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Abstract

Can we conclude the stability of an unknown dynamical system from the knowledge of a finite number of snapshots of
trajectories? We tackle this black-box problem for switched linear systems. We show that, for any given random set of
observations, one can give probabilistic stability guarantees. The probabilistic nature of these guarantees implies a trade-off
between their quality and the desired level of confidence. We provide an explicit way of computing the best stability-like
guarantee, as a function of both the number of observations and the required level of confidence. Our proof techniques rely
on geometrical analysis, chance-constrained optimization, and stability analysis tools for switched systems, including the joint
spectral radius.
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1 Introduction

Most of the existing work on stability of dynamical sys-
tems is model-based, i.e., it requires the knowledge of a
model for the considered system. Although natural in
many contexts, a model may not always be available.
Cyber-physical systems are an illustration of such dif-
ficulty: they consist of a large number of components
of different nature (modeled by differential equations,
difference equations, hybrid automata, lookup tables,
etc.) engaged in complex interactions with each other.
Closed-form models for these complex and heteroge-
neous systems are equally complex or even not available,
and therefore one cannot use model-based techniques
in these situations. The emphasis that industry places
on simulation of such systems is then not surprising,
since it is always possible to simulate them despite their
complexity. This raises the question of whether one can
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provide formal guarantees about certain properties of
these complex systems, based solely on information ob-
tained via their simulations. We focus here on one of
the most important of such properties in the context of
control theory: stability.

More formally, we consider a time-varying discrete-time
dynamical system of the form:

xk+1 = f(k, xk), (1)

where xk ∈ X is the state of the system and k ∈ N is
the time index. For the rest of the paper, we use the
term black-box to refer to systems where we do not have
access to the model, i.e., to f , yet we can indirectly learn
information about f by observing finite trajectories of
length l (in the particular case of l = 1, these trajectories
become pairs of points (xk, xk+1) as defined in (1)). We
start with the following question to serve as a stepping
stone: For some l ∈ N>0, given N finite trajectories of
length l, (xi,0, xi,1, . . . , xi,l), 1 ≤ i ≤ N , belonging to
the behavior of system (1), (i.e., xi,k+1 = f(k, xi,k) for
any 0 ≤ k ≤ l− 1 and any 1 ≤ i ≤ N), what can we say
about the stability of System (1)?

A potential approach to this problem is to first identify
the dynamics, i.e., the function f , and then apply exist-
ing techniques from the model-based stability analysis
literature. If System (1) is linear, its identification and
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stability analysis have been extensively studied. If f is
not a linear function and in particular if the system is a
switched system, there are two main reasons behind our
quest to directly work on system behaviors and bypass
the identification phase:

• Identification can potentially introduce approxima-
tion errors, and can have a high computational com-
plexity. Again, this is the case for switched systems, for
which the identification problem is NP-hard (Lauer,
2016);
• Even when the function f is known, in general, sta-

bility analysis is a very difficult problem (Blondel and
Tsitsiklis, 1999).

A fortiori, the combination of these two steps in an effi-
cient and robust way seems far from obvious.

In recent years, an increasing number of researchers
started addressing various verification and design prob-
lems in control of black-box systems (Balkan et al., 2016;
Blanchini et al., 2017; Duggirala et al., 2013; Huang
and Mitra, 2014; Kozarev et al., 2016). The initial idea
behind this paper was influenced by the recent efforts in
Balkan et al. (2016); Kapinski et al. (2014); Topcu et al.
(2008), and Bobiti and Lazar (2015) on using simula-
tion trajectories to find Lyapunov functions for systems
with known dynamics. In these works, the main idea is
that if one can construct a Lyapunov function candidate
decreasing along several finite trajectories starting from
different initial conditions, it should hopefully decrease
along every other trajectory. Then, once a Lyapunov
function candidate is constructed, this intuition is put
to test by verifying the candidate function either via
off-the-shelf tools as in Topcu et al. (2008) and Kapin-
ski et al. (2014), or via sampling-based techniques as
in Bobiti and Lazar (2015). This also relates to almost-
Lyapunov functions introduced in Liu et al. (2016),
which presents a relaxed notion of stability proved via
Lyapunov functions decreasing everywhere except on a
small set. These approaches cannot be directly applied
to black-box systems, where we do not have access to
the dynamics -as in our framework. However, they are
based on the following idea that we address in this pa-
per: By observing that a candidate Lyapunov function
decreases on a large number of observations, we empir-
ically build a certain confidence that this function is
a bona-fide Lyapunov function. Can we translate this
empirical observation on a finite set of points into a
confidence that this Lyapunov function decreases in the
whole state space?

Note that, even in the case of a linear system, the con-
nection between these two beliefs is nontrivial. One can
easily construct an example where a candidate Lyapunov
function decreases everywhere on its levels sets, except
for an arbitrarily small subset, yet, almost all trajec-
tories diverge to infinity (see Example 1 in Kenanian
et al. (2018)). In this work, we take a first step into more

complex systems than the linear case by considering the
class of switched linear systems. In addition to the phe-
nomenon exhibited in the above example, switched lin-
ear systems seem a priori challenging for black-box sta-
bility analysis, as both the identification and “white-
box” stability analysis are hard for these systems. De-
ciding stability of a switched linear system amounts to
decide whether its Joint Spectral Radius is smaller than
1, which is extremely hard even in the white-box setting
(see, e.g., Jungers (2009), Chapter 2, for various com-
plexity results).

We present an algorithm to bound the JSR of an un-
known switched linear system from a finite number N
of observations of trajectories. This algorithm partially
relies on tools from the random convex optimization
literature (also known as chance-constrained optimiza-
tion, see (Calafiore, 2010; Campi and Garatti, 2008; Ne-
mirovski and Shapiro, 2006)), and provides an upper
bound on the JSR with a user-defined confidence level.
As N increases, this bound gets tighter. Moreover, with
a closed form expression, we characterize what is the ex-
act trade-off between the tightness of this bound and the
number of samples. In order to understand the quality
of our upper bound, the algorithm also provides a de-
terministic lower bound. Finally, we provide a guarantee
of asymptotic convergence between the upper and the
lower bound, for large N . The reader can find a devel-
oped application of our work to networked control sys-
tems in Kenanian et al. (2018).

