
3086 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 12, DECEMBER 2019

Stealing Passwords by Observing Hands Movement
Diksha Shukla , Student Member, IEEE, and Vir V. Phoha, Senior Member, IEEE

Abstract— The use of mobile phones in public places opens
up the possibilities of remote side channel attacks on these
devices. We present a video-based side channel attack to decipher
passwords on mobile devices. Our method uses short video clips
ranging from 5 to 10 s each, which can be taken unobtrusively
from a distance and do not require the keyboard or the screen of
the phone to be visible. By relating the spatiotemporal movements
of the user’s hand during typing and an anchor point on any
visible part of the phone, we predict the typed password with
high accuracy. The results on a dataset of 375 short videos of
password entry process on a Samsung Galaxy S4 phone show an
exponential reduction in the search space compared to a random
guess. For each key-press corresponding to a character in the
passwords, our method was able to reduce the search space
to an average of 2–3 keys compared to ∼30 keys if one has
to guess the key randomly. Thus, this paper reaffirms threats
to smartphone users’ conventional login in public places and
highlights the threats in scenarios such as hiding the screen that
otherwise gives the impression of being safe to the users.

Index Terms— Biometrics, authentication, side channel attack,
password, smartphone security, hand gestures.

I. INTRODUCTION

WE PROPOSE algorithms and methods to predict pass-

words by analyzing the underlying dynamics of hand

movements when typing on a mobile phone. The components

of our system include a video clip that provides anchor points

on any visible part of the phone and any visible part of the

typing hand. No part of the screen of the phone needs to be

visible. We achieve accuracy as high as 94% in predicting

the cluster of keys where each cluster represents 5-6 spatially

close keys on the keyboard. Using keyboard state transition

probability and flight time between keys pressed obtained

through analysis of the video frames, we correctly recognized

an average of 70% of the characters in a password.

The process works as follows. Since the geometry of the

keyboard on brand name phones such as iPhone, Samsung

Galaxy S4, and HTC One uses a fixed design, we can locate

the keyboard in the video by estimating the location, length,

and width of the keyboard and by relating these dimensions in

the video with the physical (known) dimensions of the keypad

by simple geometric transforms between the two. The cues to

deciphering the characters typed include the observations that

the hand moves closer to the keyboard when pressing a key

Manuscript received August 13, 2018; revised December 22, 2018 and
March 4, 2019; accepted March 27, 2019. Date of publication April 15,
2019; date of current version July 31, 2019. This work was supported in part
by the National Science Foundation (NSF) under Grant SaTC-1527795. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Julian Fierrez. (Corresponding author: Diksha Shukla.)

The authors are with the Department of Electrical Engineering and Com-
puter Science, Syracuse University, Syracuse, NY 13244 USA (e-mail:
dshukla@syr.edu; vvphoha@syr.edu).

Digital Object Identifier 10.1109/TIFS.2019.2911171

Fig. 1. An adversary recording the visible hand movements to infer the
password being typed on the mobile phone screen. A user is typing his
password on the mobile phone screen and the adversary is recording the
video using a video recorder.

and moves away just after that (see Section III-E for finer

nuances of this observation).

The prediction of the characters pressed poses specific

challenges because any character can represent a sequence of

key presses such as shift key or number key to transforming

from alphabets to numbers and numbers to special characters.

For example– to type the password Sec@16, a user will press

the sequence of keys as Shi f t → S → e → c → Number

key → @ → 1 → 6. Shi f t key changes the keyboard state

from lowercase alphabets to uppercase alphabets and Number

key transforms the state from alphabets to numbers.

To the best of our knowledge, ours is the first work that

predicts passwords solely on the basis of observed hand

movements. Figure 1 shows the scenario, we analyzed in this

paper. It shows, a user is entering the password on his mobile

phone, and an adversary with a camera is capturing the video

from a distance such that mobile phone screen is not visible

and hence gives an illusion to the user of being safe. In the

same fashion, an adversary can capture the video from a

more sophisticated camera with optical zoom facility which

enables to capture video from a remote distance. We per-

formed our analysis on the password entry videos on Samsung

Galaxy S4 phone and video captured by a range of video

recorders starting from HTC One mobile phone camera with

no optical zoom to Sony camcorder with high optical zoom

capability.

1556-6013 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3740-8793

SHUKLA AND PHOHA: STEALING PASSWORDS BY OBSERVING HANDS MOVEMENT 3087

The following are the contributions of the paper:

1) We design an attack that decodes a user’s password

based on the hand movements recorded in a video clip.

The attack can be executed in such a way as to not

raise any suspicions to the user, so it poses a serious

threat with the new range of sophisticated cameras now

introduced in the market (such as smart glasses and

smart watches).

2) Using a large dataset of the video recording of user’s

hand dynamics while they type their password on the

mobile phone, we show our attack was able to break an

average of over 70% of characters in a password.

3) The users have a strong conviction that covering the

screen while entering a password at a public place

adequately secures the password against eavesdropping

attacks. Our findings provide an evidence against the

notion because all the videos used in the study have no

part of the screen visible.

Discussion – Follow-Up Potential Adversarial Scenarios

A 70%-character guess of user’s passwords provides signif-

icant leverage to an attack because it opens several follow

up adversarial possibilities. Below we list some of these

possibilities.

1) Reused Credential Attack - Although research in the past

has shown that reusing credentials across applications

and websites puts a user at security risk [1], [2], several

users still reuse their passwords across applications.

An attacker could easily launch an attack on other

linked sites for such a user. Research also suggests

that a single good credential could lead to a bigger

organizational level attack [3], [4] and hence our work

exposes the possibility of such an attack by using video

based channels to obtain credentials of potential users.

2) Targeted User Attack - Since the users type their pass-

words several times in a day, an adversary could obtain

multiple videos of a target user over time and obtain

a better estimate over time. Also, for a targeted user,

an adversary could combine other personal information

about the user to get a better estimate of the password

in fewer guesses.

3) Credential Trading - Credential trading is another moti-

vation behind the credential thefts. The attacks such as

ours can be utilized by adversaries for trading the users

passwords. These traded partial (or complete) passwords

might lead to a bigger attack [5].

The rest of the paper is organized as follows. We discuss

related work in Section II. Section III discusses the data sets

and the detailed attack process. We present the attack results

in Section IV and broader implications and our conclusions in

Section V.

II. RELATED WORK

Recent research show possibility of exploiting video based

side channels to steal the smart device user’s sensitive

information [6]–[15].

A very closely related work to this paper is our previous

work on user’s Pin entry process on the mobile phones [6].

The attack was shown to work with the video recording of a

user’s hand movement while not compromising any informa-

tion from the mobile phone screen display. The attack design

in [6] is suitable for numeric Pins, but given the complexity of

keyboard for password or text input, the attack would fail due

to the close proximity of key locations and change of keypad

state from characters to numbers and to special characters. The

attack presented in this paper differs in several ways; (1) we

consider the keypad state transitions in the attack, (2) we

estimate the fingertip movement by using the observed typing

hand point location in each frame. This gives us better estimate

of the key touched considering the spatially close keys in an

alphanumeric keypad, (3) the attack presented in this paper

does not rely solely on one point tracked on the typing hand

but rather takes multiple points to track and fuses the tracked

results to get a better estimate of hand movement, and (4) we

build a password language model to get a better prediction in

case of lexical patterns in the user’s passwords.

Another closely related work to this paper is by

Xu et al. [7]. Xu et al. show the text reconstruction using a

low-resolution video recording of the fingertip and the screen

on which typing is being done. They show the video recording

captured from a long distance such that it was impossible for

the user to see the attacker. They show the attack to work even

with the recording of the reflection of the typing finger and

phone screen.

The attack by Ye et al. [8] utilizes video recordings of

the users’ mobile phone screen to build an attack on the

smartphone pattern lock system. Ye et al. show that their attack

could reconstruct over 95% of the graphical patterns in the first

five attempts. The work by Chen [9] show an automated attack

for fast inference of number inputs on the mobile phone screen

using video recordings of the users’ screen while they type.

Another recent attack presented by Balagani et al. [10] on

ATM pins uses the video recording of screen or the projector.

The attack by Balagani et al. extracts timing information from

consecutive key presses from the recorded video to infer the

key sequence being entered on the keypad.

The attacks presented in [7]–[10] were based on the appear-

ance of the screen while a particular key is being typed. Their

attack model uses the information from the mobile phone

screen display which makes our work different to theirs. For

users who will be able to hide their screen while they type,

these attacks will fail. Our attack model does not require any

information from screen display while typing is being done.

We only need a video recording of hand movement and a part

of the back of the mobile phone while typing is being done.

