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Abstract—We present α-loss, α ∈ [1,∞], a tunable loss
function for binary classification that bridges log-loss (α = 1)
and 0-1 loss (α = ∞). We prove that α-loss has an equivalent
margin-based form and is classification-calibrated, two desirable
properties for a good surrogate loss function for the ideal yet
intractable 0-1 loss. For logistic regression-based classification, we
provide an upper bound on the difference between the empirical
and expected risk for α-loss at the critical points of the empirical
risk by exploiting its Lipschitzianity along with recent results on
the landscape features of empirical risk functions. Finally, we
show that α-loss with α = 2 performs better than log-loss on
MNIST for logistic regression.

I. INTRODUCTION

In learning theory, the performance of a classification al-
gorithm in terms of accuracy, tractability, and convergence
guarantees is contingent on the choice of a loss function.
Consider a feature vector X ∈ X , an unknown finite label
Y ∈ Y , and a hypothesis test h : X → Y . The canonical
0-1 loss, given by 1[h(X) 6= Y ], is considered an ideal loss
function that captures the probability of incorrectly guessing
the true label Y using h(X). However, since the 0-1 loss is
neither continuous nor differentiable, its practical application
is intractable with state-of-the-art learning algorithms. As a
result, there has been much interest in identifying surrogate
loss functions that best approximate the 0-1 loss. Common
surrogate loss functions include logistic loss, squared loss, and
hinge loss.

For binary classification tasks, a hypothesis test h : X →
{−1, 1} is typically replaced by a classification function
f : X → R, where R = R ∪ {±∞}. In this context, loss
functions are often written in terms of a margin, defined as
the product of the label, Y ∈ {−1, 1}, and the value of the
classification function f(X) (see, [1]–[4]). In [1], Lin defines
a margin-based loss function as Fisher consistent if, for any
x and a given posterior PY |X=x, its population minimizer has
the same sign as the optimal Bayes classifier. In [2], Bartlett et
al. introduce a stronger surrogate requirement of classification-
calibration wherein the loss function is Fisher consistent for
any PY |X=x.

Yet another property for a good surrogate loss function is
captured by the effectiveness of the empirical risk minimizers
in approximating the true risk minimizers, a property studied
through the empirical landscape. In [5], Mei et al. prove that
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for general non-convex loss functions which satisfy certain
regularity conditions, all critical features of the landscape
including local minimizers/maximizers and saddle points of
the empirical risk and the true risk are one-to-one, with
the distance between corresponding features decreasing as
O
(√

log n/n
)

for n samples.
In [6], Liao et al. introduce α-loss as a new loss function to

model information leakage under different adversarial threat
models. We consider a more general learning setting and
apply α-loss for binary classification. We prove that α-loss
has an equivalent margin-based form which is classification-
calibrated. For a family of logistic regression based classifiers,
we use the Lipschitzianity of α-loss and results in [5] to upper
bound the difference between the empirical and expected risk
under α-loss at the critical points of the empirical risk. Finally,
for the MNIST dataset, we focus on a low capacity learning
model using logistic regression (such models are desirable
when tuning deep neural networks is challenging) to illustrate
the higher classification accuracy of α-loss (α > 1) relative to
the oft-used cross entropy (log-loss).

II. PRELIMINARIES

A. α-loss

Let P(Y) be the set of probability distributions over Y . For
α ∈ [1,∞], Liao et al. [6] define α-loss lα : Y ×P(Y)→ R+

as

lα(y, PY ) :=


− logPY (y) α = 1,
α
α−1 [1− PY (y)1−1/α] α ∈ (1,∞),

1− PY (y) α =∞.
(1)

Note that for (y, PY ) fixed, lα(y, PY ) is continuous in α.
Consider random variables (X,Y ) ∼ PX,Y . Observing X ,

one can construct an estimate Ŷ of Y such that Y −X − Ŷ
form a Markov chain. One can use expected α-loss to quan-
tify the effectiveness of the estimated posterior PŶ |X as
EX,Y [lα(Y, PŶ |X)]. In particular,

EX,Y
[
l1(Y, PŶ |X)

]
= EX

[
H(PY |X=x, PŶ |X=x)

]
, (2)

where H(P,Q) := H(P ) + DKL(P‖Q) is the cross-entropy
between P and Q. Similarly,

EX,Y [l∞(Y, PŶ |X)] = P[Y 6= Ŷ ], (3)

i.e., the expected α-loss for α =∞ equals the probability of
error. It can be shown that the expected α-loss is continuous



in α, i.e., (2) and (3) result from the continuous extensions
for α = 1 and α = ∞, respectively. Thus, we see that the
extremal points of expected α-loss are expected log-loss and
probability of error.

B. Binary Classification in Learning

Let Sn = {(Xi, Yi) : i = 1, . . . , n} be a training dataset
where, for each i, Xi ∈ X ⊂ Rd is the feature vector
and Yi ∈ Y = {−1, 1} is the class label. We assume that
the samples {(Xi, Yi) : i = 1, . . . , n} are independently
drawn from an unknown distribution PX,Y . There are multiple
approaches (and nomenclatures) to classification [1]–[4]; in
particular, we consider two alternative approaches, namely,
using soft classifiers and using classification functions.

