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Light Detection and Ranging (LiDAR) Digital Elevation Models (DEMs) are frequently applied in modeling
coastal environments. We present an object-based correction approach for accurate and precise DEMs by in-
tegrating LiDAR point data, aerial imagery, and Real Time Kinematic-Global Positioning Systems. Four machine
learning techniques (Random Forest, Support Vector Machine, k-Nearest Neighbor, and Artificial Neural
Network) were compared with the commonly used bias-correction method. The Random Forest object-based
model produced best predictions for two study areas: Nine Mile (Mean Bias Error (MBE) reduced 0.18 to

—0.02 m, Root Mean Square Error (RMSE) reduced 0.22 to 0.08 m) and Flamingo (MBE reduced 0.17 to 0.02 m,
RMSE reduced 0.24 to 0.10 m). A Monte Carlo model was developed to combine errors into the object-based
machine learning corrected DEMs, and uncertainty maps spatially revealed the likelihood of error. The object-
based correction approach provides an attractive alternative to the bias-correction method.

1. Introduction

1.1. Significance of LiDAR Digital Elevation Models (DEMs) in the coastal
Everglades

A unique federal/state partnership in the USA is making efforts to
restore the original Everglades ecosystem, which has been largely
modified in the past century by human activities (NRC, 2014). Ever-
glades restoration requires better Digital Elevation Models (DEMs) with
a vertical Root Mean Square Error (RMSE) less than 0.15 m to monitor
and simulate water levels, water depths, and hydroperiods (Jones et al.,
2012). For the coastal Everglades, DEMs are also recommended to have
a fine spatial resolution (e.g. 5 m) to identify local areas vulnerable to
coastal hazards such as sea-level rise and hurricanes (Zhang, 2011;
Cooper et al., 2015).

Current available elevation datasets in the coastal Everglades in-
clude the National Elevation Dataset (NED), Shuttle Radar Topography
Mission (SRTM), High Accuracy Elevation Database (HAED), and Light
Detection and Ranging (LiDAR). The vertical error of the 30 m NED and
SRTM datasets are 0.48-1.89m and 4.01m in terms of the RMSE
(Gesch et al., 2014), respectively, which are insufficient for restoration
requirements (Jones et al, 2012). The Everglades hydrologic
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community has agreed upon the vertical elevation error threshold of
0.15m for restoration projects (Desmond, 2003; Jones et al., 2012),
which is interpreted here as the RMSE. To meet this strict error speci-
fication, the U.S. Geological Survey (USGS) conducted a region-scale
survey from 1995 to 2007 using an Airborne Height Finder (AHF) with
differential Global Positioning System (GPS) to measure sub-water and
terrain surface elevation. Elevation data collected in this airborne
survey were combined with the ground survey data to generate a DEM
dataset known as HAED in the Everglades. The vertical error of HAED
meets the restoration requirements; however, its coarse spatial resolu-
tion (400 m) limits its applications in coastal areas.

To generate fine spatial resolution DEMs in the coastal Everglades,
the Florida Division of Emergency Management collected LiDAR data
over Florida's coastal areas. LiDAR has been recognized as a standard to
generate fine spatial resolution DEMs for various applications (Jensen,
2015). However, it is a challenge for LiDAR to obtain accurate DEMs in
coastal marsh environments due to several combined factors that in-
clude the complexity of coastal marshes, instrument, and software.
Coastal marshes in the Everglades are typically inundated with murky
water containing dark peat soils, which make the automated ground
elevation measures difficult. LiDAR often fails to penetrate through
dense marsh plants, preventing the system (instrument) from discerning
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true ground returns from non-ground returns (i.e. vegetation). In ad-
dition, the common software used by vendors are commonly not ef-
fective at filtering LiDAR mass points into ground returns for marsh
vegetated areas (Morris et al., 2005; Rosso et al., 2006; Schmid et al.,
2011).

1.2. Coastal marsh LiDAR DEM correction

LiDAR DEMs have shown to overestimate marsh ground elevations
as much as 0.65 m (Medeiros et al., 2015), and errors tend to grow with
both increasing vegetation density and marsh height (Rosso et al., 2006;
Sadro et al., 2007; Schmid et al., 2011). To address this issue, a binning
procedure was utilized to generate binning DEMs because the bias and
error can be reduced considerably (Rosso et al., 2003; Schmid et al.,
2011; Medieros et al., 2015; Buffington et al., 2016). Researchers ty-
pically apply corrections to an already generated LiDAR DEM using
field surveyed Real Time Kinematic (RTK)-GPS data (Schmid et al.,
2011; Hlaldik and Alber, 2012; Medieros et al., 2015; McClure et al.,
2016; Buffington et al., 2016). RTK-GPS is an alternative technique for
collecting accurate elevation data through field surveys. The applica-
tion of RTK-GPS data has been recognized as a standard to assess and
calibrate LiDAR DEMs. The uncertainty of LiDAR DEMs in marsh en-
vironments is mainly attributable to vegetation and tends to be species-
dependent. Therefore, one method in marsh LiDAR DEM correction
using RTK-GPS data focuses on a solution to derive a bias specific to
each species, and then correct the LiDAR DEM cell by cell using the
species-dependent bias (e.g., Hlaldik and Alber, 2012; McClure et al.,
2016). This is referred to as the grid-based bias-correction method in
this study. This type of correction assumes that errors in the LiDAR
DEM are spatially consistent within a species, and the heterogeneous
structure of this species has not been considered. LiDAR uncertainty in
marsh environments is influenced by the characteristics of plants,
which present a varying elevation within a species rather than a con-
stant (Rogers et al., 2016, 2018). A second method in LiDAR DEM
correction uses above ground biomass and vegetation indices with
linear modeling techniques (Medeiros et al., 2015; Buffington et al.,
2016). While this type of correction considers the heterogenous struc-
ture within a species, it assumes that the underlying data follow a
normal distribution, which may not always the case. Therefore, a non-
parametric approach that incorporates the spatial heterogeneity of
LiDAR uncertainty and has the potential to enhance the integrity of
LiDAR DEMs in marsh environments has been developed in this study.

1.3. Object-based nonparametric modeling techniques in LiDAR correction
and DEM generation

One strategy to include the heterogeneity of LiDAR uncertainty in
the correction is to identify the relationship between marsh character-
istics and LiDAR uncertainty. LiDAR statistical metrics have proven
useful to characterize vegetation in the Florida Everglades (Zhang,
2014). A quantification of the relationship between LiDAR measure-
ments and RTK-GPS data might be an effective alternative to the
commonly used bias-correction method. LiDAR statistical metrics can
be derived at the grid level with a regular size and shape or the object
level with varying sizes and shapes. Object-based modeling and map-
ping is more valuable than grid-based methods in the Everglades be-
cause coastal managers and planners are more interested in a region/
patch rather than an individual grid/raster (Zhang et al., 2018). Object-
based Image Analysis (OBIA) provides the unique opportunity to de-
velop an object-based LiDAR correction approach to be reported and
tested in this study. OBIA has been well developed and widely used in
image classification, as reviewed by Blaschke (2010). However, OBIA
has never been applied in correcting LiDAR DEMs or LiDAR point data.
This study is the first to explore the potential of OBIA for LiDAR cor-
rection and generating LiDAR DEMs by developing an object-based
correction approach.
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A recent study from Rogers et al. (2018) shows that LiDAR-derived
measurements tend to be nonlinearly related to LiDAR uncertainty,
suggesting nonparametric machine learning modeling algorithms might
be more effective than traditional linear modeling techniques in LiDAR
correction. In this study, we examined four nonparametric machine
learning modeling algorithms for LiDAR correction and DEM genera-
tion: Random Forest (RF), Support Vector Machine (SVM), k-Nearest
Neighbor (k-NN), and Artificial Neural Network (ANN). These algo-
rithms have shown to perform well in marsh characterization and
biomass modeling in the Everglades (Zhang, 2014; Zhang et al., 2018).

