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Saltwater intrusion is the leading edge of sea-level rise, preceding tidal inundation, but leaving its salty signature far inland. With climate 
change, saltwater is shifting landward into regions that previously have not experienced or adapted to salinity, leading to novel transitions in 
biogeochemistry, ecology, and human land uses. We explore these changes and their implications for climate adaptation in coastal ecosystems. 
Biogeochemical changes, including increases in ionic strength, sulfidation, and alkalinization, have cascading ecological consequences such as 
upland forest retreat, conversion of freshwater wetlands, nutrient mobilization, and declines in agricultural productivity. We explore the trade-
offs among land management decisions in response to these changes and how public policy should shape socioecological transitions in the coastal 
zone. Understanding transitions resulting from saltwater intrusion—and how to manage them—is vital for promoting coastal resilience.
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Saltwater intrusion—the landward movement of   
 seawater—has numerous, complex consequences for 

coastal ecosystems and communities, which can and should 
be distinguished from the impacts of flooding due to sea-
level rise. Saltwater intrusion may precede tidal inundation 
of low-lying uplands, and dramatically changes the chemis-
try of tidal freshwater wetlands. Although there always has 
been a swath of coastal land adapted to salt, interactions 
among sea-level rise, climate change and coastal water infra-
structure is causing saltwater to reach areas with human 
and ecological communities that have not experienced or 
adapted to salinity, leading to novel biogeochemical, ecologi-
cal, and human land use transitions.

Recent studies have documented increases in storm-
driven flooding, and higher-amplitude tidal inundation is 
associated with sea-level rise, which affects private property 
and public infrastructure (Moftakhari et  al. 2015). Studies 
also have considered the impacts of coastal inundation on 
ecosystems and protected lands (Epanchin-Niell et al. 2017). 
However, the effects of saltwater intrusion, particularly 
on ecosystem services, have received less attention, per-
haps because shifts in water chemistry are invisible to the 
general public. Marine salt inputs to previously freshwater-
dominated systems have profound impacts on ecosystem 
biogeochemistry, leading to coastal forest loss, species inva-
sions, reductions in agricultural productivity, declines in 

coastal water quality, and marsh migration. Understanding 
these biogeochemical and ecosystem changes is critical for 
predicting the full impacts on society and identifying how 
people and communities can best adapt.

To improve our understanding of coastal saltwater intru-
sion, we first describe the climatic and anthropogenic 
drivers of saltwater intrusion and its global extent, identify 
the chemical alterations that accompany salinization, and 
synthesize the ecological consequences. We then examine 
the social impacts, including how individual landowners 
and managers may respond, and the role for public policy in 
shaping socioecological transitions in the coastal zone.

Drivers of saltwater intrusion

Saltwater intrusion and the degree of upland salinization are 
driven by five main factors: the position of sea-level relative 
to the land and water table, the frequency and magnitude 
of storms and tides, the frequency and duration of drought, 
water use (e.g., surface and groundwater withdrawals for 
drinking water and irrigation), and hydrologic connectivity 
(e.g., tide gates, levees, agricultural, diversions, and roadside 
ditches, and canals; figure 1). Because each of these five fac-
tors are themselves variable in space, time, frequency, and 
duration, the process of ecosystem salinization is extremely 
dynamic and can occur slowly or quickly, depending on 
the unique combination of drivers acting on any particular 
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location. For example, sea salts may be delivered slowly to 
coastal ecosystems through groundwater exchange, surface 
water mixing, and tidal pumping or rapidly during extreme 
events like hurricanes and tsunamis.

The penetration of saltwater into surface and ground-
waters is enhanced by relative sea-level rise, which reflects 
the combined effects of changes in the elevation of the 
ocean surface (2.8–3.6 millimeters per year globally since 
1993; Nerem et  al. 2018) and vertical movements of the 
land surface (e.g., subsidence of 1–3 millimeters per year 
across North American Coastal Plain; Karegar et al. 2016). 
Prolonged droughts can increase the extent of saltwater 
intrusion (sometimes referred to as incursion; Ardón et  al. 
2013) and increase the peak salinity of high tides or of rivers 
during low flows (Neubauer and Craft 2009). Ground- and 
surface-water extraction for human consumption, irrigation, 
or industry can greatly accelerate the otherwise slow rate of 
saltwater intrusion attributed to sea-level rise (White and 
Kaplan 2016), and can play a more important role in aquifer 
salinization than sea-level rise (Ferguson and Gleeson 2012).

