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ABSTRACT

Emergent directional entropic forces that favour facet-to-facet alignment of neighbouring colloidal
particles — arising from multi-body interactions upon crowding - should cause the process by which
colloidal crystals form from fluids of hard polyhedra to be different than that from fluids of hard
spheres. We compute nucleation-free energy barriers for a family of shapes that all self-assemble the
same cubic close-packed (ccp) crystal structure formed by hard spheres and find that changing rhom-
bicuboctahedra into rhombic dodecahedra by successively removing facets that compete with the
ccp structure cause a systematic decrease in barrier heights. We show that this decrease arises from
the increased prominence of facets aligned with neighbouring shapes in the target crystal, which
produce local environments in the fluid that facilitate crystallisation.

ARTICLE HISTORY
Received 1 June 2019
Accepted 5 September 2019

KEYWORDS
Crystallisation; hard shapes;
polyhedra; cubic close
packing; emergent entropic
forces

7
N

\ N
iy
) 7

N

N

e
&

4«/

1. Introduction i . . o
crystallisation at the microscopic level remains incom-

plete and many of its aspects remain to be explored. For
this reason, simple models, like the hard sphere model,
that permit the detailed study of crystallisation path-
ways have an important role to play in advancing our
understanding of how crystals form. Hard shapes in par-
ticular serve as model systems for nanoparticle assem-
blies, which are the subject of intense investigations for
numerous applications [7, 8], e.g. photonic materials [9],

Crystallisation is a fundamental and important process
that is ubiquitous across many fields. Beyond the obvi-
ous relevance to chemistry and materials science, exam-
ples include biology (in proteins) [1], pharmaceuticals
[2], manufacturing (e.g. silicon monocrystals) [3], geol-
ogy (e.g. the solidification of magma) [4], and meteo-
rology [5, 6]. While many ongoing efforts are leading to
continuous advances in the field, our understanding of
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plasmonics [10, 11], drug delivery [12], catalysis [13], or
sensing [14].

Dense systems of hard spheres crystallise into the
cubic close-packed sphere packing (ccp, also termed
fec for its face-centred cubic Bravais lattice), due solely
to entropy maximisation. This counterintuitive fact
has been known since pioneering computer simula-
tions in the late 1950s [15, 16]. Likewise, dense sys-
tems of hard polyhedra spontaneously self-assemble into
ordered, equilibrium colloidal crystals, again to max-
imise entropy [17-23]. Of the many crystal structures
discovered or predicted to date, the large majority are
ccp with respect to the particle centroids. While it is
not surprising that spheroidal polyhedra might self-
assemble the ccp crystal phase, highly faceted shapes
can also form ccp crystals. The most obvious of these
is the rhombic dodecahedron (RHD), which has the
shape of the Voronoi cell of ccp, and thus packs into an
fec lattice with packing fraction ¢ =1 at infinite pres-
sure [24]. Between the RHD and the sphere, however,
are infinitely many, increasingly vertex-truncated (and
thus ‘rounder’) RHD that also form ccp due solely to
entropy maximisation. Do they all crystallise into a ccp
structure in the same way? Are there certain shape fea-
tures that make it easier — or harder - for different shapes
to form ccp?

We know how fluids of hard spheres nucleate and
grow the ccp crystal in Monte Carlo (MC) simulations
from the pioneering work of Auer and Frenkel [25, 26]
and many additional studies [27-31]. Those works serve
as a baseline for our study. Thapar and Escobedo sim-
ulated three different regular hard polyhedra that each
form a different crystal structure upon densification [32].
They found that each system crystallised into its crys-
tal structure more easily than spheres crystallise into
ccp; they attributed that difference to local orientational
order in the dense fluid phases that is commensurate
with local order in the respective crystal. This similarity
between fluid and crystal local structure has long been
argued to lower the nucleation barrier between fluid and
crystal [33]. The similarity of local structure in hard-
polyhedron fluids and their crystals was also reported in
a 2012 study of 145 different polyhedra, which showed
that the existence of a crystal structure could consis-
tently be anticipated by knowing only the local structure
in the dense fluid and the shape’s asphericity as mea-
sured by the isoperimetric quotient [34]. More recently,
machine learning has been brought to bear on this prob-
lem, resulting in the discovery of two independent shape
measures able to predict the crystal structure a shape
is likely to self-assemble into with over 95% probabil-
ity, provided the structure is among one of many in the
training dataset [35].