The work by Raguram et al. [11] and Backes et al. [12]

also shows the text reconstruction using reflection. In their

work, they use state of the art image processing techniques to

reconstruct the text. The fact that they use the information of

display of the text in the reflection makes their work clearly

very different from ours.

The attack design by Balzarotti et al. [13] uses a video

recording of user’s typing on the desktop keyboard. The video

recording was done in such way that camera directly points to

3088 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 12, DECEMBER 2019

the keyboard. Balzarotti et al. used a series of computer vision

analysis followed by language modeling techniques to infer the

text typed on the desktop keyboard. They use the information

about which keys are not visible in the video while a particular

key is being pressed and puts them as candidate keys to be

pressed. Our work is clearly very different to the work by

Balzarotti et al. Our attack is conducted in such way that it

does not need the keyboard of the mobile phone to be visible.

The attack by Maggi et al. [14] uses the video recording

while the user is typing on the smartphone screen. Their

attack takes advantage of display feedback mechanism (the

enlarged key display while it is being typed). In their attack

set up, the recording was done while the camera was directly

pointing to the smartphone screen. They use a classifier trained

on the appearance of the enlarged display of characters to

determine the characters typed in a stream of video recording.

A similar kind of attack has recently been proposed by

Yue et al. [15]–[17] on password and text entry process. In

their work, they rely on the video recording of the smartphone

screen and fingertip from a distance using advanced camera-

enabled devices such as Google glass. They employ advanced

image processing techniques to estimate the touched locations

on the screen which in turn maps to the actual key presses.

In all three works by Balzarotti et al. and Maggi et al. and

that of Yue et al., the cameras directly pointed at the keyboard

to capture the video of user’s typing, i.e. direct observation of

the appearance of the keyboard or the text typed. In our attack

model, we do not use such a fine-grained information from the

screen display. It needs only part of the hand and an anchor

point on the mobile phone to be visible to launch our attack.

We also discuss in brief two side-channel attacks that despite

having been evaluated in a desktop environment [18], [19]

help put into context two interesting attributes of our attack.

Using a neural network trained with samples collected from

the intended victim, Asonov and Agrawal [18] showed that

acoustic keyboard emanations could be used to retrieve typed

text with close to 80% accuracy. This attack was then later

refined by Zhuang et al. [19] who recovered up to 96%

of typed English characters and 90% of random 5-character

passwords (using only letters) in just a few guesses. A notable

aspect of the attack refinement by Zhuang et al. was the

elimination of the training process, making the attack applica-

ble to victims for whom no previous recordings of keyboard

emanations are available. In an attack against the SSH login

mechanism, Song et al. [20] showed that the time intervals

between SSH packets provide a significant amount of informa-

tion on what users type during an SSH session. Using an attack

tool, build based on Hidden Markov Models, Song et al. [20]

showed their attack to reduce the SSH password search

space by up to 50 times on average compared to exhaustive

search.

Like the attack by Zhuang et al. [19], our attack does not

require any user specific training phase, making it applicable

to any video on the fly. Meanwhile, compared to the 50×

reduction in the search space seen with the SSH attacks,

our attack reduces the password search space by over 99%

confirming its lethality relative to some of the known attacks

on text input (see Section IV).

There is a series of work which explored the vulnerabil-

ities posed by sensor data on the mobile phone. Cai and

Chen [21] and Owusu et al. [22] used the accelerometer sen-

sor data to infer the password typed on the smartphone screen.

Miluzzo et al. [23] and Xu et al. [24] fused accelerometer

readings with those of gyroscope readings while typing was

being done. They also implemented an attack to infer password

using the orientation and movement information extracted

from mentioned smartphone sensors to determine the keys

being pressed. A recent work by Simon and Anderson [25]

showed an attack to infer the Pin entered on the smartphone

screen. Attack by Simon and Anderson uses the output from

front camera of the user’s mobile phone and also output from

the microphone. Wang et al. [26] presented an attack to infer

the hand movement of the users’ hand using motion sensors

in the mobile device. Wang et al. show that their attack could

accurately infer mm-level distance in more than 90% of the

cases. Their attack utilizes these mm-level hand movement

distance to decipher the users’ pin. Another recent attack was

proposed by Tang et al. [27] on the inference of number Pins

by using accelerometer data. Their attack was shown to infer

the users’ pin with 70% and 85% accuracy in 10 attempts

in user-independent and user-dependent environments respec-

tively. Tang et al. claim that their attack could easily be

used to attack the pattern lock system and requires minimal

training with very few samples in case of user-dependent

environments. By using a large number of password entries

from 362 volunteer participants and their motion sensors data,

Lu et al. [28] show that their attack could accurately infer the

users’ password in first 20 guesses.

Sensors based attack makes an assumption of having access

to the user’s smartphone sensor data [25], [26]. On the other

hand, our method is solely based on the user’s hand movement

captured while the user type on their smartphone screen. The

whole breed of sensor attacks is different from our attack

model as our attack can be executed in such a way that does

not require any information from user’s smartphone.

III. ATTACK DETAILS

In this section, we introduce the broader idea of the attack

model and discuss each step in detail to decipher the password.

Figure 2 shows the workflow and steps of the attack. First,

we summarize each step here and then discuss one by one

later in detail.

Step 1 - Capture a video of the user’s hands movements

while he/she types the password on the mobile phones screen.

One can easily guess the password typing as the first action

by the user after picking the phone in his/her hands. Our

method does not require any information from mobile phone

screen display such as key popups or typed text to be recorded.

However, our method assumes user’s hand’s movements and

part of the back of the mobile phone are visible on the video

clip.

Step 2 - Preprocess the recorded video and keep only the

part of the clip of password entry process. In this process,

attacker observes the recorded video frame by frame and cuts

the extra part captured at the start and end of the video and

SHUKLA AND PHOHA: STEALING PASSWORDS BY OBSERVING HANDS MOVEMENT 3089

Fig. 2. Work flow of the attack model to decipher the smartphone password.

keeps only the password entry part. This step need not be very

precise and the method works even with extra frames both at

the start and end of the video clip. However, less number of

extra frames results in less processing in further steps.

Step 3 - Employ TLD tracking tool [29], [30] to track an

anchor hand point and an anchor point on the visible part of

the mobile phone. This step requires the adversary to manually

select the anchor points on the user’s hand and mobile phone.

We discuss criteria to select the anchor points in Section III-C.

Having the tracked location of mobile phone-point and hand-

point in each frame, the attack model computes the relative

location of hand point with respect to the mobile phone anchor

point.

Step 4 - Given the movement of hand point and some

visible part of user’s hand, estimate the shape and size of

the hidden part of the user’s hand. By using approximations

of the measurements, estimate the user’s fingertip movement.

Step 5 - Detect the key touch frames in which finger-

tip touches the mobile phone screen. By computing the

image velocity corresponding to fingertip point and finding

frames with zero velocity which are part of the sequence

of consecutive frames in the video having a pattern of

. . . , P, Z , . . . , Z , N, . . . in order where P represents positive,

Z denotes zero, and N denotes negative image velocity.

Step 6 - Locate the fingertip in the detected key touch

frames. Assuming the last key touch as O K key1 and given

the estimated movement of fingertip and known location of

O K key on keypad, use backtracking to locate the fingertip

on the mobile phone keypad.

Step 7 - Determine the keypad state based on the previous

key touched and probabilities computed from a large password

dataset.

Step 8 - Build a probability based password model with

added information from determined touched location and

keypad state and identify the touched keys. Given the correct

locations of tracked points, we can reduce the search space

to an average of 2-3 keys per touching frame. We discuss the

eight steps in detail below.

A. Step 1 - Capturing Videos

An adversary captures the video of the user typing the

password on the mobile phone screen. With the increasing

use of mobile phones in public places such as conference

halls, meeting rooms, shopping malls, airports, and clubs, etc.,

adversaries get a lot of opportunities to record a video of the

user’s typing. Also, adversaries can get access to the videos

captured by surveillance cameras installed in the public places.

1Our method will need small geometric modifications for the mobile phones
in which password entry process does not end with touching a specified key
like O K key.

Fig. 3. Password length distribution in the selected password datasets for
training and testing the attack performance. (a) Password length distribution in
the password list I, training password dataset. (b) Password length distribution
in the password list II, testing password dataset.

One can easily identify the password typing session from a

video clip as the first thing a user will type on the mobile

phone after picking his/her phone is the password if the mobile

phone is secured by one. Our method uses the video clip of

password entry process such that the user’s hand movement

and part of the mobile phone are visible. We collected the

videos of the users’ password entry process to evaluate the

performance of our attack model.

In addition to the video data to evaluate the performance,

we used a large password dataset to build the probability-based

model. For the clarity of dataset used, we discuss the datasets

in detail below.