Soft classifier: In this approach, the objective of the learner
is to construct, based on the training dataset Sn, a soft classifier
g : X → [0, 1] capable of predicting the likelihood of a
label of previously unseen feature vectors. More specifically,
for each x ∈ X , g(x) estimates the probability of the event
{Y = 1} given {X = x}. Usually, the learner selects a soft
classifier by minimizing a loss function over a family of soft
classifiers. Note that every soft classifier determines a set of
beliefs and vice versa. Indeed, given a soft classifier g, we
can define PŶ |X by taking PŶ |X(1|x) := g(x). Conversely,
given a set of beliefs PŶ |X , we can define a soft classifier
g(x) = PŶ |X(1|x).

Observe that the soft classification construct defined above
makes α-loss in (1) a natural fit as a loss function. Indeed, one
can define the expected α-loss (true risk) of a soft classifier
as

Rlα(g) = EX,Y [lα(Y, PŶ |X)], (4)

where PŶ |X is the set of beliefs associated to g. Analogously,
we define the empirical α-loss as

R̂lα(g) =
1

n

n∑
i=1

lα(yi, PŶ |X=xi
). (5)

Finally, we denote the conditional risk of the α-loss by

Clα(g) = EY |X [lα(Y, PŶ |X=x)]. (6)

Observe that Rlα(g) = EX [Clα(g)].
Classification function: As an alternative approach, a

learner can select a classification function f : X → R by
minimizing a loss function over a given family of classification
functions. Observe that any such f can yield a (hard decision)
hypothesis h(X) = sign(f(X)). The value f(x) can be
regarded as the confidence on the value of Y given {X = x};
a large value of f(x) corresponds to a high confidence on the
event {Y = 1} given {X = x}, while a large value of −f(x)
corresponds to a high confidence on the event {Y = −1}.

For this setting, margin-based loss functions have been
proposed as a meaningful family of loss functions. A loss
function is said to be margin-based if, for all x ∈ X and
y ∈ Y , the risk associated to a pair (y, f(x)) is given by
l̃(yf(x)) for some function l̃ : R → R+. In this case, the
risk of the pair (y, f(x)) only depends on the product yf(x),

where the product yf(x) is called the margin. Observe that a
negative margin corresponds to a mismatch between the signs
of f(x) and y, i.e., a classification error by f . Similarly, a
positive margin corresponds to a match between the signs of
f(x) and y, i.e., a correct classification by f . Hence, most
margin-based losses have a graph similar to those depicted in
Figure 1(a). Since margin-based loss functions synthesize two
quantities (Y and f ) into a single margin, they are commonly
found in the binary classification literature [1], [2], [7]. The
risk of a classification function f with respect to (w.r.t.) a
margin-based loss function l̃ is defined as

Rl̃(f) = EX,Y [l̃(Y f(X))]. (7)

For notational convenience, the risk of the 0-1 loss is denoted
by R(f), i.e.,

R(f) = E[1(sign(f(X)) 6= Y )]. (8)

We now introduce a margin-based α-loss. Let σ : R→ [0, 1]
be the sigmoid function, i.e.,

σ(z) =
1

1 + e−z
, (9)

Observe that σ is invertible and σ−1 : [0, 1]→ R is given by

σ−1(z) = log

(
z

1− z

)
. (10)

Definition 1. We define the margin α-loss l̃α : R→ R+ as

l̃α(z) :=


− log(σ(z)) α = 1,
α
α−1

(
1− σ(z)1−1/α

)
α ∈ (1,∞),

1− σ(z) α =∞.
(11)

In Figure 1(a), we plot the margin-based α-loss for different
values of α. Observe that, on the one hand, the penalty
assigned to misclassified examples decreases as α increases.
In practice, this decrease is desirable as the classification
error only depends on the prediction itself and not in the
particular confidence (margin). On the other hand, the absolute
value of the derivative of l̃α decreases as α increases. This
behavior makes the computation of the optimal classification
function more challenging as α increases (as evidenced by the
intractability of 0-1 loss).

C. Classification-Calibration

An important concept in the analysis and design of margin-
based losses is that of classification-calibration. To define this,
we begin by defining the true posterior η : X → [0, 1] as
η(x) = PY |X(y = 1|x). As in [2], we abbreviate η(x) as η,
making implicit the dependence on x.

Definition 2 ( [2, Definition 1]). A margin-based loss function
l̃ is said to be classification-calibrated if, for every η 6= 1/2,

inf
f :f(2η−1)≤0

(ηl̃(f)+(1−η)l̃(−f)) > inf
f∈R

(ηl̃(f)+(1−η)l̃(−f)).

(12)



The conditional risk of f given {X = x} is given by

EY |X=x[l̃(Y f(x))] = η(x)l̃(f(x)) + (1− η(x))l̃(−f(x)).
(13)

If l̃ is a classification-calibrated margin-based loss function,
then the minimum conditional risk given {X = x} is attained
by a z∗x such that sign(z∗x) = sign(2η(x)−1). Thus, assuming
that the posterior distribution η is known, the optimal clas-
sification function for l̃, namely f∗(x) := z∗x, gives rise to
the optimal classification function for the 0-1 loss, namely the
Bayes decision rule sign(2η(x)− 1).

