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Stealing Passwords by Observing Hands Movement

Diksha Shukla

Abstract—The use of mobile phones in public places opens
up the possibilities of remote side channel attacks on these
devices. We present a video-based side channel attack to decipher
passwords on mobile devices. Our method uses short video clips
ranging from 5 to 10 s each, which can be taken unobtrusively
from a distance and do not require the keyboard or the screen of
the phone to be visible. By relating the spatiotemporal movements
of the user’s hand during typing and an anchor point on any
visible part of the phone, we predict the typed password with
high accuracy. The results on a dataset of 375 short videos of
password entry process on a Samsung Galaxy S4 phone show an
exponential reduction in the search space compared to a random
guess. For each key-press corresponding to a character in the
passwords, our method was able to reduce the search space
to an average of 2-3 keys compared to ~30 keys if one has
to guess the key randomly. Thus, this paper reaffirms threats
to smartphone users’ conventional login in public places and
highlights the threats in scenarios such as hiding the screen that
otherwise gives the impression of being safe to the users.

Index Terms— Biometrics, authentication, side channel attack,
password, smartphone security, hand gestures.

I. INTRODUCTION

E PROPOSE algorithms and methods to predict pass-
Wwords by analyzing the underlying dynamics of hand
movements when typing on a mobile phone. The components
of our system include a video clip that provides anchor points
on any visible part of the phone and any visible part of the
typing hand. No part of the screen of the phone needs to be
visible. We achieve accuracy as high as 94% in predicting
the cluster of keys where each cluster represents 5-6 spatially
close keys on the keyboard. Using keyboard state transition
probability and flight time between keys pressed obtained
through analysis of the video frames, we correctly recognized
an average of 70% of the characters in a password.

The process works as follows. Since the geometry of the
keyboard on brand name phones such as iPhone, Samsung
Galaxy S4, and HTC One uses a fixed design, we can locate
the keyboard in the video by estimating the location, length,
and width of the keyboard and by relating these dimensions in
the video with the physical (known) dimensions of the keypad
by simple geometric transforms between the two. The cues to
deciphering the characters typed include the observations that
the hand moves closer to the keyboard when pressing a key
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Fig. 1.  An adversary recording the visible hand movements to infer the
password being typed on the mobile phone screen. A user is typing his
password on the mobile phone screen and the adversary is recording the
video using a video recorder.

and moves away just after that (see Section III-E for finer
nuances of this observation).

The prediction of the characters pressed poses specific
challenges because any character can represent a sequence of
key presses such as shift key or number key to transforming
from alphabets to numbers and numbers to special characters.
For example- to type the password Sec @16, a user will press
the sequence of keys as Shift —- S — ¢ - ¢ — Number
key - @ — 1 — 6. Shift key changes the keyboard state
from lowercase alphabets to uppercase alphabets and Number
key transforms the state from alphabets to numbers.

To the best of our knowledge, ours is the first work that
predicts passwords solely on the basis of observed hand
movements. Figure 1 shows the scenario, we analyzed in this
paper. It shows, a user is entering the password on his mobile
phone, and an adversary with a camera is capturing the video
from a distance such that mobile phone screen is not visible
and hence gives an illusion to the user of being safe. In the
same fashion, an adversary can capture the video from a
more sophisticated camera with optical zoom facility which
enables to capture video from a remote distance. We per-
formed our analysis on the password entry videos on Samsung
Galaxy S4 phone and video captured by a range of video
recorders starting from HTC One mobile phone camera with
no optical zoom to Sony camcorder with high optical zoom
capability.
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The following are the contributions of the paper:

1) We design an attack that decodes a user’s password
based on the hand movements recorded in a video clip.
The attack can be executed in such a way as to not
raise any suspicions to the user, so it poses a serious
threat with the new range of sophisticated cameras now
introduced in the market (such as smart glasses and
smart watches).

2) Using a large dataset of the video recording of user’s
hand dynamics while they type their password on the
mobile phone, we show our attack was able to break an
average of over 70% of characters in a password.

3) The users have a strong conviction that covering the
screen while entering a password at a public place
adequately secures the password against eavesdropping
attacks. Our findings provide an evidence against the
notion because all the videos used in the study have no
part of the screen visible.

Discussion — Follow-Up Potential Adversarial Scenarios

A 70%-character guess of user’s passwords provides signif-
icant leverage to an attack because it opens several follow
up adversarial possibilities. Below we list some of these
possibilities.

1) Reused Credential Attack - Although research in the past
has shown that reusing credentials across applications
and websites puts a user at security risk [1], [2], several
users still reuse their passwords across applications.
An attacker could easily launch an attack on other
linked sites for such a user. Research also suggests
that a single good credential could lead to a bigger
organizational level attack [3], [4] and hence our work
exposes the possibility of such an attack by using video
based channels to obtain credentials of potential users.

2) Targeted User Attack - Since the users type their pass-
words several times in a day, an adversary could obtain
multiple videos of a target user over time and obtain
a better estimate over time. Also, for a targeted user,
an adversary could combine other personal information
about the user to get a better estimate of the password
in fewer guesses.

3) Credential Trading - Credential trading is another moti-
vation behind the credential thefts. The attacks such as
ours can be utilized by adversaries for trading the users
passwords. These traded partial (or complete) passwords
might lead to a bigger attack [5].

The rest of the paper is organized as follows. We discuss
related work in Section II. Section III discusses the data sets
and the detailed attack process. We present the attack results
in Section IV and broader implications and our conclusions in
Section V.

II. RELATED WORK

Recent research show possibility of exploiting video based
side channels to steal the smart device user’s sensitive
information [6]-[15].
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A very closely related work to this paper is our previous
work on user’s Pin entry process on the mobile phones [6].
The attack was shown to work with the video recording of a
user’s hand movement while not compromising any informa-
tion from the mobile phone screen display. The attack design
in [6] is suitable for numeric Pins, but given the complexity of
keyboard for password or text input, the attack would fail due
to the close proximity of key locations and change of keypad
state from characters to numbers and to special characters. The
attack presented in this paper differs in several ways; (1) we
consider the keypad state transitions in the attack, (2) we
estimate the fingertip movement by using the observed typing
hand point location in each frame. This gives us better estimate
of the key touched considering the spatially close keys in an
alphanumeric keypad, (3) the attack presented in this paper
does not rely solely on one point tracked on the typing hand
but rather takes multiple points to track and fuses the tracked
results to get a better estimate of hand movement, and (4) we
build a password language model to get a better prediction in
case of lexical patterns in the user’s passwords.

Another closely related work to this paper is by
Xu et al. [7]. Xu et al. show the text reconstruction using a
low-resolution video recording of the fingertip and the screen
on which typing is being done. They show the video recording
captured from a long distance such that it was impossible for
the user to see the attacker. They show the attack to work even
with the recording of the reflection of the typing finger and
phone screen.

The attack by Ye et al. [8] utilizes video recordings of
the users’ mobile phone screen to build an attack on the
smartphone pattern lock system. Ye et al. show that their attack
could reconstruct over 95% of the graphical patterns in the first
five attempts. The work by Chen [9] show an automated attack
for fast inference of number inputs on the mobile phone screen
using video recordings of the users’ screen while they type.
Another recent attack presented by Balagani er al. [10] on
ATM pins uses the video recording of screen or the projector.
The attack by Balagani et al. extracts timing information from
consecutive key presses from the recorded video to infer the
key sequence being entered on the keypad.

The attacks presented in [7]-[10] were based on the appear-
ance of the screen while a particular key is being typed. Their
attack model uses the information from the mobile phone
screen display which makes our work different to theirs. For
users who will be able to hide their screen while they type,
these attacks will fail. Our attack model does not require any
information from screen display while typing is being done.
We only need a video recording of hand movement and a part
of the back of the mobile phone while typing is being done.

The work by Raguram er al. [11] and Backes et al. [12]
also shows the text reconstruction using reflection. In their
work, they use state of the art image processing techniques to
reconstruct the text. The fact that they use the information of
display of the text in the reflection makes their work clearly
very different from ours.

The attack design by Balzarotti et al. [13] uses a video
recording of user’s typing on the desktop keyboard. The video
recording was done in such way that camera directly points to
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the keyboard. Balzarotti et al. used a series of computer vision
analysis followed by language modeling techniques to infer the
text typed on the desktop keyboard. They use the information
about which keys are not visible in the video while a particular
key is being pressed and puts them as candidate keys to be
pressed. Our work is clearly very different to the work by
Balzarotti et al. Our attack is conducted in such way that it
does not need the keyboard of the mobile phone to be visible.

The attack by Maggi er al. [14] uses the video recording
while the user is typing on the smartphone screen. Their
attack takes advantage of display feedback mechanism (the
enlarged key display while it is being typed). In their attack
set up, the recording was done while the camera was directly
pointing to the smartphone screen. They use a classifier trained
on the appearance of the enlarged display of characters to
determine the characters typed in a stream of video recording.
A similar kind of attack has recently been proposed by
Yue et al. [15]-[17] on password and text entry process. In
their work, they rely on the video recording of the smartphone
screen and fingertip from a distance using advanced camera-
enabled devices such as Google glass. They employ advanced
image processing techniques to estimate the touched locations
on the screen which in turn maps to the actual key presses.

