APRIL: An Application-Aware, Predictive and
Intelligent Load Balancing Solution for
Data-Intensive Science

Deepak Nadig, Byrav Ramamurthy, Brian Bockelman, David Swanson
Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE, 68588 USA
Email: {deepaknadig, byrav, bbockelm, dswanson}@cse.unl.edu.

Abstract—In this paper, we propose an application-aware
intelligent load balancing system for high-throughput, distributed
computing, and data-intensive science workflows. We leverage
emerging deep learning techniques for time-series modeling to
develop an application-aware predictive analytics system for
accurately forecasting GridFTP connection loads. Our solution
integrates with a major U.S. CMS Tier-2 site; we use a real
dataset representing 670 million GridFTP transfer connections
measured over 18 months to drive our predictive analytics
solution. First, we perform extensive analysis on this dataset
and use the connection loads as an example to study the
temporal dependencies between various user-roles and workflow
memberships. We use the analysis to motivate the design of
a gated recurrent unit (GRU) based deep recurrent neural
network (RNN) for modeling long-term temporal dependencies
and predicting connection loads. We develop a novel application-
aware, predictive and intelligent load balancer, APRIL, that
effectively integrates application metadata and load forecast
information to maximize server utilization. We conduct extensive
experiments to evaluate the performance of our deep RNN
predictive analytics system and compare it with other approaches
such as ARIMA and multi-layer perceptron (MLP) predictors.
The results show that our forecasting model, depending on
the user-role, performs between 5.88%-92.6% better than the
alternatives. We also demonstrate the effectiveness of APRIL by
comparing it with the load balancing capabilities of an existing
production Linux Virtual Server (LVS) cluster. Our approach
improves server utilization, on an average, between 0.5 to 11
times, when compared with its LVS counterpart.

I. INTRODUCTION

Recently, software defined networking (SDN) [1] and big
data technologies [2] have received significant interest from
both academia and industry. While big data, characterized
by “5Vs” (volume, variety, velocity, value, and veracity),
can have profound impacts on network design, such aspects
have traditionally been addressed separately from the SDN
paradigm. Some SDN features including control/data plane
separation, programmability/reconfigurability, and logical cen-
tralization can positively benefit big data tasks such as data
acquisition [3], delivery [4], [5], [6] and storage [7].

An ever-increasing need for big data in science has led
to the rapid adoption of flexible (and programmable) high-
speed network infrastructure. Such infrastructures typically
rely on 100Gbps links to support large-scale data movement.
As an example, the high-energy physics community through
the Large Hadron Collider (LHC) project, has experimental

data transfers reaching tens of petabytes every year. Example
data-intensive science workflows include the Compact Muon
Solenoid (CMS) [8] and Laser Interferometer Gravitational-
Wave Observatory (LIGO) [9]. The most popular tools for
big data movement include GridFTP [10] and XROOTD [11].
Since scientific research is highly data-driven, they place an
undue burden on campus networks for data delivery, storage,
and processing. Flexible and scalable end-to-end network
architectures are necessary to ensure that data transfer appli-
cations use the network efficiently. Numerous scientific big
data architectures have been developed (e.g. [12], [13], [14])
to avoid performance hot-spots associated with traditional
networks.

Numerous research efforts (e.g., [15], [16], [17]) have
focused on SDN-based efficient network resource allocation
algorithms and techniques for cloud and data center networks.
However, most of these techniques target the optimization
of network resources allocation based on factors such as
traffic demand/loads, quality of service (QoS) requirements
and usage patterns. Such key factors are generally highly
volatile and time-varying in nature. Limited work has been
done to model data transfers, or to predict the key factors that
affect network resource allocation. Load balancing forms a
critical component of big data network architectures as they
directly influence application response times and maximize
throughput via optimized traffic delivery to the application
servers. Large-volume data transfers associated with big data
provides many opportunities for understanding usage patterns
and gain insights into network resource requirements. Rather
than viewing big data systems as placing an undue burden
on campus networks, we can exploit the insights gained
in better understanding user/traffic demands. This results in
optimized resource allocation to better serve the needs of
campus network users.

In this paper, we propose a novel intelligent load-balancing
technique for improving server utilization using application-
aware SDN and deep learning approaches. We also propose a
deep learning approach for modeling large data transfers in the
campus network. Deep learning is a representational learning
technique that can automatically discover data representations
using a multi-layer network [18]. The representation is then
used to infer large dataset information without the need for

1909

complex analysis. In this work, we demonstrate how deep
learning based predictors can be utilized to make accurate
predictions and forecast future network connections by relying
on application-layer metadata. We implement a gated recurrent
unit (GRU) [19] based deep learning model for GridFTP
connection time-series predictions. Our model incorporates an
application-aware SDN system to classify traffic and to facil-
itate application-layer metadata exchange with the network-
layer. To the best of our knowledge, this is the first effort to
leverage application-aware SDN and deep learning techniques
for modeling/predicting big data science data transfers for load
balancing applications. We also show the effectiveness and
superiority of our approach by evaluating it with a real-world
dataset from a major U.S. CMS Tier-2 site.

A. Contributions and Organization

The specific contributions of this paper are as follows:

1) GRU-based Deep Learning Predictive Analytics: We de-
velop a gated recurrent unit (GRU) based deep learning
model for GridFTP connection time-series prediction.
The model employs an application-aware SDN approach
to obtain accurate and reliable traffic classification infor-
mation to forecast future connections.

2) Novel Application-aware Load Balancing: We propose
a novel application-aware, predictive and intelligent
load balancing algorithm (APRIL). APRIL combines
application-layer metadata with deep learning predictive
analytics resulting in an intelligent load balancer.