The following proposition establishes another important
consequence of classification-calibration; we will use it in the
sequel.

Proposition 1 ( [2, Theorem 3]). Assume that l̃ is a
classification-calibrated margin-based loss function. Then, for
every sequence of measurable functions (fi)

∞
i=1 and every

probability distribution on X × Y ,

lim
i→∞

Rl̃(fi) = R∗
l̃

implies that lim
i→∞

R(fi) = R∗, (14)

where R∗
l̃

:= minf Rl̃(f) and R∗ := minf R(f).

Figure 1. (a) Margin-based α-loss, as a function of the margin z = yf(x);
(b) minimum conditional risk for different values of α.

III. RESULTS

A. Relation Between α-loss and its Margin Form

The following proposition shows an important relation be-
tween α-loss and its margin form in the context of binary
classification. For reasons of brevity, we refer the reader to
the full version of the paper for the complete proof.

Proposition 2. Consider a soft classifier g and let PŶ |X be
the set of beliefs associated to it. If f(x) = σ−1(g(x)), then,
for every α ∈ [1,∞],

lα(y, PŶ |X=x) = l̃α(yf(x)). (15)

Conversely, if f is a classification function, then the set of
beliefs PŶ |X associated to g(x) := σ(f(x)) satisfies (15). In
particular, for every α ∈ [1,∞],

min
PŶ |X

EX,Y (lα(Y, PŶ |X)) = min
f

EX,Y (l̃α(Y f(X))). (16)

This proposition unifies the probabilistic and margin set-
tings. It also illustrates that the choice of the sigmoid function
as the “change of variable” between soft classifiers and classi-
fication functions is sensible as the values of the minimization
are the same. Furthermore, the minimizers are one-to-one by
construction.

B. Statistical Guarantees

Now we establish some statistical properties of the margin-
based α-loss that guarantee its appropriateness for classifica-
tion tasks.

Theorem 1. For every α ∈ [1,∞], the margin-based α-
loss l̃α is classification-calibrated. In addition, its optimal
classification function is given by

f∗(α, η) = α · σ−1(η). (17)

Furthermore, its minimum conditional risk is given by

Cl̃α(η, f∗) =


−η log η − (1− η) log 1− η α = 1,
α
α−1 [1−Q(η)−Q(1− η)] α ∈ (1,+∞),

min{η, 1− η} α→ +∞,
(18)

where Q(z) =

(
zα+1−1/α

zα + (1− z)α

)1−1/α

.

Proof. If α = 1, then l̃α becomes logistic loss which
is classification-calibrated, as is shown in [2]. Its optimal
classifier and minimum conditional risk are given in [4]. If
α = +∞, then l̃α becomes sigmoid loss which is known
to be classification-calibrated [2]. It can be verified that the
optimal classifier for sigmoid loss is degenerated, i.e.,

f∗(+∞, η) =

{
+∞ η > 1/2,

−∞ η < 1/2,
(19)

and C∗
l̃∞

= min{η, 1− η}.
Let α ∈ (1,+∞). By definition of classification-calibration,

we have to show that, for every η 6= 1/2,

inf
f :f(2η−1)≤0

(ηl̃(f)+(1−η)l̃(−f)) > inf
f∈R

(ηl̃(f)+(1−η)l̃(−f)).

(20)
First we assume that η > 1/2. In this case, the strategy of
proof is to show that the optimization in the right-hand-side of
(20) has a unique minimizer f∗ and that f∗ > 0, which means
that the right-hand-side of (20) is strictly smaller than the left-
hand-side. Indeed, with some straightforward algebra, we can
show that f∗ = α log

( η

1− η

)
, which trivially implies that

f∗ > 0. The value of C∗
l̃α

can be obtained by substituting f∗

in (6). The case η < 1/2 can be proved mutatis mutandis.

Proposition 3. The margin-based α-loss l̃α : R → R+ is
convex for α = 1 and quasi-convex for α > 1. Furthermore,
for every α ∈ [1,∞], the minimum conditional risk Cl̃α(η, f∗)
is concave as a function η.

Proof. Since l̃1 is logistic loss, it is convex with respect to
the margin as can be seen by observing its second derivative.



For α > 1, it can be shown that l̃α is monotone, so it is
quasi-convex. However, l̃α is not convex for α > 1 since its
second derivative is negative for negative values of the margin.
Similarly, using a second-derivative argument it can be shown
that Cl̃α(η, f∗) is concave for every α ∈ [1,+∞].

Many commonly used loss functions in binary classification
are convex. Despite the advantages of convex losses in terms
of numerical optimization, non-convex loss functions can
provide practical benefits as well. For instance, Mei et al.
[5] state that non-convex loss functions “demonstrate superior
robustness and classification accuracy in contrast to convex
loss functions”. In essence, non-convex loss functions assign
less weight to misclassified training examples and therefore
algorithms using such losses are less perturbed by outliers.
The desirability of non-convex losses is further evidenced by
other empirical studies, see, for example, [8]–[10].

Another perspective on the convexity of loss functions is
presented in [4] where the authors argue that, for classification
tasks, the convexity of a margin-based loss function is non-
essential, as long as its minimum conditional risk is concave as
a function of η. With regards to α-loss, this is amply observed
in Figure 1(b). Since the margin-based α-loss is classification-
calibrated and its minimum conditional risk is concave as
a function of η, it is a reasonable loss function for binary
classification problems.