Datasets: We used two different datasets. UNIQPASS

v15 Password Dataset [31], a large password list, to build

a probability-based model discussed in Step 7 and Step 8.

Another is password entry video data set for computer vision

based analysis and test the overall performance of our attack

model. The detailed description of each dataset follows.

UNIQPASS v15 Password Dataset: From a large password

list, UNIQPASS v15, with over 2 million unique ASCII pass-

words stored in random order [31], we created two mutually

exclusive sublists of randomly selected passwords of length

between 4 to 15 characters. These two sublists, password list

I and password list II, have approximately 0.6 million and

0.1 million passwords respectively.

The passwords in both the lists, Password List I and

Password List II, are unique and chosen randomly without rep-

etition from UNIQPASS v15 selected password list. The pass-

word length distribution in both the lists is shown in Figure 3.

The passwords length of eight characters were most frequently

occurring in both of our password list: password list I, and

password list II.

Video Dataset: Following approval from our university’s

Institutional Review Board (IRB), we collected two data sets;

a training dataset comprising of 20 password entry videos from

10 volunteers, and a testing dataset comprising of 135 pass-

word entry videos from 45 volunteers (i.e., 3 videos per

volunteer, with each video recorded using a different camera

3090 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 12, DECEMBER 2019

TABLE I

SPECIFICATION OF THE CAMERAS USED IN OUR

EXPERIMENTS FOR VIDEO RECORDING

configuration). We used three cameras to record the videos

— HTC One mobile phone camera, a Sony Camcorder, and

an iPhone 6 plus camera. None of the volunteer participants

were common among training session and testing session of

data collection, i.e., the training data was collected from a

separate set of volunteer participants. All participants were

students, faculty or staff at our university. The volunteers

entered passwords on a Samsung Galaxy S4 phone.

Table I summarizes the specifications of the three video

recorders used in our experiments. We used the various

specification of cameras to simulate a range of adversaries.

An iPhone 6 plus camera enabled us to simulate an adversary

who uses a high-end mobile phone camera with fairly good

resolution and high frame rate of video recording. We used

digital zoom capability of iPhone 6 plus camera to capture

video from a distance as phone camera was not enabled with

an optical zoom feature. A Sony camcorder illustrated the

adversary who uses the video recorder with optical zoom

feature and high resolution. Our last camera of HTC One

mobile phone represented basic mobile phone cameras.

Password entry process and video recording: Users type

their password on the mobile phone several times in a day

and can type with no or very low cognitive load. Collecting

the video recordings of the user’s hand movement while they

type their real password comes with a set of security risks.

Hence, we worked around this problem by having each user

to randomly select a password from the password list II and let

them practice entering it on our Samsung Galaxy S4 phones

until they felt comfortable typing it. On average, this practice

session took 10-15 trials per password for each user. Following

the practice session, each user then typed the same password

during the recorded session. For each of the three camera con-

figurations, each user typed a password that was preceded by a

practice session. We performed this data collection experiment

in various setup. For example, we recorded some users while

they sat and others while they stood. Also, some users came

to our lab for video recording, while others were recorded

from inside or outside their residential halls. The recording

was done from a distance of approximately 4-5 meters from

the participants.

Video Dataset to Analyze the Effect of Parameters Settings:

To analyze the effect of various parameters settings on our

attack model, we recorded 42 videos for each user while the

user typed the randomly selected password from password

list II as follows: (1) 15 videos– with three different camera

configurations and each camera configuration was used at five

different distances of recording - each at 2 meters, 4 meters,

6 meters, 8 meters, and 10 meters; (2) 12 videos– with three

different camera configurations and each camera configuration

was used in four different lighting conditions - 250 lumens,

500 lumens, 750 lumens, and 1000 lumens; (3) 15 videos–

with three different camera configurations and each cam-

era configuration was used from five different angles of

recording - each from -100deg, -50deg, 0deg +50deg, and

+100deg. Angle is measured as the angle between the line

of sight of the user’s eye and negative of the direction of view

of the recording camera. In total, we recorded 210 videos from

5 different users i.e. 42 password entry videos from each user.

B. Step 2 - Video Preprocessing

Given a video recording of a length of 5 to 10 seconds of

the password entry process, we first cut out the video segment

of interest. One can identify the part of password entry in the

video segment, simply by observing the user’s interaction with

the mobile phone. We assume during the interaction with the

mobile phone the first thing user types is the password if their

mobile phone is secured by one. We used Windows Movie

Maker [32] to select the password entry segment and cut and

remove the unwanted part. The video segment of interest

contains 200-300 milliseconds of recording both before and

after the password entry process. Cutting the unwanted part

from video need not be very precise for our attack to work,

precision will just save the unnecessary processing in the later

steps of attack process. We input the selected part of password

entry video into AVS Video editor to extract the frames from

the video. The video captured by Sony camcorder and HTC

One mobile phone camera generated an average of 120 frames

for each video. On the other hand, video captured by iPhone

camera generated an average of 1000 frames per video.

C. Step 3 -Hand and Phone Anchor Points Tracking

We used the Tracking Learning Detection (TLD)

framework [30] to track the anchor points on the user’s

hand and on the mobile phone in the captured video. TLD is

an open source tool [29], and has three modules: a tracker

which locates an object across the subsequent frames in the

video, a detector which detects the presence of the object in

each subsequent frames and a learner estimates the detectors

error and update the template for the object to minimize the

detection error for the subsequent frames.

TLD object tracking tool can detect the appearance of

the object in the subsequent frames even after several failed

detections. Also, it works quite well with a real-time stream

of video [29]. We tracked an anchor point on the mobile

phone visible throughout the video. This point can be present

anywhere on the mobile phone. Also, we tracked five different

anchor points on the users hand in the video. We selected

such an anchor point on the user’s hand that it fulfills the

following criteria— 1). The hand anchor points should be

visible throughout the password entry process in the video.

2). It should be as close to the mobile phone or the typing

finger as possible. We believe that the point which is closer

to the typing finger gives a more plausible representation of

fingertip movement. We tracked one point on the mobile phone

SHUKLA AND PHOHA: STEALING PASSWORDS BY OBSERVING HANDS MOVEMENT 3091

Fig. 4. Flow chart summarizing video preprocessing and hand and phone
anchor point tracking steps.

as we observed that the mobile phone anchor point is very

different from the rest of the objects in the video and hence

tracking algorithm gives very accurate tracking results for the

mobile phone point. Although, we select hand anchor point

which seems different from other objects in the frame, but

tracking algorithm gets confused many times even with a little

bit similar looking other points present on the user’s hand. So,

we tracked multiple points on the hands and merged the results

as to minimize the tracking error.

Figure 4 summarizes the preprocessing and tracking steps.

For a given frame, if the tracking confidence2 was less than

a set threshold for more than 10% of the frames, we selected

another point and reran the entire tracking operation for that

particular video. We set a tracking confidence threshold as

0.5 as we found it produces good tracking results in our sample

of the training dataset.

We compute the relative movement of hand point Shand Point

in the frame of reference of tracked mobile phone point simply

by subtracting the pixel locations of hand point from the pixel

locations of mobile phone anchor point obtained from tracking.

D. Step 4 - Estimating the Fingertip Movement

We observed that the user’s finger first moves towards the

screen, rests, and then moves away from the touch screen while

typing any particular key. We also observed that the rest of

the hand also follows the similar behavior of motion (i.e. the

direction of motion of other points on the hand is same as the

direction of motion of fingertip. Also, the magnitude of move-

ment of any other point on the hand is directly proportional to

the magnitude of fingertip movement.). We establish a relation

2Tracking framework gives a tracking confidence for each frame in the
video as a measure of how accurate the detection of the object is for the
corresponding frame. For details on this, the user is referred to [29].

Fig. 5. Illustrating the transformation of hand point movement to fingertip
movement. Point A shows the tracked point with movement Shand Point =

AA0 between two given frames. Figure shows the corresponding movement
in typing fingertip P as S f ingert ip = P P 0.

between the movement of the fingertip and the movement

of a visible point. For simplicity, we assume that user will

not apply any other external force (such as force applied

over the wrist of the user’s hand) during the typing process.

We build a hand movement model as an approximation of

the movements of user’s hand while they type their password.

Given the movement Shand Point = AA0 of a tracked point

A to A0 on the user’s hand and d , the distance of the hand

point A from the fingertip P (see figure 5), then the movement

S f ingert ip = P P 0 of fingertip point P corresponding to hand

point movement AA0 can be estimated by applying equal

proportion of sides rule3 on similar triangle 4P Q P 0 and

4AQ A0 as follows—

S f ingert ip/Shand Point = P P 0/AA0

= P Q/AQ

= L/(L − d) (1)

where L is the length of hand (length from elbow to fingertip)

which can be estimated4 using the visible part of the hand in

the video.