3) Real-world large-scale dataset: We demonstrate our
model’s effectiveness through extensive evaluations us-
ing a real dataset from a U.S. CMS Tier-2 site. We
present detailed data analysis to discover and identify
long-term temporal dependencies in the dataset. We also
compare our deep learning predictive model with other
approaches such as Autoregressive integrated moving
average (ARIMA) and multi-layer perceptron predictors.

4) Scalability and Improvements over LVS: We also demon-
strate the scalability of our solution by deploying our
model on a project testbed network that has been set up
to integrate with a U.S. CMS Tier-2 site. We compare the
benefits and superiority of our solution with an existing
production Linux Virtual Server (LVS) cluster.

The paper is structured as follows: Section II provides a
brief overview of application-aware SDN in the context of
load-balancing, the role of predictive analytics, and describe
related works; Section III presents the exploratory analysis of
our dataset; In Section IV, we detail our experimental network
testbed and our experimental setup; Section V presents our
deep learning models and approaches to predicting GridFTP
connection transfers. We describe our Gated Recurrent Unit
(GRU) based prediction model for time-series load forecasting
across multiple GridFTP servers. In Section VI, we present our
intelligent application-aware load-balancing solution (APRIL)
for managing distributed high-throughput data transfers in the
campus network. Lastly, in Section VII, we conclude our work
and discuss the future work.

II. RELATED WORK

Numerous research efforts have focused on developing SDN
load balancing mechanisms. The work in [20] presents a
comprehensive survey on SDN load balancers. However, most
of these are based on traffic routing mechanisms, or improve
factors such as latency, synchronization, QoS, etc., or use
heuristic optimizers to improve performance. Other works
such as [21], [22] focus on LVS performance improvements.
Although load balancers support specific transport-layer proto-
cols, limited work has been done to develop true application-
aware load balancing systems. Recent efforts such as [23],
[24], [25] leverage machine/deep learning techniques for traffic
classification and/or predictions. Integrated SDN and deep
learning techniques have also be employed in VNF placement
in NFV networks [26] and SDN security among others.
Different from the above, our work focuses on leveraging
deep learning techniques to accurately model and predict the
data-intensive science traffic load by exploiting an application-
aware SDN solution. Further, we develop a novel intelligent
load balancer that combines both application-layer metadata
and future forecast knowledge to improve server utilization.

IIT. DATA ANALYSIS AND MODELING

Data analysis and modeling is an essential step in providing
us valuable insights about the temporal dependencies in the
dataset. This information is critical to choosing an appropriate
data and prediction model for improved forecast accuracy. In
this section, we present our dataset used in the modeling and
prediction. We also perform exploratory data analysis on the
dataset to motivate our design choices.

A. Dataset

The dataset consists of GridFTP transfer connection data
obtained from a major U.S. CMS Tier-2 site that performs
frequent high-volume (low- and high-priority) transfers to
Fermilab and holds over 3 petabytes of data. The site uses
both the GridFTP protocol and XROOTd for bulk batch
transfer jobs and interactive jobs, respectively. The data was
obtained using an application-aware approach similar to the
ones in [27], [28]. The dataset includes GridFTP connection
information collected from a single U.S. CMS Tier-2 site over
18 months. The dataset represents over 670 million GridFTP
connections from both CMS and LIGO workflows. The dataset
contains connection information classified by four CMS user
roles (as defined in the CMS computing model [8]) and a
single LIGO user role. A pool of twelve (12) GridFTP servers
are employed by the site to serve both campus network users
and external researchers. The four CMS user roles include:
i) US CMS Pool representing analysis transfers associated
with users’ jobs, ii) CMSProd similar to (i), but representing
production workflows, iii) CMS PhEDEx representing the
CMS production data movement, iv) LCG Admin representing
site availability monitoring transfers. The LIGO user-role
represents LIGO transfers that are opportunistic and share
networking resources with CMS users. Other users include
site administrators and computing center staff.

1910

120 180
Lag=30 (Minutes)

240

(a) Autocorrelation plot of D,,, Duration= 300 minutes.

1.0

O.SL

0.0 S S
-0.5

~1.0 1 2 3 4 5

Timeline=5 Days, Lag=30 (Minutes)

ACF (p)

(c) Autocorrelation plot of D,,,, Duration= 5 days.

1.0
Q 0.5
L 0. 0 e —
< -05

-1.09 48 % 144 192 240

Lag=24 (Hours)

(b) Autocorrelation plot of Dy, Duration= 240 hours.

-0 12 24 36 48 60
Timeline=60 Days, Lag=24 (Hours)

(d) Autocorrelation plot of Dy,, Duration= 60 days.

Fig. 1: Temporal autocorrelation properties of the datasets.

The GridFTP protocol uses encrypted control and data
channels for data movement between end-points. Application-
layer metadata is crucial for classifying the GridFTP connec-
tion information. Therefore, we rely on the GridFTP XIO
plugin [29] to securely interface with the GridFTP servers
and facilitate application metadata exchange with the SDN.
The obtained connection information is pre-classified based
on its workflow (or experiment) membership and also based
on the user role within the workflow. User roles not be-
longing to either workflow are classified as “Other” users.
The default dataset measurement granularity is in the order
microseconds. However, as this granularity does not permit
meaningful analysis, we use data aggregation to obtain ag-
gregate statistics with granularities of one minute and one
hour respectively. A nonuple (i.e., 9-tuple) is used to identify
each connection uniquely and includes connection strings,
user/workflow membership, files transferred, transfer direction
and a status field. We denote the GridFTP connection dataset
by G = {g(a;..-- ,ag).n.t ;> Vt, ¥n C N. We denote the downlink
and uplink connections by D = {d(q4, ... q9),t},Vt,Vn C N
and U = {u(q,,... a),t},Vt,¥n C N, respectively, for N
observations. We normalize both datasets D and U within
a range of [0, 1]. To achieve this, we use Min-Max scaling to
compute the normalized values G as:

G _ G- Gmin (1)
Gma:r - szn
where, G4, and G,,;, represent the maximum and min-
imum values of the set G, respectively. Also, we note that
D C G and U C G. Lastly, we denote the datasets with
different measurement granularities by G,,, (one minute) and
Gy, (one hour), respectively.