C. Empirical Landscape of α-loss under Logistic Regression

In this section we consider a setting in which logistic
regression is used to perform binary classification. Namely,
for a given Θ ⊂ Rd, the family of soft classifiers under
consideration has the form

gθ(x) = σ(θ · x), (21)

where θ ∈ Θ and σ is the sigmoid function given in (9). This
in turn results in α-loss taking the form

lα(y, gθ(x)) =
α

α− 1

[
1− 1 + y

2
gθ(x)1−1/α

− 1− y
2

(1− gθ(x))1−1/α
]
. (22)

A straightforward computation shows that

∂

∂θi
lα(y, gθ(x)) =

[1− y
2

gθ(x)(1− gθ(x))1−1/α

− 1 + y

2
gθ(x)1−1/α(1− gθ(x))

]
xi,

(23)

where θ = (θ1, . . . , θd) and x = (x1, . . . , xd). Hence,

∇θlα(Y, gθ(X)) = F1(α, θ,X, Y )X, (24)

where F1(α, θ, x, y) is the expression within brackets in (23).
Recently, Mei et al. [5] prove that for non-convex loss

functions satisfying certain regularity conditions, there exists
a bijection between the critical points of the empirical risk and
the critical points of true risk such that the distance between
corresponding points decreases at a rate O

(√
log n/n

)
,

where n is the sample size. Building upon their work, we
establish generalization bounds for logistic regression under
α-loss.

Theorem 2. Let Bd(r) denote the ball of radius r in d-
dimensional Euclidean space. Assume that, for some r > 0,
X is supported over Bd(r) and θ ∈ Θ ⊂ Bd(r). For each
y ∈ {−1, 1}, let X [y] be a random variable having the dis-
tribution of X conditioned on Y = y. We further assume that
X [1] d

= −X [−1], E[X [1]] 6= 0, and 1 − σ(−r2)2 < ‖E(X[1])‖
E(‖X[1]‖) .

Let θ̂n denote a local minimizer of the empirical risk function
θ 7→ R̂lα(gθ). If the sample size n is large enough, then, with
probability at least 1− δ,

|Rlα(gθ̂n)− R̂lα(gθ̂n)| ≤ Cα

(√
log(n)

n
+

√
log(4m/δ)

2n

)
,

(25)
where Cα is a constant independent of n and m is the number
of critical points.

Proof. In Appendices V-D and V-E we show that lα satisfies
the regularity conditions1 in [5, Thm. 2] and, as a result, the
expected risk has finitely many critical points {θ1, . . . , θm}
and for n large enough, with probability at least 1 − δ/2,
there exists θ̂ := θi for some i ∈ [m] such that,

‖θ̂n − θ̂‖ ≤ C
√

log(n)

n
, (26)

where C is a constant independent of n. By the triangle
inequality,

|Rlα(gθ̂n)− R̂lα(gθ̂n)| ≤ I + II + III, (27)

where I = |Rlα(gθ̂n) − Rlα(gθ̂)|, II = |Rlα(gθ̂) − R̂lα(gθ̂)|,
and III = |R̂lα(gθ̂)− R̂lα(gθ̂n)|.

Observe that, II ≤ maxi=1,...,m |Rlα(gθi) − R̂lα(gθi)|. By
Hoeffding’s inequality and the union bound, see, e.g., [11,
Chapter 4], it can be shown that, for any ε > 0,

Pr

(
max

i=1,...,m
|Rlα(gθi)− R̂lα(gθi)| > ε

)
≤ 2m exp

(
−2n(α− 1)2ε2

α2

)
. (28)

By taking δ = 4m exp
(
−2n(α− 1)2ε2/α2

)
, we conclude

that, with probability at least 1− δ/2,

II ≤ max
i
|Rlα(gθi)−R̂lα(gθi)| ≤

α

α− 1

√
log(4m/δ)

2n
. (29)

By the boundedness of X and θ, the derivative in (24)
is bounded for all X and θ. Therefore, independently of
the training dataset, the empirical risk function R̂lα is C ′′α-
Lipschitz for some C ′′α ≥ 0. Hence,

III ≤ C ′′α‖θ̂n − θ̂‖. (30)

1These conditions are sub-Gaussian gradient, sub-exponential Hessian, Lips-
chitz Hessian, and strongly Morse expected risk.



The last inequality and (26) imply that

III ≤ C ′α

√
log(n)

n
, (31)

where C ′α := CC ′′α.
A differentiation under the integral sign argument shows

that Rlα is also C ′′α-Lipschitz. Thus,

|Rlα(gθ̂n)−Rlα(gθ̂)| ≤ C
′′
α‖θn − θ‖. (32)

As before, (26) leads to

I = |Rlα(gθ̂n)−Rlα(gθ̂)| ≤ C
′
α

√
log(n)

n
. (33)

The result follows from (29), (31) and (33).

The following corollary follows as a natural addendum to
our main results and establishes that an algorithm perfectly
trained using the α-loss converges, with the number of samples
n, to an optimal hypothesis w.r.t. the 0-1 loss.