The frequency and intensity of storms and tides affect 
how far saltwater is pushed into uplands and whether 
water control structures such as levees and tide gates are 
overtopped (Yang et  al. 2018). When overtopped, water 

control structures can trap marine salts just as effectively as 
they prevent saltwater intrusion during lower flows. In all 
cases, ecosystems that are hydrologically connected to saline 
coastal waters are more likely to have saltwater intrusion 
(figure 2). Many coastal landscapes that were hydrologically 
altered to promote drainage or enable navigation are now 
subject to saltwater intrusion. In Louisiana, for example, 
thousands of kilometers of canals were cut and dredged by 
oil, gas, and pipeline companies to allow industrial access to 
the marsh and now provide a conduit for saltwater to flow 
into low-salinity regions (Poulter et  al. 2008, Bhattachan 
et al. 2018). Similarly, in northern Italy, agricultural irriga-
tion and drainage channels, constructed to move freshwater 
to fields, now serve the reverse—and unintended—purpose 
of facilitating salinization (Antonellini et al. 2008).

Widespread evidence of saltwater intrusion

Saltwater intrusion has been documented in coastal regions 
across the globe (Barlow and Reichard 2010, Herbert et al. 
2015), and its impact on human water resources is a growing 
threat. Worldwide, about 40 percent of the human popula-
tion lives within 100 kilometers of a coastline and relies 
on coastal freshwater aquifers for drinking water (Kummu 
et  al. 2016). Small changes in salinity can render water 

Figure 1. Drivers of salinization in uplands, three primary components of salinization, and their effects on 

biogeochemistry, plant communities, and ecosystem services.
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undrinkable, because drinking chloride concentrations above 
250 milligrams per liter (salinity of approximately 0.5 parts 
per thousand) in drinking water can cause hypertension and 
stroke (Vineis et al. 2011). Hundreds of groundwater wells in 
coastal countries such as Cyprus, Mexico, Oman, and Israel 
have been closed because of saltwater intrusion (Barlow and 
Reichard 2010). The 2004 earthquake and tsunami that dev-
astated the province of Aceh, Indonesia, salinized drinking 
water sources both near the coast and inland (Fesselet and 
Mulders 2006). Bangladesh and Vietnam, the fourth and 
fifth largest producers of rice in the world, are extremely 
vulnerable to saltwater intrusion from sea-level rise, fresh-
water withdrawals, and tropical storms (Mahmuduzzaman 
et al. 2014) endangering global food security. In the Tropical 
Pacific, the Carteret Islands have become increasingly unin-
habitable because of rising sea levels and saltwater intrusion, 

which have resulted in declines in agricultural productivity 
and evacuation to nearby Papua New Guinea (Green 2016). 
In Los Angeles, water management practices to stave off 
saltwater intrusion in freshwater aquifers include artificial 
recharge using imported freshwater (Johnson and Whitaker 
2003). In South Florida the Biscayne aquifer must be pro-
tected from saltwater intrusion, which otherwise would 
jeopardize the drinking water of 8 million people in metro-
politan Miami (Barlow and Reichard 2010). In other regions 
affected by coastal saltwater intrusion, people rely on deep 
wells or reverse osmosis water supply systems to continue 
to inhabit and farm affected lands (Alameddine et al. 2018). 
Effects of salinization of drinking water is significant and 
immediately impactful, whereas other effects of saltwater 
intrusion are less obvious, because they result from slower 
biogeochemical and ecological changes that nonetheless 

Figure 2. Illustration of shallow coastal system undergoing saltwater intrusion. Coastal saltwater intrusion (dashed lines) 

is caused by relative sea-level rise, water management (e.g., water withdrawals), the connectivity of creeks and ditches to 

the source of saltwater, the frequency of rainfall and drought events, and storms and tides.
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have important ramifications for human society and adap-
tive responses.

Biogeochemical effects of salinization from saltwater 

intrusion

The movement of saltwater into terrestrial freshwater sys-
tems alters the composition of porewater in upland and 
wetland soils. Seawater is a complex solution; on average, 
it has around 400 times more salt than freshwater, with the 
base cations (calcium, magnesium, sodium, potassium) and 
sulfate ions accounting for 44% of total marine salts. To bet-
ter describe how salinization is changing upland chemistry, 
we detail the process of salinization in three independent 
but co-occurring chemical alterations: an increase in ionic 
strength, alkalinization, and sulfidation (box 1).