B. Exploratory Analysis

The objective of our exploratory data analysis is to dis-
cover and identify data dependencies in G, D and U in
the temporal domain. Initially, we analyze the dataset for
the presence of systematic patterns combined with random

error. By identifying and removing non-stationary processes
within the dataset, we can obtain a dataset with independent
identically distributed (i.i.d.) components that are amenable to
modeling using linear regression on exogenous variables. We
also examine temporal autocorrelation and data dependency
between different user-roles for both datasets, i.e., D and U,
respectively. We make the following important observations:

Observation 1: The dataset G exhibits non-stationarity.

We denote the k" observation as G, = 9(ar, - ,ao),k,t- Lhe
dataset G is strictly stationary if:

(G1,Ga,-++ ,Gn)' £ (Gryn, Gasn, -+, Gin), ¥ > 1

2)
where, 4 denotes that the two random vectors share the same
joint distribution function. The Augumented Dickey-Fuller
(ADF) test is a widely used tool to test stationarity [30].
The autocorrelation plots of the two downlink datasets with
measurement granularities of one minute and one hour are
shown in the Figure 1. Figures la and 1b represent the short-
run dataset (measured over 300 minutes and 240 hours, respec-
tively), while Figures 1c and 1d represent the corresponding
long-run datasets (measured over 5 and 60 days, respectively).
The presence of significant autocorrelation in the lags for time
t > 1 is an indicator of non-stationarity. This is also verified
by running the ADF test on the above datasets, resulting
in the test accepting the null hypothesis, indicating a non-
stationary process. Thus, (first-order) differencing is required
to stationarize the datasets.

Observation 2: The dataset G has non-zero temporal auto-
correlation properties.

In the absence of significant autocorrelation, the data points in
Figure 1 fall within the confidence interval bands represented
by the dashed lines. The sample autocorrelation function
(ACF) is commonly used to identify and discover data depen-
dency between the observations. We define the sample ACF

1911

User Type

Number of Connections
3,

B .
10" | l '

)
& & 10°

CMSPool CMSProd LCGAdmin LIGO
User Type

Others PhEDEx

User Type

(a) Correlation Heatmap — D,,,. (b) D,,, User-roles.

&
g 10 \
© 0.6
g & ot
2 ?.b& E 10
Y 3
3 I} 0.4 g,
Ry S0
s
© 8,02
O@“ 0.2 g 10
2
N ! |
é)((/ 0.0 1o :
< & 3 & S & & :
S H
FEFT & & 10

CMSPool CMSProd LCGAdmin _ LIGO
User Type

N Others ~ PhEDEX
User Type

(c) Correlation Heatmap — Dy,. (d) Dy, User-roles.

Fig. 2: Short- and long-run dataset properties and cross-correlation.

for the dataset G by:

n—|h A
_ " (G — GG — Y ch<n

S (G — G)2
3)

where, G represents the sample mean of Gy,Gs,--- , Gy,
and n is the total number of observations in the sample. The
autocorrelation plots shown in Figure 1 exhibits high values
for p for lags h > 1. This indicates the presence of systematic
patterns mixed with random errors.

Observation 3: The dataset G exhibits low cross-correlation
in the temporal domain, between different user-roles.
We use the correlation matrix to assess the strength of the
relationship between two user-roles with either the same, or,
with different workflow memberships. Figure 2 shows the
correlation matrix heatmaps for the short-run datasets (both
Im and 1h aggregates) along with the corresponding box-
whiskers plots. Only the lower triangular correlation matrix
is presented in the correlation heatmaps for brevity. As shown
in the Figures 2a and 2c, we observe low to moderate cross
correlation between the users’ transfer connections for both
datasets. For the short-run dataset with one-minute aggregates
D,,, we see low- to moderate positive correlation between
different users’ transfers and low negative correlation in one
instance. Similarly, we see low positive correlation between
the users’ transfers for the short-run dataset with hourly
aggregates Dy,. Both correlation matrices represent the users’
connection transfer relationships, and provide some insight
into the number of parameters required to estimate them. The
box plots for datasets D,, and D;, are shown in Figures 2b
and 2d, respectively. From the box plot, we observe that
the CMSPool users exhibit large variations across both D,,
and D, datasets. CMSProd and Other show large hourly
variations, while LIGO and PhEDEx exhibit little variation
across datasets but have significant outliers. The box plots are
useful in helping us understand the distribution characteristics
of the datasets and in outlier detection.

IV. EXPERIMENTAL TESTBED

In this section, we present our experimental setup, an
application-aware architecture to integrate with the GridFTP
server pool, our data management framework, the testbed
network topology, and how it interfaces with the Linux Virtual

Server (LVS) [31] load balancing cluster. Our experimental
network topology is shown in Figure 3. It consists of five
components namely: (i) the GridFTP server pool, (ii) the LVS
load balancing cluster and a LVS redirector, both of which
are transparent to end-user applications, (iii) the application-
aware SDN infrastructure, (iv) the Elastic stack cluster for data
management, and (v) the SDN data plane infrastructure and
100Gbps connectivity to the wide area network (WAN).