All of these hard-particle systems are purely ather-
mal, and therefore all contributions to the free energy
are entropic: when the crystal state has more microstates
available to it than the fluid phase at the same den-
sity, the crystal will be the stable equilibrium phase.
For polyhedral shapes, alignment of the facets tends to
increase the number of available microstates compared
to disordered arrangements, contributing to crystallisa-
tion. This tendency towards local particle alignment is
the result of many-body; statistical considerations, which
can be quantified by potentials of mean force and torque
(PMFTs) [36, 37]. Importantly, the PMFT expresses — in
units of free energy — the multi-body nature of the effec-
tive interactions in an entropic system in terms of pair-
wise quantities that can be easily calculated in simulation,
in the dense fluid as well as in the crystal phase [37].
Local variations in the PMFT reflect variations in the
effective strength and directionality of the directional
entropic forces (DEFs) between neighbouring particles.
DEFs indicate weak local ordering in dense fluid phases
that precede crystallisation, in agreement with prior work
(using a different quantity) by Thapar and Escobedo [32].
Details on the calculation of PMFT and DEF - which is
carried out independent of particle shape and thermody-
namic phase — may be found in Refs. [36, 37], and in the
Supplementary Information (SI).

The rhombic dodecahedron, as the Voronoi polyhe-
dron of ccp, has its large facets aligned with interparticle
contacts, and thus has strong entropic forces driving it
towards ccp. Thus we expect the RHD to form ccp. If
the vertices of the rhombic dodecahedron are truncated
- gradually changing the shape into a rhombicubocta-
hedron - the original facets shrink and new, competing
facets with their own associated DEFs are introduced.
This transformation should lead to a decrease in strength
of the original, ccp-forming DEFs. We hypothesise that
this decrease should result in an increased free energy
barrier to nucleation of the crystal; the aim of this paper
is to test this hypothesis.

2. Model and methods

We compare the sphere (with isoperimetric quotient
IQ = 1; Figure 1(a,b) and defined in the SI) with an inter-
polation series of polyhedra between the rhombic dodec-
ahedron (IQ = 0.74; Figure 1(c,d)) and rhombicuboc-
tahedron (IQ = 0.87) via vertex truncation ¢ from 0 to
1, respectively. This interpolation produces a homolo-
gous series of shapes, all sharing the same symmetry
and all forming ccp (see Figure 2(a)). The six polyhe-
dra we investigated have t = 0, 0.2, 0.4, 0.6, 0.8, and
1.0, and represent a subset of the 423-family of shapes
whose putative densest packings were reported by Chen
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Figure 1. Simulated fluids of spheres (a) and rhombic dodec-
ahedra (c), alongside crystals for each (b,d). Simulations were
performed at |Au| = 0.4 between the fluids and solids. For illus-
tration purposes here we show only N = 1372 particles.

et al. [38] and whose assemblies were reported by Klotsa
et al. [39]. In their notation, our truncation between the
rhombic dodecahedron and rhombicuboctahedron fol-
lows the parametersa =2 — (2 — VOtb=2c=3—
(v/2 — 1)t. These parameters describe the distance of
sets of planes with different symmetry, with decreasing
a corresponding to a set of planes perpendicular to the 4-
fold axes moving inwards (truncating the 4-fold vertices
of the rhombic dodecahedron) and decreasing ¢ corre-
sponding to planes perpendicular to the 3-fold axes mov-
ing inwards (truncating the 3-fold vertices). Additional
details are provided in the SI.

This family of shapes has the added benefit that it is
experimentally realisable, e.g. synthesis methods exist to
form these polyhedra at the colloidal scale by etching
crystalline gold rhombic dodecahedra [40]. We pre-
dict differences in the different shapes’ assembly path-
ways by quantifying the DEFs via the PMFT method
of van Anders et al. [36, 37]; the PMFT quantifies the
anisotropic nature of the multi-body interactions that
give rise to DEFs. We then measure these differences
in the crystallisation behaviour of RHD and the other
nearby shapes in the series compared to spheres. We
compare fluids of different shapes at the same chemical
potential difference, |Apu|. The chemical potential dif-
ference represents the Gibbs free energy per particle for
transitioning from one phase to the other and thus cor-
responds to the thermodynamic driving force for crys-
tallisation. Importantly, we purposely do not consider
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nor test classical nucleation theory; instead, we compare
quantities that in this respect are model-free.