1.4. Monte Carlo uncertainty simulation

Since corrected DEMs approximate the true elevation, they too
contain vertical inaccuracies and errors that need considering. The
vertical accuracy of a DEM refers to how close the modeled elevations
are to the true elevations of an independent data source of better ac-
curacy (i.e. RTK-GPS). Vertical error or uncertainty in DEMs may be
expressed numerically by standard deviation (o), which is a measure of
precision that represents a range of errors around the mean (accuracy)
between the DEM and RTK-GPS. Common sources of LIDAR DEM ver-
tical accuracy and error, and the standards used to assess them, are
provided in a review by Cooper et al. (2013). Adjusting for the un-
certainty in the underlying data respective to the DEMs is especially
important for low slope marsh environments where a difference of a
few centimeters in elevation can impact the results of rigorous ecolo-
gical and hydrological modeling. Unfortunately, the effect of un-
certainty in DEMs is often neglected and consequently not adjusted for
by DEM providers and users (Wechsler and Kroll, 2006). Monte Carlo
simulation techniques provide the unique opportunity where the effect
of the uncertainty related to the underlying data in LiDAR corrected
DEMs can be observed and adjusted. Monte Carlo is a statistical ap-
proach useful for modeling dynamic geographic phenomena with sig-
nificant uncertainty such as DEMs (e.g., Wechsler and Kroll, 2006). It
has been widely used in mapping and modeling of coastal marsh en-
vironments such as the probabilistic estimation of sea-level rise marine
inundation (Cooper and Chen, 2013; Clough et al., 2016) and ground-
water inundation (Cooper et al., 2015), carbon emissions (Henman and
Poulter, 2008), and intertidal habitats on barrier islands (Enwright
et al., 2018). However, it has not been applied in adjusting corrected
DEMs by considering the underlying error estimates in the correction
procedure. In principle, Monte Carlo simulation follows the law of large
numbers theorem where averaging the results over many trials provides
a more reliable result of the expected value (Graham and Talay, 2013).
In this study, we extended the Monte Carlo DEM uncertainty approach
by Wechsler and Kroll (2006) to consider the vertical accuracy and
errors in the corrected DEMs, RTK-GPS data and benchmarks, and
vertical datums to which the data are vertically referenced. It is ex-
pected that by combining Monte Carlo simulation with the corrected
DEMs and error estimates, the approximations of the true elevations
being modeled are more reliable for end users’ needs.

1.5. Objectives

The main objective of this study is to develop an object-based LiDAR
correction approach for generating corrected DEMs to complement the
existing bias-correction methods by combining OBIA and machine
learning modeling techniques. The specific objectives are to: 1) explore
the pros and cons of object-based machine learning LiDAR correction
method compared with the current grid-based bias-correction methods;
2) examine the potential benefits of object-based elevation data over
the grid-based raster DEMs, and 3) adjust for the effect of uncertainty in
the final corrected DEM deliverables and produce maps where the
likelihood of object-based corrected DEM uncertainty can be observed.
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Fig. 1. Map of the two study sites in the southern coastal region of Everglades National Park.

2. Study area and data
2.1. Study area

The study area is in the southern coastal region of Everglades
National Park (ENP) (Fig. 1). We surveyed two sites of this area for
collecting RTK-GPS data in this study. The first site is located just below
the Nine Mile Pond turnoff from Main Park Road (hereinafter referred
to as Nine Mile; ~1km? in area) This site is historically a freshwater
marsh dominated by sawgrass (Cladium jamaicense). The second site is
in the southernmost headquarters of ENP and includes the Flamingo
Visitor Center (hereinafter referred to as Flamingo; ~3km? in area).
This site is dominated by high-density tall stands of trees (taller than
5m) including red mangrove (Rhizophora mangle), black mangrove
(Avicennia germinans), white mangrove (Laguncularia racemosa), and
buttonwood (Conocarpus erectus). During the survey, the ecological
impact of hurricanes could be seen within the plant communities at
each study site. In Nine Mile, low density trees with heights less than
5m are pervasive including red mangrove and buttonwood. This is
because winds from hurricanes Donna (1960) and Betsy (1965) resulted
in the establishment of red mangrove (Rhizophora mangle) seedlings in
Nine Mile, thus the red mangrove does not require its intertidal habitat
to survive (Lodge, 2010). In Flamingo, the inland movement of mud
during hurricanes resulted in a patchwork of coastal prairies where
dominant species include saltwort (Batis maritima), glasswort (Salicornia
spp.), and saltgrass (Distichlis spicata), all generally less than 1 m tall.
The soils for Nine Mile are dominated by sawgrass peat deposits, while
the soils for Flamingo vary spatially and are dominated by mangrove

peat deposits and hurricane deposited marl. Both study sites are un-
derlain by highly permeable Miami limestone, which makes up part of
the Biscayne Aquifer. Water flows towards the southwest where ex-
tensive freshwater diversions due to current water management prac-
tices coupled with rising sea levels are threatening the stability of the
coastal peat marshes.

2.2. Data

Data sources used in this study include RTK-GPS ground elevation
data for correcting LiDAR elevations, LiDAR for building object-based
corrected DEMs, and aerial imagery for generating image objects. For
our RTK-GPS survey data collection, a reconnaissance was performed to
identify the survey sites and existing survey controls. Survey sites were
selected based on roadside access to different vegetation communities.
After the reconnaissance, we collected RTK-GPS elevation data in
February and March 2016, the dry season of South Florida
(November-May), to be seasonally consistent with the acquisition of
LiDAR and aerial imagery. In the data collection, existing survey con-
trols were chosen based on their vicinity to our study sites, un-
obstructed view of the sky, accessibility, and horizontal and vertical
orders that affect the overall error of the survey. Three National
Geodetic Survey (NGS) benchmarks were used in the field: NGS tidal
benchmark PID AB2404, NGS benchmarks PID AC4648, and PID
AC4659, which were reported to have a horizontal and vertical classi-
fication of first-order, class II, with a maximum elevation difference
error of 0.07 m (1 standard deviation or o) (https://www.ngs.noaa.gov/
datasheets/). The Leica 1200 system was utilized with reported real
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time errors of 0.01 m in the horizontal and 0.02 m in the vertical (RMSE
at 68% confidence interval) (Leica Geosystems, 2008). The Leica 1200
base receiver was set up over the NGS and tidal benchmarks. A topo
shoe was fitted to the survey rods of the moving receivers or rovers to
prevent sinking into the peat soils. Elevations were surveyed near low
tide with nominal precisions <0.01 m in horizontal and <0.03m in
vertical positions (RMSE at 68% confidence interval). Survey data were
collected for each dominant vegetation community to provide a re-
presentation of the overall population and with a separation radius
greater than or equal to 2 m. In total, we collected 483 RTK-GPS ground
elevations (132 for Nine Mile; 351 for Flamingo) which were vertically
referenced to North American Vertical Datum of 1988 (NAVD88) using
Geoid 12A.