A. Application-aware SDN and GridFTP Integration

Application-awareness is achieved using the Globus eX-
tensible I/0 (XIO) [29] extensible I/O library. We develop
a Globus XIO SDN Callout to interface with the SDN
infrastructure. The XIO Callout module integrates GridFTP
servers with the SDN via an SDN application similar to
SNAG [27]. It also uses a Hadoop Distributed File System
(HDFS) plugin to interact with GridFTP servers’ distributed
storage/processing infrastructure. The XIO Callout module
facilitates the exchange of application-layer metadata with the
SDN infrastructure.

Brocade MLXe-8 |
Border Router |

Production
| GridFTP servers

Dell S6000

= —

&=

R _g Lvs
. » Redirector
N &=

8x 10Gb

"\ ONOs

N AN

=
& e s

Fig. 3: Experimental Testbed.

B. Network Testbed Topology

Our network testbed setup is an exemplary implementation
of an SDN that can handle frequent, high-volume, low- and
high-priority data transfers from a major U.S. CMS Tier-2
site to Fermilab. The U.S. CMS Tier-2 site holds over 3PB
of data, and uses both GridFTP and XROOTD protocols for

1912

bulk batch transfer jobs and interactive jobs, respectively. Our
testbed network architecture effectively combines several im-
portant components including: (i) Intelligent flow control, flow
forwarding and management using the ONOS SDN controller,
(i1) An application-aware SDN application to facilitate secure
exchange of application-layer metadata with the network-layer,
(iii) A GridFTP Callout module that serves as an interface
between the GridFTP servers, its HDFS storage backends and
the SDN infrastructure. The XIO callout communicates with
SDN controller using a secure representational state transfer
(REST) application programming interface (API), and (iv) A
Brocade MLXe border router at the campus network edge
with 100Gbps WAN connectivity to Internet2. A Dell S6000
40 GbE switch to serve as the CMS cluster network core
hosting 12 production GridFTP servers and an Edge-Core
AS4600-54T SDN-capable switch for testing purposes.

C. Data Management System

Our current dataset includes information of over 670 million
GridFTP transfer connections from both CMS and LIGO
workflows. This dataset is consistently growing as it is updated
with new real-time connection information, while also being
expanded to other workflows. To manage this large dataset, we
employ a 11-node Elastic stack [32] cluster with the following
configuration: (i) Master Nodes: 3 xDell SC1435, 16GB RAM,
250GB HDDs, (ii)Hot-Data/Ingest Nodes: 3xSun SunFire
X2200, 32GB RAM, 240GB SSDs, (iii) Warm Data Nodes:
5xSun SunFire X2200, 32GB RAM, 2TB HDDs, and (iv) 1Gb
Ethernet interconnects between all nodes.

This Elastic cluster is responsible for storing all application-
aware information exchanged between the GridFTP server
pool and the SDN infrastructure. A syslog style file on each of
the 12 GridFTP servers feeds a filebeat agent (a lightweight
data shipper for the Elastic stack), which in turn feeds the
logstash, a server-side data ingestion pipeline on the Elastic
cluster.

V. MODELING LOADS AND PREDICTIVE ANALYTICS
A. Overview

We propose the use of recurrent neural networks (RNNs)
for modeling and predicting time-series data. RNNs are a
class of generalized feed-forward neural networks that exhibit
dynamic temporal behavior and can, therefore, be used for
time sequence modeling. The RNN can maintain and use
internal states (memory) to process input sequences. How-
ever, standard RNNs suffer from well-known problems of
vanishing/exploding gradients and therefore, using RNNs to
model long-term dependencies is difficult [33]. Many solu-
tions have been proposed including long short-term memory
(LSTM) [34] and gated recurrent units (GRU) [19] to capture
and model long-term temporal dependencies [35]. Both LSTM
and GRU use “forget” gates that enable a model to both learn
to forget previous states (i.e., dropping memory), and to update
current states (i.e., adding new memory).

We specifically use a deep GRU network to make GridFTP
connection predictions. A GRU cell is shown in Figure 4. The

—1> Yo

h(y)
@ —>hg

®

SY)
\ 4 I

= = tanh
FC FC FC
AT AA A

Fig. 4: Gated Recurrent Unit (GRU) Cell.
GRU cell is a simplified version of LSTM cell, but is known
exhibit similar performance [36].
Unlike LSTM, both state vectors in GRU are merged into
a single vector h(;. The GRU cell state computations are
summarized below:

2y = o(WL. - x(+ Wi -hgon +b.) &)

r = o(Wz, - X) + Wi, - hg1y +by) (5)

&) = tanh(Wiy - x) + Wi, - (re) @ h1)) +bg) (6)
hiy =2z @hg1) + (1 —24) @8 (7)

The terms W and b denote the weight matrix and the bias
terms, respectively. Two types of activation functions are used
by the fully-connected (FC) units namely: (i) o(+), which is the
sigmoid activation function, and (ii) tanh(-) = 20 - 2(x) — 1,
the hyperbolic tangent function. The terms ¢ and ® denote the
sum and dot products, respectively. The update gate z(;) helps
the model control the amount of historical information passed
to the next state. A reset gate r(;) controls the amount of past
information to forget. We note that a single gate controller
is used to control both the update gate and the input gate.
Whenever a new memory must be stored, its (storage) location
is erased first. Lastly, we also note the absence of an output
gate, and a full state vector is output at every time-step.