We performed hard particle Monte Carlo simulations
using HPMC [41], a plugin to the HOOMD-blue molec-
ular dynamics package [42]. From these simulations, we
calculated the equations of state and cluster size distribu-
tions in the region of metastability, above the fluid-crystal
coexistence pressure, but close enough so that nucleation
is a rare event; examples are illustrated in Figure S3 in the
SI. To make fair comparisons of the nucleation behaviour,
we compared the shapes at the same driving forces
to crystallisation (i.e. at constant |Au|). These driving
forces were computed using thermodynamic integration
of the equations of state,

Ap = /P (Vcrystal _ Vﬂuid) ar’ 1)

N N

(see SI), which holds for hard particle systems. This inte-
gral requires coexistence pressures for each shape (where
Ap = 0), which we determined using the method of
interfacial pinning [43, 44]. We used system sizes of
N = 3375 (=15°) particles for the umbrella sampling
simulations and of N = 2744 for interfacial pinning,
both of which are described in detail below. All shapes are
scaled to unit volume, =1, for simplicity when work-
ing with dimensionless pressures SPv,. The simulations
were performed in the NVT ensemble, which facilitates
comparison of DEFs across systems of different shapes.

The potential of mean force and torque (PMFT) quan-
tifies the effective directional entropic forces driving par-
ticles to align in a preferentially facet-to-facet manner
in both the disordered fluid and solid phases [36, 37].
We use PMFTs to elucidate how truncation alters the
local neighbourhoods for the polyhedra studied. To cal-
culate the PMFTs, local bond environments around par-
ticles are rotated with respect to the reference particle
orientation and binned, with 100 bins/dimension, on a
cubic grid spanning L; & 2.5 around particles of unit vol-
ume. PMFTs for all polyhedra were computed for fluid
and solid phases at |[Au| = 0.4 using 4000 uncorrelated
simulation frames with N = 2048 particles each.

The formation of clusters in the homogeneous nucle-
ation regime is rare and without biasing methods ade-
quate statistics cannot be obtained to achieve sufficient
precision to calculate free energies. We use the well-
established technique of umbrella sampling to help sam-
ple adequate statistics of the cluster size distribution
[26,45]. In this approach, a harmonic bias potential
(called ‘umbrella’, after the potential shape) is added
to the simulation to allow for sampling near a particu-
lar value of an order parameter. Here we use Ny, the
size of the largest cluster of neighbouring particles with
similar 3D local environments in the simulation, as the
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order parameter for umbrella sampling simulations, and
bias towards a target size Niarget by adding the harmonic
biasing potential

Ubias = k(Nmax — Ntarget)z- (2)

In practice, umbrella sampling was performed by run-
ning short Monte Carlo trajectories (25 MC cycles) on the
system. Measurements of the cluster size were taken after
each trajectory, and Equation (2) was used to calculate
AU to accept or reject the trial trajectory. The application
of this bias energy to the system allows us to accurately
sample the probability of cluster sizes occurring around
different values of Niarget in this umbrella ensemble. The
statistics gathered in this biased ensemble of the counts
of clusters of size Npay, denoted Cy, are subsequently
corrected to describe the original NPT ensemble via re-
weighting the sampled states by the inverse of the bias
energy,

wa CN e:B Ubias,i (Nmax)
ZM eﬂ Ubias,i (Nmax)
1

3)

(CN) =

where the sum is performed over the taken samples.
This re-weighting of states by the inverse energy cancels
out the artificial umbrella energy that was added to the
Hamiltonian. From this we can calculate accurate infor-
mation about the probability distribution of the clusters
of different sizes Nyyax near Niarget in this biased ensemble
and then compute free energies from SF = —In P, with
pressure P. Free energy curves for each sampled target
Niarget are aligned to form a single contiguous curve using
the weighted histogram analysis method (WHAM) [46].