The current best available LiDAR data for the study area were col-
lected by the Florida Division of Emergency Management in February
2008 using the Leica ALS50 Airborne Laser Scanner system, which was
reported to have a horizontal error of 0.07-0.64 m (1 standard devia-
tion or 1 o) and vertical error of 0.08-0.24 m (1 o) after post-processing
(Leica Geosystems, 2007). The data are available at National Oceanic
and Atmospheric Administration (NOAA)'s data access viewer (https://
coast.noaa.gov/dataviewer). Although intensity images are also avail-
able, they were not used in this study for model simplicity. The average
LiDAR point density reported is 2 points/m? for unobscured areas (no
trees or buildings). The vendor filtered the LiDAR point cloud into
classified ground (bare-earth) and non-ground returns (vegetation,
structures, and buildings). RTK-GPS (Trimble 4700 and Trimble 4000
series) and total station surveys were also conducted by the vendor for
LiDAR accuracy assessment in July 2007 for Nine Mile and in December
2007 for Flamingo, which were also considered in this study. Since both
the LiDAR and vendor's survey data were vertically referenced to the
NAVDS88 using Geoid 03, we transformed their LiDAR and RTK-GPS
data to be consistent with our RTK-GPS data using a vertical datum
transformation tool from NOAA (https://vdatum.noaa.gov/).

Fine spatial resolution aerial photography with three spectral
channels (red, green, and blue) is available for both sites. The Nine Mile
aerial imagery was collected in January 2016 with a spatial resolution
of 0.25m, while the Flamingo imagery was collected in January 2012
with a spatial resolution of 0.30m. We used the aerial imagery to
produce image objects for conducting object-based LiDAR correction
and DEM modeling.

3. Methodology

3.1. Framework of the object-based machine learning LiDAR correction and
DEM generation

We designed a framework for conducting object-based machine
learning LiDAR correction and DEM generation, as shown in Fig. 2. In
the framework, image objects were produced first using an image
segmentation approach, then LiDAR statistical metrics were extracted
for each object to be used for ground elevation modeling and predic-
tion. Field RTK-GPS elevation data were spatially matched at the object
level to the LiDAR measurements to be used for model development. A
training dataset was used to fine tune the parameters of four machine
learning regression algorithms (RF, SVM, k-NN, and ANN) before
making predictions on the new LiDAR measurements to generate the
object-based LiDAR corrected DEMs. An independent test dataset was
then used to quantitatively compare the object-based LiDAR corrected
DEMs that were then combined with Monte Carlo simulation to account
for the uncertainty in the underlying data. The major steps in the fra-
mework include image segmentation, data matching, machine learning
modeling LiDAR correction and DEM generation, accuracy assessment,
and Monte Carlo uncertainty simulation. These steps are provided in
the following subsections.
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3.1.1. Image segmentation

We generated objects from the aerial imagery using the multi-
resolution segmentation algorithm in eCognition Developer 9.3 (Benz
et al., 2004; Trimble, 2017). The algorithm first segments individual
pixels of an image before merging neighboring segments together until
a heterogeneity threshold is reached (Benz et al., 2004). The hetero-
geneity threshold is determined by user-defined parameters including
scale, color/shape and smoothness/compactness weights. The scale is
an arbitrary value allowing for a relative comparison between different
scales. The scale determines the size of objects where a smaller scale
value produces smaller homogeneous objects, and a larger scale value
produces larger heterogenous objects. In this study, a smaller scale is
reasonable for restoration planning and sea-level rise mapping which
requires highly detailed elevation products. To help identify an optimal
scale for generating the best prediction model, we tested three seg-
mentations using scale parameters ranging from 20 to 40 at an interval
of 10. The color/shape parameter was set to 0.9/1.0 for all three bands
so that spectral information was weighted most heavily for segmenta-
tion. The smoothness/compactness parameter was set to 0.5/0.5 for all
three bands so that compact and non-compact segments were favored
equally. After segmentation, the LiDAR elevation statistical metrics
(minimum, mean, maximum, standard deviation, range and count or
number of LiDAR points) were extracted for each image object to be
used as independent variables for ground elevation modeling and
mapping. Objects without LiDAR measurements were dropped for fur-
ther analysis. The LiDAR statistical metrics were derived using the
original LiDAR point elevations which have proven more valuable than
the application of a raster layer generated from LiDAR data for ex-
tracting LiDAR measurements (Zhang et al., 2011, 2014).

3.1.2. Data matching

It is common for researchers to match the observed RTK-GPS mea-
sures with individual LiDAR DEM grid cells to calculate correction
factors. In this study, we spatially matched our RTK-GPS data (132 for
Nine Mile; 351 for Flamingo) with the LiDAR measurements at the
object level. We expected two advantages from the object-based
matching scheme. First, it can reduce the uncertainty of positional
discrepancy between LiDAR measures and field RTK-GPS data. Second,
a “pure” object/region is more representative for the plant structure
and/or DEM than any individual grid cell within this object/region.
OBIA offers the capability to match the field RTK-GPS data to relatively
homogeneous objects with a varying shape and size, rather than a grid
cell in which plants might be heterogeneous in structure.

3.1.3. Object-based nonparametric machine learning modeling and LiDAR
correction and DEM generation

In this study, we examined four nonparametric machine learning
algorithms (RF, SVM, k-NN, and ANN) for ground elevation modeling
with RTK-GPS data as the dependent variable and LiDAR measurements
as the independent variables. RF is an ensemble learning technique
developed by Breiman (2001) to improve the classification and re-
gression tree method. Advantages of RF include its speed and capability
to deal with complex relationships between predictors, but it requires
many training samples that should be representative (Belgiu and
Dragut, 2016). SVM is a statistical learning approach that looks for an
optimal hyperplane to minimize training errors. An advantage to SVM
is its capability to produce improved estimations based on a small
number of training samples, but parameter issues may arrive with this
algorithm (Mountrakis et al., 2011). k-NN is an instance-based learning
method that searches for the best match to denote inputs. An advantage
of k-NN is its capability to make local approximations while simulta-
neously solving multiple problems and dealing with changes in the
problem domain; however, it requires the selection of an appropriate
distance metric to combine neighbors for predictions (Chirici et al.,
2016). ANN models data based on the structure of neurons and the
synapses of human brains. ANN can generalize in a noisy environment,


https://coast.noaa.gov/dataviewer
https://coast.noaa.gov/dataviewer
https://vdatum.noaa.gov/

H.M. Cooper et al.

Aerial imagery
Segmentation
v

Image objects

v

LiDAR point data

Object-based LiDAR metrics

h 4

Monte Carlo simulation

v

Object-based LiDAR DEMs

Model selection

Environmental Modelling and Software 112 (2019) 179-191

RTK-GPS data

Data matching
v

Matched data
v
Nonparametric machine learning modeling
(RF, SVM, k-NN, and ANN)
Accuracy assessment

A 4

< Accuracy

Fig. 2. Framework for object-based LiDAR correction and DEM generation.

but it may be difficult to interpret because the inner workings are like a
black box (Mas and Flores, 2008). Since each model has its own pros
and cons, the potential of each for LiDAR correction has been explored
in this study.

The 132 matched samples for Nine Mile and 351 matched samples
for Flamingo were randomly split into two datasets with one to train the
machine learning models used to correct the LiDAR measurements
before generating DEMs, and the other to test the predictive perfor-
mance of all finalized models used to generate corrected DEMs. The
National Digital Elevation Program (NDEP, 2004) recommends a
minimum of 30 checkpoints to access the vertical accuracy of elevation
data. We chose to randomly select a total of 30 samples as test data
samples used to assess the vertical accuracy of the corrected DEMs for
the Nine Mile and Flamingo study areas, respectively. The remaining
samples (102 for Nine Mile; 321 for Flamingo) were used to train and
fine tune the models’ parameters.