B. Temporal Prediction Model

Taking the observations in Section III-B into consideration,
we develop a GRU-based deep learning network to model
and predict the temporal GridFTP connection information
classified by user-role. The deep learning network will forecast
per-role connections for both CMS and LIGO users. The GRU
memory cell updates the current hidden state h(;) by combin-
ing the input and the past state as described in Equations 4-7.
To predict the future value G 111 = G(a,,..- ,a0),k,t+1, WE Tely
on past 1" observations, i.e. Zi:t_T G- A 3-layer deep
RNN with 64, 32 and 16 GRU cells is used for forecasting
per user-role future connection values. We use a step-size of
seven (7) at the input layer. A dropout layer is added to final
hidden layer with a probability of 50% to avoid overfitting. We

1913

also note that Adam optimizer [37] was used with a training
batch size of 16, with a linear activation function at the output
layer.

C. Performance Evaluation

We compared our deep RNN model with two other time
series analysis and prediction methods. First, we compare the
prediction capabilities of our model with an Autoregressive
integrated moving average (ARIMA) [38] multi-step predictor.
ARIMA is a widely used method for time-series analysis and
forecasting [38]. An ARIMA model is selected by minimizing
the model’s Akaike Information Criterion (AIC). The ARIMA
model has three parameters: the AR model order p, the
MA model order ¢, and the differencing component d. The
model parameters (p,d,q) search-space is upper-bounded by
(10,2,10). Next, we compare our model with a deep multi-layer
perceptron (MLP) predictor consisting of three dense hidden
layer with 64, 32, and 16 fully connected units, a dropout
layer added to the final hidden layer with a probability of 50%,
hyperbolic tangent activation functions at the hidden layer and
linear activation at the output layer.

We compare the performance of our model with the ARIMA
and the MLP predictors using three widely used performance
metrics namely: (i) Mean Absolute Error (MAE), (ii) Mean
Squared Error (MSE), and (iii) the coefficient of determination
(r? score). We have also presented the root mean squared
error (RMSE) for convenience. The dataset used in making
the predictions G,, (l-minute aggregate granularity), was
measured over 60 days and contained over 512,000 GridFTP
transfer connection records from six user-roles described in
Section III-A. This dataset was partitioned into a training
set and a validation set, categorized by user-roles. Next, we
present the prediction results of our deep RNN model and
compare it with ARIMA and MLP forecasting models.

D. Prediction Results and Discussion

The prediction results for the D,, dataset (downlink con-
nections 1-minute aggregate granularity) is shown in Figure 5.
Figures 5a, Sb, 5¢ and 5d show the actual vs. predicted con-
nection values for US CMS Pool, CMS Prod, CMS PhEDEx
and LIGO users, respectively. From the results, we see that
predicted results show a good fit with actual observations.
The prediction models’ performance categorized by user-role
is presented in Figure 6. Specifically, we present the MAE,
MSE, RMSW and 72 scores in the Figures 6a, 6b, 6¢, and
6d, respectively. Our proposed model, depending on the user-
role, shows an improved error performance between 22.03%—
65.96%, 23.8%—-92.6%, and 13.37%-72.87% regarding MAE,
MSE and RMSE, respectively over the ARIMA model. Our
model also shows 72 score improvements between 21.8%—
217.14% over the ARIMA model. Further, our model, in
comparison to the MLP model, shows an improved error
performance between 3.28%—62.8%, 5.88%—85%, and 2.93%—
62.36% regarding MAE, MSE and RMSE, respectively. It also
shows 72 score improvements between 8.06%—105.64% over
the MLP model. The above results show the effectiveness of

our GRU-based deep RNN model in making accurate GridFTP
connection load predictions. Also, importantly, the superiority
of our design ensures that it takes long-term temporal depen-
dencies into account. Such a system is vital in providing timely
intelligence to load balancing systems. In the next section,
we demonstrate how accurate per user-role predictions can be
effectively used to develop intelligent load balancing schemes
for the LVS [31] cluster.

VI. APPLICATION-AWARE LOAD BALANCING

Data-intensive science applications, with users interacting
with massive amounts of data, place dynamically varying
demands on the network infrastructure. However, conventional
campus network and supercomputing center architectures,
without a global view of the network, rely on load balancers
that are not precise. With the emergence of SDN, significant
research has gone into developing accurate load balancing
methods with better performance than their conventional al-
ternatives [20]. However, limited work has been done in de-
veloping efficient load balancers capable of handling massive
amounts of data transfers intelligently from high-throughput
distributed computing workflows.

The Linux Virtual Server (LVS) [31] is a high-availability,
highly-scalable load balancing solution built on a cluster of
real servers. The LVS architecture is fully transparent to end-
users/applications and behaves as a single high-performance
virtual server. LVS is a widely used open source load balancing
solution in many supercomputing centers. LVS implements
several load balancing schedulers including (weighted) round-
robin, (weighted) least-connections, source/destination hash-
ing, and locality-based least-connection schedulers. While
these schedulers perform adequately, they do not provide fine-
grained controls for intelligently balancing connection loads
based on application behavior.

The use of application-layer metadata benefits load balanc-
ing systems by allowing them to make intelligent decisions
based on application behavior. However, such application
metadata exchange is often limited or nonexistent. In the
following, we propose an intelligent load balancer that exploits
both application-awareness and predictive analytics knowledge
to provide fine-grained load balancing controls.

A. Application-aware Predictive Intelligent Load Balancer
(APRIL)

We propose APRIL, an application-aware, predictive,
intelligent load balancer. APRIL intelligently combines
application-layer metadata with deep learning predictive
analytics to create customized load balancing policies.
Our proposed approach is highly adaptable to both end-
user/application requirements and behavior while providing
fine-grained controls to the site administrator to prioritize or
isolate desired flows.