The organization of the paper is as follows: In Section 2,
we introduce the problem studied and provide the neces-
sary background in stability of switched linear systems.
Then, based on finite observations for a given switched
linear system, we give in Section 3 a deterministic lower
bound for the JSR, before presenting in Section 4 the
main contribution of this paper, which is the proba-
bilistic upper bound. We illustrate the performance of
the presented techniques with some experiments in Sec-
tion 5, and we propose future extensions of this work in
Section 6.

2 Preliminaries

2.1 Notation

We consider the usual finite normed vector space
(Rn, `2), n ∈ N>0, with `2 the classical Euclidean norm.
We denote by ‖x‖ the `2-norm of x ∈ Rn. We also
denote the set of linear functions from Rn to Rn by
L(Rn), and the set of real symmetric matrices of size n
by Sn. In particular, the set of positive definite matrices
is denoted by Sn++. We write P � 0 to state that P is
positive definite, and P � 0 to state that P is positive
semi-definite. Given a set X ⊂ Rn, we denote by ℘(X)
its powerset (i.e., the set of all its subsets), and by XN

the set of all possible sequences (xn)n∈N, xn ∈ X. For
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any r ∈ R>0, we write rX:= {rx : x ∈ X} to denote the
scaling of ratio r of X. We denote by B (respectively S)
the ball (respectively sphere) of unit radius centered at
the origin. We denote the ellipsoid described by the ma-
trix P ∈ Sn++ as EP , i.e., EP := {x ∈ Rn : xTPx = 1}.
Finally, we denote the spherical projector on S by
ΠS(x) := x/‖x‖.

In this paper, we only consider simple uniform prob-
ability distributions, and we believe that all the con-
cepts can be easily intuitively understood. However, for
the sake of rigor, we now develop the proper measure-
theoretic setting on which our results build. We consider
the classical measure space (Rn,BRn , λ), where BRn is
the Borel σ-algebra generated by the topology of Rn in-
duced by `2, and where λ denotes the Lebesgue mea-
sure. We denote by BS the Borel σ-algebra of S, gen-
erated by the topology on S induced from its ambient
space Rn. The space (S,BS) is provided with the classi-
cal, unsigned and finite uniform spherical measure, de-
noted by σn−1 (n is the dimension of the space where S
is embedded), and derived from the Lebesgue measure
λ as follows. For any A ⊂ S, the sector defined by A,
denoted by SA, is the subset {tA, t ∈ [0, 1]} ∈ BRn .
Then, ∀ A ∈ BS, σn−1(A) = λ(SA)

λ(B) . In other words, the
spherical measure of a subset of the sphere is related to
the Lebesgue measure of the sector of the unit ball it
induces. Notice that σn−1(S) = 1.

For m ∈ N>0, we denote by M the set M =
{1, 2, . . . ,m}. The set M is provided with the classical
σ-algebra associated to finite sets: ΣM = ℘(M). We
provide (M,ΣM ) with the uniform measure µM . For
any l ∈ N>0, we denote by M l the l-Cartesian prod-
uct of M , i.e., M l = {(i1, . . . , il)|ij ∈ M, 1 ≥ j ≥ l}.
We define ΣM l as the product

⊗l
ΣM (which is here

equal to ℘(M)l), and we provide (M l,ΣM l) with
the uniform product measure µM l = ⊗lµM . We can
now define Zl = S × M l as the Cartesian product
of S and M l. We provide the set Zl with the prod-
uct σ-algebra BS

⊗
(ΣM l) generated by BS and ΣM l :

Σ = σ(π−1S (BS), π−1
M l(ΣM l)), where πS : Zl → S and

πM l : Zl →M l are the standard projections. On (Zl,Σ),
we define the product measure µl = σn−1 ⊗ µM l . Note
that, µl is the uniform probability measure on Zl. We
will also need two classical functions to compute our
probabilistic upper bound, which are known as the in-
complete beta function and the regularized incomplete
beta function

Definition 1 (Olver et al. (2010), 6.6.1)
The incomplete beta function, denoted by B, is given by

B :


R>0 × R>0 × R>0 → R≥0

(x, a, b) 7→ B(x, a, b) =

∫ x

0

ta−1(1− t)b−1dt.

Definition 2 (Olver et al. (2010), 6.6.2)
The regularized incomplete beta function, denoted by I,
is given by

I :


R>0 × R>0 × R>0 → R≥0

(x, a, b) 7→ I(x, a, b) =
B(x, a, b)

B(1, a, b)
.

For given values of parameters a > 0 and b > 0, the in-
verse of the regularized incomplete beta function with
parameters a, b, denoted by I−1(y, a, b), is the function
whose output is x > 0 such that I(x, a, b) = y (Ma-
jumder and Bhattacharjee, 1973).

2.2 Stability of Switched Linear Systems

A switched linear system, defined by a set of modes
(matrices)M = {Ai, i ∈M}, is a time-varying discrete-
time dynamical system of the form (1), with f(k, xk) =
Aτ(k)xk, that is:

xk+1 = Aτ(k)xk, (2)

for any k ∈ N. Here, the signal τ ∈ MN is called the
switching sequence, and can take arbitrary values inM .
Note that such systems are homogeneous, i.e., for any
γ > 0, f(k, γxk) = γf(k, xk). In this paper, we assume
to not have access toM nor to the switching sequence.
The only information available is (an upper bound on)
m, the cardinality ofM.

We are interested in the uniform asymptotic stability of
the system, that is, we want to guarantee the following
property:

∀τ ∈MN, ∀x0 ∈ Rn, ‖xk‖ −−−−→
k→∞

0.