To help reduce overfitting, training time, and improve model ac-
curacy, automatic attribute selection is useful for determining the most
relevant explanatory variables. The supervised attribute selection filter
in WEKA version 3.8 (Hall et al., 2009) was used to select relevant
explanatory variables for use in model construction. The filter evaluates
the value of a subset of explanatory variables by considering the in-
dividual predictive ability of each variable along with the degree of
redundancy between them (Hall, 1998). The relevant explanatory
variables for the Nine Mile object-based dataset were all LiDAR mea-
surements except standard deviation and range, and the relevant ex-
planatory variables for the Flamingo object-based dataset were LiDAR
minimum and count. We employed WEKA version 3.8 (Hall et al.,
2009) where the training datasets were used to fit the four machine
learning regression algorithms over different tuning parameters using
resampling techniques. The RF algorithm (Breiman, 2001) was utilized
where the following tuning parameters were defined: 1) the number of
decision trees in the forest, and 2) the number of randomly selected
variables subsetted from the total number of variables that are used for
each node split in a tree. The kernel, precision, and penalty parameters
were adjusted when using the SVM algorithm (Shevade et al., 1999).
The k-NN algorithm (Aha and Kibler, 1991) was evaluated by fine
tuning distance measures, weighted functions, and k value parameters.
The parameters fit for the ANN multilayer perceptron algorithm (Mas
and Flores, 2008) were the learning rate and number of hidden layers
and training cycles. Repeatability was achieved by using the same se-
quence of random numbers where the seed was set to 123 for all ap-
plicable model runs. For each of the four machine learning techniques,
the tuning parameters were chosen based on trial and error using the
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lowest RMSE provided by 10-fold cross validation. The finalized models
were then utilized to make predictions on new LiDAR measurements.
Using ArcGIS version 10.4 (http://www.esri.com/) Data Management
tools, the prediction attribute features were spatially joined to the ob-
ject-based features based on their spatial relationship to generate the
object-based LiDAR corrected DEMs.

3.1.4. Accuracy assessment

The test data were used to produce quantitative assessments of the
final corrected DEMs to compare between models, choose which models
produced the best results, and perform Monte Carlo simulations. The
association between each corrected DEM's model-predicted (P) values
and observed (0O) RTK-GPS measures were evaluated using several
correlation, difference, and summary measures. One type of correlation
measure was calculated. The correlation or degree of association be-
tween P and O was expressed as Pearson's coefficient of correlation (r).
Three types of difference measures were calculated. Estimates of the
average error were described as the Mean Absolute Error (MAE) and
RMSE. Any systematic error that makes all estimates off by a certain
amount, or bias, was described as the Mean Bias Error (MBE). Several
summary measures were then calculated. These include the mean ()
and standard deviation (o). These indices were calculated by:

Y, B —=P)O; - 0)

L G-R I, O-0F M
MAE = W (2
RMSE = \/‘%M 3)
MBE = M @

where P, is the model-predicted value, P, is the mean of the model-
predicted values, O; is the observed value, O; is the mean of the ob-
served values, n is the number of matched test data samples, and i is an
integer from 1 to n.

3.1.5. Monte Carlo uncertainty simulation on corrected DEMs

Before we can adjust for the effect of uncertainty in the final cor-
rected DEM deliverables and produce maps where the likelihood of
corrected DEM uncertainty can be illustrated, the vertical accuracy and
error in the underlying data along with their distributions needs
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considering. These uncertainties included the following: 1) vertical
datums and any transformations made between them, 2) RTK-GPS
measurements, 3) vertical benchmarks used in survey, and 4) the model
predictions for each object in the object-based corrected DEMs. First,
the errors associated with the vertical datum to which the data are
referenced were obtained from NOAA (2013). The o is used to quantify
uncertainties for vertical datums, where NOAA considers a constant o of
5cm for NAVD88 nationwide. No transformations between datasets
were needed for this study to include transformation errors. Second, the
RTK-GPS measurements contained a vertical RMSE <0.03m
(RMSE = 1 0), while the vertical benchmarks to which the surveys were
based is 0.07 m (1 o). It is assumed that the individual uncertainties are
independent where the value of one measurement does not affect the
value of the other measurement and are randomly distributed following
a normal distribution. This allows for the total uncertainty of the RTK-
GPS measures and vertical benchmarks to be calculated by the root sum
of squares as the Maximum Cumulative Uncertainty (MCU) o:
MCU; = \/012 + 0} + ...0% (5)

Finally, the accuracy and error in the corrected DEMs were calcu-
lated in the previous section, which are needed for the Monte Carlo
simulation.

To adjust for the uncertainty related to the underlying data, Monte
Carlo simulation is applied to our corrected DEMs having a single
output quantity (more reliable elevation) where the input quantities
(survey, vertical datums and model predictions) are characterized by
any specific Probability Distribution (PD). We did not apply filtered
error fields in the procedure (e.g. Wechsler and Kroll, 2006; Enwright
et al., 2018); instead, unfiltered error fields were considered as a worst-
case scenario of the effects of corrected DEM uncertainty (Wechsler and
Kroll, 2006). We reduce the equation by Cooper and Chen (2013) to
consider the uncertainty related to our corrected DEMs:

DEMreliable Z (DEMsuruey + DEMdatum + DEMBrror + DEMx,y)/n

(6)
where DEM,;iqpie is a final object-based corrected DEM value that is
more reliable provided the uncertainty in the underlying data; DEMj, e,
is a random variable sampled proportional to the RTK-GPS measures
and vertical benchmarks survey data distribution; DEMygy,, is a random
variable sampled proportional to the vertical datum distribution;
DEM_,,r is a random variable sampled proportional to the model pre-
dictions; and DEM,, is a constant elevation z value of an object at an x,y
location. The sampling procedure is repeated a total of 1000 cases for
each object. An illustration of the Monte Carlo-based elevation un-
certainty model is shown in Fig. 3.

To produce maps that spatially illustrate the likelihood that a cor-
rected DEM is in error, it is assumed that the “true” elevation is best
represented by the corrected DEM derived from the most accurate
model. In this way, the likelihood that a corrected DEM value is in error
is based on the probability that the corrected DEM value deviates from

J\

Vertical datums and
transformations

Model predictions
accuracy and error

,<

Object-based
elevation value

GPS survey accuracy
and error

Vertical Benchmark
accuracy and error

Z(Surveyo,es + Datumg os + DEMg s + Objectxy)/n

More reliable result of expected elevation value

Fig. 3. Illustration of the Monte Carlo-based elevation uncertainty model.
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the true elevation. Monte Carlo simulation is applied to our object-
based corrected DEMs having a single output quantity (likelihood of
error) where the input quantities (survey, vertical datums and model
predictions) are characterized by any specific Probability Distribution
(PD) using the following equation:

LikelihOOderror Z ((DE]Msurvey + DEMuatum + DEMepror

+ DEM, ) < (DEMjypey + DEManum + Trueeror

+ Trueyy))/n )

where the difference from equation (6) is that Likelihood,,, is the
probability an object-based corrected value deviates from the True
elevation, True,,,, is a random variable sampled from the most accurate
object-based corrected DEM, and True,., is a constant elevation z value
at an x,y location derived from the most accurate object-based cor-
rected DEM. Although any ranking scheme can be utilized, we chose to
generalize the likelihood of error values using the following ranking
scheme where object-based probability values ranging from 0 to 0.39
are assigned equal to low, object-based probability values ranging from
0.4 to 0.59 are assigned equal to medium, and object-based probability
values ranging from 0.6 to 1 are assigned equal to high likelihood of
error. The generalized object-based likelihood layers are then used to
calculate total land area susceptible to error for each ranking scheme
(low, medium, high).