Corollary 1. For each n ∈ N, let Sn be a training dataset
of size n and θ̂n be a global minimizer of the associated
empirical risk function θ 7→ R̂lα(gθ). Under the assumptions
of Theorem 2, the sequence (θ̂n)∞n=1 is asymptotically optimal
for the 0-1 risk, i.e., almost surely,

lim
n→∞

R(θ̂n) = R∗. (34)

The Proof of Corollary 1 is given in Appendix F.

D. Simulation Results

We perform simulations on a logistic regression model with
randomly initialized weights using a portion of the MNIST
dataset. In order to have a binary dataset, we partition the
MNIST dataset into the images of 1’s and 7’s which yields a
training set of 12, 500 samples and a test set of 2, 050 samples
(evenly divided between the two labels for both train and test
data). Of the 12, 500 training samples, we use 11, 500 for
training and the remaining 1, 000 for cross-validation.

Since cross entropy (log-loss, i.e. α = 1) is the most
commonly used loss function for practical implementation in
classification [7], we use it as our benchmark for accuracy.
In this way, we compare cross entropy and α-loss in terms
of accuracy for α ∈ {1.1, 1.2, 1.5, 2.0}. In order to have a
level playing field, we tune the learning rate during cross-
validation, so as to compare the optimal performance of each
loss function.

α Learning Rate Testing Accuracy

1.0 1.0 85.3805%
1.1 1.3 85.4005%
1.2 1.0 85.8527%
1.5 1.9 87.3044%
2.0 2.0 87.3302%

Table I
PERFORMANCE REGRESSION

As shown in Table I, for the simple logistic regression model
under consideration, α-loss with α = 2 exhibits a testing

accuracy about ∼ 2% higher than cross entropy. While this
is a simple model, the performance of α-loss is encouraging
and suggests that further work is needed.

It ought to be mentioned that, with large-capacity models,
MNIST data can be classified with an accuracy above 99%
[12]. The goal of our numerical experiments with low capacity
models (such models are desirable when tuning deep neural
networks is challenging) is to show that α-loss can perform
better than cross entropy in some situations. Further simula-
tions using state-of-the-art datasets is the subject of ongoing
research.

IV. CONCLUDING REMARKS

We have proved theoretical properties and highlighted prac-
tical preliminary results for α-loss under binary classification.
Beyond generalization to multi-hypothesis testing, the optimal
choice of α is another important problem and will require
exploring the trade-off between the magnitude of the gradi-
ents (convergence) and the gradient noise induced by finite
samples. Yet another challenging problem to explore is the
robustness of α-loss for α > 1 against adversarial examples;
one approach to doing so is by quantifying its generalization
properties by building upon the work in [13].
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V. APPENDIX

A. Proof of Proposition 2

Consider a soft classifier g and let PŶ |X be the set of beliefs
associated to it. Suppose f(x) = σ−1(g(x)), where g(x) =
PŶ |X(1|x). We want to show that

lα(y, PŶ |X=x) = l̃α(yf(x)). (35)

We assume that α ∈ (1,∞). Note that the cases where α = 1
and α =∞ follow similarly.

Suppose that g(x) = PŶ |X(1|x) = σ(f(x)). If y = 1, then

lα(1, PŶ |X(1|x)) = lα(1, σ(f(x))) (36)

=
α

α− 1
[1− σ(f(x))1−1/α] (37)

= l̃α(f(x)). (38)

If y = −1, then

lα(−1, PŶ |X(−1|x)) = lα(−1, 1− PŶ |X(1|x)) (39)

= lα(−1, 1− σ(f(x))) (40)
= lα(−1, σ(−f(x))) (41)

=
α

α− 1
[1− σ(−f(x))1−1/α] (42)

= l̃α(−f(x)), (43)

where (41) follows from

σ(x) + σ(−x) = 1, (44)

which can be observed by (9). To show the reverse direction
of (35) we substitute

f(x) = σ−1(g(x)) = σ−1(PŶ |X(1|x)) (45)

in l̃α(yf(x)). For y = 1,

l̃α(f(x)) = l̃α(σ−1(PŶ |X(1|x))) (46)

=
α

α− 1
[1− (σ(σ−1(PŶ |X(1|x))))1−1/α] (47)

=
α

α− 1
[1− PŶ |X(1|x)1−1/α] (48)

= lα(1, PŶ |X(1|x)). (49)

For y = −1,

l̃α(−f(x)) = l̃α(−σ−1(PŶ |X(1|x))) (50)

=
α

α− 1
[1− σ(−σ−1(PŶ |X(1|x)))1−1/α] (51)

=
α

α− 1
[1− (1− σ(σ−1(PŶ |X(1|x))))1−1/α]

(52)

=
α

α− 1
[1− PŶ |X(−1|x)1−1/α] (53)

= lα(−1, PŶ |X(−1|x)), (54)

where (52) follows from (44).

The equality in the results of the minimization procedures
follows from the equality between lα and l̃α. As was shown
in [6], the minimizer of the left-hand-side is

P ∗
Ŷ |X(y|x) =

PY |X(y|x)α∑
y
PY |X(y|x)α

. (55)

Using f(x) = σ−1(PŶ |X(1|x)), f∗(x) = σ−1(P ∗
Ŷ |X(1|x)).