The joint spectral radius of a set of matrices M char-
acterizes the stability of the underlying switched linear
system (2) defined byM (Jungers, 2009). This quantity
is an extension to switched linear systems of the classi-
cal spectral radius for linear systems. It is the maximum
asymptotic growth rate of the norm of the state under
the dynamics (2), over all possible initial conditions and
sequences of matrices ofM.

Definition 3 (from Jungers (2009)) Given a finite
set of matrices M⊂ Rn×n, its joint spectral radius
(JSR) is given by

ρ(M) = lim
k→∞

max
i1,...,ik

{
||Ai1 . . . Aik ||1/k : Aij ∈M

}
.

Property 1 (Jungers (2009), Cor. 1.1) Given a fi-
nite set of matrices M, the corresponding switched dy-
namical system is stable if and only if ρ(M) < 1.
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Definition 4 Consider a finite set of matrices M ⊂
Rn×n. A common quadratic form (CQF) for a system
(2) with set of matricesM, is a positive definite matrix
P ∈ Sn++ such that for some γ ≥ 0,

∀A ∈M, ATPA � γ2P. (3)

CQFs are useful because they can be computed, when
they exist, with semidefinite programming (see (Boyd
and Vandenberghe, 2004)), and they constitute a sta-
bility guarantee (when γ < 1, they are Lyapunov func-
tions) for switched systems as we formalize next.

Theorem 5 (Jungers (2009), P. 2.8 & T. 2.11)
Consider a finite set of matricesM.

• If there exist γ ≥ 0 and P � 0 such that Equation (3)
holds, then ρ(M) ≤ γ.

• If ρ(M) < γ√
n
, there exists a CQF, P , such that ∀A ∈

M, ATPA � γ2P.

For any γ < 1, this theorem provides both a Lyapunov
and a converse Lyapunov result : if there exists a CQF,
then our system is stable; if there is, on the contrary,
no such stability guarantee, one may conclude a lower
bound on the JSR. We obtain then an approximation
algorithm for the JSR. It turns out that one can still
refine this technique, in order to improve the error factor
1/
√
n, and asymptotically get rid of it. This is a well-

known technique for the “white-box” computation of the
JSR, which we summarize in the following corollary.

Corollary 6 Fix γ ≥ 0. For any finite set of matrices
such that ρ(M) < γ

2l
√
n
with γ ≥ 0, there exists a CQF

forMl := {Πl
j=1Aij : Aij ∈ M}, that is, a P � 0 such

that:
∀ A ∈Ml, ATPA � γ2lP. (4)

PROOF. It is easy to see from the definition of the JSR
that ρ(Ml) = ρ(M)l. Thus, applying Theorem 5 to the
finite setMl, one directly obtains the corollary. 2

Note that, the smaller γ is in Theorem 5, the tighter is
the upper bound we get on ρ(M). In order to properly
analyze our setting, where the matrices are unknown,
let us reformulate (4) in another form. For any l ∈ N>0,
we can consider the optimal solution γ∗ of the following
optimization problem:

minγ,P γ

s.t. (Ax)TPAx ≤ γ2lxTPx,A ∈Ml, ∀x ∈ S
P � 0.

(5)

Notice that we restrict the set of constraints by restrict-
ing x to S, due to the homogeneity of the system. Homo-
geneity indeed implies that it is sufficient to show the de-
crease of a CQF on an arbitrary set enclosing the origin.

The above equation will provide a clear algebraic for-
malization of our black-box problem: our goal amounts
to find a solution to a convex problem with an infinite
number of constraints, while only sampling a finite num-
ber of them.

2.3 Problem Formulation

Let us now formally present the problem addressed in
this paper. We recall that we only observe N finite tra-
jectories of length l ∈ N>0, i.e., N sequences of states
(xk, xk+1, . . . , xk+l) where xk+i+1 and xk+i are related
by (2). Note that such sequences of states depend both
on the initial state xk and the switching sequence τ(k)
which is assumed to be unknown. In other words, we do
not observe the mode or the matrices used to produce
the trajectories. We do not have access to the process
through which the system picks the modes. The user’s
knowledge is limited to the number of modes (or an up-
per bound on this number) and the dimension of the
system. We assume that these trajectories are gener-
ated from a finite number of initial conditions xi,0 ∈ S,
1 ≤ i ≤ N enumerating the observations, and that a
random sequence of l matrices is applied to each of these
points. We randomly draw the initial conditions from S,
observe them and the l subsequent state values produced
by the system. Sampling the initial conditions from S is
without loss of generality, since any trajectory in Rn can
be rescaled so that xi,0 ∈ S, by homogeneity of the sys-
tem. To a given observed trajectory (xk, xk+1, . . . , xk+l),
we can associate the corresponding probability event
(xk, j1, . . . , jl) which is another (l + 1)-tuple. Formally,
with the fixed probability space (Zl,Σ, µl), we consider
the random variables X : Zl 7→ S and θi : Zl 7→ M , for
1 ≤ i ≤ l. We can note that the random variable X,
from which the initial conditions xk are drawn, has uni-
form distribution (on (S,BS, σn−1)). The random vari-
ables θi, from which the indices ji of the modes applied
at the ith step are drawn, are independent and also have
uniform distribution (on the space (M,ΣM , µM )). Thus,
to a given random finite set of N trajectories of length
l, we can associate an underlying uniform sample of N
such (l + 1)-tuples in Zl, denoted by

ωN := {(xi,0, ji,1, . . . , ji,l), 1 ≤ i ≤ N} ⊂ Zl. (6)

In other words, a set of N available observations
{(xi,0, xi,1, . . . , xi,l), 1 ≤ i ≤ N} can be rewritten, for
all 1 ≤ i ≤ N and 1 ≤ k ≤ l, as xi,k = Aji,k . . . Aji,1xi,0,
with the ji,k being unobserved variables that take their
values in M .