In all three works by Balzarotti et al. and Maggi et al. and
that of Yue et al., the cameras directly pointed at the keyboard
to capture the video of user’s typing, i.e. direct observation of
the appearance of the keyboard or the text typed. In our attack
model, we do not use such a fine-grained information from the
screen display. It needs only part of the hand and an anchor
point on the mobile phone to be visible to launch our attack.

We also discuss in brief two side-channel attacks that despite
having been evaluated in a desktop environment [18], [19]
help put into context two interesting attributes of our attack.
Using a neural network trained with samples collected from
the intended victim, Asonov and Agrawal [18] showed that
acoustic keyboard emanations could be used to retrieve typed
text with close to 80% accuracy. This attack was then later
refined by Zhuang er al. [19] who recovered up to 96%
of typed English characters and 90% of random 5-character
passwords (using only letters) in just a few guesses. A notable
aspect of the attack refinement by Zhuang et al. was the
elimination of the training process, making the attack applica-
ble to victims for whom no previous recordings of keyboard
emanations are available. In an attack against the SSH login
mechanism, Song et al. [20] showed that the time intervals
between SSH packets provide a significant amount of informa-
tion on what users type during an SSH session. Using an attack
tool, build based on Hidden Markov Models, Song ef al. [20]
showed their attack to reduce the SSH password search
space by up to 50 times on average compared to exhaustive
search.

Like the attack by Zhuang et al. [19], our attack does not
require any user specific training phase, making it applicable
to any video on the fly. Meanwhile, compared to the 50x
reduction in the search space seen with the SSH attacks,
our attack reduces the password search space by over 99%
confirming its lethality relative to some of the known attacks
on text input (see Section IV).
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There is a series of work which explored the vulnerabil-
ities posed by sensor data on the mobile phone. Cai and
Chen [21] and Owusu et al. [22] used the accelerometer sen-
sor data to infer the password typed on the smartphone screen.
Miluzzo et al. [23] and Xu et al. [24] fused accelerometer
readings with those of gyroscope readings while typing was
being done. They also implemented an attack to infer password
using the orientation and movement information extracted
from mentioned smartphone sensors to determine the keys
being pressed. A recent work by Simon and Anderson [25]
showed an attack to infer the Pin entered on the smartphone
screen. Attack by Simon and Anderson uses the output from
front camera of the user’s mobile phone and also output from
the microphone. Wang er al. [26] presented an attack to infer
the hand movement of the users’ hand using motion sensors
in the mobile device. Wang ef al. show that their attack could
accurately infer mm-level distance in more than 90% of the
cases. Their attack utilizes these mm-level hand movement
distance to decipher the users’ pin. Another recent attack was
proposed by Tang ef al. [27] on the inference of number Pins
by using accelerometer data. Their attack was shown to infer
the users’ pin with 70% and 85% accuracy in 10 attempts
in user-independent and user-dependent environments respec-
tively. Tang er al. claim that their attack could easily be
used to attack the pattern lock system and requires minimal
training with very few samples in case of user-dependent
environments. By using a large number of password entries
from 362 volunteer participants and their motion sensors data,
Lu et al. [28] show that their attack could accurately infer the
users’ password in first 20 guesses.

Sensors based attack makes an assumption of having access
to the user’s smartphone sensor data [25], [26]. On the other
hand, our method is solely based on the user’s hand movement
captured while the user type on their smartphone screen. The
whole breed of sensor attacks is different from our attack
model as our attack can be executed in such a way that does
not require any information from user’s smartphone.

IIT. ATTACK DETAILS

In this section, we introduce the broader idea of the attack
model and discuss each step in detail to decipher the password.

Figure 2 shows the workflow and steps of the attack. First,
we summarize each step here and then discuss one by one
later in detail.

Step 1 - Capture a video of the user’s hands movements
while he/she types the password on the mobile phones screen.
One can easily guess the password typing as the first action
by the user after picking the phone in his/her hands. Our
method does not require any information from mobile phone
screen display such as key popups or typed text to be recorded.
However, our method assumes user’s hand’s movements and
part of the back of the mobile phone are visible on the video
clip.

Step 2 - Preprocess the recorded video and keep only the
part of the clip of password entry process. In this process,
attacker observes the recorded video frame by frame and cuts
the extra part captured at the start and end of the video and
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keeps only the password entry part. This step need not be very
precise and the method works even with extra frames both at
the start and end of the video clip. However, less number of
extra frames results in less processing in further steps.

Step 3 - Employ TLD tracking tool [29], [30] to track an
anchor hand point and an anchor point on the visible part of
the mobile phone. This step requires the adversary to manually
select the anchor points on the user’s hand and mobile phone.
We discuss criteria to select the anchor points in Section III-C.
Having the tracked location of mobile phone-point and hand-
point in each frame, the attack model computes the relative
location of hand point with respect to the mobile phone anchor
point.

Step 4 - Given the movement of hand point and some
visible part of user’s hand, estimate the shape and size of
the hidden part of the user’s hand. By using approximations
of the measurements, estimate the user’s fingertip movement.

Step 5 - Detect the key touch frames in which finger-
tip touches the mobile phone screen. By computing the
image velocity corresponding to fingertip point and finding
frames with zero velocity which are part of the sequence
of consecutive frames in the video having a pattern of
....P,Z,...,Z,N,...in order where P represents positive,
Z denotes zero, and N denotes negative image velocity.

Step 6 - Locate the fingertip in the detected key touch
frames. Assuming the last key touch as OK key! and given
the estimated movement of fingertip and known location of
OK key on keypad, use backtracking to locate the fingertip
on the mobile phone keypad.

Step 7 - Determine the keypad state based on the previous
key touched and probabilities computed from a large password
dataset.

Step 8 - Build a probability based password model with
added information from determined touched location and
keypad state and identify the touched keys. Given the correct
locations of tracked points, we can reduce the search space
to an average of 2-3 keys per touching frame. We discuss the
eight steps in detail below.

A. Step 1 - Capturing Videos

An adversary captures the video of the user typing the
password on the mobile phone screen. With the increasing
use of mobile phones in public places such as conference
halls, meeting rooms, shopping malls, airports, and clubs, etc.,
adversaries get a lot of opportunities to record a video of the
user’s typing. Also, adversaries can get access to the videos
captured by surveillance cameras installed in the public places.

1Our method will need small geometric modifications for the mobile phones
in which password entry process does not end with touching a specified key
like OK key.
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Work flow of the attack model to decipher the smartphone password.
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Fig. 3. Password length distribution in the selected password datasets for
training and testing the attack performance. (a) Password length distribution in
the password list I, training password dataset. (b) Password length distribution
in the password list 11, testing password dataset.

One can easily identify the password typing session from a
video clip as the first thing a user will type on the mobile
phone after picking his/her phone is the password if the mobile
phone is secured by one. Our method uses the video clip of
password entry process such that the user’s hand movement
and part of the mobile phone are visible. We collected the
videos of the users’ password entry process to evaluate the
performance of our attack model.

In addition to the video data to evaluate the performance,
we used a large password dataset to build the probability-based
model. For the clarity of dataset used, we discuss the datasets
in detail below.

Datasets: We used two different datasets. UNIQPASS
v15 Password Dataset [31], a large password list, to build
a probability-based model discussed in Step 7 and Step 8.
Another is password entry video data set for computer vision
based analysis and test the overall performance of our attack
model. The detailed description of each dataset follows.

UNIQPASS v15 Password Dataset: From a large password
list, UNIQPASS v15, with over 2 million unique ASCII pass-
words stored in random order [31], we created two mutually
exclusive sublists of randomly selected passwords of length
between 4 to 15 characters. These two sublists, password list
I and password list II, have approximately 0.6 million and
0.1 million passwords respectively.

The passwords in both the lists, Password List I and
Password List II, are unique and chosen randomly without rep-
etition from UNIQPASS v15 selected password list. The pass-
word length distribution in both the lists is shown in Figure 3.
The passwords length of eight characters were most frequently
occurring in both of our password list: password list I, and
password list I1.

Video Dataset: Following approval from our university’s
Institutional Review Board (IRB), we collected two data sets;
a training dataset comprising of 20 password entry videos from
10 volunteers, and a testing dataset comprising of 135 pass-
word entry videos from 45 volunteers (i.e., 3 videos per
volunteer, with each video recorded using a different camera
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TABLE I

SPECIFICATION OF THE CAMERAS USED IN OUR
EXPERIMENTS FOR VIDEO RECORDING

Camera Properties
Configuration | Frame Resolution Zoom
Rate
iPhone 6 Plus | 240 fps 1280 x 720 p Digital
Sony 30 fps 1440 x 1080 p | Optical
HTC One 30 fps 1920 x 1080 p | Digital

configuration). We used three cameras to record the videos
— HTC One mobile phone camera, a Sony Camcorder, and
an iPhone 6 plus camera. None of the volunteer participants
were common among training session and testing session of
data collection, i.e., the training data was collected from a
separate set of volunteer participants. All participants were
students, faculty or staff at our university. The volunteers
entered passwords on a Samsung Galaxy S4 phone.