B. Proof of Theorem 1

Suppose α = 1, then l̃α becomes

l̃1(z) = − log (σ(z)) = log (1 + e−z), (56)

which is logistic loss. By solving the minimization procedure
in (12), it can be shown as in [2] that l̃1 is classification-
calibrated. Further, the optimal classifier and minimum condi-
tional risk of logistic loss are given in [4].

Suppose α = +∞, then l̃α becomes

l̃∞(z) = 1− σ(z) =
ez

1 + ez
, (57)

which is sigmoid loss. Similarly, sigmoid loss can be shown to
be classification-calibrated as is given in [2]. It can be verified
by calculating the minimization procedure in (12) that the
optimal classifier for sigmoid loss is degenerate. That is,

f∗(+∞, η) =

{
+∞ η > 1/2

−∞ η < 1/2.
(58)

Therefore, Cl̃∞(η, f∗) = min{η, 1 − η}. Note that sigmoid
loss and 0-1 loss have the same minimum conditional risk.
Thus, sigmoid loss can be viewed as a smoothed version of
0-1 loss and will similarly suffer from vanishing gradients for
most values of the margin.

Now consider α ∈ (1,+∞). Since classification calibration
requires proving (12), we begin by expanding the inequality
in (12) using ˜̀ in (11) to show that ∀η 6= 1/2,

inf
f :f(2η−1)≤0

(ηl̃(f)+(1−η)l̃(−f)) > inf
f∈R

(ηl̃(f)+(1−η)l̃(−f)).

(59)
Without loss of generality, we assume that η > 1/2. The
strategy of the proof is to demonstrate that for η > 1/2,
f∗ > 0, which means that the right-hand-side of (59) is smaller
than the left-hand-side because the attainer of the infimum is
not in the search-space of the left-side’s infimum. We rearrange
the right-hand-side of (59) to obtain

α

α− 1

[
1−sup

f∈R

[
η
( 1

1 + e−f

)1−1/α

+(1−η)
( 1

1 + ef

)1−1/α]]
.

(60)
We take the derivative of the expression inside the supremum,
which we denote g(η, α, f), and obtain

d

df
g(η, α, f) =

(
1− 1

α

)( 1

ef + 2 + e−f

)[
η
(

1 + e−f
)1/α

−(1− η)
(

1 + ef
)1/α]

.

(61)



One can then obtain the f0 minimizing (60) by setting
d

df
g(η, α, f) = 0, i.e.,

η
(

1 + e−f0
)1/α

= (1− η)
(

1 + ef0
)1/α

. (62)

Note that the derivative dg(η, α, f)/df in (61) approaches zero
for both f → +∞ and f → −∞ for which g simplifies to
η and (1 − η), respectively. Since η > 1/2, to show that
f0 ∈ (−∞,∞) is the point at which g(η, α, f) is maximized,
we must demonstrate that g(η, α, f0) > η > 1/2. We solve
(62) for (1 − η) and substitute it into g(η, α, f0). Further
simplifying, we obtain η(1+e−f0)1/α which is always greater
than η. Therefore, f0 is the maximizer of g(η, α, f). Solving
(62) for f0, we obtain

f0 = f∗(α, η) = α log
( η

1− η

)
> 0, (63)

i.e., l̃α is classification-calibrated. Since (63) minimizes the
right side of (59), it is the optimal classifier for l̃α where α ∈
(1,+∞). Accordingly, Cl̃α(η, f∗) is obtained by substituting
(63) into (60).

C. Proof of Proposition 3

For α = 1, l̃1(z) = − log σ(z). Further,

d2

dz2
l̃1(z) =

e−z

(1 + e−z)2
≥ 0, (64)

∀z ∈ R, so l̃1 is convex.
For α ∈ (1,∞),

d2

dz2
l̃α(z) =

(e−z + 1)1/αez(αez − α+ 1)

α(ez + 1)3
. (65)

As can be observed in the numerator for α > 1, there exists
some z0 for which αez0 − α + 1 < 0. Thus l̃α is not convex
for α ∈ (1,∞). Similarly as can be seen in (65) by letting

α → ∞, that
d2

dz2
l̃∞(z) =

ez(ez − 1)

(ez + 1)3
, which is less than

zero for z < 0. Thus, l̃∞ is also not convex.
It can be shown that, for all α ∈ [1,∞], l̃α is monotonically

decreasing since

d

dz
l̃α(z) =

−(e−z + 1)1/αez

(1 + ez)2
< 0, (66)

∀z ∈ R. Since monotonic functions are quasi-convex [14], we
have that l̃α is quasi-convex for α > 1.

With regards to the minimum conditional risk, for α = 1, it

can be shown that
d2

dη2
Cl̃1(η, f∗) =

1

(η − 1)η
< 0 since η ∈

(0, 1). Despite a cumbersome expression, one can similarly
verify that, for α ∈ (1,∞), Cl̃α̃(η, f∗) is concave. For α =
∞, Cl̃∞̃(η, f∗) = min{η, 1 − η} can be easily verified to be
concave as a function of η.

D. Background for Theorem 2

The proof of Theorem 2 relies on a result by Mei et al. [5]
stated at the end of this section. We start by providing the
necessary background.

