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Abstract—Network management for applications that rely on
large-scale data transfers is challenging due to the volatility and
the dynamic nature of the access traffic patterns. Predictive ana-
lytics and forecasting play an important role in providing effective
resource allocation strategies for large data transfers. We propose
a predictive analytics solution for large data transfers using an
application-aware software defined networking (SDN) approach.
We perform extensive exploratory data analysis to characterize
the GridFTP connection transfers dataset and present various
strategies for its use with statistical forecasting models. We
develop a univariate autoregressive integrated moving average
(ARIMA) based prediction framework for forecasting GridFTP
connection transfers. Our prediction model tightly integrates with
an application-aware SDN solution to preemptively drive network
management decisions for GridFTP resource allocation at a U.S.
CMS Tier-2 site. Further, our framework has a mean absolute
percentage error (MAPE) ranging from 6% to 10% when applied
to make rolling forecasts.

I. INTRODUCTION

Software defined networking (SDN) and network functions
virtualization (NFV) play a vital role in service provisioning
and orchestration [1] by acting as catalysts for service innova-
tion and in enabling end-to-end services management. How-
ever, for the network operators to successfully balance user
expectations with services’ resource requirements, a policy-
based approach supported by predictive analytics is necessary.
Network operators can create consistent user experiences by
ensuring a balance between user requirements and (optimized)
network resources. The pivotal role of predictive analytics
for network management is often overlooked by SDN/NFV
based architectures, which instead focus on network services
orchestration. To provide quality of service (QoS) and a
consistent end-user experience, next-generation network/ser-
vice management architectures must proactively address user,
service, and resource provisioning constraints.

The dynamic nature of large data transfer workflows (e.g.
data-intensive science) demand agility in the allocation of
service and network resources. The volatility present in traffic
usage patterns further compounds resource provisioning prob-
lems. Although aggregate and long-term traffic patterns can
be identified, they fail to mitigate short-term traffic variability
impacts. This results in the deployment of static threshold-
based automatic scaling methods for resource provisioning.
Autoscaling solutions are reactive in nature, with resource
scaling occurring in response to real-time network events.
Autoscaling approaches are inefficient as they fail to respond
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gracefully to sudden spikes or outlier events. Predictive an-
alytic approaches on the other hand combine trend analysis
with historical information to predict future usage require-
ments. Thus, predictive analytics can be used to preemptively
drive network management decisions by providing valuable
insights into metrics and performance indicators associated
with user/network behavior.

In this paper, we propose a predictive analytics approach to
forecasting large data transfers to/from high-performance com-
puting centers in campus networks. To evaluate our proposed
predictive analytics models for large data transfer forecasting,
we rely on data transfer information obtained from data-
intensive science workflows such as the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [2] and the Compact
Muon Solenoid (CMS) [3]. An application-aware SDN solu-
tion previously proposed in [4] is used to obtain GridFTP [5]
data transfer information. We begin by performing exploratory
data analysis to understand the temporal properties of the
transfer information dataset. We then develop and evaluate an
autoregressive integrated moving average (ARIMA) model for
forecasting future data transfers and evaluate its performance.

The main contributions of this paper are:

1) Exploratory data analysis of the transfer dataset: We
present a systematic approach to exploratory data anal-
ysis of the data-intensive science transfer dataset. Our
analysis is critical to assessing the quality of the dataset
and its suitability for use with the statistical prediction
models. Further, the analysis provides valuable insights
that aids in model selection, parameter estimation and
forecasting.

2) ARIMA model for forecasting large data transfers: We
develop a non-seasonal autoregressive integrated moving
average (ARIMA) model for forecasting large data trans-
fers from data-intensive science workflows. The model
also incorporates automatic parameter estimation and
model checking to ensure that the temporal structure is
preserved post-estimation. We also demonstrate how the
model can be employed to make rolling forecasts.

3) Real-world evaluation with a large-scale dataset: We
demonstrate the scalability of our predictive analytics
framework to forecast transfer connections by deploying
it on a U.S. CMS Tier-2 site. Further, our solution tightly
integrates with an application-aware SDN solution.
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The paper is organized as follows: Section II provides a
brief overview of application-awareness in the SDN context
and its role in predictive analytics and describes related works;
Section III presents a detailed exploratory data analysis of
our transfer dataset and outlines the various considerations for
its use with predictive analytics; In Section IV, we present
our ARIMA-based model, our design framework and an al-
gorithm for forecasting GridFTP transfers; Section V presents
the performance evaluation results of our model. Finally, in
Section VI we conclude our work and discuss the future work.