Table I summarizes the specifications of the three video
recorders used in our experiments. We used the various
specification of cameras to simulate a range of adversaries.
An iPhone 6 plus camera enabled us to simulate an adversary
who uses a high-end mobile phone camera with fairly good
resolution and high frame rate of video recording. We used
digital zoom capability of iPhone 6 plus camera to capture
video from a distance as phone camera was not enabled with
an optical zoom feature. A Sony camcorder illustrated the
adversary who uses the video recorder with optical zoom
feature and high resolution. Our last camera of HTC One
mobile phone represented basic mobile phone cameras.

Password entry process and video recording: Users type
their password on the mobile phone several times in a day
and can type with no or very low cognitive load. Collecting
the video recordings of the user’s hand movement while they
type their real password comes with a set of security risks.
Hence, we worked around this problem by having each user
to randomly select a password from the password list IT and let
them practice entering it on our Samsung Galaxy S4 phones
until they felt comfortable typing it. On average, this practice
session took 10-15 trials per password for each user. Following
the practice session, each user then typed the same password
during the recorded session. For each of the three camera con-
figurations, each user typed a password that was preceded by a
practice session. We performed this data collection experiment
in various setup. For example, we recorded some users while
they sat and others while they stood. Also, some users came
to our lab for video recording, while others were recorded
from inside or outside their residential halls. The recording
was done from a distance of approximately 4-5 meters from
the participants.

Video Dataset to Analyze the Effect of Parameters Settings:
To analyze the effect of various parameters settings on our
attack model, we recorded 42 videos for each user while the
user typed the randomly selected password from password
list IT as follows: (1) 15 videos— with three different camera
configurations and each camera configuration was used at five
different distances of recording - each at 2 meters, 4 meters,
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6 meters, 8 meters, and 10 meters; (2) 12 videos— with three
different camera configurations and each camera configuration
was used in four different lighting conditions - 250 lumens,
500 lumens, 750 lumens, and 1000 lumens; (3) 15 videos—
with three different camera configurations and each cam-
era configuration was used from five different angles of
recording - each from -100deg, -50deg, Odeg +50deg, and
+100deg. Angle is measured as the angle between the line
of sight of the user’s eye and negative of the direction of view
of the recording camera. In total, we recorded 210 videos from
5 different users i.e. 42 password entry videos from each user.

B. Step 2 - Video Preprocessing

Given a video recording of a length of 5 to 10 seconds of
the password entry process, we first cut out the video segment
of interest. One can identify the part of password entry in the
video segment, simply by observing the user’s interaction with
the mobile phone. We assume during the interaction with the
mobile phone the first thing user types is the password if their
mobile phone is secured by one. We used Windows Movie
Maker [32] to select the password entry segment and cut and
remove the unwanted part. The video segment of interest
contains 200-300 milliseconds of recording both before and
after the password entry process. Cutting the unwanted part
from video need not be very precise for our attack to work,
precision will just save the unnecessary processing in the later
steps of attack process. We input the selected part of password
entry video into AVS Video editor to extract the frames from
the video. The video captured by Sony camcorder and HTC
One mobile phone camera generated an average of 120 frames
for each video. On the other hand, video captured by iPhone
camera generated an average of 1000 frames per video.

C. Step 3 -Hand and Phone Anchor Points Tracking

We wused the Tracking Learning Detection (TLD)
framework [30] to track the anchor points on the user’s
hand and on the mobile phone in the captured video. TLD is
an open source tool [29], and has three modules: a tracker
which locates an object across the subsequent frames in the
video, a detector which detects the presence of the object in
each subsequent frames and a learner estimates the detectors
error and update the template for the object to minimize the
detection error for the subsequent frames.

TLD object tracking tool can detect the appearance of
the object in the subsequent frames even after several failed
detections. Also, it works quite well with a real-time stream
of video [29]. We tracked an anchor point on the mobile
phone visible throughout the video. This point can be present
anywhere on the mobile phone. Also, we tracked five different
anchor points on the users hand in the video. We selected
such an anchor point on the user’s hand that it fulfills the
following criteria— 1). The hand anchor points should be
visible throughout the password entry process in the video.
2). It should be as close to the mobile phone or the typing
finger as possible. We believe that the point which is closer
to the typing finger gives a more plausible representation of
fingertip movement. We tracked one point on the mobile phone
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Fig. 4. Flow chart summarizing video preprocessing and hand and phone
anchor point tracking steps.

as we observed that the mobile phone anchor point is very
different from the rest of the objects in the video and hence
tracking algorithm gives very accurate tracking results for the
mobile phone point. Although, we select hand anchor point
which seems different from other objects in the frame, but
tracking algorithm gets confused many times even with a little
bit similar looking other points present on the user’s hand. So,
we tracked multiple points on the hands and merged the results
as to minimize the tracking error.

Figure 4 summarizes the preprocessing and tracking steps.
For a given frame, if the tracking confidence’ was less than
a set threshold for more than 10% of the frames, we selected
another point and reran the entire tracking operation for that
particular video. We set a tracking confidence threshold as
0.5 as we found it produces good tracking results in our sample
of the training dataset.

We compute the relative movement of hand point Spund point
in the frame of reference of tracked mobile phone point simply
by subtracting the pixel locations of hand point from the pixel
locations of mobile phone anchor point obtained from tracking.

D. Step 4 - Estimating the Fingertip Movement

We observed that the user’s finger first moves towards the
screen, rests, and then moves away from the touch screen while
typing any particular key. We also observed that the rest of
the hand also follows the similar behavior of motion (i.e. the
direction of motion of other points on the hand is same as the
direction of motion of fingertip. Also, the magnitude of move-
ment of any other point on the hand is directly proportional to
the magnitude of fingertip movement.). We establish a relation

2Tracking framework gives a tracking confidence for each frame in the
video as a measure of how accurate the detection of the object is for the
corresponding frame. For details on this, the user is referred to [29].
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Fig. 5. Tllustrating the transformation of hand point movement to fingertip
movement. Point A shows the tracked point with movement Sjq,4pPoint =
AA’ between two given frames. Figure shows the corresponding movement
in typing fingertip P as Sfingerrip = PP’

between the movement of the fingertip and the movement
of a visible point. For simplicity, we assume that user will
not apply any other external force (such as force applied
over the wrist of the user’s hand) during the typing process.
We build a hand movement model as an approximation of
the movements of user’s hand while they type their password.
Given the movement Spgngpoins = AA’ of a tracked point
A to A’ on the user’s hand and d, the distance of the hand
point A from the fingertip P (see figure 5), then the movement
Stingertip = PP’ of fingertip point P corresponding to hand
point movement AA’ can be estimated by applying equal
proportion of sides rule® on similar triangle APQP’ and
AAQA’ as follows—

Sfingertip/shandPoint = PP//AA/
PQ/AQ
= L/(L —d) (1

where L is the length of hand (length from elbow to fingertip)
which can be estimated* using the visible part of the hand in
the video.

E. Step 5 - Identifying Key Touch Frames

Key touch frames are the frames which represent the finger
touching the mobile phone screen. Using the estimated move-
ment of the fingertip (see Section III-D), we computed the
image velocity® corresponding to fingertip point [36]. As per
well-known notion of typing process on the mobile phone
screen, fingertip moves towards the screen, rests and then
moves away from the screen [6], [16]. We first looked for the
sequences of consecutive frames in the video having positives,
zeros, and negatives image velocity pattern in order. Such
a sequence represents the corresponding movements of the
fingertip to type a key on the screen. The frames which
show zero velocity and are part of selected frames sequence
represent the resting part (or key touch frames) of the process

3In two similar triangles, corresponding sides are all in the same proportion.
This rule is also called Thales theorem or Intercept theorem [33].

4For an average person, length of the forehand is approximately 1.6 times
of the length from wrist to fingertip. For details the reader is referred
to [34], [35].

SPixel movement of fingertip point between two consecutive frames in the
video segment.
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of typing a key. Hence, we selected and referred the set of
such frames as candidate key touch frames Fj.

There can be some error associated in the tracking step or
in the estimation of fingertip movement for an anchor hand
point. Hence, to reduce the error in the estimates, we repeated
the whole procedure of inferring candidate key touch frames
for five different hand anchor points. The process gave us
five non-mutually exclusive set of candidate key touch frames
(say Fi, Fa, F3, Fy, and F5) each for a hand anchor point (see
Section III-C).

To identify the final set of key touch frames, we form groups
of all the candidate key touch frames for the target video.
Suppose Feandidate = {f | f € Fi, i € [1,5]} is the set of
all candidate key touch frames, then the groups were created
for all the frames f € Foandidate as follows—

1) Distance between two farthest frames in any group must
be less than the set threshold T A,y .

2) Distance between two closest frames in two different
groups must be greater than the set threshold 7/,,;,.

Analysis to decide the minimum and maximum threshold is
explained under the threshold selection heading.