The use of the largest cluster size Npax as the mea-
sure of order in the system is only valid when clusters of
size Nmax are rare [26, 47]. For common small clusters
where this assumption is invalid, the cluster size proba-
bility distribution is sampled directly (without umbrella
sampling) from simulations of the metastable fluid. In
this work, we use bias potentials with k = 0.1 at Niarget =
15,17,20, 25,30 with windows spaced by 10 thereafter.
Ten replicas were run of each window and combined to
make the reported free energy curves, and each run equi-
librates its own nucleus from a disordered fluid. Error
bars for the cluster sizes and free energy maxima were
calculated by bootstrap resampling on the data sets gen-
erated, performed at the level of the ten independent
replica simulations and then incorporated into WHAM.
Error bars are shown as the standard deviation of the
results.

Interfacial pinning is used to determine coexistence
pressures that are in turn used to calculate chemical
potentials using thermodynamic integration [43, 44].
This method runs a two-phase simulation that holds a

fluid and solid in an elongated box. A harmonic potential
is applied to the system that attempts to force the stability
of the phase coexistence to be half fluid and half solid in a
manner similar to the umbrella sampling described pre-
viously. A two-phase simulation is constructed so that the
two phases, fluid and solid, coexist along the z-axis, and
such that the box dimensions in the x-y-plane are appro-
priate for an equilibrated crystal at the given pressure. In
the two-phase NPT simulation, only the box length L,
is allowed to vary. Because the interfaces span the box
with constant L, and L), changes in the amount of fluid
and solid do not alter the interfacial area or energy as
long as the system remains two-phase. For each shape,
several simulations are performed at different pressures.
The coexistence pressure is determined by finding the
pressure at which the mean applied bias energy is zero.
To track the crystal, we use the same order parameter
identifying crystalline particles as used in the umbrella
sampling simulations.

Determining free energy barriers for cluster size for-
mation requires a robust order parameter for tracking
nucleus sizes; we used the method of ten Wolde [48] to
track clusters. In the first step, we define the local bond
orientational order gy, for each particle i as

Na(i)

Q@) =Y Yiu (05, i), (4)

j=1

where N, of i is the number of neighbouring particles j
within a cutoff distance r.,; of particle i, Yy, is a spherical
harmonic computed of the orientation of the interparticle
vector ;. The bond orientational order parameter mea-
sures the local environment of each particle. To identify
crystalline regions, the real component of a scalar prod-
uct between all pairs of local environments is used as a
measure of correlation:

1
@) =% | > amal, () |- (5)

m=—I

It is expected that the local environments in the crystal
have more coherent products than the disordered fluid.
In Equation (5), we do not normalise the sum, as the
magnitude is a reflection of the quality of the match and
indicative to some extent of the number of neighbours.
For particles correlating sufficiently, we define solid-like
bonds if the values of q;(7,) exceed a certain threshold
cutoft g,

Ny
S() = Y H(q(i,j) — 90)- (6)

=1
Particles that possess sufficient numbers of solid-like
bonds S - i.e. greater than or equal to another cutoff s,



— are considered to be in a crystalline local environment
and are eligible for particle clustering by local distance
to locate crystalline clusters. For the unit-volume shapes
studied here we identify the solid using I = 6, 7y =
1.7, g. = 20, and s, = 6, which we find to work well for
identifying ccp for these polyhedra. Similar values were
previously used to study hard spheres [25, 26, 30, 32].

We also examine estimates for each shape of the crit-
ical nucleus sizes N*, the cluster size at which BAG is
maximal. The measurements of cluster sizes are noisy,
because the sampled free energy barriers are broad near
the peak, but overall trends remain visible. These values
of N* should be considered estimates: the exact clus-
ter sizes are sensitive to the given cutoffs of the order
parameter distinguishing the solid crystal from the fluid;
however, the height of the barrier is robust to choices in
these cutofts because the stability of a given nucleus does
not depend precisely on the size measured [30]. All sys-
tems presented here were analysed using the same cutoffs
for the order parameter and should be subject to similar
size bias. The relationships between free energy barrier
height and nucleus size, as well as nucleus size and driving
force are plotted in Figure S2 in the SI.
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3. Results and discussion