Definition 3. A random vector X ∈ Rd is σ2-sub-Gaussian
if, for every λ ∈ Rd,

E[e〈λ,X−E[X]〉] ≤ eσ
2‖λ‖22/2, (67)

where 〈·, ·〉 denotes the inner product.

Gaussian and bounded random variables are examples of
sub-Gaussian random variables, see, for example, [15]. It can
be shown that if the components of a random vector are sub-
Gaussian, then the random vector itself is sub-Gaussian [15].

Definition 4. A random matrix Z is τ2-sub-exponential if, for
every λ ∈ Bd(1/τ),

E
[
e|Zλ−E[Zλ]|

]
≤ 2, (68)

where Zλ := 〈λ, Zλ〉 and Bd(r) denotes the ball of radius r
in d-dimensional Euclidean space.

We now recall the definition of a regularity property known
as strongly Morse. Let [d] := {1, 2, . . . , d}.

Definition 5. We say that a twice differentiable function F :
Bd(r) → R is (ε, η)-strongly Morse if ‖∇F (x)‖2 > ε for
‖x‖2 = r and, for any x ∈ Rd, ‖x‖2 < r, the following
holds:

‖∇F (x)‖2 ≤ ε =⇒ min
i∈[d]
|λi(∇2F (x))| ≥ η, (69)

where {λi(∇2F (x)) : i ∈ [d]} are the eigenvalues of ∇2F (x).

Now we are in position to state Mei et al. result.

Proposition 4 ( [5, Thm. 2]). Let l be a given loss function.
Assume that

1) the gradient ∇θl(θ) is sub-Gaussian;
2) the Hessian ∇2

θl(θ) is sub-exponential;
3) the Hessian ∇2

θRl(θ) is bounded at a point and Lipschitz
continuous with integrable Lipschitz constant, i.e, there
exists J∗ such that

J(z) ≡ sup
θ1 6=θ2∈Bp(r)

‖∇2l(θ1; z)−∇2l(θ2; z)‖op
‖θ1 − θ2‖2

, (70)

where E[J(Z)] ≤ J∗;
4) Rl(θ) is (ε, η)-strongly Morse.

Let θ̂n denote a local minimizer of the empirical risk function
θ 7→ R̂l(θ). If the sample size n is large enough, then there
exists a critical point θ̂ of the true risk function θ 7→ Rl(θ)
such that, with probability at least 1− δ,

‖θ̂n − θ̂‖2 ≤ C
√

log n

n
, (71)

where C = C(σ, α, ε, η, d) is a positive constant. Further,
R̂l(θ) is (ε/2, η/2)-strongly Morse.



F2(α, θ, x, y) =
1− y

2

[
gθ(1− gθ)2−1/α−

(
1− 1

α

)
g2
θ(1− gθ)1−1/α

]
+

1 + y

2

[
g

2−1/α
θ (1− gθ)−

(
1− 1

α

)
g

1−1/α
θ (1− gθ)2

]
(75)

E. Proof that lα satisfies the Assumptions of Proposition 4

Here, we prove the assumptions stipulated by Proposition 4
hold for α-loss. We restrict ourselves to the setting of logistic
regression. Thus, R̂lα(θ) = R̂lα(gθ) and Rlα(θ) = Rlα(gθ),
where gθ(x) = σ(θ · x) and gθ(x) is often abbreviated gθ for
convenience.

Proof of Assumption 1: The first assumption requires the
gradient of the loss function to be sub-Gaussian. The gradient
of α-loss is given by (24). That is,

∇θlα(Y, gθ(X)) = F1(α, θ,X, Y )X, (72)

where

F1(α, θ, x, y) =
1− y

2
gθ(x)(1− gθ(x))1−1/α

− 1 + y

2
gθ(x)1−1/α(1− gθ(x)). (73)

In order to prove (73), we used that

∂

∂θ
σ(θ · x) = σ(θ · x)(1− σ(θ · x)). (74)

By the boundedness of the sigmoid function, we have that
|F1(α, θ,X, Y )| ≤ 1. Since X ∈ Bd(r) by assumption, each
component of ∇θlα is bounded and, as a consequence, sub-
Gaussian. Therefore, the gradient of α-loss is sub-Gaussian.

Proof of Assumption 2: The second assumption requires the
Hessian of the loss function to be sub-exponential. It can be
shown that the Hessian has the form

∇2
θl
α(Y, gθ(X)) = F2(α, θ,X, Y )XXT , (76)

where F2(α, θ,X, Y ) is defined on (75). It is straightforward
to verify that |F2(α, θ,X, Y )| ≤ 1

4 . Notice that the product of
∇2
θl
α with λ ∈ Bp(1) becomes

〈λ,∇2
θl
αλ〉 =

(
F2(α, θ,X, Y )1/2

d∑
i=1

λiXi

)2

. (77)

Since both θ and X are assumed to be bounded, 〈λ,∇2
θl
αλ〉 is

the square of a bounded random variable. Since the square of a
sub-gaussian random variable is sub-exponential, we conclude
that the Hessian is sub-exponential.