In this step, the frames which are the member of set
Feandidate due to error (False Positive) in preceding steps, will
form a group with only a few frames. The rationale behind
this idea is that if a tracked point misses the detection of
a key touch frame f; (False Negatives), it will be detected
corresponding to other tracked points. On the other hand, if a
frame f; was detected as key touch frame due to error (False
Positives), it will not be there for other tracked points. Hence,
the higher number of frames in a group shows a true detection
(True Positives) of the key touch frame.

Hereafter, we will remove those groups of frames in which
the number of frames is less than a set threshold T frames
from the set of candidate key touch frames. Also, all the frames
in a group represent one key touch event and hence one frame
per group will suffice to create the set of key touch frames.
Hence, we form a new set of key touch frames FieyTouch
containing the median of the remaining groups.

Figure 6 shows an example of grouping where set of frames
corresponding to five different tracked hand anchor point are
as follows.

Fi = {12, 14,39,42,63, 63,79, 102, 117, 121},
F> = {13, 14,39, 43,62, 26,77, 103, 104, 118},
F3 = {12, 13,40, 61,65, 102, 104, 119, 120},
Fy = {13,28,39, 65, 63, 65, 102, 104},

and Fs = {26,40,62,65,81, 101, 102, 104, 117, 121}.

Figure 6a shows seven different group of candidate key touch
frames Gi, ..., G7 where the median of groups Gi, G3,
G4, Gg, and G7 represent the final key touch frames i.e.
FreyTouch = {13,40, 63,102, 119}. Whereas, frames belong-
ing to groups G7 and G5 indicate the error in detection as less
than five frames belong to these groups, hence we will remove
all the frames from groups G, and G5 for further analysis.
Threshold Selection: We extracted key touch frames manu-
ally by observing the videos frame by frame from the training
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(b)

Fig. 6. Figure 6a shows seven different groups of candidate key touch frames.
Groups Go, and G5 has only three and two candidate frames respectively,
hence represent the false detection of candidate key touch frames. Median
of groups G1, G3, G4, Gg, and G7 constitute the set of final key touch
frames Fiey7 ouch- Figure 6b shows the video frames represented by Frame #
in Figure 6a. (a) Grouping of candidate key touch frames f € F;, i € [1, 5]
to obtain a final set of key touch frame. (b) Frames of a user’s recorded video
clip. Frame #12, #13, and #14 are selected as key touch frames in group G.

TABLE I

TABLE SUMMARIZING THRESHOLD VALUES SET BY ANALYZING VIDEO
TRAINING DATA SET FOR ALL THREE CAMERA CONFIGURATIONS

Camera Thresholds
Configuration | Thmaz | Thmin | Thirames
iPhone 6 Plus 150 50 30

Sony 20 6 6
HTC One 20 6 6

dataset of 20 videos (see Section III-A). We calculated the
difference between the number of frames between two key
touch frames and plotted the cumulative distribution function
(CDF) (see Figure 7) of inter-key touch frames for all three
types of camera configurations used in our analysis. Figure 7b
and Figure 7a show that the distribution of inter-key touch
frames for the HTC One phone camera and the Sony Camera
is the same. Note that the average frame rate of video recording
in the Sony camera and the HTC One phone camera was equal.
Figure 7c shows that for more than 95% of the consecutive
key touch pairs, inter-key touch frames falls between 50 to
150 frames for videos captured from iPhone 6 plus camera.
Similarly, figure 7b and 7a show that more than 95% of the
key touch pairs, inter-key touch frames falls between 6 to
20 frames for videos captured from Sony and HTC One phone
cameras. We used the above measures to set T /i, and T hy,q
corresponding to different camera configuration.

To set the threshold T4 f,qmes, We performed an empirical
analysis of the videos from our training dataset. For our
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Fig. 7.
camcorder. (c¢) iPhone 6 Plus camera.

cdf plot of inter key touch frames for training videos captured using variety of cameras used in our experiments. (a) HTC One Phone. (b) Sony

TABLE III

ASSIGNMENT OF KEYS TO THE MUTUALLY NON- EXCLUSIVE CLUSTERS FOR EACH STATE OF THE KEYPAD.
TABLE SHOWS S1X CLUSTERS les OF KEYS FOR EACH STATE S; OF THE KEYPAD

Keypad Set of keys belonging to different clusters
State C1 [ [P [ Cs [ Cy [ Ch [ Ce
g q, W, e, I, Lty u, u, i, 0, p, shift, z, x, c,v, b, n, m, back,
1 a, s, d f,g h J k1 number, space space space, Done
s QW,ER, | RTYU | ULO,P shift, Z, X, C\V, B, N, M, back,
2 A, S, D F, G H JLK, L number, space space space, Done
g 1,2,3,4, 4,5,6,7, 7,8,9,0, shift, back,
3 @, # $ %, &, - + () number space Done
S, ] ] ] shift, space back,
number P Done

Fig. 8. Samsung Galaxy S4 keypad used for alphanumeric password entry.
In Figure 8a, state S1 of keypad with alphabets in lowercase. In Figure 8c, state
S3 of keypad with numeric keys and a particular set of special characters.In
Figure 8b, state S of keypad with alphabets in uppercase. In Figure 8d,
state Sq of keypad with another set of special characters. (a) keypad state Sj.
(b) keypad state S>. (c) keypad state S3. (d) keypad state S4.

training dataset Thframes = 6 for Sony camcorder, and
HTC One Phone camera performed well in detecting true key
touch frames. Similarly, T4 frqmes = 30 for iPhone camera
detected true key touch frames accurately. We noticed low
false positive rate (FPR) and high true positive rate (TPR)
for the set threshold values in our training dataset. Table II
summarizes the threshold values for all three cameras used in
our experiments.

F. Step 6 - Estimating the Location of Touch on Mobile
Phone Screen

We map the fingertip location to the actual location of
the touch on the keypad for each frame in the list of final
key touch frames Fieyrouch. In the standard keypad, used

for password entry, the proximity between the keys is very
high due to which it is very easy to confuse with neighboring
keys locations. Hence, we divided the keypad screen into non-
mutually exclusive clusters of keys as shown in the Table III.
The cluster assignment was done based on the geometrical
distance of the keys such that spatially closed keys belong
to the same cluster. For example, the keys Q and W are
spatially close to each other and hence belong to the same
cluster. On the other hand, the key A and B are far from each
other on the keypad (we used the standard QW ERT'Y keypad
for our analysis (see figure 8)) and hence will not be part of
the same cluster.

The clusters assignments of keys is shown in Table III,
exhibiting 6 clusters corresponding to each of the keypad
state S1, S2, and S3 of the keypad (see Figure 8). For the
keypad state Sy, there are only 3 clusters as the keys in the
proximity of rest 3 cluster locations were not allowed to be
used in a password. Figure 8 shows four different states of
the keypad where S; represents default state of the keypad
with all the keys in lowercase. We, now, estimate the location
of the fingertip in a key touch frame as one of the key
cluster location. For example, for the video for the password
Sec@16, we detect the fingertip location as C; and Cs for
the first and third key touch frame respectively. Details of
estimating the fingertip location as a key cluster location are as
follows.

Mapping the fingertip location to specific cluster of keys:
By this stage of the attack process, we have a final array
of key touch frames Fieyrouch and relative pixel location
(xi, y;i) of fingertip corresponding to each key touch frame.
FreyTouch is the set of frames f1, f2, ..., fu representing n key
presses and (x1, y1), (x2, y2), ..., (xu, y») be the corresponding
relative pixel location of fingertip point. We utilized these pixel
locations to compute the movement of fingertip from frame f;
to frame f; in X and Y direction as — X fingerTipMovement;; =

x; - xj and Y fingerTipMovement;; yi - yj respectively.
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X fingerTipMovement_1= | X n -X 1 |

¢ XfingerTipMovement 2= [Xn-x2|

KeyTouch KeyTouch KeyTouch
Frame #1 Frame #2 - Frame #n
(Xll yl) (X2/ yZ) (Xn/ yn)

TyﬁngerTipMovemenLZ = |yn-y2|

yﬁngerTipMovement_l = | yn'yl |

Fig. 9.  Graphical representation of Algorithm 1 for cluster assignment
corresponding to key touch frames. (X;, Y;) shows the estimated pixel
location of fingertip point. X fingerTipMovement anQ Y fingerTipMovement
is movement of fingertip for i frame to last frame. f; shows the last key
touch frame which corresponds to OK key pressed.

We computed the fingertip movement for every pair of key
touch frames f; and f, € FieyTouch, Where f, is the last
frame as shown in Figure 9. The reason for computing the
fingertip movement for all the key touch frames with respect
to fingertip location in the last key touch frame f; is the fixed
last key touched as OKkey and the known corresponding
physical location of OKkey on the keypad for the password
entry process. Hence, fingertip location in the last key touch
frame serves as a frame of reference for the estimation of
movement of the fingertip for a key touch frame and helps
estimate the corresponding key cluster.

We followed the following steps to map the key touch
frames to the clusters of corresponding key location —

1) First step is to calculate the magnification.® We esti-
mated the width (or length) of the mobile phone in the
video using the visible part of the phone and calculated
the ratio with the actual known width (or length) of the
mobile phone keypad.

