1/C

1

2
log.1 �m2/ � k�2m2k�2.1 �m2/ � .x � �mk/2

C
2k

k � 1

x2

4
�
1

2

Z q
2k
k�1
jxj

2

q
y2 � 4 dy � 1

�
jxj �

r
2.k � 1/

k

�
:

Isolating the dependence on x, to maximize S?.m; x/ we must do the optimiza-
tion problem:

(B.1) �
1

2
min
u

(
k � 2

2k
u2 � 4.�mk/

r
k � 1

2k
uC

Z u

2

q
y2 � 4dy � 1fjuj�2g

)

where we have made the substitution u D
p
.2k=.k � 1/x. This is exactly the

setting of Lemma B.1 with a D k�2
2k

and b D 4�mk
q
k�1
2k

. The consideration
b ? 4a leads to the definition of mc and the two separate solutions SU ; SG . When
b < 4a, the formula for SU is as follows using the solution to the maximization
problem in this region: �b2=4a D �.4.k � 1/=.k � 2//�2m2k and simplifying
the resulting expression.

In the other region, when b > 4a, using our a; b values we compute that the
maximizing u is

u� D
k

p
k � 1

r
1

2
k.�mk/2 C 1 �

s
k

2.k � 1/
.k � 2/�mk :

The min value is (after some simplifying)

�
1

2
bu� � 2 log

��
1

2
� a

�
u� C

1

2
b

�
D �2

r
1

2
k �mk

r
1

2
k.�mk/2 C 1C .k � 2/.�mk/2

� 2 log
�r

1

2
k.�mk/2 C 1C

r
1

2
k�mk

�
C log.k � 1/

D �

r
1

2
k�mk2

r
1

2
k.�mk/2 C 1C .k � 2/.�mk/2

� 2 sinh�1
�r

1

2
k �mk

�
g C log.k � 1/

(we have used sinh�1.x/ D log.x C
p
x2 C 1/). Plugging back into the formula

for S?.m; x/ now gives the desired result for SG . �
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LEMMA B.1. Let a > 0 and b > 0 be parameters. Let

g.x/ D ax2 � bx C

Z jxj
2

q
y2 � 4 dy � 1fjxj>2g:

Then

arg min
x
fg.x/g D

(
b
2a
; 0 < b < 4a;

x�; b > 4a;

where

x� WD
2ab �

p
b2 C 4 � 16a2

4a2 � 1
:

Moreover,

min
x
fg.x/g D

(
�
b2

4a
; 0 < b < 4a;

�
1
2
bx� � 2 log

��
1
2
� a

�
x� C 1

2
b
�
; b > 4a:

PROOF. We notice that g0 is monotone increasing, and hence g has a unique
minimum, which occurs when

b � 2ax D sgn.x/
q
jxj2 � 4 � 1fjxj > 2g:

If �4a < b < 4a, then this occurs at b=2a. Otherwise, since we consider only
the case b > 0, we have a solution with x > 2 and have b � 2ax D

p
x2 � 4: The

quadratic formula then gives the formula for arg min. To see the formula for the
minimum, we use the closed form for the integral:Z x

2

q
y2 � 4dy D

1

2
x
p

x2 � 4 � 2 log
�
x

2
C
1

2

p

x2 � 4

�
:

Substituting the identity b�2ax D
p
x2 � 4 then gives the formula for min.g.x//.

�

PROOF OF PROPOSITION 2.4. For any value of ˛ 2 .0; 1/, define

f˛.x/ WD
1

2
ln.1 � ˛/ �

2x2

˛
C x2 C x

p
1C x2 C sinh�1.x/:

It can be verified by computing the derivative that this function has exactly one
maximum at x˛ WD 1

2
˛p
1�˛

and that f˛.x˛/ D 0. In particular, f˛.x/ � 0 for
all x. Now notice that we may write

SG.m/ D fm2

�r
1

2
k.�mk/

�
:

This shows SG.m/ � 0. The consideration about the zeros of fc shows that

SG has a zero only when
q
1
2
k.�mk/ D 1

2
m2p
1�m2

, which is equivalent to equation

(2.14). Elementary calculus reveals that the polynomial m2k�4.1 � m2/ achieves
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a maximum value of .k�2/k�2

.k�1/.k�1/
, and this observation yields the desired properties

for �c . �
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