Remark 7 Let us motivate our assumption on the uni-
form drawing of the matrices. We assumed that we only
have access to random observations of the state of the
system, and ignore the process that generates them. In
particular, we ignore the process that selects the modes
at each time step, and model it as a random process. We
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suppose that with nonzero probability, each mode is ac-
tive: the problem would indeed not be solvable otherwise,
since the system would be unidentifiable with probability 1
and would prevent to ever observe some of its behaviors.
We take this distribution to be uniform since we cannot
say that some modes are more likely a priori. Our results
extend to the case where the distribution is not uniform
as long as we have a nonzero lower bound on the proba-
bility of each mode.

In this work, we aim at understanding what type of
guarantees one can obtain on the stability of System (2)
(that is, on the JSR ofM) from the sample (6). More
precisely, we answer the following problem:

Problem 1 Consider a finite set of matrices, M, de-
scribing a switched system (2), and suppose that one has
a set of N observations (xi,0, xi,1, ..., xi,l), i = 1, ..., N
corresponding to an event ωN , sampled from Zl with the
uniform measure µl.

• For a given confidence level β ∈ [0, 1), provide an upper
bound on ρ(M), that is, a number ρ(ωN ) such that

µNl

(
{ωN : ρ(M) ≤ ρ(ωN )}

)
≥ β.

• For the same given level of confidence β, provide a
lower bound ρ(ωN ) on ρ(M).

Remark 8 We will see in Section 3 that we can even de-
rive a deterministic lower bound for a given (sufficiently
high) number of observations.

We will see in Theorem 17 that for any level of confi-
dence β, it is always possible to provide an upper bound
for Problem 1 which tends to the JSR when the number
of sampled points increases. In particular, for any (large
enough) number of samples, it is always possible to pro-
vide such an upper bound that is finite. We can then
consider the statistical test with null hypothesis ’H0 :
ρ(M) < 1’ and alternate hypothesis ’HA : ρ(M) ≥ 1’.
This is a Hypothesis test for the question ’Is the JSR
strictly lower than 1?’, which is equivalent to the ques-
tion ’Is the system stable?’ by Property 1. This test has
an a priori fixed probability 1− β of false positive (case
where ρ(ωN ) < 1 and ρ(M) > 1). Theorem 17 will also
show that the probability of false negative (case where
ρ(ωN ) > 1 and ρ(M) < 1) tends to zero when the num-
ber of samples N increases.

The key insight is to leverage the fact that conditions
for the existence of a CQF for (2) can be obtained by
considering a finite number of trajectories in Rn of the
form (xk, xk+1, . . . , xk+l). Developing that insight leads
us to the following algorithm, that is the main result of
our work and that solves Problem 1:

Algorithm 1 (Probabilistic upper bound)
Input: observations produced by a uniform random sam-
ple ωN ⊂ Zl of size N ≥ n(n+1)

2 + 1;

Input: β desired level of certainty;

Compute: a candidate for the upper bound, γ∗(ωN ),
solution of the convex optimization problem (7);
(observe that (7) does not require the explicit knowledge
of the matrices Aj)

Compute: ε(β, ωN ) the proportion of points where our
inference on the upper bound may be invalid;

Compute: δ(ε) ≤ 1 a correcting factor; (δ −−−−→
N→∞

1)

Output: γ∗(ωN )
2l
√
n
≤ ρ ≤ γ∗(ωN )

l
√
δ(ε)

;

(the right-hand side inequality is valid with probability at
least β).

3 A Deterministic Lower Bound

In Section 2.2, we presented an optimization problem,
(5), that provides a stability guarantee. Nevertheless,
this problem has infinitely many constraints and observ-
ing a finite number of trajectories only gives us access to
a restriction of it (with finitely many constraints). We
consider then the following optimization problem:

minγ,P γ

s.t. (Ajx)TPAjx ≤ γ2lxTPx, ∀(x, j) ∈ ωN
P � 0, γ ≥ 0.

(7)

with optimal solution γ∗(ωN ), and where Aj :=
AjlAjl−1

. . . Aj1 and j := {j1, . . . , jl}. Note that, (7)
can be efficiently solved by semidefinite programming
and bisection on the variable γ (see (Boyd and Vanden-
berghe, 2004)). Note also that solving this program can
be done in practice only through the knowledge of the
observations: even though the Aji are not known, the
program only requires the knowledge of Ajx, which is
known through the observations. In this section, we pro-
vide a theorem for a deterministic lower bound based on
the observations given by ωN , whose accuracy depends
on the “horizon” l.

Theorem 9 For an arbitrary l ∈ N>0 and a given uni-
form sample ωN ⊂ Zl, by denoting γ∗(ωN ) the optimal
solution of the optimization problem (7), we have

ρ(M) ≥ γ∗(ωN )
2l
√
n

.

PROOF. Proof. Let ν > 0. By definition of γ∗(ωN ),
there exists no matrix P ∈ Sn++ such that, ∀x ∈
S, ∀Aj ∈Ml,

(Ajx)TPAjx ≤ (γ∗(ωN )− ν)2lxTPx.
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Taking the contrapositive of Corollary 6, this implies
that ρ(M) ≥ (γ∗(ωN )−ν)l

2l
√
n

. Since this is valid for any
ν > 0, we finally obtain the claim.