Increase in ionic strength. As saltwater intrudes into freshwater 
systems, the ionic strength of surface water or soil porewa-
ter increases. Regardless of the specific ionic composition, 
increases in ionic strength cause osmotic stress for organ-
isms not adapted to saltwater. High salt concentrations 
essentially draw water out of plant cells. This process is 
particularly damaging to plant seeds, which imbibe water 
prior to germination. High osmotic stress prevents tree 
regeneration in coastal forests (Williams et al. 1999). In soils, 
an increase in ionic strength increases ion exchange, affect-
ing the release of nutrients such as nitrogen and phosphorus 
(Weston et  al. 2006). For example, multiple studies have 
shown that saltwater intrusion promotes ammonium libera-
tion from soil particles because of the elevated competition 
for exchange sites with sodium, calcium, and magnesium 
(Weston et  al. 2010, Steinmuller and Chambers 2018). In 
nitrogen-limited coastal systems, this leads to eutrophica-
tion of estuaries (Ardón et al. 2013).

Alkalinization. The ionic composition of seawater determines 
the alkalinity, or the amount of base cations in solution. 
The link between salinization and alkalinization has been 
described in United States stream waters polluted by salts 
from road deicing, irrigation, and other human activities 

(Kaushal et  al. 2018), and the same general phenomenon 
acts in coastal lands affected by saltwater intrusion. Saltwater 
introduces large quantities of calcium and magnesium car-
bonates, which can change the potential for acid neutraliza-
tion in soils and affect phosphorus availability (Weston et al. 
2006, Chambers et al. 2011). In upland soils, such as those 
found in agricultural fields, an increase in sodium may also 
lead to clay dispersion, effectively changing the soil structure 
by plugging soil pores and impeding water infiltration and 
drainage (Rengasamy et al. 1984), which can delay planting 
and dramatically reduce yields.

Finally, the intrusion of alkaline saltwater can induce 
cation bridging, or bonds between cations and dissolved 
organic matter, which creates flocculent organic matter. 
This process reduces the microbial use of dissolved organic 
carbon and may lead to increased carbon sequestration 
and burial (Ardón et al. 2016). For example, in the Florida 
Everglades, flocculant organic matter is a primary detrital 
energy source, and plays a critical role in food webs (Sanchez 
and Trexler 2016). Therefore, increased concentrations of 
base cations through saltwater intrusion can change eco-
system carbon dynamics with consequences for ecosystem 
productivity and carbon storage.

Sulfidation. Sulfidation is the increase in sulfide stored in 
ecosystems following saltwater intrusion. Seawater contains 
relatively high concentrations of sulfate, which is reduced 
under low-oxygen conditions in the microbial metabolic 
pathway of sulfate reduction to sulfide. Sulfidation is unlikely 
after brief episodes of flooding with seawater, but occurs 
with chronic intrusion (figure 3). The increased availability 
of sulfate can drive shifts in microbial organic matter miner-
alization pathways (e.g., from methane production to sulfate 
reduction) and have major impacts on ecosystem carbon 
storage (Weston et al. 2011, Neubauer 2013). Furthermore, 
the reduced form of sulfur produced from chronic intrusion, 
hydrogen sulfide (H2S), is toxic to plants and other organ-
isms and can drive shifts in plant community composition 
and productivity (Lamers et  al. 2013). If iron is present in 
the ecosystem, sulfide can also react to form pyrite and 
other precipitates, reducing sulfide toxicity and storing the 
sulfur compounds in the ecosystem (Sjøgaard et  al. 2016). 
Therefore, free H2S formation is unlikely after brief episodes 
of flooding with seawater, but occurs with chronic intru-
sion once the H2S buffering capacity of the soils is depleted 
(figure 3). This buffering capacity will vary among systems 
because of differences in sedimentation rates, iron and 
organic matter availability, and microbial activity (Heijs and 
van Gemerden 2000). Nevertheless, saltwater intrusion may 
eventually consume available iron (Schoepfer et  al. 2014), 
and free sulfides can accumulate in soils or sediments until 
the system is “fully sulfidized” (figure 3).

Sulfidation can play an important role in other bio-
geochemical reactions, notably phosphorus cycling and 
the release of phosphorus to coastal waters. In nonsaline 
systems, biologically available phosphate is largely bound 

Box 1.  Biogeochemical effects of salinization.