Proof of Assumption 3: The third required assumption is
that the Hessian of the loss function is Lipschitz and the
Hessian of the population risk is bounded above at a point.
The former can be observed by calculating the third derivative
of α-loss and showing that it is bounded. The third derivative
has the form

∂

∂θi
∇2
θl
α(Y, gθ(X)) = F3(α, θ,X, Y )XXTXi, (79)

where F3(α, θ,X, Y ) is defined in (78). Observe that
|F3(α, θ,X, Y )| ≤ 2. Since θ,X ∈ Bd(r) by assumption, the
derivative of the Hessian is bounded with constant L = 2r3.
Therefore, the Hessian is Lipschtiz continuous, in the sense
of (70), with integrable Lipschitz constant L. Using similar
arguments, it is straightforward to verify that the Hessian of
the population risk is bounded at a point.

Proof of Assumption 4: The final assumption requires the
population risk to be strongly Morse. Recall that, for each
y ∈ {−1, 1}, X [y] has the same distribution as X conditioned
on Y = y. Since X [1] d

= −X [−1] by assumption, conditioning
on Y we obtain that

∇θR(θ) = −E
[
gθ(X

[1])1−1/αgθ(−X [1])X [1]
]
. (80)

Observe that

‖E[gθ(X
[1])1−1/αgθ(−X [1])X [1]]− E[X [1]]‖ (81)

= ‖E[(gθ(X
[1])1−1/αgθ(−X [1])− 1)X [1]]‖ (82)

≤ E[|gθ(X [1])1−1/αgθ(−X [1])− 1|‖X [1]‖], (83)

where we used the convexity of the norm and Jensen’s
inequality. Since θ,X ∈ Bd(r), it can be verified that

σ(−r2)2 ≤ gθ(X [1])1−1/αgθ(−X [1]) ≤ 1. (84)

Hence,

‖E[gθ(X
[1])1−1/αgθ(−X [1])X [1]]− E[X [1]]‖ (85)

≤ (1− σ(−r2)2)E[‖X [1]‖]. (86)

By the triangle inequality, we obtain that

σ(−r2)2E[‖X [1]‖] ≤ ‖∇θR(θ)‖. (87)

By assumption, ‖E(X)‖ 6= 0, hence R(θ) > ε for all θ, where

ε := σ(−r2)2E[‖X [1]‖]. (88)

Therefore, by vacuity, R(θ) satisfies (69) for every η > 0, i.e.,
R(θ) is (ε, η)-strongly Morse.

F3(α, θ, x, y) =
1− y

2

[
gθ(1− gθ)3− 1

α −
(

4 +
1

α

)
g2
θ(1− gθ)2− 1

α +

(
1− 1

α

)2

g3
θ(1− gθ)1− 1

α

]
− 1 + y

2

[
g

3− 1
α

θ (1− gθ)−
(

4 +
1

α

)
(1− gθ)2g

2− 1
α

θ +

(
1− 1

α

)2

(1− gθ)3g
1− 1

α

θ

] (78)



F. Proof of Corollary 1

We start by proving that, almost surely,

lim
n→∞

Rlα(gθ̂n) = min
θ∈Θ

Rlα(gθ). (89)

Let θ∗ be a minimizer of the expected risk, i.e.,

Rlα(gθ∗) = min
θ∈Θ

Rlα(gθ). (90)

Observe that

0 ≤ Rlα(gθ̂n)−Rlα(gθ∗) = In + IIn, (91)

where In := Rlα(gθ̂n) − R̂lα(gθ̂n) and IIn := R̂lα(gθ̂n) −
Rlα(gθ∗). After some straightforward manipulations, (25) im-
plies that, for every ε > 0,

P
(
|Rlα(gθ̂n)− R̂lα(gθ̂n)| > ε

)
< 4mne−nε

2/(2C2
α), (92)

whenever n is large enough. A routine application of the Borel-
Cantelli lemma shows that, almost surely,

lim
n→∞

In = lim
n→∞

Rlα(gθ̂n)− R̂lα(gθ̂n) = 0. (93)

Since θ̂n is a minimizer of the empirical risk R̂lα ,

IIn = R̂lα(gθ̂n)−Rlα(gθ∗) ≤ R̂lα(gθ∗)−Rlα(gθ∗). (94)

By Hoeffding’s inequality, for every ε > 0,

P
(
|R̂lα(gθ∗)−Rlα(gθ∗)| > ε

)
≤ 2e−2n(α−1)2ε2/α2

. (95)

Hence, the Borel-Cantelli lemma implies that, almost surely,

lim
n→∞

|R̂lα(gθ∗)−Rlα(gθ∗)| = 0. (96)

In particular, we have that, almost surely,

lim sup
n→∞

IIn ≤ 0. (97)

By plugging (93) and (97) in (91), we obtain that, almost
surely,

0 ≤ lim sup
n→∞

[
Rlα(gθ̂n)−Rlα(gθ∗)

]
≤ 0, (98)

from which (89) follows.
For each n ∈ N, let fn : X → R be given by fn(x) = θ̂n ·x.

Since fn(x) = σ−1(σ(θ̂n · x)) = σ−1(gθ̂n(x)), Proposition 2
and (89) imply that

lim
n→∞

Rl̃α(fθ̂n) = min
θ∈Θ

Rl̃α(fθ) =: R∗
l̃α
. (99)

Since l̃α is classification-calibrated, as established in Theo-
rem 1, Proposition 1 and (99) imply that

lim
n→∞

R(θ̂n) = R∗, (100)

as required.