II. BACKGROUND AND RELATED WORK
A. Application-Aware SDN for Predictive Analytics

Application workflows that rely on large-scale data transfers
often place varying and dynamic demands on the underly-
ing network infrastructure. While applications exhibit diverse
behavior in resource access/utilization, network management
systems must always ensure consistent user experiences. Thus,
network management systems must be capable of meeting
dynamic user demands on network resources, quality of ser-
vice (QoS) and network security. While network management
systems can employ application-layer metadata to make de-
cisions, information exchange between the network-layer and
the application-layer is often limited. We define application-
awareness as the exchange of application-layer metadata with
the network-layer. This resulting application- and network-
layer collaboration can aid network management systems
make informed resource allocation decisions. Thus, network
management systems can exploit the intelligence provided by
application-aware architectures for resource allocation deci-
sions.

By understanding an application’s behavior and resource
requirements in real-time, a number of network management
optimizations are possible. Thus, application-awareness can
provide key insights to precisely characterize traffic volatil-
ity, resulting in improved forecasting accuracy of resource
requirements. In contrast to logging application-layer informa-
tion, application-awareness provides real-time updates on an
application’s behavior, requirements and states. Further, the
network-layer communicates with the application-layer over
a secure communication application programming interface
(API) to obtain all application-layer metadata that cannot be
obtained by conventional mechanisms. An important advan-
tage of an application-aware solution is that we do not have
to resort to external stateful packet processing techniques to
obtain application metadata. Traditional techniques such as
deep packet inspection (DPI) are both cumbersome and inef-
ficient when employed with large-scale data transfer systems.
Also, both stateful packet processing and sniffing fails with
applications like GridFTP [5] which use encrypted sessions
for connection establishment and data transfer.

B. Related Work

A number or recent studies have focused on the use of
statistical thresholds, autoscaling and linear models for re-
source allocation and provisioning. The authors in [6] look

at an example of Neflix using Amazon Web Services (AWS)
and propose an autoscaling system for dynamic minimum
bandwidth reservation from multiple data centers. Due to the
limitations of the use of static thresholds in handling outlier
events, more rigorous mechanisms are required. The authors
in [7] explore a regression model for autoscaling. Other works
such as [8], [9], [10] explore linear models for autoscaling. As
non-linear techniques such as exponentially weighted moving
average (EWMA) are too expensive computationally, predic-
tive analytic techniques using ARIMA for forecasting cloud
resources have been proposed in [11], [12]. Unlike the works
described above, our work focuses on developing a predictive
analytics solution for managing resources in an application-
aware SDN architecture for large-scale data transfers.

III. EXPLORATORY DATA ANALYSIS

We use application-awareness to obtain reliable and accu-
rate GridFTP data transfer and connection information. This
includes transfer/connection information from both CMS and
LIGO workflows. The CMS computing model [3] defines
various roles and services for data access. The GridFTP
connection information obtained using application-awareness
is classified based on both the user-role and its corresponding
workflow. Our initial dataset contains connection information
classified based on a total of four CMS user-roles and a
single LIGO user-role. The dataset includes GridFTP data
transfer and connection information measured at a single U.S.
CMS Tier-2 site over a period of 15 months. Of the four
CMS user-roles, we only use the transfer information from
a single-role for testing in our predictive analytics framework.
This test dataset (henceforth referred to as the “dataset™)
contains connection transfers associated with the CMS pro-
duction workflows representing project-level information of a
specific particle-physics project. However, we note that other
user/workflow data can be used to similar effect with our
proposed predictive analytics framework.

We employ time series analysis on our dataset to understand
the nature of its phenomenon and for forecasting future values
of the observed sequence. The future/predicted values are
also referred to as “out-of-sample” forecasts. We begin by
analyzing the dataset for the presence of components such as
trends, seasonality, cyclic patterns and random irregular pat-
terns. We assume that the GridFTP transfer information dataset
exhibits a systematic pattern (i.e. trend, seasonal and cyclical
information) combined with random noise, making the pattern
identification difficult. Therefore, our objective is to identify
the presence of non-stationary processes in the time series
through statistical testing. The removal of systematic patterns
from the dataset results in a residual component referred to
as “random shock™ or “error”. We assume that the residual
component is independent identically distributed (i.i.d.) and
can be modeled using linear regression on exogenous variables
for forecasting future data transfers.