Increased ionic strength

• Osmotic stress → plant stress or death

• Ion exchange → nutrient mobilization

Alkalinization

• pH change → phosphorus release from acid soils

• Clay dispersion → prevent drainage

• Cation bridging → change carbon dynamics

Sulfidation

• High sulfate → reduced carbon storage

• Sulfide toxicity → plant stress/death

• Formation of iron-sulfur minerals → phosphorus release
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in iron mineral precipitates (Jordan et  al. 2008, Hartzell 
et al. 2017). During sulfidation, iron consumed in reactions 
with sulfides is no longer available to bind to phosphate, 
thus increasing water column phosphorus concentrations. 
Because of the important role of iron as a sink for sulfide, 
the reactive iron content of soil could be a good predictor of 
the timescale over which sulfidation will lead to plant com-
munity changes and phosphorus loading into waterways.

Dynamics of salinization. We present a conceptual model of 
expected changes from salinization as the edge of saltwa-
ter intrusion moves across a landscape (figure 3). Changes 
in ionic strength may be pulsed within a given system as 
fluctuations in freshwater inputs (e.g., via rainfall or river 
flow) can dilute seawater or drought can concentrate salts 
(figure 3). However, over time, ionic strength of the system 
will likely increase, as is evinced by increased salinity in the 
Delaware River (Ross et al. 2015), James, and Chikahominy 
Rivers over the twenty-first century (Rice et  al. 2012). 
Alkalinization of a system will likely track increases in ionic 
strength (especially sodium concentrations), and trends in 
alkalinity will depend on the initial buffering capacity of 
the system (Kaushal et  al. 2018). Sulfidation will increase 

more rapidly on reaching the sulfide buffering capacity 
threshold, although some degree of buffering may continue 
as a result of organic inputs (Heijs and van Gemerden 2000, 
Valdemarsen et al. 2009, Duan and Kaushal 2015). As soils 
periodically dry, some of the sulfides oxidize back to sulfate, 
partly reacidifying the soil (Luther et  al. 1986), leading to 
interannual variation in pH and dissolved sulfide concen-
trations (figure 3). Overall, ecosystems may remain more 
sulfidic and alkaline following pulsed salinity events, even 
if the ionic strength has returned to (near) freshwater levels. 
This “memory” may result in more rapid alkalinization and 
sulfidation following subsequent saltwater intrusion events, 
such that seasonal saltwater intrusion may have a cumulative 
impact on ecosystem biogeochemistry, eventually tipping 
the system into a new state (e.g., forested wetland to brack-
ish wetland).

Ecological consequences of saltwater intrusion

Biogeochemical changes in ionic strength, alkalinization, 
and sulfidation due to saltwater intrusion cascade into eco-
system changes. Soil microbial communities can shift fol-
lowing salinization (e.g., Herbert et al. 2015, Chambers et al. 
2016, Dang et al. 2019 and the citations therein). Although 
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Figure 3. Conceptual diagram of the changes in ionic strength (solid black line in print/blue line online), alkalinization 

(gray dotted line in print/green line online) and sulfidation (solid gray line in print/red line online) that are likely to occur 

as systems salinize. Shaded region represents upland regions that experience tidal inundation and the dashed grey line 

(blue line online) represents the moving edge of saltwater intrusion. The dotted horizontal line represents the point above 

which a freshwater system experiences sulfide toxicity. Moving along the x-axis can be viewed as changes at a locale over 

time as sea levels rise or as differences in dynamics across a spatial gradient extending inland from the coast (i.e., distance 

from mean higher high water, MHHW). Insert (dashed box in print/dashed blue box online) highlights data on salinity 

from the Potomac River at three stations ranging from seaward (dashed and grey lines, RET2.4 and RET2.1) to landward 

(solid black line, TF2.4). Similar to ionic strength, salinity returns to zero (data from Neubauer and Craft 2009).
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plants vary widely in their tolerances to high sulfide con-
centrations and salinity, few nonadapted plant species can 
tolerate waterlogged and saline environmental conditions 
(Lamers et al. 2013). Therefore, saltwater intrusion can drive 
inland retreat of upland plant communities and landward 
migration of coastal plant communities (Brinson et al. 1995) 
far in advance of regular tidal inundation with seawater 
(Brinson et  al. 1995, Krauss et  al. 2009, Antonellini and 
Mollema 2010). The pace and trajectory of plant community 
shifts will depend on the rate of saltwater intrusion as well 
as factors such as soil type, geomorphology, and hydrologic 
connectivity. In addition, upland ecosystems and land use 
can either constrain or facilitate community shifts. Below, 
we examine the transitions in coastal ecosystems occur-
ring in response to saltwater intrusion, to highlight its far-
reaching effects and repercussions for coastal ecosystems 
and ecosystem services.