Figure 2(b) shows the PMFT of the fluid phase for all
six shapes, taken as a cross-section through the par-
ticle centres perpendicular to the four-fold axis, and
Figure 2(c) shows three-dimensional isosurface plots. We
see isolated free energy wells for the rhombic dodec-
ahedron, which indicate facet-to-facet alignment. The
PMFTs become more isotropic as we truncate the shapes
away from the RHD towards the rhombicuboctahedron.
These free energy minima are reduced with increasing
truncation as the original facets of the RHD shrink and
new entropic minima (free energy maxima) are intro-
duced for the additional facets that were formerly the
three-fold and four-fold vertices of the rhombic dodec-
ahedron. These new entropic minima become prevalent
at the highest truncations (especially t = 1.0).

The PMFTs of the crystalline phase shown in
Figure 2(d,e) indicate that there are significant, geomet-
rically forbidden, interstitial regions around the parti-
cles, because both the first- and second-neighbour shells
are well-ordered. The orientational penalties enforced
by local crystalline order diminish with increasing

Vad \

Figure 2. Potentials of mean force and torque for the (a) family of shapes between the rhombic dodecahedron and the rhombicuboc-
tahedron (all at |Ax| = 0.4). (b,c) For fluids, we show cross sections through the four-fold axis (b), and three-dimensional views of the
potential of mean force and torque intersecting a thin hemisphere in the first coordination shell, with iso-contours drawn at F = 0.4
from the deepest minimum (c). For the solid phases, we show the same cross-section (d) and three-dimensional views (e). We used one
consistent colour scale throughout all plots, based on a jet colour map with the maximum in the center of the plots at a value of 5F = 5.00

and the minimum at a value of F = 0.00 (see SI).
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truncation: the PMFTs are much more isotropic for the
rhombicuboctahedra because of lower free energy barri-
ers to particles rotating within the crystalline phase. The
penalties for being in the interstitial regions suggest the
positional order corresponding to a crystal, Figure 2(d),
as opposed to the fluid, Figure 2(b), but the lack of deep
minima in the first coordination shell suggests that the
orientation of the reference particle and its coordina-
tion shell are only weakly correlated. Misorientations of
rhombicuboctahedra within the ccp-coordination shell
carry larger entropic (smaller free energy) penalties than
for the other shapes. The free energy of rotation necessary
for the rhombicuboctahedra to move from one local ori-
entational minimum to another is smaller than 8F = 0.4,
as indicated by the merging of the isosurfaces in the first
coordination shell shown in Figure 2(e). Based on this,
we predict that rhombic dodecahedra will have a smaller
free energy barrier to nucleation than spheres and that
this trend will also be measurable across this family of
polyhedra.

In Figure 3(c), we show the free energy barri-
ers BAG, with 8 = 1/(kgT), for rhombic dodecahe-
dra, with equivalents for the other polyhedra given in
Figure S1(a-f) in the SI. Their maxima SAG* are plot-
ted in Figure 3(d). We observe that at a given driving
force | A |, rhombic dodecahedra indeed have the small-
est free energy barrier and thus nucleate the ccp crys-
tal more easily than the other shapes. This is a trend
across the family of polyhedra: increasing truncations
away from the RHD increase roundedness, and increase
the nucleation barriers at similar driving force towards
the behaviour of hard spheres. The nucleation barriers
are important for controlling homogeneous nucleation
because the likelihood of forming a critical nucleus is
proportional to e~ PAGT [25, 29, 49].

As shown in Figure 3(e), the ‘rounder’ polyhedra
exhibit notably larger driving forces to crystallise than
the less truncated, more RHD-like shapes at any given
pressure. The chemical potential curves for each shape
appear almost linear in unitless pressure SPv, and are