Ensuring stationarity of the transfer dataset is an important
step in our exploratory data analysis. The sample statistics of
a stationary time series do not undergo systemic shifts over
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Fig. 1: Exploratory data analysis of the GridFTP transfer dataset.

the observation period. Our statistical prediction models (see
Section IV) rely on the stationarity of the time series to make
reasonable forecasts of the future data transfers. We use a
number of tools to identify systematic patterns in our dataset.
The non-repeating linear/non-linear components, i.e. trends,
are analyzed using data smoothing. We analyze the periodic
variations, i.e. seasonals, using run sequence plots.

To verify the stationarity of our dataset, we use the Aug-
mented Dickey-Fuller (ADF) test. The ADF test also helps
us determine whether differencing is required to remove the
trends and seasonals from the transfer dataset. The test works
by checking a univariate process for a unit root when serial
correlation is present. The null hypothesis of the test represents
the presence of a unit root and vice versa with the alternative
hypothesis. A p-value > 0.05 accepts the null hypothesis and
indicates a non-stationary series. The p-values are obtained
using the method described in [13]. The ADF test is configured
to automatically choose the number of lags to maximize the
Akaike Information Criterion (AIC) [14].

Figure 1 presents the exploratory data analysis of our
GridFTP transfer dataset. Figure la shows the run-sequence
plot of the measured total number of data transfer connec-
tions over time. The dataset is presented with an aggregated
sampling interval of one hour. We present the correlograms
representing the autocorrelation function (ACF) and partial
autocorrelation function (PACF) in the Figures 1b and Ic
respectively. The shaded bands represent a 95% confidence

interval (CI), with lags (i.e. data points) outside of this area
showing statistically significant correlation. The lags inside
the confidence intervals are due to random-shock. From the
correlograms we observe serial dependencies in the transfer
dataset. Differencing can be employed to remove these serial
dependencies. For example, we can transform each element ¢
in a sample to (¢ — k), where k is lag value. Thus, through
differencing, we can not only identify the hidden seasonal
dependencies in the series, but also ensure that the autocor-
relations for consecutive lags are independent of each other.
This has the effect of making the seasonal components more
apparent. Further, by removing the seasonal dependencies,
we can make the time series stationary. This is a necessary
requirement for the forecasting technique used in Section IV.

Finally, we also note that the analysis presented in Figure 1
represents a non-stationary series as evidenced by subjecting
the dataset to the ADF test. The ADF test on the time series
in Figure la results in p-values of 0.116 and 2.628 x 10~4
pre- and post-differencing (first-order) respectively. Thus, we
can conclude that first-order differencing can stationarize the
dataset. Figures 1d and le present the normal quantile-quantile
(QQ) plot and the normal probability plot for our dataset
respectively. From the graphs, we observe that the dataset
is right skewed in comparison to a normal distribution. The
corresponding kernel density plot is also shown in Figure 1f.
Lastly, in Figure 1g, we present the autocorrelation plot with
confidence intervals of both 95% and 99% respectively. The
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(a) Decomposition plot of the short-term aggregate.
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(b) Decomposition plot of the long-term aggregate.

Fig. 2: Short-term and long-term time series decomposition plots.

number of lags outside the 95% CI are indicative of the AR
model order p. The time series decomposition plots for a short-
term aggregate (one hour aggregates over a period 8 days) and
a long-term aggregate (one hour aggregates over a period of 6
months) are shown in Figures 2a and 2b respectively. The STL
[15] method is used in this decomposition. Next, we provide
some guidance on data aggregation, dataset length and forecast
objectives, and its impact on design choices.

A. Dataset considerations for model estimation

1) Effect of Data Aggregation: The GridFTP transfer in-
formation is measured with a granularity of microseconds.
We perform data aggregation and use the aggregate statistics
to make predictions as the original dataset granularity does
not permit meaningful analysis. We use resampling to aggre-
gate data transfers with a granularity of one hour and use
the obtained aggregate statistics in our predictive analytics
framework. The choice of the resampling period and the
corresponding aggregate granularity is subjective and depends
on the application’s forecasting objectives.