3.2. Grid-based nonparametric machine learning modeling and LiDAR
correction and DEM generation

For comparison purposes, we also conducted the grid-based LiDAR
correction and DEM generation. The process was first implemented in
Python version 2.7.10 (https://www.python.org/) using ArcGIS Arcpy
Python site package to create an easy workflow. First, three grids with
resolutions ranging from 1 to 3 m at an interval of 1 m were generated.
The minimum resolution was chosen based on the reported LiDAR
average point density of 2 pts/m? The binning technique was then
utilized (Rosso et al., 2003; Schmid et al., 2011; Medieros et al., 2015;
Buffington et al., 2016) to assign a grid cell's center point the respective
LiDAR statistic (minimum, mean, maximum, standard deviation, range,
count) when more than one LiDAR attribute falls within that cell. If
only one LiDAR attribute falls within a cell, that attribute is assigned to
that cell (null assigned to no data). Due to the nature of the landscape
consisting of dense coastal vegetation and surface-water with dark peat
soils below making LiDAR measures sometimes difficult, certain cells
contained null values. The results were a total of six raster datasets for
Nine Mile and six raster datasets for Flamingo, each containing LiDAR
minimum, mean, maximum, standard deviation, range and count per
respective grid cell. The relevant explanatory variables for the Nine
Mile grid-based dataset were all LIDAR measurements except standard
deviation, range and count, and the relevant explanatory variables for
the Flamingo grid-based dataset were simply the LiDAR mean and
minimum. The process presented in section 3.1.3 above was then re-
peated to generate grid-based corrected DEMs.

3.3. BIN and BIN bias-correction DEM generation

Since LiDAR ground returns are known to overestimate coastal
marsh elevations, the minimum bin technique (hereinafter simply re-
ferred to as BIN) seems more reasonable than interpolation methods for
our two study sites when comparing the bias-correction procedure with
the four machine learning regression algorithms. Here, the grid-based
and object-based datasets containing the minimum LiDAR value are
referred to as the grid-based and object-based BIN. It is common for
researchers to calibrate grid-based LiDAR DEMs with bias correction
factors (Schmid et al., 2011; Hladik and Alber, 2012; McClure et al.,
2016). For comparison purposes, the grid-based and object-based BIN
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Table 1

Descriptive statistics for each experiment. Where BIN = minimum binning, BIN
bias-correction = BIN calibrated by the respective mean bias, RF = Random
Forest, SVM = Support Vector Machine (SVM), k-NN = k-Nearest Neighbor,
ANN = Artificial Neural Network, P = the mean of the model-predicted values,
O = the mean of the observed RTK-GPS, o5_p = the standard deviation of the
differences between P and O, MBE = mean bias error between model-pre-
dicted and RTK-GPS, MAE = Mean Absolute Error, RMSE = Root Mean Square
Error between model-predicted and RTK-GPS, r = coefficient of correlation,
n = number of RTK-GPS, all in meters (except n). The op_o and MBE were used
in Monte Carlo simulation. Experiments in bold are selected as demonstrating
the best performance.

Nine Mile object-based scale 30

Experiment n 0 P cp_o0 MBE MAE RMSE r

Uncorrected 30 -0.13 0.06 0.13 0.18 0.19 0.22 0.65
LiDAR

BIN 169 -0.10 0.05 0.17 0.03 0.12 0.17 0.76

BIN bias- 30 -0.13 -0.14 0.16 -0.04 0.12 0.16 0.05
correction

RF 30 -0.13 -0.15 0.07 —0.02 0.05 0.08 0.70

SVM 30 -0.13 -0.15 0.08 -0.02 0.06 0.08 0.69

k-NN 30 -0.13 -0.15 0.07 -0.02 0.05 0.08 0.68

ANN 30 -0.13 -0.14 0.08 -0.01 0.06 0.08 0.55

Nine Mile grid-based 3 m

Uncorrected 30 -0.13 0.11 0.13 0.24 0.24 0.27 0.77
LiDAR

BIN 102 -0.09 0.05 0.20 0.14 0.17 0.25 0.75

BIN bias- 30 -0.13 -0.01 0.13 -0.03 0.11 0.13 0.59
correction

RF 30 -0.13 -0.14 0.06 -0.01 0.05 0.06 0.76

SVM 30 -0.13 -0.13 0.09 -0.01 0.06 0.09 0.46

k-NN 30 -0.13 -0.15 0.07 —0.02 0.05 0.07 0.70

ANN 30 -0.13 -0.17 0.09 -0.04 0.07 0.10 0.41

Flamingo object-based scale 30

Uncorrected 30 0.10 0.27 0.17 0.17 0.17 0.24 0.84
LiDAR

BIN 211  0.29 0.29 0.23 0.00 0.14 0.23 0.88

BIN bias- N/A N/A N/A N/A  N/A N/A N/A N/A
correction

RF 30 0.10 0.12 0.10 0.02 0.06 0.10 0.95

SVM 30 0.10 0.01 0.09 -0.01 0.15 0.09 0.69

k-NN 30 0.10 0.15 0.14  0.05 0.10 0.14 0.92

ANN 30 0.10 0.13 0.13  0.03 0.09 0.13 0.93

Flamingo grid-based 3 m

Uncorrected 30 0.10 0.27 0.15 0.17 0.17 0.22 0.87
LiDAR

BIN 321 0.29 0.40 0.26  0.11 0.18 0.28 0.83

BIN bias- 30 o0.10 0.22 0.14 0.00 0.10 0.14 0.88
correction

RF 30 0.10 0.03 0.30 -0.08 0.16 0.30 0.25

SVM 30 0.10 0.00 0.28 -0.09 0.17 0.29 0.40

k-NN 30 0.10 0.03 0.31 -0.08 0.17 0.31 0.17

ANN 30 0.10 0.05 0.25 —-0.05 0.15 0.25 0.66

datasets were also calibrated by the Mean Bias Error (MBE) calculated
from the training datasets (102 for Nine Mile; 321 for Flamingo). These
datasets are referred to as the grid-based and object-based BIN bias-
correction.

4. Results
4.1. Grid-based vs. object-based corrected DEMs
To compare the bias-correction method with machine learning

modeling, descriptive statistics are displayed in Table 1. In reviewing
the summary position parameter or average of predictions (P), the BIN
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and BIN bias-correction techniques tend to systematically overestimate
the corresponding observed average of observations (O) to a higher
degree than the machine learning techniques with one exception: The
Flamingo object-based scale 30 BIN dataset suggests that P and O are
the same (Table 1). Therefore, the bias-correction technique cannot be
applied to the Flamingo object-based scale 30 BIN because the differ-
ence parameter MBE is zero. Machine learning techniques provide a
valuable alternative to the bias-correction approach when LiDAR data
contains no systematic bias (i.e. MBE = 0.0) and is less unprecise (e.g.
o= 0.23m).

The difference measures (MAE, RMSE) and MBE help to better de-
termine which modeled grid-based 3 m resolution and modeled object-
based scale 30 datasets are preferred (Table 1). In terms of the MAE and
RMSE for Nine Mile, a meaningful distinction can be made between the
BIN bias-based and machine learning experiments. The MAE and RMSE
are lowest (best) for the object-based and grid-based machine learning
experiments at the Nine Mile study site. In reviewing the MBE, the
machine learning experiments also reduce the bias when compared to
the bias-correction procedure. Further examination of r indicates that
the Nine Mile grid-based 3 m RF has a slightly higher degree of asso-
ciation between P and O (r = 0.76) when compared to the object-based
scale 30 RF (r = 0.70). Overall, the RF algorithm performed best for the
Nine Mile grid-based and object-based datasets when compared to the
bias-correction technique.

In terms of the MAE and RMSE for Flamingo, a slightly different
distinction can be made between the BIN bias-correction and machine
learning experiments. The MAE and RMSE are lowest (best) for the
object-based machine learning experiments where RF performs best
overall at the Flamingo study site. However, the grid-based machine
learning experiments did not perform as well as the grid-based BIN bias-
correction experiment at the Flamingo study site. The examination of r
indicates that the Flamingo object-based scale 30 RF has a slightly
higher degree of association (r = 0.95) when compared to the grid-
based BIN bias-correction (r = 0.88). Overall, the object-based RF al-
gorithm performed best compared to all other experiments for the
Flamingo study site.