2) Based on the calculated magnification, we estimate
the dimensions of the keypad in the video. Width
and length of mobile phone in the video wieypad =
magnification x actualWidth and Ilreypaa =
magnification x actual Length. We set the threshold
Thy and Thy as Wieypaa!3 and lgeypaal2 respectively as
we divided the keypad width into 3 clusters and keypad
length into 2 clusters of spatially close keys.

3) Last step is to assign the cluster location to each key
touch frame. In this process, we took the advantage
of known phenomenon that the last key pressed while
entering the password is O K key’. The user touches the
"OK key’ (Done or Enter) as a last key in the password
entry process. Hence, we assigned the fingertip location
in the last key touch frame as Cg corresponding to "O K
key’ (see Table III). Then, based on the magnitude of
fingertip movement in X and Y direction with respect to
fingertip location in last key touch frame, we assigned
the corresponding cluster of keys. Algorithm 1 describes
the basic substeps in the cluster location estimation.

Algorithm 1 compares the fingertip movement in X and

Y direction for each key touch frame with Th,, and Th; to
decide the key touch location and assigns the corresponding
cluster to the frame. X fingerTipMovement[i] and

Y fingerTipMovement[i] are the fingertip movement for i frame

OThe ratio of the size of an object in the video to its actual size.
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Algorithm 1 Determining Key Cluster for Each Key
Touch Frame.

Input: Fieyrouchll

Input: X fingerTipMovement[]

Input: YfingerTipMovement!]

Input: 7h,

Input: Th;

Input: Clusters[]<[C1, C2, C3; C4, Cs, Ce]

for i < 1 to Length(FieyTouch) do
if X fingerripMovement[i]<Thy, then
| Clusterco; < 3

else if XfingerTipMovement[i]<2X Thw then
| Clustercor<— 2

else

| Clusterco < 1

end

if YfingerTipMovement [i1<Th; then
| Clusteryoy < 2

else

| Clusteryoy < 1

end

Cluster[i] <— Clusters [Clusteryoy, Clusterey;]
end

with respect to the last key touch frame in X and Y direction
respectively. Thy, and Th; are the thresholds computed based
on the estimated length and breadth of keypad in the video.
This step finally results in cluster location C; for each key
touch frame. We proceed to the next step if the cluster location
inferred for the frame is C4, otherwise we jump to Step 8 to
recognize the actual key pressed.

G. Step 7 - Determining Keypad State

State transition diagram: State of the keypad changes
from one state to another state based on the key touched
by the user. For example, if user presses shift key in the
S state of the keypad (see Figure 8), state of the keypad
changes from state S; to state S>. Keypad state S; and state
S> represents the keypad with alphabets in lowercase and
uppercase respectively (see Figure 8a and 8c). Similarly, state
S5 and state S4 represents the keypad with numbers and special
characters respectively (see Figure 8b and 8d). We define three
types of key touch events and brief description of transition
of keypad states as follows—

1) Kp; represents the key location touched by the user
corresponding to shift key. Kp; key helps the user
to switch between lowercase and uppercase state of
keypad while the keypad is in alphabets states. Also,
it switches between numbers and special characters
when the keypad is in number/special-character states.

2) Kp> represents the key location touched by the user
corresponding to number123 key. Kp> key helps the
user to switch between letters and numbers.

3) Kps symbolizes any key touched by the user except the
key locations corresponding to Kp; and K p».

Figure 10 shows detailed state transition diagram for pass-

word entry keypad used in our experiments. To decide a
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particular key touch is Kp; key or Kpy key having previ-
ously determined the cluster location as C4, we compare the
previously calculated probabilities using a generic password
dataset Password List I as follows.

P(Keyj = Kp1)

= (P(Kpi|PreKey) + P(Kpi|PreState))/2
P(Keyj = Kp2)

= (P(Kp2|PreKey) + P(Kpy|PreState))/2
P(Keyj = Kp3)

= (P(Kp3|PreKey) + P(Kp3|PreState))/2

Where, PreK ey represents the key pressed in the previous
frame and PreState denotes previous state of the keypad
before this key-press. PreKey and PreState are distinct
because PreState represents the state of the keypad among
the four possible states (See Figure 10) whereas PreKey
represents the key touched in the previous state, i.e., in
PreState. The probability of the current key touched being
Kp; depends on the previous key touched and the previous
state of the keypad. We say the key Kp; is pressed in j'h
key touch frame if the computed probability P(Key;=Kp;) is
maximum for all i € {1, 2, 3}. The keypad state is determined
based on the K p; and previous state based on state transition
diagram shown in Figure 10.

For example, to enter password secl8, a user would need
to type following key sequence: s— > e— > c¢— >
Number(Kpy)— > 1— > 8— > OK. The highlighted
key entry is corresponding to key cluster C4. We compute
probabilities P(Kp;|PreKey = c¢) and P(Kp;|PreState =
S1) using our training password dataset to determine that the
fourth key touched is Kpj, Kp2,or Kp3,. In this example
P(currentKey = Kpj|PreState = S1) would account for
all the occurrences of Kp; after any key from keypad state
S1 whereas, P(Kp;|PreKey = c) would account for all the
cases where key Kp; is pressed after key ¢ being pressed.

H. Step 8 - Recognizing Touched Keys

In the last stage of our attack process, we have final
key touch frames Fiey7ouch[] and the corresponding cluster
assignment Cluster[] from step 6. All the keys in the cluster
C; for the determined keypad state are the candidate keys.
Hence, there are more than one candidate key for each key
touch frame. For example, for ith key touch frame, if the
cluster assignment is C;, then all the keys in the cluster C;
have some probability to be actual key pressed by the user
in that particular frame. We calculated the probabilities for
each key to be the actual key touched by user and assigned
the weight in the order of probability. We computed and
designed our probability model using the password list I (see
Section III-A). We take very generic case of n keys pressed by
the user while entering the password to describe our model.
Suppose, we have an array of key touch frames and an array
of cluster assignment both of size n. Following are the steps,
we used further to infer the key pressed by user.

1) In the password entry process, last key press is OK key.

We assign the probability of the i . key touched to be
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Fig. 10. Keypad state transition diagram. State Sy, S, S3, and S4 are shown
in figure 8.

"OK’ as —
1, ifi=n (2a)
P(Key; = OK) = .
0, otherwise. (2b)
and
W(Key; = OK) =P(Key; = OK) 3)

2) We calculate the probability p;(A;) of a key A; to be

the key touched by the user in the i .
as —

key touch frame

pi(Aj) = P(Keyr = AjlKeyrp1 =Aj11) 4

Where A; € C; and K ey; denotes the key touched in the
k' frame and k is any frame number. We selected only
top five keys in order of probability as the candidate key
presses corresponding to the i ‘ key touch frame.

3) We build a graph using the top five keys corresponding
to each key touch frame. Figure 11 shows a graph for an
example password input Sec@16. If a key appears two
or more times in the top five probable keys, we summed
up all the probabilities for that particular key. For
example, to compute the total weight for the 3" key
press in the graph shows character W, E, and S with
weights 0.49, 0.36, and 0.15 respectively shown with the
characters in the brackets. The weight for character W is
the sum of the probabilities P(Keyy = W|Keykyr1 = C)
and P(Keyy = W|Keyrr1 = V).

4) For any occurrences of cluster C4 we refer to Step 7 for
weight calculations and determining the keypad state.

For the shown example password entry in Figure 11, the first
guess will be Swc@16 which shows 83% accuracy of charac-
ters guessed in the password. We generated top 5 five and top
10 guesses in order of total weight of the guessed password.
For example next two guesses for the entered password will
be Swc$16 and Swc#16 which shows 67% and 67% of the
accuracy of predicting characters in the password.
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 kp,10.45] |—1 s[032] W [0.49] C10.67] Kp,[0.39] 110.45] 60059] | ok[1.00] |
[ kp,10.25) K Af0.26] E [0.36] v [0.33] Kp, [0.34] K 2[0.38] 5[0.41]

[ z10a7) Z[0.24] S[0.15] A[0.18] @1[0.17]

[ Af.10) N s.18] 210.09]

Fig. 11.

\

Probability model graph, based on the top five most probable keys corresponding to each key touch frame. Figure shows the graph for password entry

which needs 9 key presses. Last key pressed is OK key with probability 1. Probability to be key pressed is shown under the character label for each node in
the graph. We generate the passwords from this graph as to maximize the total weight for the whole password string, given the weight given corresponding to
each key label. The graph is corresponding to password entry video analysis for the typed password Sec@16 and correct key press sequence for the password

entry is shown with gray colored boxes.