E. Step 5 - Identifying Key Touch Frames

Key touch frames are the frames which represent the finger

touching the mobile phone screen. Using the estimated move-

ment of the fingertip (see Section III-D), we computed the

image velocity5 corresponding to fingertip point [36]. As per

well-known notion of typing process on the mobile phone

screen, fingertip moves towards the screen, rests and then

moves away from the screen [6], [16]. We first looked for the

sequences of consecutive frames in the video having positives,

zeros, and negatives image velocity pattern in order. Such

a sequence represents the corresponding movements of the

fingertip to type a key on the screen. The frames which

show zero velocity and are part of selected frames sequence

represent the resting part (or key touch frames) of the process

3In two similar triangles, corresponding sides are all in the same proportion.
This rule is also called Thales theorem or Intercept theorem [33].

4For an average person, length of the forehand is approximately 1.6 times
of the length from wrist to fingertip. For details the reader is referred
to [34], [35].

5Pixel movement of fingertip point between two consecutive frames in the
video segment.

3092 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 12, DECEMBER 2019

of typing a key. Hence, we selected and referred the set of

such frames as candidate key touch frames Fi .

There can be some error associated in the tracking step or

in the estimation of fingertip movement for an anchor hand

point. Hence, to reduce the error in the estimates, we repeated

the whole procedure of inferring candidate key touch frames

for five different hand anchor points. The process gave us

five non-mutually exclusive set of candidate key touch frames

(say F1, F2, F3, F4, and F5) each for a hand anchor point (see

Section III-C).

To identify the final set of key touch frames, we form groups

of all the candidate key touch frames for the target video.

Suppose Fcandidate = { f | f ∈ Fi , i ∈ [1, 5]} is the set of

all candidate key touch frames, then the groups were created

for all the frames f ∈ Fcandidate as follows—

1) Distance between two farthest frames in any group must

be less than the set threshold T hmax .

2) Distance between two closest frames in two different

groups must be greater than the set threshold T hmin .

Analysis to decide the minimum and maximum threshold is

explained under the threshold selection heading.

In this step, the frames which are the member of set

Fcandidate due to error (False Positive) in preceding steps, will

form a group with only a few frames. The rationale behind

this idea is that if a tracked point misses the detection of

a key touch frame fi (False Negatives), it will be detected

corresponding to other tracked points. On the other hand, if a

frame f j was detected as key touch frame due to error (False

Positives), it will not be there for other tracked points. Hence,

the higher number of frames in a group shows a true detection

(True Positives) of the key touch frame.

Hereafter, we will remove those groups of frames in which

the number of frames is less than a set threshold T h f rames

from the set of candidate key touch frames. Also, all the frames

in a group represent one key touch event and hence one frame

per group will suffice to create the set of key touch frames.

Hence, we form a new set of key touch frames FkeyT ouch

containing the median of the remaining groups.

Figure 6 shows an example of grouping where set of frames

corresponding to five different tracked hand anchor point are

as follows.

F1 = {12, 14, 39, 42, 63, 63, 79, 102, 117, 121},

F2 = {13, 14, 39, 43, 62, 26, 77, 103, 104, 118},

F3 = {12, 13, 40, 61, 65, 102, 104, 119, 120},

F4 = {13, 28, 39, 65, 63, 65, 102, 104},

and F5 = {26, 40, 62, 65, 81, 101, 102, 104, 117, 121}.

Figure 6a shows seven different group of candidate key touch

frames G1, …, G7 where the median of groups G1, G3,

G4, G6, and G7 represent the final key touch frames i.e.

FkeyT ouch = {13, 40, 63, 102, 119}. Whereas, frames belong-

ing to groups G2 and G5 indicate the error in detection as less

than five frames belong to these groups, hence we will remove

all the frames from groups G2 and G5 for further analysis.

Threshold Selection: We extracted key touch frames manu-

ally by observing the videos frame by frame from the training

Fig. 6. Figure 6a shows seven different groups of candidate key touch frames.
Groups G2, and G5 has only three and two candidate frames respectively,
hence represent the false detection of candidate key touch frames. Median
of groups G1, G3, G4, G6, and G7 constitute the set of final key touch
frames FkeyT ouch . Figure 6b shows the video frames represented by Frame #
in Figure 6a. (a) Grouping of candidate key touch frames f ∈ Fi , i ∈ [1, 5]

to obtain a final set of key touch frame. (b) Frames of a user’s recorded video
clip. Frame #12, #13, and #14 are selected as key touch frames in group G1.

TABLE II

TABLE SUMMARIZING THRESHOLD VALUES SET BY ANALYZING VIDEO

TRAINING DATA SET FOR ALL THREE CAMERA CONFIGURATIONS

dataset of 20 videos (see Section III-A). We calculated the

difference between the number of frames between two key

touch frames and plotted the cumulative distribution function

(CDF) (see Figure 7) of inter-key touch frames for all three

types of camera configurations used in our analysis. Figure 7b

and Figure 7a show that the distribution of inter-key touch

frames for the HTC One phone camera and the Sony Camera

is the same. Note that the average frame rate of video recording

in the Sony camera and the HTC One phone camera was equal.

Figure 7c shows that for more than 95% of the consecutive

key touch pairs, inter-key touch frames falls between 50 to

150 frames for videos captured from iPhone 6 plus camera.

Similarly, figure 7b and 7a show that more than 95% of the

key touch pairs, inter-key touch frames falls between 6 to

20 frames for videos captured from Sony and HTC One phone

cameras. We used the above measures to set T hmin and T hmax

corresponding to different camera configuration.

To set the threshold T h f rames , we performed an empirical

analysis of the videos from our training dataset. For our

SHUKLA AND PHOHA: STEALING PASSWORDS BY OBSERVING HANDS MOVEMENT 3093

Fig. 7. cdf plot of inter key touch frames for training videos captured using variety of cameras used in our experiments. (a) HTC One Phone. (b) Sony
camcorder. (c) iPhone 6 Plus camera.

TABLE III

ASSIGNMENT OF KEYS TO THE MUTUALLY NON- EXCLUSIVE CLUSTERS FOR EACH STATE OF THE KEYPAD.
TABLE SHOWS SIX CLUSTERS C 0

i
s OF KEYS FOR EACH STATE Si OF THE KEYPAD

Fig. 8. Samsung Galaxy S4 keypad used for alphanumeric password entry.
In Figure 8a, state S1 of keypad with alphabets in lowercase. In Figure 8c, state
S3 of keypad with numeric keys and a particular set of special characters.In
Figure 8b, state S2 of keypad with alphabets in uppercase. In Figure 8d,
state S4 of keypad with another set of special characters. (a) keypad state S1.
(b) keypad state S2. (c) keypad state S3. (d) keypad state S4.

training dataset T h f rames = 6 for Sony camcorder, and

HTC One Phone camera performed well in detecting true key

touch frames. Similarly, T h f rames = 30 for iPhone camera

detected true key touch frames accurately. We noticed low

false positive rate (FPR) and high true positive rate (TPR)

for the set threshold values in our training dataset. Table II

summarizes the threshold values for all three cameras used in

our experiments.

F. Step 6 - Estimating the Location of Touch on Mobile

Phone Screen

We map the fingertip location to the actual location of

the touch on the keypad for each frame in the list of final

key touch frames FkeyT ouch . In the standard keypad, used

for password entry, the proximity between the keys is very

high due to which it is very easy to confuse with neighboring

keys locations. Hence, we divided the keypad screen into non-

mutually exclusive clusters of keys as shown in the Table III.

The cluster assignment was done based on the geometrical

distance of the keys such that spatially closed keys belong

to the same cluster. For example, the keys Q and W are

spatially close to each other and hence belong to the same

cluster. On the other hand, the key A and B are far from each

other on the keypad (we used the standard QW E RT Y keypad

for our analysis (see figure 8)) and hence will not be part of

the same cluster.

The clusters assignments of keys is shown in Table III,

exhibiting 6 clusters corresponding to each of the keypad

state S1, S2, and S3 of the keypad (see Figure 8). For the

keypad state S4, there are only 3 clusters as the keys in the

proximity of rest 3 cluster locations were not allowed to be

used in a password. Figure 8 shows four different states of

the keypad where S1 represents default state of the keypad

with all the keys in lowercase. We, now, estimate the location

of the fingertip in a key touch frame as one of the key

cluster location. For example, for the video for the password

Sec@16, we detect the fingertip location as C1 and C5 for

the first and third key touch frame respectively. Details of

estimating the fingertip location as a key cluster location are as

follows.