Coastal forest loss. Salinity stress can lead to coastal tree 
death. Large areas of forest can be killed by salt deposited 
by a single storm event (Middleton 2016), but incremental 
forest retreat also contributes to landscape change (DeSantis 
et  al. 2007). One early sign of salinity stress in trees is 
reduced sap flow during periods of drought or high salin-
ity (Teobaldelli et  al. 2004). In general, forest regeneration 
is more sensitive to salinity and associated flooding than 
mature tree mortality (Williams et  al. 1999, Kirwan et  al. 
2007), because seedlings of flood-tolerant trees require 
moist, but not chronically flooded, soils for germination 
(Conner et  al. 2007). Often, habitat conversion will occur 
many years after regeneration has ceased in stressed areas, 
when mature trees are killed by a saltwater intrusion event 
associated with a drought or large storm (e.g., Hurricane 
Sandy; Middleton 2016). Colonization by salt-tolerant veg-
etation follows forest death (Williams et al. 1999).

The rate of forest retreat varied with upland slope, climate 
conditions, and forest type (Smith 2013). For example, in 
the Big Bend region of Florida, 148 square kilometers of 
coastal palmetto, bottomland, pineland, and mixed forest 
converted to transitional and tidal marsh between the late 
1800s and 1995, resulting in a lateral retreat of 4.2 meters 
per year (Raabe and Stumpf 2015), with forest replace-
ment accelerating during a multiyear drought (Williams 
et al. 1999, DeSantis et al. 2007). Along tidal tributaries to 
the Delaware Bay, Smith (2013) observed a lateral retreat 
in coastal hardwood and Atlantic cedar swamp forests of 
1.8 meters per year between 1930 and 2006. In contrast, 
there was no detectable forest retreat or mortality related 
to saltwater intrusion from 1974 to 2010 in southern New 
England, where upland slopes are steeper (Field et al. 2016).

Different sensitivities of tree species to flooding and salin-
ity stresses also result in differential forest retreat. In the sub-
tropics, inland forests of loblolly pine (Pinus taeda), winged 
elm (Ulmus alata), and Florida maple (Acer floridanum) 
were more sensitive, whereas juniper palmetto (Juniperus 
virginiana and Sabal palmetto) forests were more resistant 

(DeSantis et al. 2007). Similarly, Smith (2013) found higher 
rates of migration in Atlantic white cedar (Chamaecyparis 
thyoides) than in hardwood forest (Acer rubrum, Liquidambar 
styraciflua, Nyssa sylvatica, and Quercus spp.). Where a 
single vulnerable tree species is planted for harvest in planta-
tions, we expect to see more uniform tree mortality relative 
to more diverse coastal forests.

Freshwater wetland conversion. Salinity is an important eco-
logical structuring agent in estuarine wetland plant com-
munities. In response to saltwater intrusion, downriver 
and more salt-tolerant tidal wetland plant species can shift 
upriver, with brackish plants replacing oligohaline plant 
communities (Schuyler et  al. 1993) and oligohaline plants 
replacing tidal freshwater plant communities (Perry and 
Hershner 1999). Long-term saltwater intrusion experiments 
in tidal freshwater wetlands produce a reduction in diversity 
(Neubauer et  al. 2013). Saltwater intrusion reduces tidal 
freshwater forest tree height and basal area (Krauss et  al. 
2009) and, ultimately, converts tidal forest to more salt-
tolerant emergent marsh over the course of a decade or more 
(Craft 2012, White and Kaplan 2016).

Expansion of invasive species. Given the habitat preferences of 
some widespread invasive plant species for moderate salin-
ity (e.g., salt cedar Tamarix chinensis; Cui et  al. 2010) and 
the high salinity tolerance of others (e.g., Schinus terebinth, 
Ewe and da Silveira Lobo Sternberg 2007; Casuarina spp., 
Potgieter et al. 2014; Triadica sebifera, Conner et al. 2007), 
and many prominent invasive species are likely to expand 
their ranges in coastal areas because of saltwater intrusion.