We demonstrate an approach that exploits application-
awareness and per user-role forecast information to maximize
GridFTP server utilization. The proposed approach, APRIL is
described in Algorithm 1. First, we define per-server maximum

1914

Actual vs Predicted

—*— Actual
—— Predicted

Actual vs Predicted

—_ —#— Actual

0.00154 —e— Predicted

0.0010

0.0005+

S Prod (Scaled

=
0 0.0000
0 10 20 30 40
Time Step Index

(b) CMSProd Downlink Predictions.

Actual vs Predicted

—*— Actual
—— Predicted

© o
N W

LIGO (Scaled)
o
-

o
o

600 800

400
Time Step Index

0 200 1000

(d) LIGO Downlink Predictions.

Fig. 5: Predicted values vs. Actual D,,, measurements by user-role.

S
2 0.151
©
e}
V)]
—0.101
o
g
g 0.05-
© 0.001
0 10 20 30 40
Time Step Index
(a) CMSPool Downlink Predictions.
Actual vs Predicted
— 0'03< —#*— Actual
o —e— Predicted
Q
€ 0.02
L
n
a 0.01
E L————
o
0.00+
0 20 40 60 80
Time Step Index
(c) CMS PhEDEx Downlink Predictions.
o B [ARIMA 000 = ARIMA
0.020 = MLP
I ———— 0.0020 = :‘3";5
W 0.015 W 0.0015
: .. :
0.010 - 0.0010
0.005 0.0005
0.000

0.0000
(oé @OQ. \}00 p
& & <

User Type User Type

(a) Mean Absolute Errors. (b) Mean Squared Errors.

1.0

0.06 . ARIMA

s MLP
mmm GRU

0.00 0.0
> o S

N ARIMA
0.05 . MLP 0.8
BN GRU

r2

+ + o
2 3 <<°0% & ")Q@ v‘&% N
o & R > ™ <
User Type User Type

(c) Root Mean Squared Errors. (d) Coefficient of Determination.

Fig. 6: Prediction model performance categorized by user-role.

capacity and weights. The weights are used to decide the
preferred order of load distribution among the servers upper-
bounded by their capacity. The weights are (re)adjusted based
on the per user-role forecast information periodically to ensure
that the utilization is maximized. We formally define the
problem as:

Mm(a“%)WEMWGK ®)
Wi

where, C,, represents the number of connections across K
servers Sy, each weighted by Wj. The weight updates, W}
for each server Sy is defined as:

|Cact|

|Cpred| 7
where, kg, is the current server capacity; «,, is the capacity
threshold. W, and W}, _ are the current and previous weights,

Wi = axks, X Wi_1 X Vk € K,Va, € (0,1] (9)

respectively. Coer and Cp,.cq represent the total current and
predicted connections, respectively. Each servers’ weights are
adjusted based on the predictions for that observation period.
By using application-layer metadata and per user-role forecast
information, we can maximize the server utilization by assign-
ing the appropriate weights for each server. The weights also
ensure that an appropriate number of connections live on each
server without exceeding the capacity (viz. controlled by «,).

B. Results and Discussion

First, we present our experiences with the LVS weighted
least-connection (WLC) scheduling, which is the primary
scheduler used in our production U.S. CMS Tier-2 site.
Figure 7 shows the LVS WLC scheduling heatmaps for the
12 GridFTP servers (labeled GSI/-GSi2) in the production
network. The Figures 7a and 7b show the downlink and
uplink connection distribution, respectively, when LVS WLC

1915

GS1
GS10-
GS11-
GS12-
GS2-
GS3-
GS4-
GS5-
GS6-
GS7-
GS8-
GS91,

Host

(a) Load - Downlinks.

GS1-
GS10+
GS11-
GS12-

GS2+

GS3-

GS4-

GS5-

GS6-

GS7+

GS8-

GS9-

Host

(b) Load - Uplinks.

x10~°
6

Connection Count

(¢) KDE - Downlinks.

x107°

Connection Count

(d) KDE - Uplinks.

Fig. 7: LVS weighted least-connection
x105
GS1
GS10- I
GS11-
GS12-
GS2
GS3-
GS4-
GS5-
GS6-
GS7-
GS8-
GSQ" :

x10~5

Host

Connection Count

(b) KDE - Downlinks.
Fig. 8: APRIL scheduling

(a) Load - Downlinks.

Algorithm 1 APRIL(G, Sk,)

Require: Connection dataset (G), Servers Sy, Capacity
threshold ay..
Output: Load distribution.

I: Ks =y + Iiswvask S (0, 1]

2. W =1,Vs € Sk

3. for Cp € G do

4: Compute Cpreq,i+1 = RNN(Coer, 7), V7 € (t — 7,1)
5. while Cy; # ¢ do

6: Find s € S; with the smallest kg

7: for s € S, do

8: if kg < ay - kg, then

9: S = {Cact,h Wk}

10: Wy = agkg, X Wi_1 X “CC,;C:(J‘ Vk e K
11: break

12: else

13: Find s | ks < oy, - ks,

14: end if

15: end for

16: Wi_1 =W,

17: Cact = {Cact U Cpred}

18: end while

19: end for

is used. The corresponding kernel density estimates (KDE)
shown in Figures 7c and 7c indicate that load is almost equally
distributed across all servers. The distribution performance of
our proposed method, APRIL, is shown in Figure 8. From
the heatmap shown in Figure 8a, we see that APRIL is
better at redistributing loads with an objective of maximizing
server utilization. This is also confirmed by the KDE in