Mapping the fingertip location to specific cluster of keys:

By this stage of the attack process, we have a final array

of key touch frames FkeyT ouch and relative pixel location

(xi , yi) of fingertip corresponding to each key touch frame.

FkeyT ouch is the set of frames f1, f2, …, fn representing n key

presses and (x1, y1), (x2, y2), …, (xn, yn) be the corresponding

relative pixel location of fingertip point. We utilized these pixel

locations to compute the movement of fingertip from frame fi

to frame f j in X and Y direction as — X f ingerT ipMovementi j =

xi - x j and Y f ingerT ipMovementi j = yi - y j respectively.

3094 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 12, DECEMBER 2019

Fig. 9. Graphical representation of Algorithm 1 for cluster assignment
corresponding to key touch frames. (Xi , Yi) shows the estimated pixel
location of fingertip point. X f ingerT ipMovement and Y f ingerT ipMovement

is movement of fingertip for i th frame to last frame. fn shows the last key
touch frame which corresponds to O K key pressed.

We computed the fingertip movement for every pair of key

touch frames fi and fn ∈ FkeyT ouch , where fn is the last

frame as shown in Figure 9. The reason for computing the

fingertip movement for all the key touch frames with respect

to fingertip location in the last key touch frame fn is the fixed

last key touched as O K key and the known corresponding

physical location of O K key on the keypad for the password

entry process. Hence, fingertip location in the last key touch

frame serves as a frame of reference for the estimation of

movement of the fingertip for a key touch frame and helps

estimate the corresponding key cluster.

We followed the following steps to map the key touch

frames to the clusters of corresponding key location —

1) First step is to calculate the magnification.6 We esti-

mated the width (or length) of the mobile phone in the

video using the visible part of the phone and calculated

the ratio with the actual known width (or length) of the

mobile phone keypad.

2) Based on the calculated magnification, we estimate

the dimensions of the keypad in the video. Width

and length of mobile phone in the video wkeypad =

magni f ication × actualWidth and lkeypad =

magni f ication × actual Length. We set the threshold

T hw and T hl as wkeypad /3 and lkeypad /2 respectively as

we divided the keypad width into 3 clusters and keypad

length into 2 clusters of spatially close keys.

3) Last step is to assign the cluster location to each key

touch frame. In this process, we took the advantage

of known phenomenon that the last key pressed while

entering the password is ’O K key’. The user touches the

’O K key’ (Done or Enter) as a last key in the password

entry process. Hence, we assigned the fingertip location

in the last key touch frame as C6 corresponding to ’O K

key’ (see Table III). Then, based on the magnitude of

fingertip movement in X and Y direction with respect to

fingertip location in last key touch frame, we assigned

the corresponding cluster of keys. Algorithm 1 describes

the basic substeps in the cluster location estimation.

Algorithm 1 compares the fingertip movement in X and

Y direction for each key touch frame with T hw and T hl to

decide the key touch location and assigns the corresponding

cluster to the frame. X f ingerT ipMovement [i] and

Y f ingerT ipMovement [i] are the fingertip movement for i th frame

6The ratio of the size of an object in the video to its actual size.

Algorithm 1 Determining Key Cluster for Each Key

Touch Frame.

Input: FkeyT ouch[]

Input: X f ingerT ipMovement []

Input: Y f ingerT ipMovement []

Input: T hw

Input: T hl

Input: Clusters[]←[C1, C2, C3; C4, C5, C6]

for i ← 1 to Length(FkeyT ouch) do

if X f ingerT ipMovement [i]<T hw then
Clustercol ← 3

else if X f ingerT ipMovement [i]<2× T hw then
Clustercol← 2

else
Clustercol ← 1

end

if Y f ingerT ipMovement [i]<T hl then
Clusterrow ← 2

else
Clusterrow ← 1

end

Cluster [i] ← Clusters [Clusterrow, Clustercol]
end

with respect to the last key touch frame in X and Y direction

respectively. T hw and T hl are the thresholds computed based

on the estimated length and breadth of keypad in the video.

This step finally results in cluster location Ci for each key

touch frame. We proceed to the next step if the cluster location

inferred for the frame is C4, otherwise we jump to Step 8 to

recognize the actual key pressed.

G. Step 7 - Determining Keypad State

State transition diagram: State of the keypad changes

from one state to another state based on the key touched

by the user. For example, if user presses shi f t key in the

S1 state of the keypad (see Figure 8), state of the keypad

changes from state S1 to state S2. Keypad state S1 and state

S2 represents the keypad with alphabets in lowercase and

uppercase respectively (see Figure 8a and 8c). Similarly, state

S3 and state S4 represents the keypad with numbers and special

characters respectively (see Figure 8b and 8d). We define three

types of key touch events and brief description of transition

of keypad states as follows—

1) K p1 represents the key location touched by the user

corresponding to shi f t key. K p1 key helps the user

to switch between lowercase and uppercase state of

keypad while the keypad is in alphabets states. Also,

it switches between numbers and special characters

when the keypad is in number/special-character states.

2) K p2 represents the key location touched by the user

corresponding to number123 key. K p2 key helps the

user to switch between letters and numbers.

3) K p3 symbolizes any key touched by the user except the

key locations corresponding to K p1 and K p2.

Figure 10 shows detailed state transition diagram for pass-

word entry keypad used in our experiments. To decide a

SHUKLA AND PHOHA: STEALING PASSWORDS BY OBSERVING HANDS MOVEMENT 3095

particular key touch is K p1 key or K p2 key having previ-

ously determined the cluster location as C4, we compare the

previously calculated probabilities using a generic password

dataset Password List I as follows.

P(K ey j = K p1)

= (P(K p1|PreK ey) + P(K p1|PreState))/2

P(K ey j = K p2)

= (P(K p2|PreK ey) + P(K p2|PreState))/2

P(K ey j = K p3)

= (P(K p3|PreK ey) + P(K p3|PreState))/2

Where, PreK ey represents the key pressed in the previous

frame and PreState denotes previous state of the keypad

before this key-press. PreK ey and PreState are distinct

because PreState represents the state of the keypad among

the four possible states (See Figure 10) whereas PreK ey

represents the key touched in the previous state, i.e., in

PreState. The probability of the current key touched being

K pi depends on the previous key touched and the previous

state of the keypad. We say the key K pi is pressed in j th

key touch frame if the computed probability P(K ey j =K pi) is

maximum for all i ∈ {1, 2, 3}. The keypad state is determined

based on the K pi and previous state based on state transition

diagram shown in Figure 10.

For example, to enter password sec18, a user would need

to type following key sequence: s− > e− > c− >

Number(K p2)− > 1− > 8− > O K . The highlighted

key entry is corresponding to key cluster C4. We compute

probabilities P(K pi |PreK ey = c) and P(K pi |PreState =

S1) using our training password dataset to determine that the

fourth key touched is K p1, K p2, or K p3,. In this example

P(current K ey = K pi |PreState = S1) would account for

all the occurrences of K pi after any key from keypad state

S1 whereas, P(K pi |PreK ey = c) would account for all the

cases where key K pi is pressed after key c being pressed.

H. Step 8 - Recognizing Touched Keys

In the last stage of our attack process, we have final

key touch frames FkeyT ouch[] and the corresponding cluster

assignment Cluster [] from step 6. All the keys in the cluster

Ci for the determined keypad state are the candidate keys.

Hence, there are more than one candidate key for each key

touch frame. For example, for i th key touch frame, if the

cluster assignment is C j , then all the keys in the cluster C j

have some probability to be actual key pressed by the user

in that particular frame. We calculated the probabilities for

each key to be the actual key touched by user and assigned

the weight in the order of probability. We computed and

designed our probability model using the password list I (see

Section III-A). We take very generic case of n keys pressed by

the user while entering the password to describe our model.

Suppose, we have an array of key touch frames and an array

of cluster assignment both of size n. Following are the steps,

we used further to infer the key pressed by user.

1) In the password entry process, last key press is O K key.

We assign the probability of the i
th

key touched to be

Fig. 10. Keypad state transition diagram. State S1, S2, S3, and S4 are shown
in figure 8.

’O K ’ as —

P(K eyi = O K) =

{

1, if i = n (2a)

0, otherwise. (2b)

and

W (K eyi = O K) =P(K eyi = O K) (3)

2) We calculate the probability pi(A j) of a key A j to be

the key touched by the user in the i
th

key touch frame

as —

pi (A j) = P(K eyk = A j |K eyk+1 = A j+1) (4)

Where A j ∈ Ci and K eyk denotes the key touched in the

kth frame and k is any frame number. We selected only

top five keys in order of probability as the candidate key

presses corresponding to the i
th

key touch frame.