In the eastern United States, the invasive haplotype of 
Phragmites australis is positioned to be a dominant species 
in salt-affected, retreating coastal ecosystems. It grows at the 
upland edge of tidal wetlands, is relatively salt-tolerant and 
is highly opportunistic (Chambers et al. 2008). In Delaware 
Bay, roughly half of the area of forest retreat now accom-
modates P. australis–dominated marsh (Smith 2013). In 
contrast, in lawns transitioning because of saltwater along the 
Connecticut coast, private landowners are inadvertently con-
trolling the spread of P. australis through mowing (Anisfeld 
et al. 2017). During marsh migration, P. australis is replacing 
native high marsh species and contributing to coastal squeeze 
of native tidal marsh communities. In temperate Atlantic 
Coast marshes, P. australis’ expansion will most affect the 
high marsh dominant Spartina patens. A S. patens– associated 
endemic species, the saltmarsh sparrow, Ammodramus cau-
dacutus, is predicted to go extinct within the next several 
decades (Field et  al. 2016). In summary, with increasing 
saltwater intrusion, many salt-tolerant invasive species are 
poised to colonize new areas and expand their range.

Agricultural productivity decline and field conversion. Very few 
crops can grow in sustained conditions of greater than 2 
parts per thousand salinity (Tanji and Kielen 2002), which is 
substantially below the salinity levels in many salt-intruded 
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fields (Tully et al. 2019). For example, crops such as corn 
(Zea mays L.) and soy (Glycine max (L.) Merr.) have suf-
fered yield declines with saltwater intrusion (McNulty et al. 
2015). Because of the episodic nature of saltwater intrusion 
and the variation in tolerance of crops, coastal croplands can 
exhibit gradual or sudden declines in productivity (Tanji and 
Kielen 2002). When farming practices of tillage or herbicide 
application continue during the initial stages of saltwater 
intrusion, fields often exhibit large bare areas in which crops 
cannot tolerate the saline conditions and the farm prac-
tices kill colonizing noncrop plants. Abandoned, salinized 
farmland, which has high nutrient levels (e.g., nitrogen 
and phosphorus), low organic matter, and a seed bank of 
opportunistic annuals, can be rapidly colonized by annual 
graminoids and herbs, including many agricultural weed 
species (Voutsina et al. 2015). On the arid Pacific Coast of 
Baja California, for example, abandoned agricultural land is 
rapidly colonized by the invasive and highly salt-tolerant ice 
plant, Mesembryanthemum crystallinum (Meyer et al. 2016).

Ecological changes from saltwater intrusion in agri-
cultural lands are further shaped by past land use. The 
presence of tide gates influences the timing of transition 
for managed uplands. Drainage ditches and tile drainage, 
installed to divert excess freshwater, often serve as conduits 
for saltwater as land subsides or sea levels rise (Bhattachan 
et  al. 2018). When impoundments fail, agricultural lands 
may convert to open water, as they did in Delaware, where 
over half of tidal wetlands were once impounded (Smith 
et al. 2017). Even small-scale land management may affect 
ecosystems exposed to saltwater intrusion. For example, 
heavy equipment tracks can create microtopography on 
graded fields, fostering wetter areas that may become salt 
pannes and pools as abandoned agricultural lands convert 
to wetlands.

Nutrient leaching and runoff from salt-intruded agricul-
tural land will complicate nutrient management efforts in 
the coastal zone. Saltwater can extract legacy nitrogen and 
phosphorus from agricultural soils long after farmlands have 
been abandoned. Even years after restoring wetlands, legacy 
nutrients may be transported into ditches connected to tidal 
creeks draining into estuaries during times of drought and 
enhanced saltwater incursion (Ardón et al. 2013). Estuarine 
eutrophication can lead to harmful algal blooms, ecosystem 
state shifts (e.g., transitioning from oligotropic to eutrophic), 
and declines in valuable fisheries and is the subject of major 
regulatory efforts that may be stymied by unanticipated 
nutrient loading from coastal salt-damaged fields as saltwa-
ter intrusion moves across the landscape.