We also compared the RTK-GPS measurements with the uncorrected
LiDAR ground return elevations within an object-based or grid-based
dataset (Table 1). The LiDAR systematically overestimates the ground
for both study sites. For Nine Mile, the uncorrected LiDAR within an
object demonstrated a lower MBE of 0.18 m and RMSE of 0.22 m when
compared to the uncorrected LiDAR within a grid (MBE = 0.24 m;
RMSE = 0.27 m). Although the standard deviation of 0.13 cm is the
same for both the object-based and grid-based datasets, the RMSE may
be more useful because it demonstrates that large errors are present in
the MAE. This is because the RMSE calculation assigns higher weights
to larger errors by first squaring the errors before taking their average.
For Flamingo, no meaningful distinction can be made between the
uncorrected LiDAR within an object (MBE = 0.17 m; RMSE of 0.24 m)
when compared to the uncorrected LiDAR within a grid
(MBE = 0.17 m; RMSE = 0.22m).

4.2. Grid-based and object-based DEM mapping

The corrected DEM maps were derived by applying the machine
learning models to the object-based scale 30 and grid-based 3 m data
for each of the two study sites. This provided the opportunity to in-
corporate the uncertainty in the underlying data into the final corrected
DEM products using equation (6) with Monte Carlo simulations (see
Figs. 4 and 5). In the maps, red represents higher elevations above
NAVDS88 and blue represents lower elevations below NAVDS88, all in
meters. For both study areas, the object-based corrected DEM maps
qualitatively do a better job at estimating unknown locations when
compared to the grid-based corrected DEM maps. This is illustrated by
the missing data values shown in white that are more prevalent in the
grid-based corrected DEM maps. The Flamingo study site also has more
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Fig. 4. Final Monte Carlo object-based and grid-based corrected DEMs for Nine Mile. White areas denote no data.

topographic variation than the Nine Mile study site allowing for better
visual examination of the object-based and grid-based experimental
results. The corrected DEM maps show that the object-based approach
provides a more detailed account of the ground elevation values when
compared to the grid-based corrected DEM maps (see Fig. 5 for more
variation in the graduated colors). The corrected DEM maps also de-
monstrate that the object-based corrected DEMs are more re-
presentative of the landscape.

4.3. Uncertainty mapping relative to the best model

The final uncertainty maps that illustrate the probability that an
object-based corrected elevation value is in error from the true eleva-
tion are shown for the Nine Mile and Flamingo study areas in Figs. 6
and 7, respectively. Although the Nine Mile and Flamingo object-based
RF corrected DEMs do not represent an unbiased result, they were
considered as the true elevation because they achieved the best result
when compared to all other object-based machine learning models. The
Nine Mile and Flamingo object-based RF corrected DEMs were used to
calculate the likelihood of corrected DEM uncertainty using equation
(7). In the maps, the likelihoods that SVM, k-NN, and ANN object-based
corrected elevations are in error from the true elevations (i.e., RF ob-
ject-based corrected elevations) are represented by a ranking scheme of
blue for low, green for medium, and red for high chance of error. Al-
though the Nine Mile maps in Fig. 6 illustrate that the likelihood of
error varies from each experiment, it is difficult to qualitatively assess

Elevation NAVD88 (m)
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0.41-0.50
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the preferred approach from these maps alone. On the other hand, the
Flamingo maps shown in Fig. 7 clearly illustrate the ANN object-based
corrected DEM has the lowest likelihood of error, while the k-NN ob-
ject-based corrected DEM has the highest likelihood of error. Table 2
compliments the uncertainty maps by providing a quantitative assess-
ment of the total area that is in likelihood of error. For Nine Mile, the
ANN object-based corrected DEM contains the largest area with a low
likelihood of uncertainty (20% of total land area) and smallest area
with a high likelihood of uncertainty (12% of total land area) making it
the preferred approach. Overall, the uncertainty maps and compli-
mentary table help DEM users to qualitatively and quantitatively assess
the uncertainty of an object-based corrected elevation.

5. Discussion and conclusions
5.1. Machine learning regression for LiDAR correction

After conducting a thorough literature review, we found one recent
study that used machine learning modeling in marshes to develop a
LiDAR correction approach (Rogers et al., 2018). These authors re-
commended that this type of modeling be extended to other regions
with different vegetation types to examine its robustness. In this study,
the potential of four machine learning regression algorithms (RF, SVM,
k-NN, and ANN) were examined to correct LiDAR elevation data in the
coastal Everglades for two study sites: 1) Nine Mile dominated by
sawgrass marsh and mangrove swamp, and 2) Flamingo dominated by

500 1,000 Meters

Fig. 5. Final Monte Carlo object-based and grid-based corrected DEMs for Flamingo. White areas denote no data.
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Fig. 6. Monte Carlo-based likelihood maps of corrected DEM uncertainty for Nine Mile.

mangrove swamp and coastal prairies. All algorithms produced an ac-
ceptable degree of association between the predicted and observed
values where the coefficient of correlation (r) is over 0.55 using object-
based modeling. RF performed best for the Nine Mile object-based
modeling (r = 0.70) where the uncorrected LiDAR MBE was reduced
from 0.18 to —0.02 m, MAE was reduced from 0.19 to 0.05 m, standard
deviation (o) was reduced from 0.13 to 0.07 m, and RMSE was reduced
from 0.22 to 0.08 m. RF also performed best for the Flamingo object-
based modeling (r = 0.95) where the uncorrected LiDAR MBE was re-
duced from 0.17 to 0.02m, MAE was reduced from 0.17 to 0.06 m,
standard deviation (o) was reduced from 0.17 to 0.10 m, and RMSE was
reduced from 0.24 to 0.10 m. Although the vegetation communities,
explanatory variables of importance, and number of RTK-GPS are not
the same, our results are comparable with the study by Rogers et al.
(2018) where RF performed best for discrete LiDAR where all marsh
vegetation MBE = —0.01 cm; standard deviation and RMSE = 0.11 cm.
Based on this study and the study by Rogers et al. (2018), the RF al-
gorithm is robust when correcting discrete LiDAR elevation data for the
two regions with their own unique vegetation communities.

The RF algorithm seems to handle well datasets that do not follow a
Gaussian distribution, contain a bias, and are highly spatially auto-
correlated, which is typical of marsh environments. This is likely due to
the nature of the RF algorithm injecting randomness in the variables
and averaging over many predictions to get an unbiased model result
with low variance (see Criminisi et al., 2011 for a review on RF).
However, RF is not without weaknesses. When using RF for regression,
the model does not do a good job at predicting beyond the range of the
training data, which may have an impact on our results depending on
how well the LiDAR and RTK-GPS measurements represent the overall
population.

Since it is known that DEMs generated using interpolation results in
additional error, and due to the nature of the LiDAR overestimating the
true ground due to vegetation and open water, we decided against using
interpolation. Instead, a binning procedure to correcting LiDAR eleva-
tions known as the minimum binning (BIN) approach was utilized be-
cause it has shown to reduce bias and error in marsh environments

Likelihood of elevation uncertainty

Il Low Medium [l High
Su,

ort Vector Machine (SVM) k-Nearest Neighbor (KNN
; e i

when compared to interpolation (Rosso et al., 2003; Schmid et al.,
2011; Medeiros et al., 2015; Buffington et al., 2016). A few case studies
have also demonstrated that the bias-correction technique does a sa-
tisfactory job at improving the bias (e.g. Hladik and Alber, 2012;
McClure et al., 2016). It was anticipated that by combining the BIN and
bias-correction techniques into a BIN bias-correction object-based
procedure, the bias and error could be further improved for comparison
with the machine learning object-based modeling. However, this was
not the case for our Nine Mile study site where the BIN bias-correction
object-based dataset MBE was slightly increased from 0.03 to —0.04 cm
and the change in the 0 and RMSE was negligible (0.17-0.16 cm) when
compared to the BIN object-based dataset. Rogers et al. (2016) pointed
out that while the bias-correction technique typically does well in
correcting for bias, machine learning techniques provide a better option
for error removal. In this study, the RF object-based modeling improved
bias and significantly lowered error when compared to the BIN and BIN
bias-correction techniques.