4 A Probabilistic Stability-like Guarantee

4.1 A Partial Upper Bound

In this section, we show how to compute an upper bound
on ρ, with a user-defined confidence β ∈ [0, 1). We do
this by constructing an l-step CQF which is valid with
probability at least β. The existence of an l-step CQF
implies ρ ≤ γ∗ due to Theorem 5. As we will see be-
low, the quality of our bound will depend on geomet-
rical properties of the CQF found; more precisely, the
smaller the condition number of the corresponding ma-
trix P , the better will be our bound. In practice, one can
minimize the condition number of the solution P in a
second step, after computing γ∗ from (7). However, for
the sake of rigor and clarity of our proofs, we introduce
a slightly different optimization problem. We consider
for the rest of the discussion the following optimization
problem, that we denote by Opt(ωN ):

min
P

λmax(P )

s.t. (Ajx)TPAjx ≤ ((1 + η)γ∗(ωN ))
2l
xTPx,

∀ (x, j) ∈ ωN
P � I,

(8)

with η > 0, and where γ∗(ωN ) is the optimal solution
to the optimization problem (7). Let us analyze the re-
lationship between Opt(ωN ) and the optimization prob-
lem (7). Firstly, thanks to the homogeneity of system (2),
feasibility of the optimization problem does not change
when replacing the constraint P � 0 in the initial prob-
lem with the constraint P � I. Secondly, as discussed
above, the objective function λmax(P ) (which is convex)
can be added once γ∗ is computed, in order to minimize
the condition number. Lastly, we introduced a “regular-
ization parameter”, η > 0, which ensures strict feasibility
of Opt(ωN ). As the reader will see, we will derive results
valid for arbitrarily small values of η. This will then not
hamper the practical accuracy of our technique, while
allowing us to derive a theoretical asymptotic guarantee
(i.e., for a large number of observations). We denote the
optimal solution of Opt(ωN ) by P (ωN ), and drop the
explicit dependence of P on ωN when it is clear from the
context.

The intriguing question of whether the optimal solution
of this sampled problem is a feasible solution to (5) has
been widely studied in the literature (Calafiore, 2010).
Under certain technical assumptions, one can bound the
proportion of the constraints of the original problem (5)
that are violated by the optimal solution of Opt(ωN ),

with some probability which is a function of the sample
size N . In the following theorem, we adapt a classical
result from the random convex optimization literature
to our problem.

Theorem 10 (adapted from T.3.3 1 , (Calafiore, 2010))
Consider the optimization problem Opt(ωN ) given in
(8), where ωN is a uniform random sample drawn from
the set Zl. Let d = n(n+1)

2 be the dimension of the deci-
sion variable P of Opt(ωN ) and N ≥ d + 1. Then, for
all ε ∈ (0, 1] the following holds:

µNl
{
ωN ∈ ZNl : µl (V (ωN )) ≤ ε

}
≥ β(ε,N), (9)

where β(ε,N) = 1 −
∑d
j=0

(
N
j

)
εj(1 − ε)N−j, and

V (ωN ) is the set {(x, j) ∈ Zl : (Ajx)TP (ωN )Ajx >
(γ∗ωN )2lxTP (ωN )x}, i.e., it is the subset of Zl for which
the considered γ∗-contractivity is violated by the optimal
solution of Opt(ωN ).

The quantity ε can also be seen as a function of β and
N : ε(β,N) = 1− I(1− β,N − d, d+ 1) (see the proof of
Theorem 3.1 in (Calafiore, 2010)).

Corollary 11 Consider a set of matricesM and denote
γ∗ the optimal solution of (7) and P � 0 the optimal
solution of Opt(ωN ). Then, with the notation of Theorem
10, for any ε > 0, the set Ω of observations ωN ∈ ZNl for
which we have

(Ajx)TPAjx ≤ (γ∗)2lxTPx,∀x ∈ S \ S̃,∀j ∈M l (10)

for some S̃ ⊂ S with measure σn−1(S̃) ≤ εml, verifies
µNl (Ω) ≥ β(ε,N).

This result allows us to make abstraction of the prob-
abilistic setting: by accepting a confidence level of β
smaller than one, we may assume that all the points ex-
cept a small set satisfy the Lyapunov equation (5). The
case where we have the equality σ(S̃) = εml corresponds
to the case where every point x ∈ S̃ violates (10) for ex-
actly one value of j.

1 Theorem 3.3 in (Calafiore, 2010) requires Opt(ωN ) to sat-
isfy the following technical assumptions:

(1) When the problem Opt(ωN ) admits an optimal solu-
tion, this solution is unique.

(2) Problem Opt(ωN ) is nondegenerate with probability 1.

Here, the first assumption can be enforced if required by
adding a tie-breaking rule to Opt(ωN ) as explained in Ap-
pendix A in (Calafiore and Campi, 2006), while the second
assumption can be lifted, as explained in PART 2b in (Campi
and Garatti, 2008), thanks to the introduction of “constraint
heating”.
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PROOF. Proof. From Theorem 10, we can assume,
with a level of confidence β, that µ(V (ωN )) ≤ ε,
where V (ωN ) = {(x, j) ∈ Zl : (Ajx)TP (ωN )Ajx >

(γ∗ωN )2lxTP (ωN )x}. Since S̃ = {x ∈ S : ∃j ∈ M l :

(Ajx)TP (ωN )Ajx > (γ∗ωN )2lxTP (ωN )x}, we have that

σn−1(S̃) ≤ µ(V (ωN ))ml ≤ εml.

The above results allow us to conclude, from a finite
number of observations, that with probability β (where
β goes to 1 as N goes to infinity), the required property
is actually satisfied for the complete sphere S, except on
a small set of measure at most ε̃ = εml. This means
that, the ellipsoid EP computed by Opt(ωN ) is “almost
invariant” except on a set of measure bounded by ε̃. This
is represented in Fig. 1. for the case n = 2, where the red
points of EP are points that might violate the invariance
constraint. Here, the set of red points has measure at
most ε̃.

?

Fig. 1. Representation of the “partial invariance property”
obtained by application of the results in Theorem 10. A
priori, we know nothing about the images of the (dotted) red
points under (2). Our goal is to convert this partial invariance
property into a global stability property.

Thus, we are left with the following question:

Problem 2 What can we conclude on the JSR if the
invariance property is satisfied by all points, except a set
of measure ε̃?

In the course of Theorem 15, we will be able to derive an
upper bound by solving the geometric problem of com-
puting the largest scaling of EP included in the convex
hull of the subset of points of EP that satisfy the in-
variance property (10). Indeed, this smaller ellipsoid will
satisfy a (relaxed) invariance property for all its points,
thanks to the following key property of switched linear
systems.