3) We build a graph using the top five keys corresponding

to each key touch frame. Figure 11 shows a graph for an

example password input Sec@16. If a key appears two

or more times in the top five probable keys, we summed

up all the probabilities for that particular key. For

example, to compute the total weight for the 3th key

press in the graph shows character W , E , and S with

weights 0.49, 0.36, and 0.15 respectively shown with the

characters in the brackets. The weight for character W is

the sum of the probabilities P(K eyk = W |K eyk+1 = C)

and P(K eyk = W |K eyk+1 = V).

4) For any occurrences of cluster C4 we refer to Step 7 for

weight calculations and determining the keypad state.

For the shown example password entry in Figure 11, the first

guess will be Swc@16 which shows 83% accuracy of charac-

ters guessed in the password. We generated top 5 five and top

10 guesses in order of total weight of the guessed password.

For example next two guesses for the entered password will

be Swc$16 and Swc#16 which shows 67% and 67% of the

accuracy of predicting characters in the password.

3096 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 12, DECEMBER 2019

Fig. 11. Probability model graph, based on the top five most probable keys corresponding to each key touch frame. Figure shows the graph for password entry
which needs 9 key presses. Last key pressed is O K key with probability 1. Probability to be key pressed is shown under the character label for each node in
the graph. We generate the passwords from this graph as to maximize the total weight for the whole password string, given the weight given corresponding to
each key label. The graph is corresponding to password entry video analysis for the typed password Sec@16 and correct key press sequence for the password
entry is shown with gray colored boxes.

TABLE IV

KEY TOUCH FRAME DETECTION CONFUSION MATRIX FOR

VIDEO RECORDING USING IPHONE 6 PLUS CAMERA

TABLE V

CLUSTER PREDICTION CONFUSION MATRIX FOR IPHONE 6 PLUS CAMERA

IV. PERFORMANCE EVALUATION

A. Key Touch Frame Detection

A major step in our attack model is to detect the frames

where a key is being touched. Once we estimate the fingertip

movement of the typing hand using the tracked hand point,

we detect the key touch frames. We observed each video

manually to label every frame in the video as ’key touch frame’

or ’no key touch frame’ as our ground truth information.

We compared our ground truth label with that of identified

by our key touch frame detection model. Table IV shows the

confusion matrix for detected key touch frames using iPhone

6 Plus camera (best performing camera in our experiments) for

video recording. The attack model could identify key touch

frames correctly in 99.7% cases with a false positive rate

of 1.6% and false negative rate of 0.3%.

B. Key Cluster Prediction

Our attack process first estimates the cluster in which the

actual key touched belongs. Hence, it is interesting to observe

the accuracy of estimation of the cluster for each key press.

Table V and Table VI show the confusion matrix for cluster

prediction for iPhone 6 plus camera and Sony camcorder

used in our experiments. The prediction accuracies in the

TABLE VI

CLUSTER PREDICTION CONFUSION MATRIX FOR SONY CAMCORDER

tables are expressed as percentages — e.g., the password

entry videos recorded by the iPhone 6 plus camera show an

average accuracy of, 97.15% for key cluster prediction. For

Sony camcorder, we achieved an average accuracy of, 94.42%

for key cluster prediction.

C. Keypad State Determination - Prediction of Shi f t and

Number Key

Prediction of Shi f t and Number keys are very critical

for our attack process as these two keys are responsible for

the change of the state of the mobile phone keypad. Detail

of the transition of the keypad state is described in detail

in Section III-F. Table VII shows the confusion matrix for

the prediction of Shi f t and Number key corresponding to

1 guess, 5 guesses and 10 guesses for the video recording

using iPhone 6 plus camera.

D. Character Prediction Accuracy

Character level accuracy of predicting password gives a

consolidated impression of the strength of our attack model.

Using the test dataset of 135 password entry videos,

we achieved an average prediction accuracy of 70.9% of char-

acters per password in 10 guesses using iPhone 6 plus camera.

We were able to accurately predict an average of 68.4%

and 66.0% of characters per password in 10 guesses for the

videos captured using Sony camcorder and HTC One phone

camera respectively. Table VIII shows the percentage of the

average number of character predicted per password in one,

five, and ten attempts for all three camera recordings used in

our experiments.

E. Effect of Various Parameter Settings

Figure 12 shows the effect of lighting conditions, record-

ing distance, and angle of recording on the performance

SHUKLA AND PHOHA: STEALING PASSWORDS BY OBSERVING HANDS MOVEMENT 3097

TABLE VII

CONFUSION MATRIX FOR PREDICTION OF Shi f t KEY AND Number KEY FOR IPHONE 6 PLUS CAMERA

Fig. 12. Plots showing the effect of various parameters settings on the performance of our attack. Y- axis shows the percent of average number of characters
per password correctly recognized and X axis shows the various parameter settings. (a) Sony Camcorder. (b) iPhone 6 Plus Camera. (c) HTC One Phone
Camera. (d) Sony Camcorder. (e) iPhone 6 Plus Camera. (f) HTC One Phone Camera. (g) Sony Camcorder. (h) iPhone 6 Plus Camera. (i) HTC One Phone
Camera.

TABLE VIII

ACCURACY OF PASSWORD PREDICTION EXPRESSED AS PERCENTAGE OF

CHARACTERS PER PASSWORD

of our attack. Figure 12a-12c show the effect of recording

distance on the performance of our method. Optical zoom

capability of the camera was not used to record the videos.

The figure shows the prediction accuracy decreases with

the distance of the camera from the victim. Figure 12d-

12f shows the effect of different lighting conditions on the

performance of our attack. The attack works better in better

lighting. Also, we observed that no significant results were

obtained with video recording in lighting condition less than

250 lumens. Figure 12g-12i shows the effect of angle of

recording on the performance of our method. We observed

that the prediction accuracy was very low when the videos

were recorded from the right-front angle from the user. The

reason behind low accuracy is probably the typing behavior

of users in our dataset. The majority of the users in our

dataset typed the passwords using their right hand and hence

any part of the palm of the typing hand was not visible.

In such scenarios, method requires tracking any visible point

on the forehand which resulted in a less accurate estimate

of fingertip motion due to a relatively longer distance from

the hand anchor point. The attack works better with video

recordings captured from the left-front to center-front from

the user.

3098 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 12, DECEMBER 2019

F. Effect of Screen Size of the Victim’s Phone

The results based on the analysis on the videos recorded

while the users typed on Samsung S4 phone which has a

smaller screen as compared to Samsung S9+ provides a more

stringent test environment. A brief experimental substantiation

is given in Appendix A.

The phones with bigger screen sizes such as Samsung S9+,

generally have bigger keypad size. Larger keypad size provides

the flexibility of dividing it into more numbers of spatially

close key clusters and thus provides more information from

the video analysis part of the attack. Each key cluster would

contain fewer numbers of keys and thus would result in a

smaller search space for keys touched. The small modification

to the attack model for smartphones with bigger keypad size

results in a significantly smaller search space.

For the screen size of the target phone similar to the phone

such as Samsung S4, we performed an extensive analysis to

find optimal division of the keypad into key clusters. The

keypad divided into 2 rows and 3 columns i.e. 6 clusters gave

the best results in our training dataset. In other keypad division

settings, we observed an increase in the error either for the

typed key identification within the cluster keys or the error

for the cluster detection.

We obtained an average increase of 29.6% for the first

guess, 16.3% for the first five guesses, and 17.3 % for the

first 10 guesses in the character prediction for the passwords

typed on the Samsung S9+ phone compared to Samsung S4

(see Appendix A).

G. Discussion – Attack Performance

Because the operating conditions of our attack model are

very stringent compared to other existing works, it is hard to

compare the performance of our method with them. To analyze

the significance of our attack model, first we present a com-

parative analysis showing the difference and level of difficulty

of the scenario studied. We, then, calculate the entropy and

information gain and compare the same with random attack.

We also present the analysis and show the reduction of search

space in the order of magnitude induced by our attack model.

1) Comparison of Our Method with Existing Work: We

compare our attack model in various parameters such

as operating conditions, unobtrusiveness, and underline

assumptions about the structure of password. Table IX

presents the comparative study of our attack model.

2) Entropy and Information Gain: We estimate the

information gain about the character typed revealed by

the captured video clip and compare the same with

random guess. If we select a character c uniformly at

random from the character set Q, and if the attacker

does not get any additional information, the entropy of

the probability distribution of the character is –

H0[c] = −
∑

i

Pr [i]log2 Pr [i]

where i=p,q, and Pr [p] is the probability that the

selected character is correct and Pr [q] is the probability

that the selected character is not correct. On a standard

keyboard, there are an average of 62 characters including

numbers and special character to be selected as one

of the character member of a typed password. Hence

the probability of a randomly selected character being

correct is Pr [p] = 1/62. Similarly, there are 61 pos-

sibilities which represent the selected character will be

incorrect and so the Pr [q] = 61/62.