(a) (b) 22 -y ‘ (c)4s — 78
§ o3 40 ]
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Figure 3. (a) The family of polyhedra from the rhombic dodecahedron to the rhombicuboctahedron, as well as the hard sphere. The
colours of curves in all plots correspond to the colours of these shapes. (b) Equations of state expressed as free volume per particle (V/N),
at various dimensionless pressures BPv,, where v, is the particle volume (v, = 1 for all shapes). Square symbols correspond to the ccp
crystal, and circular symbols to the fluid. Plotting in these units is useful for computing the chemical potential difference between fluid
and solid phases shown in (e). (c) Umbrella-sampled Gibbs free energy barriers to crystallisation as a function of nucleus cluster size N
for rhombic dodecahedra at various pressures. (d) Free energy barrier maxima SG* for all shapes, expressed as a function of driving force
|Ap]. Arrows in (b), (d), and (e) indicate increasing isoperimetric quotients /Q (i.e. increasing truncations of the rhombic dodecahedron
t € {0,0.2,0.4,0.6,0.8, 1} toward the rhombicuboctahedron, followed by the sphere).



mostly spaced by their coexistence pressures. This linear-
ity arises because the density difference between fluid and
solid remains nearly constant over the modest pressure
range where the fluid is metastable and measurable, and
this density difference is similar for most shapes. Rhom-
bic dodecahedra, because they can fill space, compress
more in the solid than the other shapes (which mani-
fests in the chemical potential curving slightly upwards at
higher pressures), however, this effect is marginal at the
investigated densities, far from the dense packing limit.
Curiously, hard spheres have an intermediate coexistence
pressure and chemical potential with respect to the poly-
hedra family (falling between polyhedra with truncations
t = 0.8 and t = 1, see Figure 3(e)).

The behaviour of the DEFs as quantified by the PMFTs
predicts that the local order in the fluid vs. the crys-
tal should be more similar for more faceted shapes.
To quantify this prediction, we characterise the prob-
ability distribution of solid-like clusters appearing in
the metastable fluid prior to crystallisation. We present
results in Figure 4 for the two extreme cases, rhombic
dodecahedra and spheres, where we show the proba-
bilities to find clusters of different sizes in their flu-
ids approaching crystallisation. These values allow for a
comparison of the pre-nucleation behaviour in the two
fluids. At small |Au|, small clusters are more common
in fluids of spheres than in fluids of rhombic dodecahe-
dra, but trends change with increasing |Au|. The dearth
of small clusters in the fluid of rhombic dodecahedra
is likely a consequence of the lower packing fraction at
small values of |At|. There is a crossover at |Au| > 0.25
where larger clusters become more prevalent for rhom-
bic dodecahedra than for spheres. A sharp increase in the
number of larger clusters occurs for the fluid of rhombic

1072}

1074

Figure 4. Probabilities of finding small (< 6 particles), medium
(6-18 particles), and large (> 18 particles) clusters in equilibrated
metastable fluids of spheres and rhombic dodecahedra, as a func-
tion of | A | (see Sl for details).
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dodecahedranear |Au| > 0.4. This behaviour leads us to
consider these larger clusters as pre-critical nuclei, which
are stabilised preferentially by the strong DEFs for RHD
as compared to spheres.

4. Conclusions

We showed how the nucleation barriers to entropically
driven crystallisation in a family of hard polyhedra are
affected by shape. We showed that truncations (leading
to rounding) of the rhombic dodecahedron, the Voronoi
particle of the cubic close packing, lead to increased
free energy barriers to crystallisation at equivalent driv-
ing forces. Because the driving forces required for the
rhombic dodecahedron to nucleate are smallest among
those studied, we can surmise that the interfacial free
energy terms between the fluid and solid phases must be
lower for the more strongly faceted shapes in this series
(i.e. towards the rhombic dodecahedron). We showed
that these smaller driving forces arise from emergent
entropic forces between particles that encourage facet-to-
facet alignment in the fluid as characterised by potentials
of mean force and torque. The additional facets formed
upon truncating the rhombic dodecahedron add alevel of
competition between weaker directional entropic forces
that hinders nucleation until higher driving forces can
overcome the mismatch of local ordering between the
fluid and crystal phases. We expect our findings to gen-
eralise to other shape families and to provide guidance in
nanoparticle design. Recent work shows that hard shapes
can sometimes crystallise from dense fluids into complex
crystals with large unit cells along entropic pathways that
involve multiple steps, including a fluid-fluid transition
preceding crystallisation [50]. In this work, all of the crys-
tals formed via a one-step nucleation and growth process.
How the multistep nature of crystallisation varies with
systematic changes in particle shape is the subject of
ongoing work.
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