Property 2 The dynamics given in (2) is convexity-
preserving, meaning that for any set of points X ⊂ Rn,

{Ax : A ∈M, x ∈ convhull X} ⊂
convhull {Ax : A ∈M, x ∈ X}.

Of course, for a fixed measure ε̃, this largest ellipsoid will
depend on the distribution of points of EP that violate
the constraint. In order to obtain a guarantee on our

upper bound, we will look for the smallest such ellipsoid
obtained over all possible sets S̃ of measure ε̃.

We start by solving this problem in the particular case
where EP = S. In this case, we benefit from the fol-
lowing tool, allowing to explicitly analyse the worst-case
distribution.

Definition 12 We define the spherical cap on S for a
given hyperplane cTx = k, as Cc,k := {x ∈ S : cTx > k}.

We now define the following function which quantifies
the largest-inscribed-sphere problem, for a given subset
X ⊂ S:

∆ :

{
℘(S)→ [0, 1]

X 7→ sup{r : rB ⊂ convhull (S \X)}. (11)

The following proposition tells us that, when the mea-
sure of the set X is fixed, ∆ is minimized when X is a
spherical cap, i.e., the minimal radius δ of the largest
sphere δS included in S \X will be reached when X is a
spherical cap.

Proposition 13 Let ε̃ ∈ [0, 1] and Xε̃ = {X ⊂ S :
σn−1(X) ≤ ε̃}. Then, the function ∆(X) attains its min-
imum over Xε̃ for some X which is a spherical cap. We
denote by δ(ε̃) this minimal value, which takes the fol-
lowing expression:

δ(ε̃) =

√
1− I−1(2ε̃;

n− 1

2
,

1

2
).

A proof of Proposition 13 is given in (Kenanian et al.,
2018). By homogeneity of Program (8), we have x ∈
S̃ ⇐⇒ −x ∈ S̃, which implies that the minimal δ will in
fact occur when the set of violating points is the union
of two symmetric spherical caps, each of measure ε̃

2 .

δδ

Fig. 2. On the left, a general case of the situation where the
ellipse in Fig. 1. is a sphere. On the right, case giving minimal
δ. The set of points violating the invariance constraint (in
red) is the union of two spherical caps.

Remark 14 When ε ≥ 1
ml

, we have ε̃ ≥ 1 and δ(ε̃) = 0:
the only upper bound we can give for the JSR is then +∞.

4.2 A global upper bound

We now introduce our main theorem, Theorem 15, which
provides a solution to Problem 2. In order to use our

7



solutionofprevioussection,developedforthecaseEP =
S,wewillhavetorelateEP(ωN )toS. Weapplythusa
changeofcoordinatesbringingEP toS.SinceP∈Sn

++,
itcanbewritteninitsCholeskyform

P=LTL, (12)

whereLisanuppertriangular matrix.RemarkthatL
mapstheelementsof EP toS.SincetheJSRisnot
changedbysimilaritytransformations(Jungers,2009,
Proposition1.3),wecanpursueourcalculationswith
thematricesobtainedafterthechangeofcoordinates.

L

L−1

Fig.3.Changeofcoordinatestobringourproblembackto
thecaseoftheunitsphere.

Theorem15 Letγ∗∈R>0.Considerasetofmatrices
M ,andamatrixP 0optimalsolutionofOpt(ωN),sat-

isfyingEquation(10)forsomẽS⊂Swhereσn−1(̃S)≤ε̃.
Then,wehave

ρ(M )≤
γ∗

l δ ε̃κ(P)
2

(13)

withκ(P)= det(P)
λmin (P)n andwhereδ(·)isgivenbyPropo-

sition13.

PROOF. Proof.i)Sincewehaveseenintheprevious
sectionatechniquetosolvethesphericalcase,wefirst
bringourproblemtothesphericalcase.Todoso,we
performthechangeofcoordinatesdefinedasin(12)by
L∈L(Rn)whichmapstheellipsoidEP tothesphereS.
BydefiningĀji =LAjiL

−1,and̄Aj=Ājl
Ājl−1

...̄Aj1,
Equation(10)becomes:

(̄Ajx)TĀjx≤(γ∗)2lxTx,∀x∈L(S\̃S),∀j∈Ml. (14)

Byusingthehomogeneityofthedynamics,wehave:

(̄Ajx)TĀjx≤(γ∗)2lxTx,∀x∈L(S\̃S)

=⇒ (̄Ajx)TĀjx≤(γ∗)2lxTx,∀x∈ΠS L(S\̃S) ,

andthereforewecanrewrite(14)as:

(̄Ajx)TĀjx≤(γ∗)2lxTx,∀x∈S\ΠS(L(̃S)),∀j∈Ml.
(15)

ii)Wenowshowhowtorelate σn−1(ΠS(L(̃S)))to

σn−1(̃S),the measureoftheviolatingsetintheinitial

coordinates.ConsiderSS̃,thesectorofBdefinedbyS̃.
Wedenote C :=L(̃S)andC := ΠS(L(̃S)).Thus,we

havethatSC ⊂ 1
λmin(L)

SC.Thisleadsto2:

σn−1(C)=λ SC ≤λ
1

λmin(L)
L(SS̃) .

Then,thefollowingholds:

σn−1(C)≤
λ L(SS̃)

λmin(L)n

=
|det(L)|

λmin(L)n
λ SS̃ (16)

=
det(P)

λmin(P)n
σn−1(̃S) (17)

where(16)followsfromthefactthat λ(Q(X)) =
|det(Q)|λ(X),foranysetX ⊂Rn andQ∈L(Rn)(see
e.g.(Rudin,1987)).Hence,wehave

(̄Ajx)TĀjx≤(γ∗)2lxTx,∀x∈S\S,∀j∈Ml, (18)

with S = ΠS(L(̃S))andσn−1(S)≤ det(P)
λmin (P)n =

κ(P)̃ε.

iii)ForanysuchgivensetS,welookforthelargest
sphereincludedinconvhull(S\S).Byhomogeneityof
thesystem,thissphereiscenteredattheorigin,and
wedenotebyαitsradius.By(18),finitetrajectoriesof
lengthlinitializedonS\Swillbein(γ∗)lB:

Āj(S\S)⊂(γ∗)lB,∀j∈Ml.