TABLE IV

KEY TOUCH FRAME DETECTION CONFUSION MATRIX FOR
VIDEO RECORDING USING IPHONE 6 PLUS CAMERA

Observed in
the Video

Identified by Our Model
Key Touch Frame | No Key Touch Frame

Key Touch Frame 99.7 % 0.3 %
No Key Touch Frame 1.6 % 98.4 %
TABLE V

CLUSTER PREDICTION CONFUSION MATRIX FOR IPHONE 6 PLUS CAMERA

Actual Predicted Clusters (Expressed as %)

Clusters Ci [ Co [ C3 [ Cy [ Cs [Cs
Ch 96.0 14 0.0 0.6 0.0 | 0.0
Ca 09 | 940 | 34 0.0 1.7 | 0.0
Cs 0.0 22 | 96.1 0.0 0.4 1.3
Cy 2.5 0.0 0.0 | 96.8 | 0.7 | 0.0
Cs 0.0 0.0 0.0 0.0 100 | 0.0
Ce 0.0 0.0 0.0 0.0 0.0 | 100

IV. PERFORMANCE EVALUATION
A. Key Touch Frame Detection

A major step in our attack model is to detect the frames
where a key is being touched. Once we estimate the fingertip
movement of the typing hand using the tracked hand point,
we detect the key touch frames. We observed each video
manually to label every frame in the video as ’key touch frame’
or 'no key touch frame’ as our ground truth information.
We compared our ground truth label with that of identified
by our key touch frame detection model. Table IV shows the
confusion matrix for detected key touch frames using iPhone
6 Plus camera (best performing camera in our experiments) for
video recording. The attack model could identify key touch
frames correctly in 99.7% cases with a false positive rate
of 1.6% and false negative rate of 0.3%.

B. Key Cluster Prediction

Our attack process first estimates the cluster in which the
actual key touched belongs. Hence, it is interesting to observe
the accuracy of estimation of the cluster for each key press.
Table V and Table VI show the confusion matrix for cluster
prediction for iPhone 6 plus camera and Sony camcorder
used in our experiments. The prediction accuracies in the

TABLE VI
CLUSTER PREDICTION CONFUSION MATRIX FOR SONY CAMCORDER

Actual Predicted Clusters (Expressed as %)
Clusters | C1 [ Co [ C3 [ C4 [ Cs [ Cs

Cy 92.3 3.1 0.0 4.6 0.0 0.0
Cy 29 | 91.0 | 3.0 0.0 3.1 0.0
C3 0.4 24 1945 | 0.0 1.0 1.7
Cy 3.6 1.4 0.0 | 93.7 1.3 0.0
Cs 0.0 0.0 0.0 1.7 1 96.0 | 23
Ce 0.0 0.0 0.0 0.0 1.0 | 99.0
tables are expressed as percentages — e.g., the password

entry videos recorded by the iPhone 6 plus camera show an
average accuracy of, 97.15% for key cluster prediction. For
Sony camcorder, we achieved an average accuracy of, 94.42%
for key cluster prediction.

C. Keypad State Determination - Prediction of Shift and
Number Key

Prediction of Shift and Number keys are very critical
for our attack process as these two keys are responsible for
the change of the state of the mobile phone keypad. Detail
of the transition of the keypad state is described in detail
in Section III-F. Table VII shows the confusion matrix for
the prediction of Shift and Number key corresponding to
1 guess, 5 guesses and 10 guesses for the video recording
using iPhone 6 plus camera.

D. Character Prediction Accuracy

Character level accuracy of predicting password gives a
consolidated impression of the strength of our attack model.
Using the test dataset of 135 password entry videos,
we achieved an average prediction accuracy of 70.9% of char-
acters per password in 10 guesses using iPhone 6 plus camera.
We were able to accurately predict an average of 68.4%
and 66.0% of characters per password in 10 guesses for the
videos captured using Sony camcorder and HTC One phone
camera respectively. Table VIII shows the percentage of the
average number of character predicted per password in one,
five, and ten attempts for all three camera recordings used in
our experiments.

E. Effect of Various Parameter Settings

Figure 12 shows the effect of lighting conditions, record-
ing distance, and angle of recording on the performance
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TABLE VII
CONFUSION MATRIX FOR PREDICTION OF Shift KEY AND Number KEY FOR IPHONE 6 PLUS CAMERA

Predicted Key (Expressed as %)

KeAg:(f;se d 1st Guess 5 Guesses 10 Guesses
¥ Shift Key [ Number Key | Shift Key | Number Key | Shift Key | Number Key
Shift Key 92.0 8.0 96.0 4.0 98.0 2.0
Number Key 9.0 91.0 7.0 93.0 1.0 99.0
100 100 100
=¥=10 Guesses =¥=10 Guesses =¥=10 Guesses
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Fig. 12. Plots showing the effect of various parameters settings on the performance of our attack. Y- axis shows the percent of average number of characters
per password correctly recognized and X axis shows the various parameter settings. (a) Sony Camcorder. (b) iPhone 6 Plus Camera. (c) HTC One Phone
Camera. (d) Sony Camcorder. (e) iPhone 6 Plus Camera. (f) HTC One Phone Camera. (g) Sony Camcorder. (h) iPhone 6 Plus Camera. (i) HTC One Phone

Camera.

TABLE VIII

ACCURACY OF PASSWORD PREDICTION EXPRESSED AS PERCENTAGE OF
CHARACTERS PER PASSWORD

Camera
Configuration

Accuracy (expressed as %)
Ist Guess [ 5 Guesses | 10 Guesses

of our attack. Figure 12a-12c show the effect of recording
distance on the performance of our method. Optical zoom
capability of the camera was not used to record the videos.
The figure shows the prediction accuracy decreases with
the distance of the camera from the victim. Figure 12d-
12f shows the effect of different lighting conditions on the
performance of our attack. The attack works better in better

lighting. Also, we observed that no significant results were
obtained with video recording in lighting condition less than
250 lumens. Figure 12g-12i shows the effect of angle of
recording on the performance of our method. We observed
that the prediction accuracy was very low when the videos

iPhone 6 Plus 46.8 62.9 70.9 were recorded from the right-front angle from the user. The
Sony Camera 424 287 68.4 reason behind low accuracy is probably the typing behavior
HTC One 43.9 55.4 66.0

of users in our dataset. The majority of the users in our
dataset typed the passwords using their right hand and hence
any part of the palm of the typing hand was not visible.
In such scenarios, method requires tracking any visible point
on the forehand which resulted in a less accurate estimate
of fingertip motion due to a relatively longer distance from
the hand anchor point. The attack works better with video
recordings captured from the left-front to center-front from
the user.
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F. Effect of Screen Size of the Victim’s Phone

The results based on the analysis on the videos recorded
while the users typed on Samsung S4 phone which has a
smaller screen as compared to Samsung S9+ provides a more
stringent test environment. A brief experimental substantiation
is given in Appendix A.

The phones with bigger screen sizes such as Samsung S9+,
generally have bigger keypad size. Larger keypad size provides
the flexibility of dividing it into more numbers of spatially
close key clusters and thus provides more information from
the video analysis part of the attack. Each key cluster would
contain fewer numbers of keys and thus would result in a
smaller search space for keys touched. The small modification
to the attack model for smartphones with bigger keypad size
results in a significantly smaller search space.

For the screen size of the target phone similar to the phone
such as Samsung S4, we performed an extensive analysis to
find optimal division of the keypad into key clusters. The
keypad divided into 2 rows and 3 columns i.e. 6 clusters gave
the best results in our training dataset. In other keypad division
settings, we observed an increase in the error either for the
typed key identification within the cluster keys or the error
for the cluster detection.

We obtained an average increase of 29.6% for the first
guess, 16.3% for the first five guesses, and 17.3 % for the
first 10 guesses in the character prediction for the passwords
typed on the Samsung S9+ phone compared to Samsung S4
(see Appendix A).

G. Discussion — Attack Performance

Because the operating conditions of our attack model are
very stringent compared to other existing works, it is hard to
compare the performance of our method with them. To analyze
the significance of our attack model, first we present a com-
parative analysis showing the difference and level of difficulty
of the scenario studied. We, then, calculate the entropy and
information gain and compare the same with random attack.
We also present the analysis and show the reduction of search
space in the order of magnitude induced by our attack model.

1) Comparison of Our Method with Existing Work: We
compare our attack model in various parameters such
as operating conditions, unobtrusiveness, and underline
assumptions about the structure of password. Table IX
presents the comparative study of our attack model.

2) Entropy and Information Gain: We estimate the
information gain about the character typed revealed by
the captured video clip and compare the same with
random guess. If we select a character ¢ uniformly at
random from the character set Q, and if the attacker
does not get any additional information, the entropy of
the probability distribution of the character is —

Holc] = — > Prlillogy Prli]

where i=p,q, and Pr[p] is the probability that the
selected character is correct and Pr[q] is the probability
that the selected character is not correct. On a standard
keyboard, there are an average of 62 characters including

3)

numbers and special character to be selected as one
of the character member of a typed password. Hence
the probability of a randomly selected character being
correct is Pr[p] = 1/62. Similarly, there are 61 pos-
sibilities which represent the selected character will be
incorrect and so the Pr[gq] = 61/62.