5.2. Grid-based vs object-based LiDAR correction and DEM generation

Researchers have focused on correcting LiDAR DEMs at the grid
level (e.g., Schmid et al., 2011; Hlaldik and Alber, 2012; McClure et al.,
2016; Buffington et al., 2016; Rogers et al., 2016). A thorough literature
review revealed that no other efforts have been made for applying OBIA
in object-based LiDAR correction nor applying OBIA in modeling LiDAR
DEMs at the object level. The object-based LIDAR correction approach
developed and tested in this study successfully combines the spatial
features of fine spatial resolution aerial imagery (<0.30 m) with low-
posting density (<2 pts/m?) LiDAR elevation measurements making it
an attractive alternative to the commonly used grid-based method. The
object-based technique's ability to take advantage of spatial features
within an image to define an object/patch and predict more area where
LiDAR is sparse is attractive (see Figs. 4 and 5). This reduces the need
for DEM void filling procedures. The object-based approach can also
reduce positional discrepancy between the image and RTK-GPS mea-
surements because an object represents a vegetation patch better than a
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Fig. 7. Monte Carlo-based likelihood maps of corrected DEM uncertainty for Flamingo.
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Table 2
Total area in likelihood of error.
Study area Experiment Low Medium High
Area km? % area Area km? % area Area % area
Nine Mile SVM 0.10 13 0.57 74 0.10 13
KNN 0.13 17 0.51 66 0.13 17
ANN 0.16 20 0.52 68 0.09 12
Flamingo SVM 0.56 15 2.16 59 0.95 26
KNN 0.85 23 0.87 24 1.95 53
ANN 2.49 68 0.81 22 0.37 10

Image object example where LIDAR statistics are in meters:
minimum =-0.11, mean = 0.01, maximum = 0.16,
standard deviation = 0.07, range = 0.3, count = 21,

3 m grid ., LiDAR point data ® RTK-GPS

Fig. 8. Illustration of image objects derived from OBIA on the Flamingo ima-
gery dataset.

single grid cell (Fig. 8). The object-based mapping and modeling re-
duces local noise in heterogeneous wetland environments by averaging
the spectra of all pixels within an object (Dronova, 2015). In the
Everglades, vegetation has a high spatial and spectral heterogeneity.
The heterogeneity threshold is determined by a user-defined scale
parameter. A smaller scale value produces smaller homogeneous pat-
ches of vegetation, while a larger scale value produces larger hetero-
genous patches. Additionally, a species typically presents a range of
elevation uncertainty opposed to a constant (Rogers et al., 2016), so it is
unlikely that an entire vegetation species would need a constant cor-
rection using the bias-correction technique (Rogers et al., 2018). The
capability of the object-based LiDAR correction technique to reduce the
spatial bias and uncertainty within each individual object/patch suc-
cessfully addresses the issue where the assumption is made that the
accuracy and error is the same for an entire vegetation community.
The inherent structure of vector data makes the object-based cor-
rected DEMs attractive and convenient when manipulating and per-
forming operations on elevation data. The vector object-based mapping
in our case produced smoother elevation gradients and was geo-
graphically more accurate because an object is represented by the line
features of a vegetation patch, whereas the raster grid-based mapping is
represented by an artificial uniform grid size (Fig. 8). The mixed pixel
problem is most apparent in the 2m grid because it is assumed that a
grid cell covers a homogeneous vegetation patch. Since the aerial
imagery have a fine spatial resolution (0.25-0.3m), it is easier to
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interpret homogenous vegetation patches as objects from the fine re-
solution images (Fig. 8). Additionally, object-based elevations are
stored as attribute tables allowing for flexibility in data manipulation
such as joining tables. Since both data management and the integrity of
object-based corrected elevations is maintained through topology rules,
network and proximity operations are performed more efficiently. For
example, network-based analytical tools used for solving complex
routing issues in a GIS can easily be applied to object-based corrected
DEMs to identify thresholds of dynamical marsh system response to
water and nutrient fluxes. Proximity-based analytical tools can also be
easily applied to an object-based corrected DEM to select by attributes
and identify proximity to other features such as the shoreline. These
vector-based operations are especially useful for assessing the impacts
of sea-level rise and storm related events on natural and human coastal
systems (e.g. Cooper et al., 2015).

Although the object-based technique provides some benefits in
elevation mapping and modeling, it is not without its weaknesses. Here,
we identify three limitations related to the scale parameter, vector data
structure, and processing time. First, the scale parameter used for
generating the size of objects can impact the object-based modeling
results. A small scale produces homogenous objects, while a large scale
produces more heterogenous objects. In this study, we tested several
scale parameters by trial-and-error. Although methods exist for opti-
mizing the scale parameters in image segmentation (e.g. Johnson and
Xie, 2011), we did not apply them in this study. These techniques may
help improve the results. Second, spatial analysis tools and filtering
methods require raster data. To perform these operations, the Nine Mile
object-based corrected DEM would need to be converted to a raster
using the original 0.25 m resolution aerial imagery as its grid size and
processing extent to maintain the integrity of the object-based corrected
elevations. Although this requires an additional step, converting an
object-based corrected DEM to a grid-based corrected DEM that mat-
ches the fine resolution imagery used to generate the objects may be
useful for fine scale mapping of habitat and elevation loss due to the
conversion of coastal peat marshes to inland open water from sea-level
rise (i.e., peat collapse). Third, the object-based machine learning
technique has a high computational intensity when compared to the MB
bias-correction method. Although the object-based corrected DEMs
provided the best results, the BIN bias-correction method may be more
attractive to researchers that require a technique with a lower com-
putation intensity.

Finally, it is interesting to re-note that although the MAE and RMSE
are lowest (best) for the object-based machine learning experiments at
the Flamingo study site, the grid-based machine learning experiments
did not perform as well as the grid-based BIN bias-correction. We
speculate that this may be due to the vegetation. The Flamingo study
site is dominated by high-density tall stands of mangroves (taller than
5m) making it difficult for the laser to penetrate to the ground. There
are a limited number LiDAR classified ground returns within each 3m
grid cell. In this study, the machine learning techniques may produce
better predictions for an object because there are generally more LiDAR
returns within an object when compared to a grid cell.
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5.3. Monte Carlo corrected DEM uncertainty mapping

Past research focuses on LiDAR DEM correction without including
the effects of uncertainty in the corrected DEMs (e.g. Schmid et al.,
2011; Hladik and Alber, 2012; Medieros et al., 2015; McClure et al.,
2016; Buffington et al., 2016). Since vertical inaccuracies and/or errors
remain in our corrected DEMs, we used Monte Carlo simulation to
adjust for these effects in the final corrected DEM products and pro-
duced maps where the likelihood of error can be observed on an object-
by-object basis. Researchers utilizing a sea-level rise bathtub approach
that does not consider uncertainty in the underlying data (e.g. Zhang,
2011) would benefit from more reliable delineations of the inundation
zones based on a corrected DEM that has been further adjusted by any
underlying errors. The uncertainty maps and complimentary table
allow DEM users to effectively evaluate which regions are prone to
error for their intended application. For example, a researcher in-
vestigating freshwater marsh elevation loss due to saltwater intrusion
may find the uncertainty maps useful in guiding additional field cam-
paigns where it is more challenging for the remotely sensed data and
machine algorithms to accurately predict elevations. Monte Carlo si-
mulation has been widely used in mapping and modeling of coastal
marsh environments. However, there has been limited application of
this technique in adjusting for the inaccuracies and/or errors in cor-
rected DEMs.