un-01 BB 46 40 10 [3 10 10 10 10 10 10 1200
un-02-22 10 10 10 (21 18] 10 10 10 10 10 e e
UN-03-03 00 10 10 03 02 02 02 04 02 02 01 10.0 < 1000
UN-04- 05 -10 10 -1o [68] os (6876767 67] 02 10 2
UN-05 18] 10 10 -0 13 65 10 03 03/ 05 10 10 M g 800
©Jun-06-12 10 10 10 12 12 12 10 08 -10 -10 10 . =
2Jun-07-1 20 10 1033 12 12 12 03 20 10 10 5 600
0 Jun-08-17 10 10 10 18 18 21 00 10 10 10 10 5.0 £
E jun-09 JE/ 10 10 10 10 10 10 10 10 10 10 10 . < 400
FJun-10188 20 10 20 10 10 20 10 20 20 10 20 c
un-11 48 10 10 10 vo w0 a0 101010 oo 5 500
un-12 10 10 10 10 10 10 10 10 10 10 o
W - |0 0 20| - |19 20 0 0 30 90 3 £
un-14$20 10 10 10 1740 20 20 0 10 g0
un-15-18 10 10 10 18 20 18 10 10 10 0 : 200
HO A NNMYINON @O 4 O M N N M oS ! o~ ® g
BRFE8EEE8Ed B3F78888888¢8
[CRCRC] [CERCENC]
Host Host

(c) Daily % change/server. (d) Change in utilization/server.

load distribution (15 Days).

Figure 8b, which shows the difference in probability density
for servers with increased utilization. Lastly, we show the
resulting daily percentage change effected by APRIL in each
server when compared to LVS WLC, in Figure 8c. We observe
that our approach simultaneously maximizes utilization (up to
11 times increase) in some servers while reducing utilization
significantly in others (a minimum of 0.54 times decrease).
The per-server (maximum and minimum) percentage change
averaged over 15 days is also presented in Figure 8d.

Although we have mainly presented the results by compar-
ing our approach with LVS WLC, we note that other LVS
scheduling algorithms were also evaluated during our experi-
ments. Specifically, we configured LVS to use three additional
schedulers on the production network namely: round-robin
(both pure and weighted), source hashing, and destination
hashing. Other than WLC, these other schedulers exhibited
unstable behavior for opportunistic transfers such as LIGO
workflows. This resulted in frequent dropped connections in
the production network and server loading problems, and
therefore we had to revert to WLC for stable network op-
eration.

VII. CONCLUSIONS

We proposed an application-aware intelligent load balancing
system (APRIL) for high-throughput data-intensive science
workflows such as CMS and LIGO. Our proposed solutions
used a real dataset representing 670 million GridFTP transfer
connections from a major U.S. CMS Tier-2 site. We presented
an extensive analysis of this dataset to identify long-term tem-
poral dependencies between different user-roles and workflow
memberships. Using the insights from the data analysis, we

1916

leveraged deep learning techniques for time-series modeling to
develop an application-aware predictive analytics system using
gated recurrent units (GRU) based recurrent neural network
(RNN). Our deep RNN predictive analytics system accurately
forecasts GridFTP connection loads and performs between
5.88%-92.6% better than ARIMA or multi-layer perceptron
(MLP) models. We then developed a novel application-aware,
predictive and intelligent load balancer, APRIL, that effec-
tively integrates application metadata and load forecast in-
formation to maximize server utilization. Through extensive
experiments, we demonstrated the effectiveness of APRIL
by comparing it with an existing production Linux Virtual
Server (LVS) cluster. We show that our approach improves
server utilization, on an average, between 0.5-11 times over
its LVS counterpart. Our future work will focus on developing
load balancing schemes that will consider a broader range of
application metadata parameters.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant Numbers OAC-1541442 and
CNS-1817105. This work was completed using the Holland
Computing Center of the University of Nebraska, which
receives support from the Nebraska Research Initiative. The
authors would like to thank Garhan Attebury, Holland Com-
puting Center at UNL for his valuable support.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo et al., “Software-Defined
Networking: A Comprehensive Survey,” Proc. of the IEEE, vol. 103,
no. 1, pp. 14-76, Jan 2015.

[2] L. Cui, F. R. Yu, and Q. Yan, “When big data meets software-defined
networking: SDN for big data and big data for SDN,” IEEE Network,
vol. 30, no. 1, pp. 58-65, January 2016.

[3] 1. Monga, E. Pouyoul, and C. Guok, “Software-Defined Networking for
Big-Data Science - Architectural Models from Campus to the WAN,”
in 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, Nov 2012, pp. 1629-1635.

[4] Y. Han, S.s. Seo, J. Li et al., “Software defined networking-based traffic
engineering for data center networks,” in [6th Asia-Pacific Network
Operations and Management Symposium, Sept 2014, pp. 1-6.

[5] S. Jain, M. Khandelwal, A. Katkar ef al., “Applying big data technolo-
gies to manage QoS in an SDN,” in 2016 12th Conference on Network
and Service Management (CNSM), Oct 2016, pp. 302-306.

[6] G. Wang, T. E. Ng, and A. Shaikh, “Programming Your Network at
Run-time for Big Data Applications,” in Hot Topics in Software Defined
Networks, ser. HotSDN *12. ACM, 2012, pp. 103-108.

[71 P. Qin, B. Dai, B. Huang et al., “Bandwidth-Aware Scheduling With
SDN in Hadoop: A New Trend for Big Data,” IEEE Systems Journal,
vol. 11, no. 4, pp. 2337-2344, Dec 2017.

[8] D. Bonacorsi, “The CMS Computing Model,” Nuclear Physics B -
Proceedings Supplements, vol. 172, pp. 53 — 56, 2007.

[9] B. P. Abbott, R. Abbott, R. Adhikari ef al., “LIGO: the Laser Interferom-
eter Gravitational-Wave Observatory,” Reports on Progress in Physics,
vol. 72, no. 7, p. 076901, 2009.