If the attacker get the video clip and learns the character
¢ € Qo, where Qg is the subset of character set Q,
the estimated entropy of the probability distribution of
character is —

Hilcl(c € Qo)1= =), Prlilc € Qollogz Prlilc € Qo]

where i = p,q, and Pr[p|lc € Qo] is the probability
that the selected character is correct given that character
is in subset Qo and Pr[g|c € Qo] is the probability
that the selected character is not correct when selected
randomly from the subset Qp. In our attack model
Pr[plc € Qo] =0.97 x 1/6 for iPhone camera. 0.97 is
the average probability to predict key cluster correctly
(see Table V) and 1/6 is the probability to select a
character from the selected key cluster. There are an
average of 6 keys in a cluster (see Table III). Similarly,
we can calculate the probability for Sony camcorder
using Table VI. Average probability to select a cluster
correctly is obtained by averaging the diagonal elements
in the cluster prediction confusion matrix Table V and
Table VI

The information gain induced by the learning from the
video clip is the difference between the two entropies
ie.

InfoGain =Hy[c] — Hi[c|(c € Qp)]

In a similar fashion we compute the probability of
predicting the characters in a password correctly using
our attack model. Table VIII shows the average number
of characters predicted correctly in the users’ password
using our attack model for different camera settings.
Table X presents the entropy for a character in the
password in our method and compares the same with
the entropy of a character in a random guess. Table also
presents the information gain per character using our
methods.

Comparing Performance with an Exhaustive Search:
Our attack model show over 99% reduction in search
space compared to an exhaustive search. We evaluated
the performance of our method and found an average
of 2-3 candidate keys for each key press in the password.
We show the comparison of search space for a password
of an average length i.e. password of 7-8 characters
long [20], chosen randomly from all letters and number
keys. For example, for a password chosen randomly
from all lower-case letter keys, upper-case letter keys,
and number keys, an attacker would need to try 628/2
candidate passwords on average before he/she finds the
correct one. On the other hand, using our attack model,
the attacker would only need to try an average of 2-3
candidate keys for each character in the password. This
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TABLE IX
COMPARISON OF OUR ATTACK MODEL WITH EXISTING WORKS

[ Differentiating Criterion |  Our Attack Model

[

Other Existing Works |

Do not need any
information of
screen display

Visibility of the
user’s phone screen display

(71, [81, [9], [10], [11], [12], [13], [14], [15], [16], [17]
assume having access to the
screen display of user’s device

Do not
access any sensor

Access to various
sensors of user’s

[18], [19], [21], [22], [23], [24], [25], [26], [27], [28]
assume having access to the various
sensors in the user’s device such as

device data from user’s device .
accelerometer, microphone, gyroscope, etc.
Balzarotti et al. [13] predict the regular text
and use language modeling.
A . Our earlier work [6] predict the numeric pin
ssumption . S . S . L
Considers which is a very simplistic scenario considering
about the .
random the complexity of keyboard for password entry.
structure of assword [7], [15], [16], [17] predict regular text and passwords
password P ’ X ’ P g P

and use language modeling techniques
with an assumption about the structure of
the text or passwords.

TABLE X
ENTROPY AND INFORMATION GAIN INDUCED FROM OUR ATTACK MODEL
Attack Model Entropy Gain
Over Over Our Model
Random Attack with Random Guess
within a Key Cluster
Our Model with Random Guess
iPhone Camera within a Key Cluster 0.61 0.49 (~ 400%) B
Our Complete Model 0.98 0.86 (~700%) 0.37 (61%)
Our Model with Random Guess
Sony Camcorder within a Key Cluster 0.61 0.49 (~400%) B
Our Complete Model 0.99 0.87 (~700%) 0.38 (62%)
Random Attack 0.12 - -

results into an average of < 3% trials of candidate
passwords before finding the correct one. It is evident
that our method reduces the search space by over 99%
compared to an exhaustive search. Also note that if an
attacker only utilizes the information from the videos of
password typing, he/she can correctly identify the key
clusters with an average accuracy of 97% (see Table V).
Since each key cluster consists of an average of 6 keys,
an attacker would need to try an average of 6 candidates
keys for each character in the password. Hence the
attacker would need to try an average of 6% passwords
before finding the correct one that results in over 92%
search space reduction.

H. Discussion — Assumptions, Limitations, and Mitigations

There are certain users who enter their password differently
from the scenario studied in the paper. While our results may
not apply to these users, the paper exposes a major security
threat faced by many users. Studying the performance of
the attack with appropriate modifications to the algorithm for
scenarios such as users entering the password with both hands
and multiple fingers will be part of future work.

The success of the method depends on the following factors:

1) The attack model assumes that the user is using the
default keypad for the password entry process. This
makes the design and location of the keypad on the users
device to be easily determined given the make and model
of the phone.

2) An attacker could determine the password entry action
and get the video of the process. Password entry process
involves a very distinct sequence of actions as a targets
first action would be entering his/her password after
picking up the phone if the device is secured by one.

A potential defense against our attack model is randomiza-
tion of user-interface which includes randomization of key
locations, the location of the whole keypad, etc. However,
randomization-based solutions need to be studied more for
usability analysis. Since randomization poses usability chal-
lenges and hence the users might not adopt these kinds of
solutions.

Another possible defense against the attacks such as ours
is biometric-based authentication solutions such as fingerprint,
face, and behavioral biometrics. However, biometric solutions
are also susceptible to another family of attacks. Behavior-
based continuous authentication mechanisms [37]—-[39] that
verify the users identity throughout a devices usage period
seem to be the most robust solutions against the attacks such
as ours.

V. CONCLUSION

We have shown the feasibility of predicting passwords
through the analysis of hand movements in small video clips.
We show that an adversary need not have access to the mobile
phone or have the screen of the phone visible to execute an
attack. Our attacks can easily be launched in public places
without the knowledge of the victim. Thus our results expose
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serious security and vulnerability of smartphone usage in
public places in scenarios such as hiding the screen, while
using the phone, that otherwise gives the impression of being
safe to the users. The users have a strong conviction that
covering the screen while entering a password at a public
place adequately secures the password against eavesdropping
attacks. Our findings provide an evidence against the notion.
We are currently developing methods such as randomization
of shape, size, and location of keys on the keypad, biometric
based continuous authentication system, etc. to address the
issues exposed by this kind of side channel attack. However,
these methods still need to be weighed for other security and
privacy risks.

APPENDIX
A. Effect of Screen Size of the Victim’s Phone

To study the effect of change in screen size of the phone,
we recruited 10 volunteer participants and recorded a total
of 20 password entry videos. Each volunteer selected a pass-
word and typed it two times while we recorded the video
of the users typing. The recorded session was preceded with
a practice session where the participant practiced typing the
selected password 10 times. In the recorded session, one for
password entry was made on Samsung Galaxy S4 and other
on Samsung Galaxy S9+ phone. A user entered the same
password on both the devices whereas every user choose a
different password from our Password List II. The attack
performance was evaluated in various settings of password
entry mobile phone and the division of keypad to key clusters.
Table XI shows the attack performance in four different
settings for comparative analysis; (1) Samsung S4 with 6 key
clusters, (2) Samsung S4 with 12 key clusters, (3) Samsung
S9+ with 6 key clusters, and (4) Samsung S9+ with 12 key
clusters.

TABLE XI

AVERAGE PERCENTAGE OF CHARACTERS PER PASSWORD INFERRED
CORRECTLY FOR DIFFERENT SCREEN SIZES OF THE TARGET
PHONES AND ATTACK CONFIGURATION

Target Phone and Accuracy (expressed as %)
Attack Configuration | Tst Guess | 5 Guesses | 10 Guesses
"o Key Clusters | 23| 8 o0
12 Kev Clusters | %6 | 513 o0
T Koy Clusers | 400|004 s
T Key Clusrs | 8| 072 s

Our results show that the average accuracy of character
prediction increases with an increase in screen size of the
target phone (Samsung Galaxy S9+ in our experiments) (See
Table XI). We observed the best performance of character
inference for the password entry videos on Samsung S4 phone
when we divided the keypad to 6 key clusters (i.e., 2 rows
and 3 columns). On the other hand, analysis of the videos
of password entry on Samsung S9+ phone yielded in best
accuracy when we divided the keypad to 12 key clusters
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TABLE XII

PERCENTAGE INCREASE IN THE ATTACK PERFORMANCE FOR THE
CHARACTER INFERENCE WITH AN INCREASE IN THE
SCREEN SIZE OF THE VICTIM’S PHONE

Change in Gain in Attack Accuracy (expressed as %)
Screen Size Ist Guess [ 5 Guesses | 10 Guesses
[ 627 from 5.0 [ 296 ] 16.3 [ 17.3 |

(i.e., 4 rows and 3 columns). Table XII shows the gain in
the attack performance in terms of an average increase in
character prediction accuracy with the best performing attack
configurations from Samsung S4 phone (screen size 5.0”) to
Samsung S9+ phone (screen size 6.2”). In the light of our
analysis with Samsung S4 and Samsung S9+ as target phones,
we believe that the attack performance would improve with
todays bigger screen phones that have bigger keypad size.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their detailed comments and for pointing them to Thales
and Intercept Theorems.