Social implications and adaptive responses to saltwater intrusion

The ecological outcomes of saltwater intrusion are addition-
ally shaped by feedbacks among natural and human-driven 
processes. Land managers and society are affected by and 
must prepare for saltwater intrusion, which affects biodiver-
sity, ecosystem services, and human well-being. Responses 
may differ among land managers, and these adaptation 

responses can affect the ecological trajectories of coastal sys-
tems. The management choice that is in the best interest of a 
particular land manager often may not provide the greatest 
benefits to society (e.g., Borchert et  al. 2018). For a range 
of potential adaptation responses to saltwater intrusion, 
we describe potential costs and benefits that private land 
managers might consider, as well as the expected returns to 
society from each choice (table 1). We highlight several such 
examples below.

Adaptation to saltwater intrusion in coastal forests. Coastal forests 
may be managed for a variety of values, including timber 
harvest revenues, biodiversity provisioning, recreation (e.g., 
hiking, hunting), and aesthetic values (Burkhard et al. 2012). 
Saltwater can lead to forest death, thereby reducing the range 
of values described above. In addition, invasive species may 
invade salt-damaged land (Smith 2013), further reducing 
biodiversity and recreational values. In contrast to inaction, 
land managers could enhance one-time timber revenues 
by harvesting at-risk timber earlier than they otherwise 
would. Clearing forest in the path of migrating marsh may 
also provide salt marsh conservation benefits. Therefore, 
early harvest may promote a range of values provided by 
wetlands, including enhanced biodiversity, carbon storage, 
nutrient buffering, and improved water quality, as well as 
private gains.

Management of invasive species in salt-intruded forest-
lands could provide additional benefits to society, through 
improved habitat quality, but might not provide net benefits 
to a private land manager, depending on the values they derive 
from the land. A land manager may seek to maximize recre-
ational hunting benefits, which can be reduced by nonnative 
plant invasions, but they would likely weigh the additional 
value against his private costs of control. If private incen-
tives are insufficient to induce invasive species control on 
private lands, but societal benefits would outweigh the costs, 
then policy intervention may be warranted, which could be 
achieved through public invasive species control programs or 
incentives to landowners (Epanchin-Niell et al. 2010).

Adaptation to saltwater intrusion in tidal freshwater wetlands. In 
the absence of active management, freshwater tidal wetlands 
affected by saltwater intrusion are expected to transition to 
oligohaline or brackish tidal marsh. Preferences for particu-
lar wetland types may differ among landowners, depending 
on aesthetic or recreational preferences. Public preferences 
for freshwater wetlands may depend on the ability of fresh-
water wetland species to shift inland, the remaining extent 
of freshwater tidal wetlands, and the particular species that 
depend on the systems. Options for preserving freshwater 
wetlands typically involve major changes in the use and flow 
of freshwater. For example, freshwater diversions have been 
used to connect or reconnect coastal floodplain wetlands 
with their river channel to mimic historical flooding and 
sediment delivery in places such as the Mississippi River 
delta, China, and Texas, with varying outcomes (White and 
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Kaplan 2016). Increased stream flow, which may be achieved 
by modifying water withdrawal or delivery, can also mitigate 
saltwater intrusion impacts (figure 2; Kaplan et  al. 2010). 
Such changes in water management often require built infra-
structure or widespread behavioral changes in water use 
across communities, which typically cannot be implemented 
by a single private land manager.

Adaptation to saltwater intrusion in coastal agricultural land. As 
saltwater intrusion on agricultural lands has led to crop 
productivity declines, land managers have responded in 
several ways, including abandoning land or enrolling it 
in easements, adding water control structures (White and 
Kaplan 2016), switching to alternative crops (Ventura et al. 
2015, Voutsina et  al. 2015), adjusting agricultural inputs 
(e.g., fertilizer and pesticides; Khanom 2016), and apply-
ing gypsum to displace sodium ions and improve drain-
age (Amezketa et  al. 2005). Adaptation choices include 
the types of management changes and the timing of those 
changes. Some choices may require land managers to weigh 
costs and benefits only in the short-term (e.g., annual crop 

or agricultural input choices), whereas others may require 
evaluation over the long-term (e.g., investments in new 
farm equipment or participation in a habitat restoration 
programs).