Now,combiningwithProperty2,wehave:
Āj(convhull(S\S)) ⊂ convhull(̄Aj(S\S)) ⊂
(γ∗)lB,∀j∈ Ml.SinceαS⊂ convhull(S\S),then
∀j∈Ml,̄Aj(αS)=ᾱAj(S)⊂convhull Āj(S\S)⊂

(γ∗)lB,whichimpliesthat

Āj(S)⊂
(γ∗)l

α
B. (19)

iv)Summarizing,sinceweknowthatthesetS̃issym-
metric w.r.t.theorigin,by Proposition13, wehave

thatα ≥ δ(ε̃κ(P)
2 ). Finally,byhomogeneityofour

2 Recallthat λ(S)istheLebesgue measureofS,andthe
spherical measureofanysetC ⊂ Sisgivenbyσn 1(C)=
λ SC .
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system and the fact that the JSR is invariant under
similarity transformations (Jungers, 2009, Proposition
3.1), Equation (19) implies ρ(Ml) ≤ (γ∗)l

δ(
ε̃κ(P )

2 )
, hence

ρ(M) ≤ γ∗

l

√
δ
(
ε̃κ(P )

2

) . 2

Remark 16 There is no conservatism in multiplying ε
by ml, as in the worst case this can happen: if ε = 1/ml,
Theorem 10 does not rule out the pathological case where
not a single point satisfies Equation (5) for all A ∈Ml,
and thus δ must be equal to 0 since all points might be
violating the constraint. However, the multiplication by
κ(P ) is conservative if P has different eigenvalues (this
bound is then exactly reached only at a single point on
the ellipsoid). We can then, instead of deriving an upper
bound on the size of the set of points that violate the
constraint, look at a lower bound on the size of the set of
points that satisfy the constraint. Taking the complement
of this latter set gives another upper bound on the size
of the set of violating points. By a similar reasoning as
the one conducted above, this second upper bound will be
equal to 1− (1− εml)

√
det(P )

λmax(P )n .
This provides an alternative upper bound, which can be
used if the initial upper bound (13) is infinite, or weaker.

4.3 Main Theorem

We are now ready to prove our main theorem by putting
together all the above pieces.

Theorem 17 Consider an n-dimensional switched lin-
ear system as in (2) and a uniform random sampling
ωN ⊂ Zl, where N ≥ n(n+1)

2 + 1. For any η > 0, let
γ∗(ωN ) be the optimal solution to (8). Then, for any
given β ∈ [0, 1),

µNl

{
ωN ∈ ZNl : ρ ≤ γ∗(ωN )(1 + η)

l
√
δ(β, ωN )

}
≥ β,

where δ(β, ωN ) =
√

1− I−1(ε(β,N)mlκ(P ), n−12 , 12 ),

with P � 0 the optimal solution of Opt(ωN ). Moreover,
limN→∞ δ(β, ωN ) = 1 with probability 1.

PROOF. Proof. Let us consider γ∗(ωN ) and P as in
Equation (8). Then, by taking ε := ε(β,N) such that
β(ε,N) = β in Corollary 11, we have with probability
at least β

(Ajx)TPAjx ≤ ((γ∗(1 + η))
2l
xTPx,∀x ∈ S\S̃,∀j ∈M l

with S̃ the projection of V on S, and σn−1(S̃) ≤ εml.
Then by Theorem 15, we can compute δ(β, ωN ) =

δ(ε′(β,N)), where

ε′(β,N) =
1

2
ε(β,N)mlκ(P ) (20)

such that with probability at least β we have:

ρ ≤ γ∗(ωN )(1 + η)
l
√
δ(β, ωN )

,

which completes the proof of the first part of the theo-
rem.

Let us prove now that limN→∞ δ(β, ωN ) = 1 with prob-
ability 1. We recall that

δ(β, ωN ) = δ
(
ε(β, ωN )mlκ(P (ωN ))

)
.

We start by showing that κ (P (ωN )) is uniformly
bounded in N . The optimization problem Opt(ωN )
given in (8), with (ωN ) replaced by (Zl) and (1 + η)
replaced by (1 + η

2 ) is strictly feasible for any pos-
itive parameter η. It then admits a finite opti-
mal value K for some solution Pη/2. Note that,
limN→∞ γ∗(ωN ) = γ∗(Zl) with probability 1. Thus, for
large enough N , γ∗(ωN )(1 + η) > γ∗(Zl)(1 + η

2 ). This
also means that, for large enough N , Opt(ωN ) admits
Pη/2 as a feasible solution and thus the optimal value
of Opt(ωN ) is upper-bounded by K. In other words, for
N large enough, λmax(P (ωN )) ≤ K. Moreover, since
λmin(P (ωN )) ≥ 1 (by P � I), we also have:

κ (P (ωN )) =

√
det(P (ωN ))

λmin(P (ωN ))n
≤
√
Kn. (21)

We next show that limN→∞ ε(β,N) = 0 for any fixed
β ∈ [0, 1). Recall that ε(β,N) is implicitely defined by

1− β =

d∑
j=0

(
N

j

)
εj(1− ε)N−j

≤ (d+ 1)Nd(1− ε)N−d. (22)

We prove limN→∞ ε(β,N) = 0 by contradiction. As-
sume that limN→∞ ε(β,N) 6= 0. This means that, there
exists some c > 0 such that ε(β,N) > c infinitely of-
ten. Then, consider the subsequence Nk such that ∀k,
ε(β,Nk) > c. Then, by (22) we have for any k ∈ N:

1− β ≤ (d+ 1)Nd
k (1− ε)Nk−d≤(d+ 1)Nd

k (1− c)Nk−d.