REFERENCES

[1] Usenix Enigma 2016—NSA TAO Chief on Disrupting Nation State Hack-
ers. Accessed: Dec. 2018. [Online]. Available: https://www.youtube.
com/watch?v=bDJb8WOJYdA

[2] Why You Should Never use the Same Password on Multiple Sites.
Accessed: Dec. 2018. [Online]. Available: https://geekdad.com/2018/12/
why-you-should-never-use-the-same-password-on-multiple-sites

[3] Common Types of Cybersecurity Attacks—A Look at the Various Types
of Hacking Techniques. Accessed: Dec. 2018. [Online]. Available:
https://www.rapid7.com/fundamentals/types-of-attacks

[4] Credential Theft: The Business Impact of Stolen Credentials—
What are Cybercriminals Doing With Your Stolen Passwords?
Accessed: Dec. 2018. [Online]. Available: https://www.blueliv.com/
blog-news/credential-theft/credential-theft-the-business-impact-of-
stolen-credentials

[5] The Credential Theft Ecosystem. Accessed: Dec. 2018. [Online]. Avail-
able: https://www.blueliv.com/the-credential-theft-ecosystem

[6] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, your
hands reveal your secrets!” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur. (CCS), 2014, pp. 904-917. [Online]. Available: http://doi.
acm.org/10.1145/2660267.2660360

[71 Y. Xu, J. Heinly, A. M. White, F. Monrose, and J.-M. Frahm, “Seeing
double: Reconstructing obscured typed input from repeated compromis-
ing reflections,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), 2013, pp. 1063-1074.

[8] G. Ye et al., “A video-based attack for android pattern lock,” ACM Trans.
Privacy Secur., vol. 21, no. 4, p. 19, 2018.

[9] T. Chen, “Smartphone passcode prediction,” [ET Inf. Secur.,
vol. 12, pp. 431437, Sep. 2018. [Online]. Available: https://digital-
library.theiet.org/content/journals/10.1049/iet-ifs.2017.0606

[10] K. S. Balagani et al., “SILK-TV: Secret information leakage from
keystroke timing videos,” in Computer Security, J. Lopez, J. Zhou, and
M. Soriano, Eds. Cham, Switzerland: Springer, 2018, pp. 263-280.

[11] R. Raguram, A. M. White, D. Goswami, F. Monrose, and J.-M. Frahm,
“iSpy: Automatic reconstruction of typed input from compromising
reflections,” in Proc. 18th ACM Conf. Comput. Commun. Secur. (CCS),
2011, pp. 527-536.

[12] M. Backes, M. Diirmuth, and D. Unruh, “Compromising reflections-or-
how to read LCD monitors around the corner,” in Proc. IEEE Symp.
Secur. Privacy, May 2008, pp. 158-169.

[13] D. Balzarotti, M. Cova, and G. Vigna, “ClearShot: Eavesdropping on
keyboard input from video,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2008, pp. 170-183.

[14] F. Maggi, A. Volpatto, S. Gasparini, G. Boracchi, and S. Zanero,
“A fast eavesdropping attack against touchscreens,” in Proc. Inf. Assur-
ance Secur. (IAS), Dec. 2011, pp. 320-325.



SHUKLA AND PHOHA: STEALING PASSWORDS BY OBSERVING HANDS MOVEMENT

[15] Q. Yue, Z. Ling, W. Yu, B. Liu, and X. Fu, “Blind recognition of

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

text input on mobile devices via natural language processing,” in Proc.
Workshop Privacy-Aware Mobile Comput., 2015, pp. 19-24.

Q. Yue, Z. Ling, X. Fu, B. Liu, W. Yu, and W. Zhao, “My
Google glass sees your passwords!” in Proc. Black Hat USA, 2014.
[Online]. Available: https://www.blackhat.com/docs/us-14/materials/us-
14-Fu-My-Google-Glass-Sees- Your-Passwords-WP.pdf

Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind recognition
of touched keys on mobile devices,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2014, pp. 1403-1414.

D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in Proc.
IEEE Symp. Secur. Privacy, May 2004, pp. 3—11.

L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations
revisited,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 1, pp. 36:1-36:6,
Oct. 2009. [Online]. Available: http://doi.acm.org/10.1145/1609956.
1609959

D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on SSH,” in Proc. 10th Conf. USENIX Secur. Symp.
(SSYM), vol. 10, 2011, p. 25.

L. Cai and H. Chen, “TouchLogger: Inferring keystrokes on touch screen
from smartphone motion,” in Proc. 6th USENIX Conf. Hot Topics Secur.
(HotSec), 2011, p. 9.

E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “ACCessory:
Password inference using accelerometers on smartphones,” in Proc. 12th
Workshop Mobile Comput. Syst. Appl. (HotMobile), 2012, pp. 9:1-9:6.
E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“TapPrints: your finger taps have fingerprints,” in Proc. 10th Int. Conf.
Mobile Syst., Appl., Services (MobiSys), 2012, pp. 323-336.

Z. Xu, K. Bai, and S. Zhu, “TapLogger: Inferring user inputs on
smartphone touchscreens using on-board motion sensors,” in Proc.
5th ACM Conf. Secur. Privacy Wireless Mobile Netw. (WISEC), 2012,
pp. 113-124.

L. Simon and R. Anderson, “Pin skimmer: Inferring pins through the
camera and microphone,” in Proc. 3rd ACM Workshop Secur. Privacy
Smartphones Mobile Devices (SPSM), 2013, pp. 67-78.

C. Wang, X. Guo, Y. Chen, Y. Wang, and B. Liu, “Personal PIN leakage
from wearable devices,” IEEE Trans. Mobile Comput., vol. 17, no. 3,
pp. 646-660, Mar. 2018.

B. Tang, Z. Wang, R. Wang, L. Zhao, and L. Wang, “Niffler: A context-
aware and user-independent side-channel attack system for password
inference,” Wireless Commun. Mobile Comput., vol. 2018, May 2018,
Art. no. 4627108.

C. X. Lu et al., “Snoopy: Sniffing your smartwatch passwords via deep
sequence learning,” Proc. ACM Interact., Mobile, Wearable Ubiquitous
Technol., vol. 1, no. 4, p. 152, 2018.

TLD. Accessed: Aug. 2018. [Online]. Available: http://kahlan.eps.surrey.
ac.uk/featurespace/tld

Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1409-1422,
Jul. 2012.

Never Ending Security: Unigpass V15, Large Password List.
Accessed: Nov. 2017. [Online]. Available: https://neverendingsecurity.
wordpress.com/2015/04/19/unigpass-v15-large-password-list/

Windows Movie Maker. Accessed: Aug. 2017. [Online]. Available:
http://windows.microsoft.com/en-us/windows-live/movie-maker

(33]

[34]

[35]

[36]

[37]

[38]

[39]

3101

A. Ostermann and G. Wanner, “Thales pythagoras,” in Geometry by
Its History (Undergraduate Texts in Mathematics). Berlin, Germany:
Springer, 2012, pp. 3-26.

B. Bradtmiller, B. Hodge, S. Kristensen, and M. Mucher, “Anthropo-
metric survey of federal aviation administration technical operations
personnel—2006-2008: Prime contract DTFAWA-07-C-00059,” Report
prepared for Federal Aviation Admin., Washington, DC, USA, 2008.
Human Hand and Foot. Accessed: Dec. 2018. [Online]. Available:
http://www.goldennumber.net/human-hand-foot

R. Szeliski, Computer Vision: Algorithms and Applications (Texts in
Computer Science). London, U.K.: Springer, 2010. [Online]. Avail-
able:https://books.google.com/books?id=8_2RNQEACAAJ

J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Cell phone-based
biometric identification,” in Proc. 4th IEEE Int. Conf. Biometrics, Theory
Appl. Syst. (BTAS), Sep. 2010, pp. 1-7.

R. Kumar, P. P. Kundu, D. Shukla, and V. V. Phoha, “Continuous user
authentication via unlabeled phone movement patterns,” in Proc. IEEE
Int. Joint Conf. Biometrics (IJCB), Oct. 2017, pp. 177-184.

V. Patel, R. Chellappa, D. Chandra, and B. Barbello, “Continuous
user authentication on mobile devices: Recent progress and remaining
challenges,” IEEE Signal Process. Mag., vol. 33, no. 4, pp. 49-61,
Jul. 2016.

Diksha Shukla received the M.C.A. degree in com-
puter applications from Jawaharlal Nehru University,
New Delhi, India, in 2011 and the M.S. degree in
mathematics from Louisiana Tech University, USA,
in 2014. She is currently pursuing the Ph.D. degree
in computer & information science and engineering
with Syracuse University, Syracuse, NY, USA. Her
research interests include machine learning, com-
puter vision, and cybersecurity. Her research spans
applications of these areas to wearable devices,
authentication, biometrics, and side channel attacks.

Vir V. Phoha (M’96-SM’02) received the Ph.D.
degree in computer science from Texas Tech Univer-
sity, Lubbock, in 1992. He is currently a Professor
of electrical engineering and computer science with
the College of Engineering and Computer Science,
Syracuse University. His research interests include
attack-averse authentication, optimized attack for-
mulation, machine learning, anomaly detection,
spatial-temporal pattern detection and event recog-
nition, and knowledge discovery and analysis. He is
a fellow of the AAAS and SDPS. He is an ACM
Distinguished Scientist.