2) Dataset length: Another important design choice is the
length of the dataset used to fit the forecasting model. The
number of data points in the sample depends on the amount
of random fluctuations in the data and also on the number of
model parameters [16]. We rely on the model’s performance
with out-of-sample data and use both AIC and the out-of-
sample mean absolute percentage error (MAPE) to choose the
dataset length.

3) Other considerations: Lastly, whether predictive an-
alytics and forecasting are applied to per-aggregate (total
transfers), per-user, per-flow or per-project depends on how the
forecast information is used to influence network management
decisions. We implement a per-role forecast to predict the user-
roles’ resource requirements.

IV. AN ARIMA MODEL FOR PREDICTIVE ANALYTICS

In this section, we develop a predictive analytics framework
to accurately forecast GridFTP transfer connections. First,
we train the model using the stationarized dataset obtained

from Section III to estimate its parameters. Initially, we use a
historical dataset partitioned into a training set and a validation
set to estimate the model parameters. On finding a suitable
model, we verify its performance on the validation set using
mean absolute percentage error (MAPE) as the metric. The
model is then applied to make rolling forecasts with a real-
time dataset consisting of the current observation (x;) and k
time-lagged observations (i.e. {T¢—k, Tt—kt1, s Tt—1, Tt }).
The model generates n out-of-sample forecasts (see Section
IV-B) that are used by the SDN controller to make resource
allocation decisions. Finally, the SDN controller effects data-
plane changes over the OpenFlow protocol to preemptively
adapt to the changing resource requirements. Automatic model
checking and re-selection are employed to ensure that the
forecast accuracy is consistently maintained.

The  autoregressive  integrated  moving  average
(ARIMA) [17] model includes two common processes:
an autoregressive process (AR) and a moving average (MA)
process. The AR and MA processes are combined with
an “integrated” component. The integrated component is
used to replace data values with their corresponding d-th
order differenced values. The differencing process ensures
stationarity of the dataset and the integration process reverses
this effect post-fitting. Due to the presence of serially
dependent data points in our dataset, we can use the time-
lagged information to estimate future values using the AR
process. Unlike the AR process, in the moving average (MA)
process, each observation is also affected by past random
shock. Thus, each observation is a linear combination of
past random shocks. The ARIMA method is a generalization
of the ARMA process and the model is composed of three
parameters namely: (i) the AR parameter (p), (ii) the number
of differencing passes (d), and (iii) the MA parameter (g).

A. Design Framework

The design framework is shown in Figure 3. The
application-aware SDN architectures similar to those in [4],
[18] are used in the data acquisition process to obtain GridFTP
data transfer and connection information. The SNAG [4]
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(SDN-managed network architecture for GridFTP transfers)
architecture provides a convenient mechanism for obtaining
accurate pre-classified information about all current/ongoing
flows in the campus network. GridFTP connection information
from a pool of 13 production GridFTP servers are obtained
using this approach. This GridFTP connection information is
indexed by a 11 node Elastic cluster for storage, indexing,
analysis and visualization. The Elastic stack provides rep-
resentational state transfer (REST) application programming
interfaces (APIs) that are used by the predictive model to
request the total aggregate connection transfers for the time

window under consideration.
OpenFlow E Forecast
72N

u .
WAN SDN Controller

Application
Servers

Predictive
Models

Application-aware Elastic Cluster
Data Acquisition

Fig. 3: Predictive Analytics Framework.

The dataset is used to fit an ARIMA-based predictive
analytics model. The out-of-sample forecasts from the model
and its parameters are communicated to the SDN controller.
The SDN controller uses the forecast information to track and
adapt the data-plane resources allocated to the corresponding
user-role. To ensure consistent performance, the framework
incorporates periodic model checking and automatic parameter
(re-)estimation (see Section IV-B).