[10] W. Allcock, J. Bresnahan, R. Kettimuthu et al., “The Globus Striped
GridFTP Framework and Server,” in Supercomputing, 2005. Proc of the
ACM/IEEE SC 2005 Conference, Nov 2005, pp. 54-54.

[11] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, “XROOTD-A
Highly scalable architecture for data access,” WSEAS Transactions on
Computers, vol. 1, no. 4.3, 2005.

[12] 1. Monga, E. Pouyoul, and C. Guok, “Software-defined networking for
big-data science - architectural models from campus to the wan,” in 2012
SC Companion: High Performance Computing, Networking Storage and
Analysis, Nov 2012, pp. 1629-1635.

[13] E. Dart, L. Rotman, B. Tierney et al., “The Science DMZ: A network de-
sign pattern for data-intensive science,” Scientific Programming, vol. 22,
no. 2, pp. 173-185, 2014.

[14] D. Nadig Anantha and B. Ramamurthy, “ScienceSDS: A Novel Software
Defined Security Framework for Large-scale Data-intensive Science,”
in ACM Security in Software Defined Networks & Network Function
Virtualization, ser. SDN-NFVSec "17. ACM, 2017, pp. 13-18.

[15] D. Tuncer, M. Charalambides, S. Clayman et al., “Adaptive Resource
Management and Control in Software Defined Networks,” IEEE Trans.
on Network and Service Management, vol. 12, no. 1, pp. 18-33, March
2015.

[16] W. Jeong, G. Yang, S. M. Kim et al., “Efficient big link allocation
scheme in virtualized software-defined networking,” in 2017 13th Conf.
on Network and Service Management (CNSM), Nov 2017, pp. 1-7.

[17] T. Zinner, M. Jarschel, A. Blenk er al., “Dynamic application-aware
resource management using Software-Defined Networking: Implemen-
tation prospects and challenges,” in JEEE NOMS, May 2014, pp. 1-6.

[18] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[19] K. Cho, B. Van Merrienboer, C. Gulcehre et al., “Learning phrase
representations using RNN encoder-decoder for statistical machine
translation,” in Conference on Empirical Methods in Natural Language
Processing. Assn. for Computational Linguistics, 2014, pp. 1724—1734.

[20] A. A. Neghabi, N. J. Navimipour, M. Hosseinzadeh et al., “Load
Balancing Mechanisms in the Software Defined Networks: A Systematic
and Comprehensive Review of the Literature,” IEEE Access, vol. 6, pp.
14 159-14 178, 2018.

[21] M. Zhang and H. Yu, “A New Load Balancing Scheduling Algorithm
Based on Linux Virtual Server,” in 2013 Intl. Conf. on Computer
Sciences and Applications, Dec 2013, pp. 737-740.

[22] K. Wu, X. Wang, H. Chen et al., “Improvement on LVS based IP
network connection status synchronization,” in IEEE Conference on
Software Engineering and Service Science, Sept 2015, pp. 746-749.

[23] J. Wang, J. Tang, Z. Xu et al., “‘Spatiotemporal modeling and prediction
in cellular networks: A big data enabled deep learning approach,” in
IEEE INFOCOM 2017, May 2017, pp. 1-9.

[24] P. Wang, S. Lin, and M. Luo, “A Framework for QoS-aware Traffic
Classification Using Semi-supervised Machine Learning in SDNs,” in
IEEE Conference on Services Computing, June 2016, pp. 760-765.

[25] F. Tang, Z. M. Fadlullah, B. Mao et al., “An Intelligent Traffic Load
Prediction Based Adaptive Channel Assignment Algorithm in SDN-IoT:
A Deep Learning Approach,” IEEE IoT Journal, pp. 1-1, 2018.

[26] J. Xu, J. Wang, Q. Qi et al., “IARA: An Intelligent Application-Aware
VNF for Network Resource Allocation with Deep Learning,” in 2018
15th IEEE SECON, June 2018, pp. 1-3.

[27] D.N. Anantha, Z. Zhang, B. Ramamurthy et al., “SNAG: SDN-managed
Network Architecture for GridFTP Transfers,” in 3rd Innovating the
Network for Data-Intensive Science (INDIS) '16, SC16, Nov 2016.

[28] D. N. Anantha, B. Ramamurthy, B. Bockelman et al., “Differentiated
network services for data-intensive science using application-aware
SDN,” in 2017 IEEE ANTS, Dec 2017, pp. 1-6.

[29] W. Allcock, J. Bresnahan, K. Kettimuthu et al., “The globus extensible
input/output system (XIO): a protocol independent IO system for the
grid,” in 19th IEEE IPDPS, April 2005, p. 8.

[30] P. J. Brockwell and R. A. Davis, Introduction to Time Series and
Forecasting. springer, 2016.

[31] W. Zhang and W. Zhang, “Linux Virtual Server Clusters: Build highly-
scalable and highly available network services at low cost,” Linux
Magazine, vol. 11, 2003.

[32] Elastic Stack. [Online]. Available: https://www.elastic.co/products

[33] S. Hochreiter, Y. Bengio, P. Frasconi et al., “Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies,” 2001.

[34] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” vol. 9,
pp- 1735-80, 12 1997.

[35] A. Gers F., J. Schmidhuber, and F. Cummins, “Learning to Forget:
Continual Prediction with LSTM,” Tech. Rep., 1999.

[36] K. Greff, R. K. Srivastava, J. Koutnik et al., “LSTM: A Search Space
Odyssey,” IEEE Trans.Neural Networks and Learning Systems, vol. 28,
no. 10, pp. 2222-2232, Oct 2017.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[38] G. E. Box, G. M. Jenkins, G. C. Reinsel et al., Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

1917