A farmer facing reduced crop yields because of saltwater 
intrusion may switch to more salt-tolerant or lower-input 
crops (e.g., soybeans or sorghum) to increase profitability. 
This decision would likely weigh differences in expected 
profitability, accounting for any upfront costs of transi-
tioning to a new crop (e.g., costs of acquiring new skills 
or equipment). The primary societal benefits of this type 
of transition likely would stem from support of the rural 
economy. However, if adoption of low-input crops (e.g., 
biomass crops, such as switchgrass [Panicum] and silver-
grass [Miscanthus]) could also reduce legacy nutrients 
in the soils, this could provide potentially large public 
benefits in terms of reduced impacts from eutrophication, 
which is estimated to cause $81 billion to $441 billion per 
year in environmental damages across aquatic systems in 
the United States (Sobota et  al. 2015). Identification of 
profitable crops that could also provide environmental 

Table 1. Public and private costs and benefits of landowner management responses to saltwater intrusion.

Consequence of 

saltwater intrusion Management response Public outcome Private outcome

Coastal forest loss Nonaction  • Delay tidal marsh migration
 •  Biodiversity reductions due to 

species invasions

 • Lose land and profit

Early timber removal  •   Promote tidal marsh migration
 t Carbon storage
 t Nutrient buffering
 t Improve water quality

 • Avoided harvest value losses

Control invasive species  • Improved habitat quality
 • Enhanced biodiversity

 •  Enhanced recreation or hunting 
value

 • Financial costs of invasive control

Tidal freshwater wetland 
loss

Nonaction  •  Transition from freshwater to saline 
marsh
 t  In some places, freshwater 

wetlands are an imperiled habitat
 •  Loss of biodiversity and shift in 

species distributions

 •  Change in recreational value, e.g., 
shifts from freshwater to saltwater 
birds

Management of water inflows and 
outflows

 • Conserve freshwater wetlands
 • Impede tidal marsh migration
 •  Incur upstream consequences of 

water management
 t  Water available for power 

generation, drinking water, etc.

 •  Sustain recreational value of 
freshwater wetland

 •  Incur financial cost of constructing 
water control structures

Crop yield decline Nonaction  •  Eutrophication due to continued or 
increased fertilizer applications

 • Yield declines
 • Profit loss

Plant alternative crops (e.g., salt-
tolerant)

 • Promote rural economy
 • Potential nutrient remediation
 • Delay tidal marsh migration

 • Sustained yield
 •  Incurred costs of skill or equipment 

acquisition
 •  Continued investments in 

agricultural production

Abandon fields  • Legacy nutrient release
 •  Promote tidal marsh migration and 

associated benefits

 • Yield forfeit
 • Avoided investment in marginal land

Enroll land in conservation 
easements

 • Legacy nutrient release
 •  Promote tidal marsh migration and 

associated benefits

 • Yield forfeit
 • Avoided investment in marginal land
 • Alternative revenue source
 • Hunting value

Note: Nonaction scenarios report future trends compared to today. Other management responses are compared to the future nonaction scenario.
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benefits would help better align private and public inter-
ests. Alternatively, a farmer may stop farming salt-intruded 
fields to avoid economic losses resulting from poor yields. 
Field abandonment may provide public benefits by allow-
ing landward migration of wetlands, therefore maintaining 
the ecosystem services and biodiversity benefits wetlands 
provide (Borchert et al. 2018).

Other options are to enroll abandoned agricultural lands 
in conservation easements or to restore wetland vegetation 
and control invasive species. Landowners might be moti-
vated to restore wetland vegetation to obtain tax savings or 
other financial incentives or to obtain recreational oppor-
tunities such as hunting. As the productivity of agricultural 
land declines with saltwater intrusion, the opportunity 
cost of engaging in conservation or other land uses also 
declines, reducing the needed incentives to restore wetlands. 
However, federal, state, or local governments, or nongov-
ernmental organizations may want to target incentives to 
enhance the transition of coastal farmland to wetland.

Managing the invisible flood

Understanding feedbacks among biogeochemical factors, 
ecological processes, and human responses to coastal salt-
water intrusion is key for predicting and managing changes 
in coastal systems as sea levels rise. Adaptation to climate 
risks including sea-level rise associated inundation and 
saltwater intrusion can be hindered by knowledge gaps, 
financial resource constraints, social and cultural barriers, 
transaction costs, and institutional barriers. Also, because 
public and private benefits from the implementation of 
adaptation strategies often differ, incentive programs and 
public investments may be important for influencing coastal 
land management to bring about desired social and ecologi-
cal outcomes. The collaboration of diverse disciplines and 
stakeholders is needed to improve our understanding of 
saltwater intrusion drivers and consequences. This under-
standing is critical for communities that are developing 
coastal policies that enhance long-term resilience in this era 
of rapid global change.
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