B. Algorithm Design

The ARIMA-Forecast(x,n) is shown in Algorithm 1. The
algorithm is divided into two phases namely: (i) model pa-
rameter estimation, and (ii) model checking and parameter re-
estimation. The FindBestModel(x,n) routine is used to iden-
tify the best ARIMA model parameters for a dataset . The
search space of the model order is upper bounded by [P, D, Q)],
with P,Q = {i,0 < i < 10} and D € (0,1). For each run,
we compute the model’s Akaike Information Criterion (AIC)
and choose the model with the least AIC. The best model (i.e.
mdlyy:) and its order (O,,et,) are stored and used to forecast
n out-of-sample steps. Both the forecast information and the
model parameters are used by the SDN controller for network
management decisions as outlined in Section IV-A. The first
phase is responsible for both model identification and model
parameter estimation. The model is then used to forecast out-
of-sample steps (i.e. predictions). Thus, the algorithm finds the
best effective (yet computationally frugal) model order O,,¢tq
using maximum likelihood estimation to minimize the sum of
squared residuals.

We perform model checking in the second phase. We
use a rolling forecast model to adapt and track changes in
traffic conditions. The model identified in the first phase is

used to make out-of-sample forecasts. However, to ensure
consistency in the model’s performance, we periodically check
the accuracy of the out-of-sample forecasts with real obser-
vations. Automatic parameter re-estimation is performed if
the model’s mean absolute error (MAE), ¢, falls below a
predefined threshold, 7. This process is scheduled periodically
to ensure that the out-of-sample predictions are accurate and
usable by the SDN controller for decision making.

Algorithm 1 ARIMA-Forecast(x, n)

Require: Connection information vector (x), out-of-sample
forecast step size (n).
Output: F), out-of-sample forecasts.
1: AIC,, = 00
2: Opmeta = None
3: mdly,: = None
Phase 1: Model parameter estimation
FindBestModel(x,n) :
4: for pin O to P do
5: fordin0Oto D do
6: for ¢ in 0 to Q do
7
8
9

mdltmp - ARIMA(Xa n, [pv d7 q])
if AIC(mdlyyp) < AIC,: then
AICout = AIC (mdltmp)

10: Ometa = [p7 d, Q}
11: mdlout = mdltmp
12: end if

13: end for

14:  end for

15: end for

16: return F,, = FORECAST (mdloyut,n)
Phase 2: Model Checking
17: while True do

18: t = thow

19:  if e (mdl,yt) < 7 then
20: FindBestModel(x,n)
21:  end if

22:  Wait t + dt
23: end while

V. EXPERIMENTAL STUDY

An example forecast with 95% and 99% confidence bands
are shown in Figure 4. The out-of-sample forecasts are gen-
erated using an ARIMA(5,1,5) model estimated using Algo-
rithm 1. The estimated model has a mean absolute percentage
error (MAPE) of 6.68% for ten out-of-sample forecasts. The
MAPE varies between 6% to 10% for different dataset inputs
over time. Further, the MAPE increases monotonically with
an increase in the number of out-of-sample forecasts.

The estimated model’s residuals are shown in Figure 5. The
ACF and PACEF plots are shown in Figure 5a. We observe that
the correlograms confirm the absence of significant correlation,
since the data points fall within the CI bands. The kernel
density plot showing the distribution of the residuals is shown
in Figure 5b. We note that model residuals do not show
normality and their distribution is heavy-tailed. This implies
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Fig. 5: Forecasting and predictive

that our model does not fully capture the underlying process,
but instead show some correlated errors. Lastly, Figures Sc and
5d show the QQ plot and the probability plot of the residuals
respectively. These plots also confirm that the residuals cannot
be represented using a white-noise process. Thus, the residuals
follow a heavy-tailed distribution. This is due to the presence
of occasional conditional volatility that is not captured by our
model.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a predictive analytics framework for forecast-
ing GridFTP transfer connections using an application-aware
SDN approach. We developed an autoregressive integrated
moving average (ARIMA) based forecasting algorithm that in-
corporates automatic parameter estimation and periodic model
checking features. When used to make rolling forecasts, our
framework with a MAPE performance ranging between 6%
to 10%, can provide effective strategies to preemptively drive
resource allocation decisions. Thus, our predictive analytics
framework using application-aware SDN can lead to the
development of proactive network management systems. By
tightly integrating our predictive analytics framework with an

application-aware SDN solution, we demonstrate a network
management approach capable of forecasting the resource
requirement of dynamic large-scale data transfers. Our future
work will focus on developing multivariate predictive analytic
models to characterize heterogeneous user/application traffic
behavior.
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