Note that limk→+∞(d + 1)Nd
k (1 − c)Nk−d = 0, which

implies that there exists a k′ such that:

(d+ 1)Nd
k′(1− c)N

′
k−d < 1− β,
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which is a contradiction. Therefore, we must have
limN→∞ ε(β,N) = 0. Putting this together with
(21), we get: limN→∞mlκ(P (ωN ))ε(β, ωN ) = 0. By
the continuity of the function δ this also implies:
limN→∞ δ

(
ε(β, ωN )mlκ(P (ωN ))

)
= 1. 2

5 Experimental Results

Theorem 9 and Theorem 17 give us a straightforward al-
gorithm which is summarized at the end of Section 2. In
its first part, we look for γ∗ by bisection on an interval
[0, U ] (for the value of U , take, e.g., the maximum value
of ||xk+l|| among the observations made). For a fixed
desired accuracy α on that bisection, we solve a feasibil-
ity problem (of polynomial complexity in the number of
constraints) at most dlog2(U/α)e times. In our experi-
ments we took α = 10−3. Once the result of the bisection
is obtained, we solve Opt(ωN ). In practice, the parame-
ter η in Opt(ωN ) can be put to zero, as it is included in
α. Finally, we get δ by using the expression given in The-
orem 15. All these computations are also of polynomial
complexity.

We illustrate our technique on a 4-dimensional switched
system with 6 modes. We fix the confidence level,
β = 0.95, and compute the lower and upper bounds on
the JSR for N := 20 + 200k, k ∈ {0, . . . , 29}, according
to Theorem 9 and Theorem 17, respectively. We take
the average performance of our algorithm over 10 dif-
ferent runs. Fig. 4 shows the evolution, as N increases,
of the upper and lower bounds for various values of
trajectories length l. To further demonstrate the prac-
tical performance of our technique, we also provide
the true value of the JSR approximated by the JSR
Toolbox (Vankeerberghen et al., 2014) for this system,
which turns out to be 0.918 ± 0.001. We observed that
the performance of the upper bound is much better
for trajectories of length 1, while for the lower bound,
we benefit by considering trajectories of higher length.
While it is expected that longer trajectories improve
the accuracy, the decreasing performance for the upper
bound comes from the fact that many more points are
needed for larger trajectories, because the probability
space to be sampled is larger. In our example, our first
upper bound smaller than 1 (that is, being a stability
guarantee) was obtained for N = 5820.

In Fig. 5, we compare the upper bound we obtained with
the upper bound given by the (white box) JSR Tool-
box, for different values of n andm. Note that the speed
of convergence of all the quantities considered decreases
when the dimension of the system increases. We never-
theless observe convergence of the upper bound to ρ(M),
and convergence of the lower bound to ρ(M)

l
√
n

. The gap
between these two limits is ρ

l
√
n

as predicted by Theo-
rem 17. This gap could be improved by considering a
more general class of common Lyapunov functions, such
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Fig. 4. Evolution of the upper and lower bounds, for various
lengths of trajectories, with the number of samples.
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Fig. 5. Convergence of our upper bound when the number of
samples increases, for several values of n and m and l = 1.
The values plotted are the ratios between our upper bound
and the true value computed by the JSR Toolbox.

as those that can be described by sum-of-squares polyno-
mials (Papachristodoulou and Prajna, 2002). We leave
this for future work.

To illustrate the accuracy of our confidence level beta,
we randomly generate 10, 000 test cases with systems of
dimension between 2 and 7, number of modes between 2
and 6, and size of samples N between 30 and 1000. We
take β = 0.95 and we check if the upper bound computed
by our technique is greater than the true value computed
by the JSR Toolbox for the system. We get 9921 positive
tests, out of 10, 000, which gives us a correctness rate of
0.9921 for the upper bound computed. Note that, this
probability is significantly above the provided β. This is
expected, since our techniques are based on worst-case
analysis and thus fairly conservative.

Finally, Fig. 6 shows the evolution of the function δ with
the number of samples, for different values of n, at m
and l fixed.
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Fig. 6. Average behavior of δ as a function of N for different
values of n, with fixed m = 4 and l = 1.

6 Conclusions

In this paper, we investigated the question of how one
can conclude stability of a dynamical system when a
model is not available and, instead, we only can observe
the evolution of the state of the system. Our goal was to
understand how the observation of well-behaved trajec-
tories intrinsically implies stability of a system.

As expected, it is not surprising that we need some
standing assumptions on the system, in order to allow
for any sort of nontrivial stability certificate solely from
a finite number of observations.

The novelty of our contribution is twofold: First, we used
as standing assumption that the unknown system can be
modeled by a switched linear system. This assumption
covers a wide range of systems of interest, and to our
knowledge no such “black-box” result has been available
so far on switched systems. Second, we applied powerful
techniques from chance-constrained optimization. Their
application was far from obvious, though, and relied on
geometric properties of linear switched systems.

We leveraged the concept of ‘l-step CQF’, and showed
that it allows to reach arbitrary precision for our black-
box technique. In the switched systems literature, there
are other well-known techniques for refining this preci-
sion for the white-box problem. For instance, one can
replace the LMIs in Theorem 5 by Sum-Of-Squares
(SOS) constraints; see (Parrilo and Jadbabaie, 2008) or
(Jungers, 2009, Theorem 2.16). Although l-step CQFs
seem better suited for our purpose, we leave for further
work a more systematic analysis of the behaviour of the
different refining techniques.

Notice that, our algorithm can also be used in the white-
box framework and becomes then a randomized algo-
rithm to evaluate the JSR of a known system.

In our view, the stability-like guarantees obtained are
powerful, in view of the hardness of the general problem.

In the future, we plan to investigate how to generalize
our results to more complex models of realistic systems.
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