If the attacker get the video clip and learns the character

c ∈ Q0, where Q0 is the subset of character set Q,

the estimated entropy of the probability distribution of

character is –

H1[c|(c ∈ Q0)]= −
∑

i

Pr [i |c ∈ Q0]log2 Pr [i |c ∈ Q0]

where i = p,q, and Pr [p|c ∈ Q0] is the probability

that the selected character is correct given that character

is in subset Q0 and Pr [q|c ∈ Q0] is the probability

that the selected character is not correct when selected

randomly from the subset Q0. In our attack model

Pr [p|c ∈ Q0] = 0.97 × 1/6 for iPhone camera. 0.97 is

the average probability to predict key cluster correctly

(see Table V) and 1/6 is the probability to select a

character from the selected key cluster. There are an

average of 6 keys in a cluster (see Table III). Similarly,

we can calculate the probability for Sony camcorder

using Table VI. Average probability to select a cluster

correctly is obtained by averaging the diagonal elements

in the cluster prediction confusion matrix Table V and

Table VI.

The information gain induced by the learning from the

video clip is the difference between the two entropies

i.e.

In f oGain =H0[c] − H1[c|(c ∈ Q0)]

In a similar fashion we compute the probability of

predicting the characters in a password correctly using

our attack model. Table VIII shows the average number

of characters predicted correctly in the users’ password

using our attack model for different camera settings.

Table X presents the entropy for a character in the

password in our method and compares the same with

the entropy of a character in a random guess. Table also

presents the information gain per character using our

methods.

3) Comparing Performance with an Exhaustive Search:

Our attack model show over 99% reduction in search

space compared to an exhaustive search. We evaluated

the performance of our method and found an average

of 2-3 candidate keys for each key press in the password.

We show the comparison of search space for a password

of an average length i.e. password of 7-8 characters

long [20], chosen randomly from all letters and number

keys. For example, for a password chosen randomly

from all lower-case letter keys, upper-case letter keys,

and number keys, an attacker would need to try 628/2

candidate passwords on average before he/she finds the

correct one. On the other hand, using our attack model,

the attacker would only need to try an average of 2-3

candidate keys for each character in the password. This

SHUKLA AND PHOHA: STEALING PASSWORDS BY OBSERVING HANDS MOVEMENT 3099

TABLE IX

COMPARISON OF OUR ATTACK MODEL WITH EXISTING WORKS

TABLE X

ENTROPY AND INFORMATION GAIN INDUCED FROM OUR ATTACK MODEL

results into an average of < 38 trials of candidate

passwords before finding the correct one. It is evident

that our method reduces the search space by over 99%

compared to an exhaustive search. Also note that if an

attacker only utilizes the information from the videos of

password typing, he/she can correctly identify the key

clusters with an average accuracy of 97% (see Table V).

Since each key cluster consists of an average of 6 keys,

an attacker would need to try an average of 6 candidates

keys for each character in the password. Hence the

attacker would need to try an average of 68 passwords

before finding the correct one that results in over 92%

search space reduction.

H. Discussion – Assumptions, Limitations, and Mitigations

There are certain users who enter their password differently

from the scenario studied in the paper. While our results may

not apply to these users, the paper exposes a major security

threat faced by many users. Studying the performance of

the attack with appropriate modifications to the algorithm for

scenarios such as users entering the password with both hands

and multiple fingers will be part of future work.

The success of the method depends on the following factors:

1) The attack model assumes that the user is using the

default keypad for the password entry process. This

makes the design and location of the keypad on the users

device to be easily determined given the make and model

of the phone.

2) An attacker could determine the password entry action

and get the video of the process. Password entry process

involves a very distinct sequence of actions as a targets

first action would be entering his/her password after

picking up the phone if the device is secured by one.

A potential defense against our attack model is randomiza-

tion of user-interface which includes randomization of key

locations, the location of the whole keypad, etc. However,

randomization-based solutions need to be studied more for

usability analysis. Since randomization poses usability chal-

lenges and hence the users might not adopt these kinds of

solutions.

Another possible defense against the attacks such as ours

is biometric-based authentication solutions such as fingerprint,

face, and behavioral biometrics. However, biometric solutions

are also susceptible to another family of attacks. Behavior-

based continuous authentication mechanisms [37]–[39] that

verify the users identity throughout a devices usage period

seem to be the most robust solutions against the attacks such

as ours.

V. CONCLUSION

We have shown the feasibility of predicting passwords

through the analysis of hand movements in small video clips.

We show that an adversary need not have access to the mobile

phone or have the screen of the phone visible to execute an

attack. Our attacks can easily be launched in public places

without the knowledge of the victim. Thus our results expose

3100 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 12, DECEMBER 2019

serious security and vulnerability of smartphone usage in

public places in scenarios such as hiding the screen, while

using the phone, that otherwise gives the impression of being

safe to the users. The users have a strong conviction that

covering the screen while entering a password at a public

place adequately secures the password against eavesdropping

attacks. Our findings provide an evidence against the notion.

We are currently developing methods such as randomization

of shape, size, and location of keys on the keypad, biometric

based continuous authentication system, etc. to address the

issues exposed by this kind of side channel attack. However,

these methods still need to be weighed for other security and

privacy risks.

APPENDIX

A. Effect of Screen Size of the Victim’s Phone

To study the effect of change in screen size of the phone,

we recruited 10 volunteer participants and recorded a total

of 20 password entry videos. Each volunteer selected a pass-

word and typed it two times while we recorded the video

of the users typing. The recorded session was preceded with

a practice session where the participant practiced typing the

selected password 10 times. In the recorded session, one for

password entry was made on Samsung Galaxy S4 and other

on Samsung Galaxy S9+ phone. A user entered the same

password on both the devices whereas every user choose a

different password from our Password List II. The attack

performance was evaluated in various settings of password

entry mobile phone and the division of keypad to key clusters.

Table XI shows the attack performance in four different

settings for comparative analysis; (1) Samsung S4 with 6 key

clusters, (2) Samsung S4 with 12 key clusters, (3) Samsung

S9+ with 6 key clusters, and (4) Samsung S9+ with 12 key

clusters.

TABLE XI

AVERAGE PERCENTAGE OF CHARACTERS PER PASSWORD INFERRED

CORRECTLY FOR DIFFERENT SCREEN SIZES OF THE TARGET

PHONES AND ATTACK CONFIGURATION

Our results show that the average accuracy of character

prediction increases with an increase in screen size of the

target phone (Samsung Galaxy S9+ in our experiments) (See

Table XI). We observed the best performance of character

inference for the password entry videos on Samsung S4 phone

when we divided the keypad to 6 key clusters (i.e., 2 rows

and 3 columns). On the other hand, analysis of the videos

of password entry on Samsung S9+ phone yielded in best

accuracy when we divided the keypad to 12 key clusters

TABLE XII

PERCENTAGE INCREASE IN THE ATTACK PERFORMANCE FOR THE

CHARACTER INFERENCE WITH AN INCREASE IN THE

SCREEN SIZE OF THE VICTIM’S PHONE

(i.e., 4 rows and 3 columns). Table XII shows the gain in

the attack performance in terms of an average increase in

character prediction accuracy with the best performing attack

configurations from Samsung S4 phone (screen size 5.0 00) to

Samsung S9+ phone (screen size 6.2 00). In the light of our

analysis with Samsung S4 and Samsung S9+ as target phones,

we believe that the attack performance would improve with

todays bigger screen phones that have bigger keypad size.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their detailed comments and for pointing them to Thales

and Intercept Theorems.

REFERENCES

[1] Usenix Enigma 2016—NSA TAO Chief on Disrupting Nation State Hack-

ers. Accessed: Dec. 2018. [Online]. Available: https://www.youtube.
com/watch?v=bDJb8WOJYdA

[2] Why You Should Never use the Same Password on Multiple Sites.
Accessed: Dec. 2018. [Online]. Available: https://geekdad.com/2018/12/
why-you-should-never-use-the-same-password-on-multiple-sites

[3] Common Types of Cybersecurity Attacks—A Look at the Various Types

of Hacking Techniques. Accessed: Dec. 2018. [Online]. Available:
https://www.rapid7.com/fundamentals/types-of-attacks

[4] Credential Theft: The Business Impact of Stolen Credentials—

What are Cybercriminals Doing With Your Stolen Passwords?