5.4. Error sources in LiDAR correction and DEM generation

Many sources of error impact the elevation estimation such as up-
scaling RTK-GPS data to objects, the geoid models and transformations
relative the vertical datum to which the data are referenced, and time
gaps between RTK-GPS, LiDAR, and aerial imagery acquisition. In our
study, the RTK-GPS were upscaled from a single x,y point to an entire
object's area. The RTK-GPS measurements were matched to the image
objects of varying shapes and sizes. The spatial resolution of the aerial
imagery for Nine Mile was 0.25 m and the minimum size of each object
was 0.25m? while the spatial resolution of the aerial imagery for
Flamingo was 0.30 m and the minimum size of each object was 0.09 m?.
Therefore, it was assumed that the RTK-GPS measures represented the
elevation of the entire object. Also, the LiDAR data were transformed
from NAVD88 using Geoid 03 to NAVD88 using Geoid 12A. We con-
sidered a constant error for NAVD88 nationwide (NOAA, 2013) in the
modeling; however, it is not clear how transforming between geoids
may impact this error. This may lead to more uncertainties in the
corrected DEMs. Finally, there were significant time gaps between the
acquisition years of the current best available LiDAR, aerial imagery,
and RTK-GPS field measurements. Variability in the vegetation and
topography is largely controlled by season, hurricanes, and water
management practices. South Florida's dry and rainy seasons will have
an impact on vegetation growth and sediment shrinkage and swelling.
All data utilized in this study were collected between January-March
during the rainy season. Sediment accumulation will also have a
minimal impact on elevation change between 2008 and 2016 because
the elevation change is within the vertical error of 0.08-0.24 m of the
LiDAR system (Leica Geosystems, 2007). For example, elevation change
for Everglades mangroves was measured as 0.37 * 0.12mm/yr
(Cahoon and Lynch, 1997). The maximum elevation change
(0.37 + 0.12 0.49 mm) multiplied by the maximum number of
differences in years (2016-2008 8 yrs), or
0.49 mm X 8 yrs = 3.92 mm. This 3.92 mm or 0.392 cm elevation
change is within the LiDAR system's vertical error. A similar calculation
can be made for Everglades sawgrass where elevation change was
measured as 0.32 = 0.04 mm/yr (Craft and Richardson, 1993). It
should also be noted that no hurricanes hit the study area between 2008
and 2016, which would likely have had an impact on soil deposition
and erosion and vegetation structure.
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5.5. Orientation of future works

Although the developed object-based LiDAR correction approach
was successful at estimating accurate and precise elevations in this
study, the authors identify several suggestions for improvement of fu-
ture works. The developed object-based LiDAR correction approach was
tested on two sites consisting of coastal marsh, swamp, and prairie.
Additional research is needed in other regions with coastal marsh and
woody environments to examine the robustness of this technique. We
tested several independent variables in the predictive modeling in-
cluding six LiDAR elevation statistical metrics (minimum, mean, max-
imum, standard deviation, range and count). Future works should ex-
plore data fusion techniques that integrate multiple data sources in
elevation correction. For example, additional object-based spatial fea-
tures such as spectral features, texture, and inclusion of more LiDAR
features such as intensity statistics and optical image features can be
extracted for each object, which may have potential to improve the
object-based LiDAR correction. We only tested the aerial imagery in the
segmentation process when generating objects. However, the multi-
resolution segmentation algorithm in eCognition can also generate
objects by integrating the LiDAR point cloud with aerial imagery. This
may be advantageous when generating larger image objects by ac-
counting for elevation gradients that may be observed in other areas,
but this needs exploring. Additionally, we determined the RF object-
based model performed best for this study. However, ensemble analysis
of comparable models may make the predictions more reliable than
using an individual model. This should be explored in future works in
elevation correction. It should be noted that we did not consider the
spatial structure of error (e.g., Holmes et al., 2000) in the Monte Carlo
modeling, which has potential to improve the reliability of the final
corrected DEM products. This requires additional RTK-GPS measure-
ments used in testing and needs exploring. We only compared errors
spatially for each object-based machine learning approach to the best
model as a reference. Restoration managers and planners may find
useful the spatial distribution of errors for the best model. This also
requires additional RTK-GPS measurements and should be explored in
future works.

Finally, with the advancement of Unmanned Aerial Vehicles (UAVs)
data acquisition in coastal environments (Klemas, 2015), and special
approval by the National Park Service, simultaneous collection of all
data sources during the same year and season is more achievable and
may improve the results. Development of an object-based UAV-derived
measurements approach has potential in elevation correction.

5.6. Conclusions

In this study, we developed an object-based LiDAR correction ap-
proach to modeling sawgrass marsh, mangrove swamp, and coastal
prairie elevations by combining Object-based image analysis (OBIA),
machine learning, and Monte Carlo techniques. The results suggested
that this new approach was promising for elevation modeling and
mapping compared to the bias-correction and grid-based modeling
techniques. The authors draw the following conclusions from this study:

e Machine learning regression techniques are effective at generating
accurate and precise object-based Digital Elevation Models (DEMs).
Four machine learning regression techniques were evaluated with
the bias-correction technique: Random Forest (RF), Support Vector
Machine (SVM), k-Nearest Neighbor (k-NN), and Artificial Neural
Network (ANN). RF achieved the best result for the Nine Mile ob-
ject-based modeling where the Mean Bias Error (MBE) was reduced
from 0.18 to —0.02m, standard deviation (o) was reduced from
0.13 to 0.07 m, and Root Mean Square Error (RMSE) was reduced
from 0.22 to 0.08 m. RF also performed best for the Flamingo object-
based modeling where the MBE was reduced from 0.17 to 0.02m, ¢
was reduced from 0.17 to 0.10 m, and RMSE was reduced from 0.24
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to 0.10 m.

The object-based LiDAR correction approach provides an attractive
alternative to the commonly used grid-based modeling. The object-
based approach has potential to reduce positional discrepancy be-
tween an image object and RTK-GPS measurement because an ob-
ject better represents a vegetation patch than a single grid cell. The
capability of the object-based modeling to reduce the spatial bias
and uncertainty on an object-by-object basis successfully addresses
the issue where the bias-correction technique assumes spatial bias
and uncertainty is the same for an entire vegetation community.
Monte Carlo simulation is valuable for modeling and mapping the
uncertainty in corrected DEMs. The Monte Carlo modeling tech-
nique can make the estimations of the true elevations more reliable
for an end user's needs because it combines the bias and uncertainty
related to the underlying data into the final corrected DEM products.
Additionally, Monte Carlo can provide error maps and supportive
tables to compliment the model accuracy assessment.

The object-based LiDAR correction approach has potential to better
assist future research in generating more accurate and precise DEMs.
The robustness of these techniques should be explored in other ap-
plications (e.g. Water Table Elevation Model (WTEM) generation)
and ecosystems and urban areas. With the advancement of UAV data
acquisition and derived measurements, simultaneous collection of
all data sources is more achievable and may improve the object-
based corrected DEM results and applications. Future research will
explore the potential of object-based machine learning techniques to
investigate coastal peat marsh loss by monitoring changes in small
homogenous vegetation patches and elevations due to sea-level rise.
It is also anticipated that the object-based correction technique will
become more popular in DEM generation.
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