Accessed: Dec. 2018. [Online]. Available: https://www.blueliv.com/
blog-news/credential-theft/credential-theft-the-business-impact-of-
stolen-credentials

[5] The Credential Theft Ecosystem. Accessed: Dec. 2018. [Online]. Avail-
able: https://www.blueliv.com/the-credential-theft-ecosystem

[6] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, your
hands reveal your secrets!” in Proc. ACM SIGSAC Conf. Comput. Com-

mun. Secur. (CCS), 2014, pp. 904–917. [Online]. Available: http://doi.
acm.org/10.1145/2660267.2660360

[7] Y. Xu, J. Heinly, A. M. White, F. Monrose, and J.-M. Frahm, “Seeing
double: Reconstructing obscured typed input from repeated compromis-
ing reflections,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), 2013, pp. 1063–1074.

[8] G. Ye et al., “A video-based attack for android pattern lock,” ACM Trans.

Privacy Secur., vol. 21, no. 4, p. 19, 2018.
[9] T. Chen, “Smartphone passcode prediction,” IET Inf. Secur.,

vol. 12, pp. 431–437, Sep. 2018. [Online]. Available: https://digital-
library.theiet.org/content/journals/10.1049/iet-ifs.2017.0606

[10] K. S. Balagani et al., “SILK-TV: Secret information leakage from
keystroke timing videos,” in Computer Security, J. Lopez, J. Zhou, and
M. Soriano, Eds. Cham, Switzerland: Springer, 2018, pp. 263–280.

[11] R. Raguram, A. M. White, D. Goswami, F. Monrose, and J.-M. Frahm,
“iSpy: Automatic reconstruction of typed input from compromising
reflections,” in Proc. 18th ACM Conf. Comput. Commun. Secur. (CCS),
2011, pp. 527–536.

[12] M. Backes, M. Dürmuth, and D. Unruh, “Compromising reflections-or-
how to read LCD monitors around the corner,” in Proc. IEEE Symp.

Secur. Privacy, May 2008, pp. 158–169.
[13] D. Balzarotti, M. Cova, and G. Vigna, “ClearShot: Eavesdropping on

keyboard input from video,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2008, pp. 170–183.

[14] F. Maggi, A. Volpatto, S. Gasparini, G. Boracchi, and S. Zanero,
“A fast eavesdropping attack against touchscreens,” in Proc. Inf. Assur-
ance Secur. (IAS), Dec. 2011, pp. 320–325.

SHUKLA AND PHOHA: STEALING PASSWORDS BY OBSERVING HANDS MOVEMENT 3101

[15] Q. Yue, Z. Ling, W. Yu, B. Liu, and X. Fu, “Blind recognition of
text input on mobile devices via natural language processing,” in Proc.

Workshop Privacy-Aware Mobile Comput., 2015, pp. 19–24.
[16] Q. Yue, Z. Ling, X. Fu, B. Liu, W. Yu, and W. Zhao, “My

Google glass sees your passwords!” in Proc. Black Hat USA, 2014.
[Online]. Available: https://www.blackhat.com/docs/us-14/materials/us-
14-Fu-My-Google-Glass-Sees-Your-Passwords-WP.pdf

[17] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind recognition
of touched keys on mobile devices,” in Proc. ACM SIGSAC Conf.

Comput. Commun. Secur., 2014, pp. 1403–1414.
[18] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in Proc.

IEEE Symp. Secur. Privacy, May 2004, pp. 3–11.
[19] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations

revisited,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 1, pp. 36:1–36:6,
Oct. 2009. [Online]. Available: http://doi.acm.org/10.1145/1609956.
1609959

[20] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on SSH,” in Proc. 10th Conf. USENIX Secur. Symp.

(SSYM), vol. 10, 2011, p. 25.
[21] L. Cai and H. Chen, “TouchLogger: Inferring keystrokes on touch screen

from smartphone motion,” in Proc. 6th USENIX Conf. Hot Topics Secur.
(HotSec), 2011, p. 9.

[22] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “ACCessory:
Password inference using accelerometers on smartphones,” in Proc. 12th
Workshop Mobile Comput. Syst. Appl. (HotMobile), 2012, pp. 9:1–9:6.

[23] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“TapPrints: your finger taps have fingerprints,” in Proc. 10th Int. Conf.

Mobile Syst., Appl., Services (MobiSys), 2012, pp. 323–336.
[24] Z. Xu, K. Bai, and S. Zhu, “TapLogger: Inferring user inputs on

smartphone touchscreens using on-board motion sensors,” in Proc.

5th ACM Conf. Secur. Privacy Wireless Mobile Netw. (WISEC), 2012,
pp. 113–124.

[25] L. Simon and R. Anderson, “Pin skimmer: Inferring pins through the
camera and microphone,” in Proc. 3rd ACM Workshop Secur. Privacy

Smartphones Mobile Devices (SPSM), 2013, pp. 67–78.
[26] C. Wang, X. Guo, Y. Chen, Y. Wang, and B. Liu, “Personal PIN leakage

from wearable devices,” IEEE Trans. Mobile Comput., vol. 17, no. 3,
pp. 646–660, Mar. 2018.

[27] B. Tang, Z. Wang, R. Wang, L. Zhao, and L. Wang, “Niffler: A context-
aware and user-independent side-channel attack system for password
inference,” Wireless Commun. Mobile Comput., vol. 2018, May 2018,
Art. no. 4627108.

[28] C. X. Lu et al., “Snoopy: Sniffing your smartwatch passwords via deep
sequence learning,” Proc. ACM Interact., Mobile, Wearable Ubiquitous

Technol., vol. 1, no. 4, p. 152, 2018.
[29] TLD. Accessed: Aug. 2018. [Online]. Available: http://kahlan.eps.surrey.

ac.uk/featurespace/tld
[30] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1409–1422,
Jul. 2012.

[31] Never Ending Security: Uniqpass V15, Large Password List.
Accessed: Nov. 2017. [Online]. Available: https://neverendingsecurity.
wordpress.com/2015/04/19/uniqpass-v15-large-password-list/

[32] Windows Movie Maker. Accessed: Aug. 2017. [Online]. Available:
http://windows.microsoft.com/en-us/windows-live/movie-maker

[33] A. Ostermann and G. Wanner, “Thales pythagoras,” in Geometry by

Its History (Undergraduate Texts in Mathematics). Berlin, Germany:
Springer, 2012, pp. 3–26.

[34] B. Bradtmiller, B. Hodge, S. Kristensen, and M. Mucher, “Anthropo-
metric survey of federal aviation administration technical operations
personnel—2006-2008: Prime contract DTFAWA-07-C-00059,” Report
prepared for Federal Aviation Admin., Washington, DC, USA, 2008.

[35] Human Hand and Foot. Accessed: Dec. 2018. [Online]. Available:
http://www.goldennumber.net/human-hand-foot

[36] R. Szeliski, Computer Vision: Algorithms and Applications (Texts in
Computer Science). London, U.K.: Springer, 2010. [Online]. Avail-
able:https://books.google.com/books?id=8_2RNQEACAAJ

[37] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Cell phone-based
biometric identification,” in Proc. 4th IEEE Int. Conf. Biometrics, Theory
Appl. Syst. (BTAS), Sep. 2010, pp. 1–7.

[38] R. Kumar, P. P. Kundu, D. Shukla, and V. V. Phoha, “Continuous user
authentication via unlabeled phone movement patterns,” in Proc. IEEE
Int. Joint Conf. Biometrics (IJCB), Oct. 2017, pp. 177–184.

[39] V. Patel, R. Chellappa, D. Chandra, and B. Barbello, “Continuous
user authentication on mobile devices: Recent progress and remaining
challenges,” IEEE Signal Process. Mag., vol. 33, no. 4, pp. 49–61,
Jul. 2016.

Diksha Shukla received the M.C.A. degree in com-
puter applications from Jawaharlal Nehru University,
New Delhi, India, in 2011 and the M.S. degree in
mathematics from Louisiana Tech University, USA,
in 2014. She is currently pursuing the Ph.D. degree
in computer & information science and engineering
with Syracuse University, Syracuse, NY, USA. Her
research interests include machine learning, com-
puter vision, and cybersecurity. Her research spans
applications of these areas to wearable devices,
authentication, biometrics, and side channel attacks.

Vir V. Phoha (M’96–SM’02) received the Ph.D.
degree in computer science from Texas Tech Univer-
sity, Lubbock, in 1992. He is currently a Professor
of electrical engineering and computer science with
the College of Engineering and Computer Science,
Syracuse University. His research interests include
attack-averse authentication, optimized attack for-
mulation, machine learning, anomaly detection,
spatial-temporal pattern detection and event recog-
nition, and knowledge discovery and analysis. He is
a fellow of the AAAS and SDPS. He is an ACM
Distinguished Scientist.

